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Abstract. When it comes to object detection tasks, YOLO stands
out for its impressive speed and efficiency. Nonetheless, deploying
YOLO on resource-constrained devices remains a challenge due to
its substantial model size and memory requirements. The direct ap-
plication of conventional binary quantization strategies to YOLO can
result in significant accuracy degradation. A prevalent solution is to
introduce floating-point shortcuts. However, the increased computa-
tional demand and parameter complexity associated with these short-
cuts limit their practical deployment on hardware platforms for opti-
mal acceleration. To solve this problem, we propose a binary neural
network (BNN) for object detection called BOB-YOLO to achieve a
balanced performance in terms of computational speed, model size,
and detection accuracy. Our BOB-YOLO fully leverages module-
wise latency (MWL) to supervise the latency of floating-point short-
cut branches by that of 1-bit trunk branches. This supervision maxi-
mizes the information carried by the floating-point data flow in short-
cuts while maintaining latency within the limits set by the 1-bit
convolution branch, thereby improving parallel computational effi-
ciency. We also introduce the Roofline Model to address these lim-
itations by considering both computational complexity and param-
eter compression, ensuring high computational intensity. Addition-
ally, we propose a performance evaluation metric Pd, which provides
an intuitive description of the trade-off between speed and accu-
racy, aligning closely with the practical requirements of binary quan-
tization strategies. Extensive experiments on the VOC and COCO
datasets demonstrate the significant advantages of our method over
state-of-the-art BNN methods.

1 Introduction

Real-time object detection [4] is a crucial task in the field of com-
puter vision, finding extensive applications in various domains such
as autonomous driving [2], smart camera [18], and industrial qual-
ity inspection [12]. Often, the scenarios for real-time target detection
applications are edge computing environments, where computational
or storage resources are limited. This necessitates specific demands
on model inference speed, storage overhead, and accuracy, high-
lighting the clear prospects and tangible value of model lightweight
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Figure 1. Illustration of the motivation behind MWL (top: commonly used
methods, bottom: our method based on MWL). In parallel computations

between the 1-bit trunk and floating-point shortcut branches, waiting times
occur. Hence, we argue that the current design and evaluation of BNNs may

not be optimal for achieving balanced optimization in binarized YOLO.

techniques in this domain [23]. Recent advancements in 1-bit neu-
ral networks, i.e., BNNs, have made quantization technology an effi-
cient and promising method for deep model compression in resource-
limited devices [3]. BNNs replace complex convolution with equiv-
alent XNOR and popcount operations, achieving up to 32× memory
compression and 58× computational reduction on CPUs [13]. Fur-
ther research on the behaviors of BNNs in object detection is crucial
to extend their usage in academia, and explore their potential in real-
world applications [19].

In recent years, several Binary Neural Network (BNN) algorithms
for object detection have been proposed[21, 24]. However, there is a
lack of research specifically targeting YOLO. Most studies on bi-
nary quantization algorithms for object detection have been bina-
rizing SSD [8] and Faster-RCNN [17], which are based on over-
parameterized convolutional modules such as VGG and ResNet.
In contrast, the latest iteration YOLOv8 architecture outperformed
other object detection models in terms of both accuracy and process-
ing speed. It incorporates several innovative features such as massive
cross-scale connections, an anchor-less design, a more complex gra-
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dient flow C2f (CSPLayer 2Conv) structure, and a Decoupled-Head
design, further enhancing the network’s performance, making it an
ideal choice for real-time applications. Thus, we chose YOLOv8 as
the baseline object detection model.

