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Abstract. Time-to-event analysis, also known as survival analysis,
aims to predict the time of occurrence of an event, given a set of
features. One of the major challenges in this area is dealing with cen-
sored data, which can make learning algorithms more complex. Tra-
ditional methods such as Cox’s proportional hazards model and the
accelerated failure time (AFT) model have been popular in this field,
but they often require assumptions such as proportional hazards and
linearity. In particular, the AFT models often require pre-specified
parametric distributional assumptions. To improve predictive perfor-
mance and alleviate strict assumptions, there have been many deep
learning approaches for hazard-based models in recent years. How-
ever, representation learning for AFT has not been widely explored in
the neural network literature, despite its simplicity and interpretabil-
ity in comparison to hazard-focused methods. In this work, we intro-
duce the Deep AFT Rank-regression model for Time-to-event pre-
diction (DART). This model uses an objective function based on
Gehan’s rank statistic, which is efficient and reliable for represen-
tation learning. On top of eliminating the requirement to establish a
baseline event time distribution, DART retains the advantages of di-
rectly predicting event time in standard AFT models. The proposed
method is a semiparametric approach to AFT modeling that does not
impose any distributional assumptions on the survival time distribu-
tion. This also eliminates the need for additional hyperparameters or
complex model architectures, unlike existing neural network-based
AFT models. Through quantitative analysis on various benchmark
datasets, we have shown that DART has significant potential for mod-
eling high-throughput censored time-to-event data.

1 Introduction

Time-to-event analysis, also known as survival or failure time analy-
sis, is a widely used statistical method in fields such as biostatistics,
medicine, and economics to estimate either risk scores or the distri-
bution of event time, given a set of features of subjects [43, 8, 11, 31].
While assessing risk and quantifying survival probabilities have ben-
efits, time-to-event analysis can be challenging due to the presence
of censoring. In real-world studies, subjects (e.g. patients in medical
research) may be dropped out before the event of interest (e.g. death)

occurs, which can prevent full follow-up of the data [30]. The pres-
ence of censoring in survival data can create a serious challenge in
applying standard statistical learning strategies. In general, the cen-
soring process is assumed to be non-informative in that it is irrelevant
of the underlying failure process given features, but their relationship
should be properly accounted for, otherwise leading to biased results.

Cox’s proportional hazards (CoxPH) model is the most well-
known method for time-to-event data analysis. It specifies the rela-
tionship between a conditional hazard and given features in a multi-
plicative form by combining the baseline hazard function with an ex-
ponentiated regression component, allowing for the estimation of rel-
ative risks. However, this model requires so-called the proportional
hazards assumption and time-invariant covariate-effects, which can
be difficult to verify in many applications [2]. Statistical testing pro-
cedures, such as Schoenfeld’s test, are typically conducted to exam-
ine the PH assumptions, as they are often vulnerable to violation of
underlying assumptions [3, 23].

The accelerated failure time (AFT) model, also known as the ac-
celerated life model, relates the logarithm of the failure time to fea-
tures in a linear fashion [28]. This model has been used as an attrac-
tive alternative to the CoxPH model for analyzing censored failure
time data due to its natural physical interpretation and connection
with linear models. Unlike the CoxPH models, the classical para-
metric AFT model assumes the underlying time-to-event distribu-
tion can be explained with a set of finite-dimensional parameters,
such as Weibull or log-normal distribution. However, such assump-
tion on the failure time variable can be restrictive and may not accu-
rately reflect real-world data. This can decrease performance of the
AFT model compared to Cox-based analysis, making it less attrac-
tive for practical use [9, 23]. Recently, researchers have been explor-
ing a range of time-to-event models that leverage statistical theories
and deep learning techniques to circumvent the necessity of assump-
tions such as linearity, single risk, discrete time, and fixed-time effect
[22, 26, 37, 24, 5, 41, 36].

In particular, Cox-Time [25] and DATE [7] alleviate some of the
strict assumptions of the CoxPH and parametric AFT models by al-
lowing non-proportional hazards and non-parametric event-time dis-
tribution, respectively. Cox-Time utilizes neural networks as a rela-
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tive risk model to access interactions between time and features. The
authors also show that their loss function serves as a good approxi-
mation of the Cox partial log-likelihood. DATE is a conditional gen-
erative adversarial network that implicitly specifies a time-to-event
distribution within the AFT model framework. It does not require
a pre-specified distribution in the form of a parameter, instead the
generator can learn from the data using an adversarial loss function.
Incidentally, various deep learning-based approaches have been pro-
posed to improve the performance by addressing issues such as tem-
poral dynamics and model calibration [27, 34, 13, 20, 17]. These ap-
proaches have highlighted the importance of utilizing well-designed
objective functions that not only take into account statistical proper-
ties but also optimize neural networks.