This paper aims to design a 1-bit YOLO detector that achieves
a balanced trade-off between computational speed, model size, and
detection accuracy. To achieve this objective, two fundamental ques-
tions need to be addressed. The first question is: Is the well-
performing YOLO series still suitable for BNNs? Directly applying
1-bit quantization to YOLO leads to a substantial loss of information
flow, resulting in an unacceptable decrease in detection accuracy. Its
poor performance is caused by the low representational capacity. the
floating-point shortcuts proposed in Bi-Real Net[10] help enhance
the representation of binary modules and mitigate this information
flow degradation. However, as shown in Figure 1, we empirically ob-
serve that the mixed-precision layers exhibit varying performance in
terms of computation and memory access costs. And, these floating-
point shortcuts come at the cost of increased computational and pa-
rameter complexity, both of which hampers the potential for effec-
tive acceleration. Moreover, the existing evaluation metric based on
model-wise FLOPs only considers the time cost of sequential cal-
culations and fails to account for the waiting delay introduced by
massive parallel computing modules and memory access overhead.
Previous models have achieved good results in accelerated compu-
tation, but the degree of memory access cost compression is far less
than the amount of computation, which leads to a decrease in the
operational intensity, and thus can not achieve the ideal acceleration
effect in the actual hardware deployment.

In this paper, we address the first question by using the MWL and
Roofline Model to guide the design of binary quantization strate-
gies. Based on the Roofline Model, we control the compression of
computation and access to a close degree to ensure a high compu-
tation intensity. Besides, we propose the MWL to focus on individ-
ual modules within the network and account for synchronization and
waiting times in parallel computations involving trunk and shortcut
branches. By separately measuring the computation and memory ac-
cess costs of different branches, we calculate the actual delay of a
module and account for the time spent waiting for synchronization.
Building upon the MWL concept, we utilize the latency of the trunk
branch composed of 1-bit convolutions to supervise the latency of
shortcuts employing floating-point operations. This supervision en-
sures that the information carried by the floating-point data flow in
the shortcut is maximized to recover the information loss from quan-
tization, while still guaranteeing that the shortcut’s latency remains
within the limits set by the 1-bit convolution branch. Furthermore,
this approach increases the operational intensity of both individual
modules and the overall model, ultimately maximizing hardware per-
formance.

Indeed, the inclusion of floating-point operations in BNNs can sig-
nificantly mitigate the decrease in accuracy. However, these BNNs
trade speed for accuracy by incorporating complex computations
during training or inference. This brings a new question: How can
we evaluate whether a BNN achieves a trade-off between accuracy
and speed using an intuitive quantization metric? Existing BNNs
employ metrics such as FLOPs, model size, and single-inference ac-
curacy on the validation sets to individually assess the performance
of quantization strategies. As we know, the goal of BNNs is to mini-
mize FLOPs and model size while maximizing accuracy. These con-
flicting metrics make it challenging to measure the balance between
accuracy and speed. Moreover, real-world application scenarios for
BNNs have diverse requirements for speed improvements and tol-

erances for accuracy degradation. It is natural to believe that if we
can find a metric to evaluate the trade-off between speed and accu-
racy in BNNs would provide more convincing practical applications
for 1-bit quantization. Specifically, to address the second question,
we propose a performance evaluation metric denoted as Pd, which
is based on the requirements of real-time object detection algorithms
in real-world scenarios. This metric, Pd, represents the probability
of detecting a target within a limited time and is influenced by the
computational speed, memory access speed, and detection accuracy
of the 1-bit detector. Our contributions are summarized as follows:

• We propose BOB-YOLO as a new BNN framework for YOLO
in order to realize performance-balanced quantization in object
detection models, which has achieved 76.1% mAP on the VOC
dataset and . % mAP on the COCO dataset. It also delivers a
remarkable computation acceleration of 28.36× and storage sav-
ings of 20.43×, significantly surpassing the state-of-the-art 1-bit
detectors.

• To the best of our knowledge, we are the first to leverage the
MWL to supervise the floating-point shortcuts by the latency of
1-bit trunks, which preserves the speed advantage of 1-bit convo-
lution and increase the operational intensity in the overall model.
This strategy also maximizes hardware performance and utilizes
the full potential of underlying hardware resources.

• The BOB-YOLO utilises a Roofline Model to ensure high com-
putational intensity. Additionally, a new performance metric, Pd,
is proposed to provide a more intuitive description of the trade-off
between speed and accuracy. This metric is closely related to the
practical requirements of binary quantization strategies.

2 Background

Real-time Object Detection. Real-time object detection algorithms
gain significant attention in computer vision due to their extensive
applications across various scenarios [20]. Existing algorithms can
generally be classified into two types: two-stage and single-stage
approaches. The two-stage methods, such as the RCNN series, uti-
lize a region proposal network (RPN) to generate candidate regions
and then perform classification on selected regions [17, 6]. Common
single-stage methods like SSD [8] and YOLO [16] directly predict
across the entire image, allowing for simultaneous localization and
classification within a single network. Given the requirement for real-
time detection in object detection applications, single-stage methods
have become increasingly popular due to their efficiency. Among
these methods, the YOLO series has gained significant traction for
its outstanding real-time detection capabilities and high accuracy
[14, 15, 1, 5]. The latest iteration, YOLOv82, incorporates several in-
novative features such as massive cross-scale connections, an anchor-
less design, a more complex gradient flow C2f (CSPLayer_2Conv)
structure, and a Decoupled-Head design, further enhancing the net-
work’s performance.

Binary Neural Networks. Due to the nearly 32× compression,
BNNs experience a catastrophic drop in model accuracy. Conse-
quently, the research trajectory of BNNs has primarily focused on
continually enhancing model accuracy. BinaryNet introduced a com-
prehensive training framework [26]. XNOR-Net proposed the use
of scaling factors to compensate for the quantization error arising
from weight binarization [13]. Bi-Real Net incorporated floating-
point shortcuts both before and after 1-bit convolutions to amplify
information representation [10]. ReActNet introduced the RSign and

2 https://github.com/ultralytics/ultralytics
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Figure 2. Illustration of the Roofline Model.

RPReLU functions to adjust the activation value distribution before
and after convolutions [11]. BiDet employed the information bot-
tleneck principle to eliminate redundant information in higher-level
feature maps, thereby boosting recognition accuracy [21]. LWS-Det
introduces angular and amplitude loss functions to increase detec-
tor capacity, further narrowing the gap with the real-value detec-
tor [25]. However, when applying BNN to YOLO, these tricks still
fail to achieve balanced performance in detection accuracy, speed,
and model compression due to massive cross-scale connections, up-
sample and down-sample operations.

Roofline Model. The Roofline Model [22] aims to propose an
easy-to-understand, visual performance model that offers insights
to programmers and architects on improving parallel software and
hardware for floating point computations. By comparing computa-
tional performance with hardware resource utilization, the Roofline
Model provides an intuitive way to analyze performance bottlenecks
in computational tasks. As shown in Figure 2, the horizontal and
vertical axes are operational intensity (FLOPs/Byte) and attainable
performance (FLOPs/s). Given the operational intensity I , hardware
memory bandwidth τ , and hardware computational capacity π, the
attainable performance P can be calculated as:

P = min(I × τ, π). (1)

For modules with high computing intensity, their attainable per-
formance is determined by the computing power of the hardware
platform and the overall operations of the model. Within the range
of hardware computing capabilities, a higher operational intensity of
the model leads to increased memory usage rates and correspond-
ingly higher theoretical performance. However, it is worth mention-
ing that the inference speed is not necessarily faster with a smaller
model calculation. Given the memory access MA and the total op-
erations OP , the actual inference time Tinfer of the operator is as
follows:

Tinfer =

{
MA/τ, Access Intensive,
OP/π, Compute Intensive.

(2)

3 Methodology: shortcut structure based MWL

Existing object detection models are generally constructed by stack-
ing repetitive modules. When devising quantization strategies, par-
allel computation methods, and computational graph scheduling, a
module-wise approach is usually adopted. Building upon this, sup-
plementing with an evaluation of a module’s computational effi-
ciency can provide a more comprehensive insight into the model’s
performance. Taking the most basic module of BNN shown in Fig-
ure 3(a) as an example, we provide a detailed introduction to the

proposed MWL. First, as shown in Figure 3(b), we transform the ba-
sic module into the form of a flowchart including computational and
memory access processes.

(a) most basic module of BNN

(b) basic module of BNN in the form of flowchart including
computational and memory access processes

Figure 3. The most basic module of BNN and its flowchart form.