In this paper, we introduce a Deep AFT Rank-regression for Time-
to-event prediction model (DART), a deep learning-based semipara-
metric AFT model, trained with an objective function originated
from Gehan’s rank statistic. We eliminate the need for specifying
a baseline event time distribution while still preserving the advan-
tages of AFT models that directly predict event times. By construct-
ing comparable rank pairs in the simple form of loss functions, the
optimization of DART is efficient compared to other deep learning-
based event time models. Our experiments show that DART not only
calibrates well, but also competes in its ability to predict the sequence
of events compared to risk-based models. Furthermore, we believe
that this work can be widely applied in the community while giving
prominence to the advantages of AFT models which are relatively
unexplored compared to the numerous studies on hazard-based mod-
els.

2 Related Works

We first overview time-to-event modeling focusing on the loss func-
tions of Cox-Time and DATE models to highlight the difference
in concepts before introducing our method. The primary interest
of time-to-event analysis is to estimate survival quantities like sur-
vival function S(t) = P (T ≥ t) or hazard function h(t) =
limδ→0 P (t ≤ T ≤ t+δ|T ≥ t)/δ, where T ∈ R

+ denotes time-to-
event random variable. In most cases, due to censored observations,
those quantities cannot be directly estimated with standard statisti-
cal inference procedure. In the presence of right censoring, Kaplan
and Meier and Aalen provided consistent nonparametric survival
function estimators, exploiting right-censoring time random variable
C ∈ R

+. Researchers then can get stable estimates for survival quan-
tities with data tuples {yi, δi, Xi}Ni=1, where yi = min(Ti, Ci) is
the observed event time with censoring, δi = I(Ti ≤ Ci) is the
censoring indicator, and a vector of features Xi ∈ R

P . Here, N and
P denote the number of instances and the number of features, re-
spectively. While those nonparametric methods are useful, one can
improve predictive power by incorporating feature information in a
way of regression modeling. Cox proportional-hazards (CoxPH) and
accelerated-failure-time (AFT) frameworks are the most common ap-
proaches in modeling survival quantities utilizing both censoring and
features.

2.1 Hazard-Based Models

A standard CoxPH regression model [10] formulates the conditional
hazard function as:

h(t|Xi) = h0(t) exp(β
TXi), (i = 1, . . . , N), (1)

where h0(·) is an unknown baseline hazard function which has to be
estimated nonparametrically, and β ∈ R

P is the regression coeffi-
cient vector. It is one of the most celebrated models in statistics in
that β can be estimated at full statistical efficiency while achieving
nonparametric flexibility on h0 under the proportionality assump-
tion. Note the model is semiparametric due to the unspecified un-
derlying baseline hazard function h0. Letting Ri be the set of all
individuals “at risk”, meaning that are not censored and have not
experienced the event before Ti, statistically efficient estimator for
regression coefficients can be obtained minimizing the loss function
with respect to β:

LCoxPH(β) =
∑
i

δi log

⎛
⎝ ∑

j∈Ri

exp
[
βTXj − βTXi

]⎞⎠ (2)

which is equivalent to the negative partial log-likelihood function of
CoxPH model.

Based on this loss function, Kvamme et al. proposed a deep-
learning algorithm for the hazard-based predictive model, namely
Cox-Time, replacing βTXj and βTXi with g(yj , Xj ; θ) and
g(yi, Xi; θ), respectively. Here, g(·) denotes the neural networks pa-
rameterized by θ, and Ri would be replaced by R̃i, representing
the sampled subset of Ri. With a simple modification of the stan-
dard loss function in Eq. (2), Cox-Time can alleviate the proportion-
ality for relative risk, showing empirically remarkable performance
against other hazard-based models in both event ordering and sur-
vival calibration.