Let B denote the number of bytes occupied by the element, then
the time Tm taken to read or write an element can be calculated as:

Tm = B/τ. (3)

After that, let TB and TF denote the time required for a fixed-bit
width integer operation and a floating-point operation, respectively.
Nvidia3 reveals that the hardware computational performance is pro-
portional to the numerical bit-width. The relationship between TB
and TF can be expressed as:

TB =
1

32
× BWw ×BWa

BWw +BWa
× TF , (4)

where BWw and BWa represent the bit widths of the weights and
activation values, respectively.

Next, we analyze the computation of different layers. As shown
in Figure 3(a), the Ci, Wi, Hi, Co, Wo, Ho denote the channel,
width, height of the input feature map and the output feature map,
respectively. We can easily determine the computational cost associ-
ated with various operators, including convolutional layers, average
pooling layers, BatchNorm layers layers, and activation functions.

Let’s now compute the MWL for this basic module of BNN.
As shown in Figure 3(b), considering the parallel execution of two
branches from the node reading input data to the Add node, the time

3 https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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cost between these two nodes depends on the slower branch. The
time costs of the left branch TL and right branch TR are:

TL =
9

8τ
CiCo +

4

τ
CiHiWi +

8

τ
CoHoWo

+

(
9

64
Ci + 3

)
CoHoWoTF

+ CiHiWiTF ,

(5)

TR =
4

τ
CiCo +

4

τ
CiHiWi +

8

τ
CoHoWo

+

(
9

64
Ci + 3

)
CoHoWoTF

+ (CoCi + 4Ci + Co)HoWoTF .

(6)

Therefore, the total latency of the basic BNN module with 1-bit
trunk branch and floating-point shortcut branch can be calculated as:

MWL = max(TL, TR) + (TF +
12

τ
)× CoHoWo. (7)

Based on the above calculation process, we examined the corre-
sponding convolutional layers within the backbone network of typi-
cal object detection models to ascertain whether the computation in
the right branch hinders the acceleration effect of the left branch. As
shown in Table 1, it is evident that when introducing high-bit-width
convolutions in the right branch, the acceleration caused by quanti-
fying the left branch becomes invalid due to the increase in waiting
time. Therefore, the structure of cross-layer connections and the mix-
ing of different precisions have an impact on the MWL. It is natural
to believe that optimizing this aspect in module design will signifi-
cantly improve the performance of the model.

Table 1. Illustration of the time overhead of the left and right branches
after quantization in convolution modules with various types of inputs and
outputs (tm = 1/τ ). The sizes of these inputs and outputs are taken from
commonly used object detection networks like SSD, YOLO, etc. For cases
where the input and output channels C are the same, the time costs of right

branch TR doesn’t account for the time of convolution computation and
memory. For cases where the height H and width W of input and output are

the same, the TR excludes the time for average pooling.

Input-Output ([C,H,W ]) Time Costs (106)

[64, 320, 320]-[128, 160, 160] TL 52.43tm + 45.87TF
TR 52.46tm + 219.54TF

[128, 160, 160]-[256, 80, 80] TL 26.25tm + 37.68TF
TR 26.34tm + 214.63TF

[256, 80, 80]-[512, 40, 40] TL 13.25tm + 33.58TF
TR 13.63tm + 211.17TF

[64, 150, 150]-[128, 150, 150] TL 28.81tm + 36.00TF
TR 28.83tm + 187.20TF

[128, 75, 75]-[256, 75, 75] TL 14.43tm + 30.96TF
TR 14.53tm + 185.76TF

[256, 38, 38]-[512, 38, 38] TL 7.54tm + 29.20TF
TR 7.91tm + 190.00TF

[256, 80, 80]-[256, 40, 40] TL 9.90tm + 17.61TF
TR 9.83tm + 2.45TF

[512, 40, 40]-[512, 20, 20] TL 5.21tm + 16.18TF
TR 4.91tm + 8.64TF

To construct the binarized YOLO detector that achieves the op-
timal trade-off between detection accuracy, speed, and model size,
building upon the concept of MWL, we adhere to two principles
when designing the binary convolution module for the binarized

YOLOv8: 1) compression of the delay on the right branch (floating-
point shortcut branch) to match the delay on the left branch (1-bit
trunk branch), maximizing the speed advantage of 1-bit convolu-
tion, 2) retention of the remaining connections on the right branch to
ensure a continuous flow of floating-point data within the network,
compensating for significant information loss caused by binary quan-
tization.