2.2 Accelerated-Failure-Time Models

The conventional AFT model relates the log-transformed survival
time to a set of features in a linear form:

log Ti = βTXi + εi, (i = 1, . . . , N), (3)

where εi is an independent and identically distributed error term with
a common distribution function F0(·) that is often assumed to be
Weibull, exponential, log-normal, etc. As implied in Eq. (3), AFT
model takes a form of linear modeling and provides an intuitive
and physical interpretation on event time without detouring via the
vague concept of hazard function, making it a powerful alternative
to hazard-based analysis. However, imposing a parametric distribu-
tional assumption for εi is a critical drawback of the model, for which
model in Eq. (3) could be a subclass of the hazard-based models.

To alleviate linearity and parametric distributional assumptions,
several works brought the concept of generative process and approx-
imated the error distribution via neural networks like generative ad-
versarial networks (GANs) [33, 7]. Especially, Chapfuwa et al. pro-
posed a deep adversarial time-to-event (DATE) model, which speci-
fies the loss function as:

LDATE(θ, φ) = E(X,y)∼Fnc [Dφ(X, y)] (4)

+EX∼Fnc,ξ∼Fξ [1−Dφ(X,Gθ(X, ξ; δ = 1))]

+λ2E(X,y)∼Fc,ξ∼Fξ
[max(0, y −Gθ(X, ξ; δ = 0))]

+λ3E(X,y)∼Fnc,ξ∼Fξ
[‖t−Gθ(X, ξ; δ = 1)‖1]

where θ and φ denote the parameter set associated with a generator
Gθ and a discriminator Dφ, respectively, (λ2, λ3) are hyperparam-
eters to tune censoring trade-off, Fnc(X, y) and Fc(X, y) are em-
pirical joint distributions for non-censored cases and censored cases,
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respectively, and Fξ is the simple distribution, such as uniform dis-
tribution. The generator Gθ implicitly defines event time distribu-
tion. Despite DATE achieves prominent survival calibration via the
sample-generating process, the objective function is quite compli-
cated and the GAN framework is inherently prone to mode collapse,
i.e., the generator learns only a few modes of the true distribution
while missing other modes [40]. Also, when optimizing neural net-
works with multiple loss functions, it is difficult to balance and there
might be conflicts (i.e. trade-off) with each term [12]. Therefore, their
loss function might be difficult to be optimized as intended and re-
quires a burdening training time, and consequently not be suitable
for large-scale time-to-event analysis.

In the statistical literature, there have been many attempts to di-
rectly estimate regression coefficients in the semiparametric AFT
model, where the error distribution F0 is left unknown, rather than
imposing specific parametric distribution or exploiting generative
models. In this work, we bridge non-linear representation learning
and an objective function for estimation of semiparametric AFT
model, which is originated from Gehan’s rank statistic. By exten-
sive quantitative analysis, we have shown the beauty of simplicity
and compatibility of rank-based estimation, along with outstanding
experimental performance.

3 Method

In this section, we introduce the concept of DART, followed by pre-
dictive analysis for survival quantities. The conceptual differences
with the other neural network-based AFT models are illustrated in
Figure 1. The semiparametric AFT is distinct from a parametric ver-
sion in that the error distribution function F0 is left completely un-
known like the baseline hazard function in the CoxPH. By further
exploiting neural networks, we propose DART model that can be for-
mulated as a generalization of model in Eq. (3):

log Ti = g(Xi; θ) + εi, (i = 1, . . . , N), (5)

where g(Xi; θ) denotes arbitrary neural networks with input fea-
ture vector Xi and a parameter set θ, outputting single scalar value
as predicted log-scaled time-to-event variable. With this simple and
straightforward modeling, DART entails several attractive character-
istics over existing AFT-based models. First, the semiparametric na-
ture of DART enables flexible estimation of error distribution, allow-
ing improved survival prediction via neural network algorithms for
F0. Second, the restrictive log-linearity assumption of AFT model
can be further alleviated by exploiting deep neural networks. Specif-
ically, while standard AFT model relates time-to-event variable to
feature variable in linear manner, deep learning is able to approxi-
mate any underlying functional relationship, lessening linearity re-
striction. Although DART still requires log-transformed time as a
target variable, its deep neural network redeems the point with pow-
erful representative performance supported by universal approxima-
tion theorems, enabling automated non-linear feature transformation
[29, 38, 45].