(a) original design (b) Ci = Co

(c) Ci < Co (d) Ci > Co

Figure 4. Illustration of module designs for different input and output
feature maps, where Ci and Co are the channels of input and output. The

’Compress’ and ’Expand’ are both operations on the combination of
convolution and BatchNorm. The dashed boxes depict the feature map

size changes under different shortcuts.

Figure 4 illustrates the different strategies we employed in design-
ing the binary convolution, considering various input and output fea-
ture map sizes. Specifically, Figure 4(a) illustrates the original mod-
ule design, where we use pooling and convolution layers to align
the input and output sizes. However, as suggested in Table 1, this
strategy can negate the acceleration advantages of 1-bit convolution.
Figure 4(b) represents the case where the input and output channel
numbers are the same. Table 1 indicates that the delay introduced by
the pooling layer does not affect the speed of the left branch. Fur-
thermore, in this case, the time delay for computations on the left
branch is much greater than that on the right branch. To further en-
hance the efficiency of parallel computation and increase the overall
module’s operational intensity, we move the memory-intensive op-
erator BatchNorm after the shortcut connection. Figure 4(c) illus-
trates the case where the input channel is less than the output chan-
nel. In this case, the input feature map is stacked to align with the
output feature map, which only increases the time spent on memory
read/write operations. Additionally, to maintain a more stable acti-
vation distribution, batch normalization calculations are moved after
the connection. Figure 4(d) illustrates the case where the input chan-
nel is greater than the output channel, which most frequently occurs.
Here, channel alignment is achieved by performing two 1 × 1 con-
volution operations with batch normalization as follows:

Comp.(x′) = BNC(ConvCi×C×1×1(x)),

Expa.(x′′) = BNC0(ConvC×C0×1×1(x
′)).

(8)

The first convolution compresses (Comp.(·)) the channel count from
Ci to C and the second one expands (Expa.(·)) feature maps with
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Figure 5. Illustration of the latency in the left and right branches of the
typical layers in our model.

Co output channels. This approach reduces the computational load
and access overhead compared to a single convolution, as shown be-
low:

OPs(Conv) = 2× (Ci × Co)HW,

OPs(Comp.+ Expa.) = 2× (Ci + Co)HWC,

Params(Conv) = Ci × Co,

Params(Comp.+ Expa.) = (Ci + Co)× C.

(9)

The selection of C in our model is determined by the delay on
the left branch and optimized based on the Roofline Model (which
will be detailed in section 4.1) for binary quantization. This ensures
that the acceleration on the left branch remains effective while max-
imizing the information flow on the right branch. Simultaneously,
it enhances the overall computing intensity of the module. Figure 5
demonstrates the choice of C in our model, where Tm_l, Tc_l, Tm_r ,
and Tc_r represent the memory and computational costs in the left
and right branches, respectively. From the Figure 5, we can find
that the latency in the 1-bit trunk (left branch) and the floating-point
shortcut (right branch) are relatively similar, which demonstrates that
our method can compress the computational and parameter quantities
to the same extent. A more detailed analysis will be presented in the
experiments (section 5).

4 Comprehensive consideration for Binary
Quantization

4.1 Roofline Model for Binary Quantization

In BNNs, the operations primarily include 1-bit convolution,
floating-point convolution, activation functions, batch normalization,
and so on. The memory access cost mainly consists of reading pa-
rameters and reading/writing intermediate feature maps. Thus, we
calculate the operational intensity IBNN for Binary Quantization

based on the Roofline Model as follows:

IBNN =
BOPconv + FLOPall

Mact +Mweight
, (10)

where BOPconv and FLOPall denote the binary operations in
1-bit convolution and all floating point operations including con-
volution, activation functions, batch normalization, and so on. The
Mact and Mweight denote access to floating point activation values
and binary weights. It is important to note that when employing bi-
nary quantization to compress network structures, we pay attention
to the changes in computation and memory access brought about by
lightweight module designs. Increasing the operational intensity be-
fore reaching the platform’s limit is beneficial for accelerating model
inference. However, reducing the overall number of operations only
becomes effective in speeding up the inference process when the
computational intensity exceeds the upper limit. While the convolu-
tion operations in BNNs are nearly 64× compressed [10], the utiliza-
tion of floating-point activation values does not reduce the memory
access overhead, leading to an overall decrease in the model’s oper-
ational intensity. Therefore, during the design phase, it is crucial to
focus on enhancing the computational intensity to address this issue.
We calculate the objective function of the Roofline Model for Binary
Quantization as follows:{

max IBNN , if IBNN < π/τ,

min(BOPconv + FLOPall), if IBNN ≥ π/τ.
(11)

In the deployment of BNNs, the Roofline model serves as a cru-
cial tool for supervision and performance assessment. This model
quantitatively evaluates the compatibility between the computational
demands of BNN algorithm and the processing capabilities of hard-
ware. Specifically, if the computational density required by the algo-
rithm exceeds the threshold capabilities of the hardware, it may limit
the algorithm’s ability to achieve its potential performance within a
given time frame. Conversely, if the computational density of the al-
gorithm is below the maximum processing capacity of the hardware,
it results in underutilization of computational resources, thereby im-
pacting the overall energy efficiency ratio. Therefore, the Roofline
model not only guides hardware selection but also promotes the op-
timization of algorithm design to ensure optimal synergy between
hardware and algorithm.

4.2 Novel Metric Pd for Balancing Optimization

To evaluate the performance of quantized models, it is necessary to
consider the real-world requirements of using these models and strike
a balance between efficiency and accuracy. When it comes to real-
time object detection algorithms, evaluation metrics should reflect
the users’ experience. Considering the trade-off between efficiency
and accuracy, evaluation metrics should comprehensively consider
factors such as inference computation, memory access overhead, and
accuracy of the model. Based on this, we propose the evaluation met-
ric Pd to assess the balanced performance of quantized models:

Pd = 1− (1−Acc)� tl
l �, (12)

where Acc represents the probability of successfully detecting a
target in a single inference. In the experimental process, as the dis-
tribution of the validation set approaches the real distribution, this
probability closely approximates the model’s accuracy on the valida-
tion set. The variable tl represents the time limit, while l represents
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(a) 1-bit convolution (b) 1-bit convolution with shortcut (c) float convolution

Figure 6. Numerical distribution of 1-bit 3 × 3 convolution (a), 1-bit 3 × 3 convolution with float shortcut(b), and float 3×3 convolution (c) in the first layer.

the model’s inference latency. Pd represents the probability that the
model can detect the target within the specified time limit. From a
practical application perspective, Pd should be as close to 100% as
possible. This ensures that the model can consistently complete the
task within the specified time, meeting the requirements of real-time
applications.

Table 2. Comparison of mean average precision (mAP), model size, and
FLOPs with the SOTA BNNs on VOC, where trunk means a simple 1-bit

convolutional module without shortcut and LearnableBias, shortcut* means
shortcut based on MWL.

Framework Quantization
Method

W/A
(bit)

mAP@0.5
V OC(%) ↑

FLOPs
(B)↓

Model size
(MB)↓

SSD300
VGG-16

Full value 32/32 74.3 31.44 105.16
ReAct-Net 1/1 68.4 2.73 21.88
BiDet 1/1 66.0 2.73 21.88
LWS-Det 1/1 71.4 2.73 21.88

YOLOv8l
Full value 32/32 83.0 82.53 166.3
trunk 1/1 39.7 1.81 5.81
trunk + shortcut* 1/1 56.1 2.91 8.14
trunk + LearnedBias 1/1 69.8 1.81 5.81
trunk + LearnedBias + shortcut 1/1 79.3 15.23 31.29
ours(trunk + LearnedBias + shortcut*) 1/1 76.1 2.91 8.14