3.1 Parameter Estimation via Rank-based Loss
Function

In statistical literature, many different estimating techniques have
been proposed for fitting semiparametric AFT model [42, 18, 19, 44].
Among them, we shall adopt the l1-type rank-based loss function by
taking into account the censoring information, which is efficient and
suitable for stably fitting neural networks. Letting a residual term

ei ≡ ei(θ) = log yi − g(Xi; θ), the objective loss function for
DART can be formulated as:

LRank(θ) =
1

N

N∑
i=1

N∑
j=1

δi(ei − ej)I{ei ≥ ej}, (6)

where I(·) is the indicator function that has value 1 when the con-
dition is satisfied, otherwise 0. The estimator θ̂ can be obtained by
minimizing the loss function with respect to model parameter set θ.
Optimization of model parameters can be conveniently conducted
via batched stochastic gradient descent (SGD). Notice that the loss
function in Eq. (6) involves model parameter θ only, without con-
cerning estimation of the functional parameter F0, enabling flexible
time-to-event regression modeling.

Strength of the loss function is theoretical consistency of optimiza-
tion without requiring any additional settings. Let the neural network
be expressed: g(Xi;φ, β) = βTWi, where Wi ∈ R

K is trans-
formed feature vector through hidden layers with parameter set φ,
and β ∈ R

K is a parameter set of linear output layer. Then, it is easy
to see that the following estimating function is the negative gradient
of the loss function with respect to β:

URank(β) =
1

N

N∑
i=1

N∑
j=1

δi(Wi −Wj)I(ẽi ≤ ẽj)
set
= 0

ẽi = log yi − βTWi. (7)

Eq. (7) is often called the form of Gehan’s rank statistic [18], testing
whether β is equal to true regression coefficients for linear model
log Ti = βTWi + εi, and the solution to the estimating equation β̂
is equivalent to the minimizer of Eq. (6) with respect to β. This pro-
cedure entails nice asymptotic results such as

√
n-consistency and

asymptotic normality of β̂ under the counting processes logic, assur-
ing convergence of β̂ towards true parameter β as the number of in-
stances gets larger [42, 18]. Although these asymptotic results might
not be directly generalized to the non-linear predictor function, we
expect that hidden layers would be able to assess effective represen-
tations Wi with non-linear feature transformation, as evidenced by
extensive quantitative studies. Note that, to keep theoretical align-
ment, it is encouraged to set the last layer as a linear transformation
with an output dimension of 1 to mimic the standard linear model
following non-linear representation. In addition, a robust estimation
against outlying instances can be attained, depending rank of residual
terms along with their difference.

3.2 Prediction of Survival Quantities

Predicted output g(Xi; θ̂) from trained DART model represents es-
timated expectation of log Ti conditional on Xi, i.e. mean log-
transformed survival time with given feature information of ith in-
stance. However, estimating survival quantities (e.g. conditional haz-
ard function) cannot be directly done for AFT-based models. In-
stead, we utilize the Nelson-Aalen estimator [1], verified to be con-
sistent under the rank-based semiparametric AFT model [35]. Define
N(t; θ) =

∑N
i=1 Ni(t) and Y (t) =

∑N
i=1 Yi(t), where Ni(t) =

I(ei ≤ t, δi = 1) and Yi(t) = I(ei > t) are the counting and the
at-risk processes, respectively. Then the Nelson-Aalen estimator of
H0(t) is defined by

Ĥ0(t) =

∫ t

0

I{Y (u) > 0}
Y (u)

dN(u). (8)
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Figure 1. Illustration of conceptual differences between deep learning-based AFT models in terms of their respective contributions and required assumptions
with a format of the standard AFT. To alleviate the parametric distribution assumption, which DRAFT has, DATE exploits the GAN framework and learns the
implicit underlying distribution qθ through the generator parameterized by θ. For DRAFT, LNLL and LPR denote negative log-likelihood and partial ranking

likelihood, respectively. DATE basically requires four loss functions: LGθ
, LDφ

for the generator and the discriminator, LCens for adjusting censoring
distribution, and LDist for the distortion penalty. Compared to the others, DART does not require pre-specification or modeling for error distribution and it is

trained with a simple loss function supported by statistical theory.

The resulting conditional hazard function given Xi is defined by

ĥ(t|Xi) = ĥ0[t exp{−g(Xi; θ̂)}] exp{−g(Xi; θ̂)}, (9)

where ĥ0(·) = dĤ0(·) is pre-trained baseline hazard function using
Nelson-Aalen estimator. Consequently, conditional survival function
can be estimated by relationship Ŝ(t|Xi) = exp{− ∫ t

0
ĥ(t|Xi)dt},

providing comparable predictions to other time-to-event regression
models. In practice, training set is used to get pre-trained Nelson-
Aalen estimator.

4 Evaluation Criteria

In this section, we evaluate models with two metrics for quantita-
tive comparison: concordance index (CI) and integrated Brier score
(IBS).

Concordance Index. Concordance of time-to-event regression
model represents the proposition: if a target variable of instance i is
greater than that of instance j, then the predicted outputs of i should
be greater than that of j. By letting target variable y and predicted
outcome ŷ, concordance probability of survival model can be ex-
pressed as P (ŷi > ŷj |yi > yj), and concordance index measures
the probability with trained model for all possible pairs of datasets
[16]. With non-proportional-hazards survival regression models like
Cox-Time or Lee et al. [26], however, Harrell et al. [16] cannot be
used to measure discriminative performance properly. For fair com-
parison of survival regression models, time-dependent concordance
index [4], or C td was used for those baseline models proposed by
Kvamme et al. [25] to account for tied events. C td ∈ [0, 1] can be
regarded as AUROC curve for time-to-event regression model, de-
noting better discriminative performance for a value close to 1. Note
that standard concordance index yields identical results with C td for
AFT-based models.

Integrated Brier Score. Graf et al. [14] introduced generalized
version of Brier score [6] for survival regression model along with in-
verse probability censoring weight (IPCW), which can be described
as:

BS(t) =
1

N

N∑
i=1

Ŝ(t|Xi)
2I(yi ≤ t, δi = 1)

Ĝ(yi)

+
1

N

N∑
i=1

(1− Ŝ(t|Xi))
2I(yi > t)

Ĝ(t)

(10)

where Ĝ(t) = P̂ (C > t) is a Kaplan-Meier estimator for censor-
ing survival function to assign IPCW. BS(t) measures both how well
calibrated and discriminative is predicted conditional survival func-
tion: if a given time point t is greater than yi, then Ŝ(t|Xi) should be
close to 0. Integrated Brier score (IBS) accumulates BS for a certain
time grid [t1, t2]:

IBS =
1

t2 − t1

∫ t2

t1

BS(s)ds. (11)

If Ŝ(t|Xi) = 0.5 for all instances, then IBS becomes 0.25, thus
well-fitted model yields lower IBS. For experiments, time grids can
practically be set to minimum and maximum of yi of the test set,
equally split into 100 time intervals.

5 Experiments

In this section, we describe our experiment design and results to val-
idate performance of DART compared to other time-to-event regres-
sion models. We conduct experiments using four real-world survival
datasets and baseline models provided by Kvamme et al. and Chap-
fuwa et al. with two evaluation metrics mentioned in previous sec-
tion.

5.1 Datasets

We use three benchmark survival datasets and a single large-scale
dataset provided by Kvamme et al.. The descriptive statistics are
provided in Table 1. Specifically, three benchmark survival datasets
include: the Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT), the Assay of Serum Free Light
Chain (FLCHAIN), and the Rotterdam Tumor Bank and German
Breast Cancer Study Group (GBSG). Of particular interest is the
GBSG dataset, which includes an indicator variable for hormonal
therapy, allowing us to evaluate the effectiveness of a treatment rec-
ommendation system built using survival regression models. In addi-
tion, we use the large-scale WSDM KKBox dataset containing more
than two millions of instances for customer churn prediction, which
was prepared for the 11th ACM International Conference on Web
Search and Data Mining. With a large-scale dataset, we can clearly
verify the consistency of predictive performance of time-to-event
models.
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Table 1. Summary of survival datasets.

DATASET SIZE # FEATURES % CENSORED

WSDM KKBOX 2,646,746 15 0.28
SUPPORT 8,873 14 0.32
FLCHAIN 6,524 8 0.70
GBSG 2,232 7 0.43

Table 2. Hyperparameter search space for the WSDM KKBox dataset.

Hyperparameter Values

# Layers {4,6,8}
# Nodes per layer {128, 256, 512}
Dropout {0.0, 0.1, 0.5}

Table 3. Hyperparameter search space for GBSG, FLCHAIN, and
SUPPORT datasets.

Hyperparameter Values

# Layers {1, 2, 4}
# Nodes per layer {64, 128, 256, 512}
Dropout {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}
Weight decay {0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.001}
Batch size {64, 128, 256, 512, 1024}
λ (CoxTime and CoxCC) {0.1, 0.01, 0.001, 0.0}

5.2 Baseline Models

We select six neural network-based time-to-event regression models
as our experimental baselines: DRAFT and DATE [7] as AFT-based
models for direct comparison with our model, and DeepSurv [22],
Cox-CC and Cox-Time [25] as hazard-based models.