YOLOv8m Full value 32/32 81.7 39.43 99.4
trunk 1/1 32.8 1.00 3.32
trunk + shortcut* 1/1 56.3 1.60 5.19
trunk + LearnedBias 1/1 67.9 1.00 3.32
ours(trunk + LearnedBias + shortcut*) 1/1 71.4 1.60 5.19

5 Experiments

We conduct extensive experiments on representative datasets: VOC
[4] and COCO datasets [7]. The VOC dataset contains 20 classes
with a total of 16,551 training images and 4,952 validation images.
The COCO dataset consists of images from 80 categories with a total
of 118,287 training images and 5,000 validation images. The model
is implemented in PyTorch 2.0.1 and trained on NVIDIA GeForce
RTX 3090 GPUs. The input image size is standardized to 640× 640
on both the VOC and COCO datasets. Following [9], we divided the
dataset into training and validation sets, and employed the Cross-
Validation to determine the hyperparameter settings. We utilize the
SGD optimizer with a momentum of 0.937, an initial learning rate of
0.01, a final learning rate of 0.0001, and a weight decay of 0.0005. 4

5.1 Comparative Results

In this section, we conduct comparative studies to analyze the sig-
nificance of shortcuts and LearnableBias in the BNN module. Ta-
ble 2 illustrates the comparison of computation complexity, storage
cost, and the mAP. It is evident that LearnableBias substantially en-
hances the flexibility and generalization ability of the model, achiev-
ing a 30.1% and 35.1% increase in the mAP for the Yolov8l and

4 Code is available at https://github.com/534-quant/BOB-YOLO.

Table 3. Comparison of mAP@0.5 and mAP@[.5, .95] with the SOTA
BNNs on COCO.

Framework Quantization W/A mAP@0.5 ↑ mAP@[.5, .95] ↑

SSD300
VGG-16

Full value 32/32 41.2 23.2
ReAct-Net 1/1 30.0 15.3

BiDet 1/1 28.3 13.2
LWS-Det 1/1 32.9 17.1

YOLOv8l Full value 32/32 65.7 49.3
ours 1/1 52.1 33.7

Table 4. Parameters, Multiply and add operation (MACs) of full-value
convolutions in BNNs using SSD and YOLO framework.

BNNSSD BNNY OLO(ours)

layers Params(k) MACs(M) layers Params(k) MACs(M)

1 1.73 155.52 1 1.73 176.95
2 32.77 184.32 2 2.56 65.54
3 262.14 94.63 3 16.38 104.86

... ...
16 442.41 159.71 34 5.14 8.22
17 290.43 7.26 35 8.19 3.28
18 193.62 0.19 45 5.14 2.06

Total 5361.71 2630.82 Total 626.87 1260.71

Yolov8m models, respectively. Similarly, shortcuts effectively en-
hance the model’s expressiveness. To better illustrate this, We visu-
alize the numerical distributions of feature maps during the YOLOv8
training process as shown in Figure 6. Compared to a full-precision
convolutional module, a simple 1-bit convolutional module has ex-
tremely weak representational capability. The use of a float shortcut
can effectively mitigate this issue, achieving a representational effect
comparable to that of a full-precision convolutional module. How-
ever, the 40% additional model size and 60% computational over-
head introduced by shortcuts are non-negligible, which reinforces the
importance of our work.

In addition, we compare our method with ReAct-net [11], BiDet
[21] and LWS-Det [25] in the task of object detection. Based on
the MWL and Roofline Model, our method reduces the latency of
floating-point shortcuts while increasing their computational density.
We used Xilinx’s Vitis HLS software toolset to develop, test, and
document the execution latency of the shortcut section before and
after optimization. Test results showed that the optimized shortcut
reduced the execution latency by 63.5%. This allows us to mitigate
the impact of a large number of up-sampling, down-sampling, and
cross-layer connections in YOLO, which would otherwise increase
the number of floating-point shortcuts. As a result, the model’s pa-
rameter count and computational complexity did not increase signif-
icantly. Compared to directly applying binary quantization methods
to YOLO, our approach achieved a 5.23× reduction in FLOPs and
a 3.84× reduction in model size, while maintaining a marginal ac-
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Figure 7. Illustration of the tradeoff between efficiency and accuracy as reflected by Pd under different time limits.