For AFT-based models, DRAFT utilizes neural networks to fit
log-normal parametric AFT model in non-linear manner. However,
it should be noted that if the true error variable does not follow a
log-normal distribution, this model may be misspecified. In contrast,
DATE exploits generative-adversarial networks (GANs) to learn con-
ditional time-to-event distribution and censoring distribution using
observed dataset. The generator’s distribution of DATE can be trained
from data to implicitly encode the error distribution. One major ben-
efit of this approach is that it eliminates the need to pre-specify the
parameters of the distribution. Despite these advantages, the method
is challenging to apply to real-world datasets due to the complexity
of the training procedure and objective function.

In case of hazard-based models, DeepSurv fits Cox regression
model whose output is estimated from neural networks. The model
outperforms the standard CoxPH model in performance, not clearly
exceeding other neural network-based models. Furthermore, the pro-
portional hazards assumption still remains unsolved with DeepSurv.
Cox-CC is another neural network-based Cox regression model, us-
ing case-control sampling for efficient estimation. While both Deep-
Surv and Cox-CC are bounded to proportionality of baseline hazards,
Cox-Time relieves this restriction using event-time variable to esti-
mate conditional hazard function.

In this study, we focus on neural network-based models and ex-
clude other machine learning-based models from the comparison

to avoid redundant analysis that was conducted in previous studies.
Some neural network-based models are also excluded as we aim to
alleviate fundamental assumptions such as proportionality and para-
metric distribution. Note that comparing hazard-based models and
AFT-based models has been rarely studied due to their difference in
concept and purpose: modeling hazard function and modeling time-
to-event variable. While models can be evaluated using common
metrics, it is important to conduct a thorough analysis when ana-
lyzing numerical experiments, particularly when comparing hazard-
based models and AFT-based models. These two types of models
have different underlying concepts and purposes, making it crucial to
take into consideration their unique characteristics during the analy-
sis.

5.3 Model Specification and Optimization Procedure

For a fair comparison, we apply neural network architecture used
in Kvamme et al.: MLP with dropout and batch-normalization. Ev-
ery dense blocks are set to have the equal number of nodes (i.e. the
dimension of hidden representations), no output bias is utilized for
output layer, and ReLU function is chosen for non-linear activation
for all layers. Preprocessing procedure has also been set based on
Kvamme et al. including standardization of numerical features, en-
tity embeddings [15] for multi-categorical features. The dimension of
entity embeddings is set to half size of the number of categories. In
addition, due to the fact that parameters of AFT-based models tend
to be influenced by scale and location of the target variable, y has
been standardized and its mean and variance are separately stored to
rescaled outputs.

DeepSurv, Cox-CC, Cox-Time, DART. The PyCox1 python pack-
age provides the training codes for these models. For WSDM KKBox
dataset, we repeat experiments 30 times with best configurations pro-
vided by Kvamme et al.. Because train/valid/test split of KKBox
dataset is fixed, we don’t perform a redundant search procedure. For
the other datasets (SUPPORT, FLCHAIN, and GBSG), we perform
5-fold cross-validation as performed at Kvamme et al. because the
size of datasets is relatively small. At each fold, the best configura-
tion is selected among 300 combinations of randomly selected hy-
perparameters which are summarized in Table 3. We use AdamWR
[32] starting with one epoch of an initial cycle and doubling the cycle
length after each cycle. The batch size is set to 1024 and the learning
rates are found by Smith as performed at Kvamme et al..

DRAFT, DATE. The implementation of DATE2 by the authors in-
cludes the code of DRAFT as well. We utilize their official codes
for all datasets. The batch size for KKBox dataset is set to 8192 be-
cause the experiments are not feasible with the batch size 1024 due to
their training time. The best configurations of DRAFT and DATE also
are founded by grid search with same hyperparameter search space

1 https://github.com/havakv/pycox
2 https://github.com/paidamoyo/adversarial_time_to_event
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Table 4. Mean and standard deviation of C td. HAZ and AFT denote hazard-based and AFT-based methods, repectively.

MODEL WSDM KKBox SUPPORT FLCHAIN GBSG

H
A

Z DeepSurv 0.841 (0.000) 0.619 (0.008) 0.797 (0.013) 0.685 (0.013)
Cox-CC 0.836 (0.046) 0.618 (0.009) 0.797(0.013) 0.684 (0.012)
Cox-Time 0.853 (0.049) 0.637 (0.009) 0.800 (0.012) 0.687 (0.012)

A
FT

DRAFT 0.861 (0.005) 0.599 (0.018) 0.725 (0.057) 0.611 (0.016)
DATE 0.852 (0.001) 0.608 (0.008) 0.784 (0.009) 0.598 (0.034)
DART (ours) 0.867 (0.001) 0.624 (0.009) 0.797 (0.014) 0.687 (0.014)

Table 5. Mean and standard deviation of Integrated Brier Score (IBS).

MODEL WSDM KKBox SUPPORT FLCHAIN GBSG

H
A

Z DeepSurv 0.111 (0.000) 0.190 (0.004) 0.101 (0.006) 0.174 (0.004)
Cox-CC 0.115 (0.012) 0.191 (0.003) 0.122 (0.028) 0.177 (0.004)
Cox-Time 0.107 (0.009) 0.194 (0.006) 0.114 (0.016) 0.174 (0.005)

A
FT

DRAFT 0.147 (0.002) 0.314 (0.043) 0.144 (0.022) 0.310 (0.010)
DATE 0.131 (0.002) 0.227 (0.004) 0.124 (0.012) 0.204 (0.004)
DART (ours) 0.108 (0.001) 0.176 (0.005) 0.068 (0.007) 0.150 (0.023)

with others. We repeat experiments 30 times with the best configura-
tion as mentioned above. For the other datasets, as same with other
models, we perform 5-fold cross-validation and choose the best con-
figuration among 300 random hyperparameter sets at each fold. The
hyperparameter search space for WSDM KKBox dataset is summa-
rized in Table 2. Our implementation for DART is publicly available
at: https://github.com/teboozas/dart_ecai23.

5.4 Performance Evaluation

To measure discriminative performance of outputs, we exploit stan-
dard C-index [16] for AFT-based models while letting hazard-based
models to utilize C td since equivalent evaluation is possible for AFT-
based models including DART since it outputs a single scalar value
to evaluate ranks. In terms of survival calibration, we implement our
own function to obtain IBS based on its definition, due to the fact that
evaluation methods of the conditional survival function and IPCW
provided by Kvamme et al. are not compatible with AFT-based mod-
els. Specifically, we first fit Kaplan-Meier estimator upon standard-
ized training set, and subsequently evaluate conditional survival esti-
mates and IPCW utilizing estimated residuals, following the defini-
tion of baseline hazard function of AFT framework rather than to use
time-to-event variable directly. For numerical integration, we follow
settings of time grid from Kvamme et al., and standardize the grid
with mean and standard deviation stored with standardization proce-
dure of training set. By doing so, IBS can be compared upon identical
timepoints for both hazard-based models and AFT-based models.

5.5 Summary of Results

Experiment results are provided in Table 4 and 5. In summary, DART
is competitive in both discriminative and calibration performance, es-
pecially for large-scale survival datasets. Specifically, DART yields
consistent results for WSDM KKBox dataset compared to other
baselines, maintaining competitive performance in terms of C td and

IBS. We point out that DART is the most powerful and AFT-based
time-to-event model that can be a prominent alternative when hazard-
based models might be not working.

6 Analysis

We provide analysis on experimental results, pointing out strengths
of DART model in terms of performance metrics.

Characteristic of DART for large-scale dataset. As provided in
Table 4 and 5, DART generally yields prominent survival calibra-
tion performance with small variance in terms of IBS. Especially
for large-scale dataset (KKBox), DART shows state-of-the-art per-
formance with the smallest variance in evaluated metrics. This re-
sult comes from the characteristic of rank-based estimation strategy.
Specifically, on the basis of asymptotic property of Eq. (7), esti-
mated model parameters get stable and close to true parameter set,
when the size of dataset gets larger. Thus, once the trained model
attains effective representation (Wi in Eq. (7)) from hidden layers
via stochastic optimization methods, DART is able to provide stable
outputs with strong predictive power, without sophisticated manipu-
lation upon time-to-event distribution.