curacy difference of only 3.2%. Compared to full-value models, our
method significantly accelerates the computation and saves the stor-
age by 28.36× and 20.43× with the yolov8l detector and 24.64×
and 19.15× with the yolov8m detector. Compared with SOTA LWS-
Net, our method demonstrates a 4.7% increase in mAP. Remarkably,
despite similar FLOPs, our model size is less than half that of LWS-
Net. Moreover, our method based on YOLOv8m achieves the same
mAP as LWS-Net but with a significantly smaller model size, only
a quarter of the size, and nearly half the FLOPs. The COCO dataset
is much more challenging for object detection than VOC dataset due
to the high diversity and large scale. Table 3 demonstrates the mAP
under different IOU thresholds. Compared with SOTA LWS-Det, our
method improves the mAP by 12.8% and 13.2% under IOU@0.5 and
IOU@[0.5-0.95]. The comparative results shown in Table 2 and Ta-
ble 3 both demonstrate that our proposed method achieves a balanced
performance in binary quantization for object detection models. It
effectively reduces computational complexity and model size while
maintaining a certain level of detection accuracy.

5.2 Analysis of Balance Performance

We conducted a comprehensive analysis by selecting all layers that
utilize floating-point computations from previous 1-bit detectors and
our method. We calculated the total number of multiply-accumulate
operations and parameters for each of these layers. The results are
presented in Table 4. Remarkably, despite having more than twice
as many layers, our model exhibits significantly reduced overall op-
erations and parameters compared to previous 1-bit detectors. The
total operations are reduced by a factor of 8.55×, while the total
parameters are reduced by a factor of 2.09×. Furthermore, our com-
pression of parameters surpasses the compression of computations,
leading to a substantial improvement in the operational intensity of
the model. This indicates that in practical hardware inference deploy-
ment, our model can effectively utilize hardware resources, result-
ing in superior performance. These findings highlight the efficiency
and resource utilization advantages of our proposed model, making
it highly suitable for practical deployment in hardware inference sce-
narios.

5.3 Analysis of Metric Pd

With respect to the metric Pd, we visualise its effectiveness for the
comprehensive evaluation of objective detection models. The first
and second rows of Figure 7 are the variation of Pd with single-
inference accuracy under a fixed inference latency and accuracy, re-
spectively. The intersection points between curves of different colors
represent the minimum model accuracy required to ensure target de-
tection at a specific latency. The columns display the performance
variations under four different time limits. As the latency increases,
the detection capability of the model decreases significantly, result-
ing in lower accuracy. Each black dot within a sub-figure represents
the conditions that must be met to ensure task completion. For in-
stance, in Figure 7(a), with a time limit of 100 milliseconds (ms), an
accuracy exceeding 85% can be achieved with an inference latency
of approximately 20 ms. An accuracy above 75% requires a latency
of less than 15 ms and 50% accuracy necessitates less than 5 ms. As
the time limit increases, the conditions become more relaxed. No-
tably, when the accuracy decreases by 10%, the impact of increasing
latency on performance degradation becomes more pronounced.

6 Conclusions

In this paper, we present several new ideas for supervising the bi-
nary quantisation of YOLO to achieve a balanced performance in
terms of computational speed, model size and detection accuracy.
The MWL-based shortcut mitigates information flow loss and im-
proves parallel computing efficiency, which can also be utilized to
analyze the achievable acceleration limits in practical deployment
scenarios. The Roofline Model for binary quantization simultane-
ously considers the compression of computational complexity and
parameter count, ensuring high computational intensity. Both short-
cut and Roofline Model extremely valuable for the design of BNNs.
The metric Pd can effectively reflect the trade-off between speed and
accuracy and guide automatic mixed-precision quantization frame-
works to find suitable bit widths for each layer. It can even be used as
an evaluation metric for other lightweight methods such as pruning
and distillation. Experiments prove that BOB-YOLO outperforms
SOTA BNNs. Future work will focus on a more in-depth analysis
of adapting BNNs to different hardware platforms.
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