Comparison with AFT-based models. In case of DRAFT, model
does not generally perform well for both C td and IBS for most
datasets. This is attributed to the fact that DRAFT is a simple exten-
sion of the parametric AFT model with log-normality assumption.
Thus, this approach is quite sensitive to true underlying distribution
of dataset. On the other hand, DATE yields clearly improved perfor-
mance against DRAFT especially for survival calibration in terms of
IBS. Unlike DRAFT, DATE utilizes GAN to learn conditional error
distribution without parametric assumption, allowing the model to
yield more precise survival calibration. However, time-to-event dis-
tribution is trained with divided loss functions by optimizing two tun-
ing hyperparameters in Eq. (4). This approach can be significantly
affected by well-tuned hyperparameters and heavy computation is
required to this end, resulting insufficient performance. Meanwhile,
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Table 6. Comparison of the training time (seconds) per epoch over the KKBox dataset.

DeepSurv Cox-CC Cox-Time DRAFT DATE DART (ours)

Time 27.81 44.86 42.60 759.04 2024.19 29.93

as illustrated in Figure 1, DART has advantages of simplicity in theo-
retical and practical points compared to the other AFT-based models.

Comparison with hazard-based models. As previously reported
by Kvamme et al., Cox-Time shows competitive performance against
other hazard-based models, directly utilizing event-time variable to
model conditional hazard function. However, we found out that Cox-
Time requires precise tuning of additional hyperparameters (λ and
Log-durations) largely affecting predictive performance.

In contrast, DART shows smaller variance in evaluation metrics
as the size of data increases, ensuring stable output for large-scale
dataset with asymptotic property which is crucial for practical ap-
plication. In addition, while Cox-Time showed better performance
against DART with respect to C-index in some cases, DART outper-
formed in IBS; gaining equivalent mean IBS scores against Cox-Time
with smaller variance indicates our method dominant others in com-
prehensive survival metrics.

Comparison of the required time for optimizing each model.

To verify the compatibility for large-scale data, we measure the train-
ing time of each model. We strictly bound the scope of the target
process for a fair comparison, as from data input to parameter up-
date excluding other extra steps. The specifications of all models are
set equally: the number of nodes 256, the number of layers 6, and
the batch size 1024. With the consumed time of 1000 iterations, we
calculate the training time for a single epoch. We exclude the first
iteration that is an outlier in general. All experiments were run on a
single NVIDIA Titan XP GPU. Table 6 shows that the simplicity of
DART leads to practical efficiency, while DATE is computationally
expensive due to the generator-discriminator architecture.

Notes on practical impact of performance gain We acknowl-
edge that practically interpreting IBS might be less intuitive and chal-
lenging. Thus we provide a simplified example below. Consider that a
random-guess model, which estimates all conditional survival func-
tions at 0.5, would result in an IBS score of 0.250. In this context,
an improvement from 0.174 to 0.150, which are close to IBS of Cox-
Time and DART for GBSG case respectively, of is indeed substantial.

Perfect estimation Random guess IBS
0 100 0.250
30 70 0.175
40 60 0.150

While the analogy below might not be entirely suitable, one can
infer the practical improvement in survival estimation precision. It is
worth to mention that the decreased IBS from 0.175 to 0.150 is still
significant improvement in model accuracy, even though this com-
parison is somewhat rough. It represents an increase in Perfect es-
timations (i.e. Ŝ(t|Xi) = 0 ∀i s.t. t ≥ yi, δi = 1) from 30 to
40 occurrences (+33.3%) out of 100 estimations. Considering the
fact that Ŝ(t|Xi) ranges from 0 to 1, it is hard to achieve 0.025
points improvements in real settings. Consequently, while the dif-
ferences in the metrics might appear moderate, we would like to em-
phasize that they are practically significant. Regarding the C-index,
our model showed a 1.64% improvement compared to Cox-Time on
the KKBox dataset, with scores rising from 0.853 to 0.867. Consid-
ering that a perfect score is 1.00, this implies that our model shows

noticeable performance and exhibits high consistency In summary,
DART would be the attractive alternative to existing time-to-event
regression frameworks by ensuring remarkable performance and fast
computation

7 Conclusion

In this work, we propose flexible time-to-event regression model,
namely DART, utilizing the semiparametric AFT rank-regression
method, coupled with deep neural networks, to alleviate strict as-
sumptions and to attain practical usefulness in terms of high and
stable predictive power. Extensive experiments have shown that our
approach is prominent in discrimination and correction performance
even on large-scale survival datasets. Although we do not yet address
more complex censoring data such as competing risks and interval
censoring, our approach can provide a stable baseline to handle these
tasks in the near future with simple modifications of the loss func-
tion.
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