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Abstract. Diabetic retinopathy (DR) is one of the most common causes of vision
loss or blindness globally. Early detection of retinal eye lesions like hard exudates,
soft exudates, microaneurysms, and hemorrhages is crucial to detect DR in a hu-
man eye. Therefore, accurate segmentation of lesions from eye fundus images is es-
sential to develop efficient automated DR detection systems. This paper presented
a novel hard and soft exudates lesions segmentation method called Efficient Dual-
Decoder Boosted Network (EDBNet). EDBNet is composed of the following main
components: 1) pre-trained ImageNet ResNet50 encoder with Atrous Spatial Pyra-
mid Pooling (ASPP), 2) UNet decoder block with Gated Skip Connections mecha-
nism to enhance capture more details of fundus images, 3) dual-decoder boosted to
improve the performance segmentation of retinal lesion in the eye fundus images,
and fusion outputs of the dual-decoder boosted to generate enhanced exudates seg-
mentation. The effectiveness of the proposed framework is assessed on the IDRiD
publicly dataset in terms of accuracy, Area Under Precision-Recall (AUPR), IOU,
and Dice metrics. EDBNet obtains 99.8, 74.4, 78.0, and 87.6% of soft exudates,
respectively. For hard exudates, EDBNet achieves 99.5, 85.3, 80.3, and 89.1%, re-
spectively. The experimental results also demonstrate that EDBNet outperforms
many state-of-the-art methods.
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1. Introduction

Diabetic retinopathy (DR) is a disease that highly affects human eye vision. The early
detection and treatment of DR are essential to prevent total vision loss [1]. DR produces
different retinal lesions called microaneurysm (MA), haemorrhage (HE), hard exudate
(EX), and soft exudate (SE). Ophthalmologists inspect eye fundus images to detect the
signs of such lesions. However, the complex structure of lesions, various sizes, differ-
ences in brightness and the inter-class similarity with other fundus tissues add more dif-
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ficulties to the manual analysis of many fundus images. In addition, manual detection of
the tiny lesions is extensive and consumes both time and effort.

Modern computer-aided diagnosis (CAD) systems can analyze medical images and
provide a diagnosis as accurate as ophthalmologists with many years of experience [2].
Deep learning (DL) technologies have become the cornerstone of several modern CAD
systems. Several DL-based automated systems have recently been proposed for segment-
ing eye retinal lesions. Most of them use Convolutional Neural Networks (CNNs) like
UNet [3] to automatically learn representative and high-level features from the input fun-
dus images to achieve accurate segmentation. For instance, The authors of [4] proposed
CARNet for multi-lesion segmentation. CARNet feeds the whole image and patch image
into ResNet50 and ResNet101 networks, respectively, using a single attention refinement
decoder. They used IDRiD, E-ophtha and DDR datasets for evaluation. EAD-Net [5] pre-
sented a CNN-based system divided into an encoder module, dual attention module, and
decoder module. They evaluated their work on two datasets: the E ophtha EX dataset
for exudates and the IDRiD dataset for four kinds of lesions. In [6] authors developed a
weakly-supervised framework for fundus lesion segmentation using grayscale and mor-
phological features of lesions and a deep neural network with an attention mechanism
and residual module. They evaluated their system by 1485 images extracted from the
Messidor dataset and labelled by them. Paper [7] introduced scale-aware attention with
different backbones to re-weight multi-scale features of decoders dynamically, and they
evaluated it on IDRiD, E-ophtha and DDR datasets.

Although there are many advantages offered by deep learning techniques, especially
those based on the UNet models, there is still a problem of dealing with tiny lesions like
retinal exudates, so we need to develop a boosted mechanism for dealing with them. This
paper proposes an accurate eye retinal exudates segmentation model called EDBNet,
that takes as an input a fundus image and produces its corresponding lesion mask. The
novelties of the proposed DL model are the following:

1. EDBNet uses dual decoders to boost the performance and produce an accurate
mask of the input image. The main unit of each decoder is the Gated Skip Con-
nection (GSC) network [8]. The reason behind using the GSC is the ability to
focus on the most valuable feature from the decoder based on the features from
the previous level.

2. The first decoder receives the skip connections from the encoder, where the sec-
ond decoder takes the output of the first one as skip connections in a cascading
manner. Hence, although we only use two decoders in this work, EDBNet can
generalize to any level of cascaded boosted decoders. Such cascading and com-
posing of multiple layers gives the network the ability to learn representations of
data with multiple levels of abstraction [9].

3. The final output is obtained by fusing the output of the two decoders, which can
be seen as a kind of online ensembling technique. We mean by online that the
fusion operation is done in both the training and the inference phases.

We conducted extensive experiments on the well-known publicly available IDRiD
dataset. We achieved competitive performance in one kind of lesion compared with the
state-of-the-art systems in the IDRiD challenge and outperformed them in another.

The remainder of this paper is organized as follows. Section 2 explains the proposed
Eye Retinal Exudates Segmentation system. Then, section 3 presents the experiments
and results. Finally, the conclusion and future work are provided in section 4.
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2. EDBNet

This section describes the proposed model, EDBNet. As shown in Figure 1, it is com-
posed by the following parts: Backbone (colored in blue), also known as encoder layer,
which aims to encode the input image and produce feature maps at multiple levels of
scales. Neck (colored in purple), which is an Atrous Spatial Pyramid Pooling (ASPP)
layer that helps to extract high-resolution features. Head, also known as decoder layer,
a boosted dual decoder based on Gated-Skip connections network [8] followed by an
output layer. We explain in detail each part in the following subsections.

Input Image

Final Predicted Mask

+

ResNet50 Encoder

GSCs Decoder#1 Block - Dec#1

GSCs Decoder#2 Block - Dec#2

Skip Connec�ons
Layer Output
Dec#1 Layer Output 

+ Dual Decoders output Fusion / 2.0

256×384×3

256×384×3

ASPP

Backbone

Head

Neck

Figure 1. Structure of the EDBNet framework for Eye Retinal Exudates Segmentation.

2.1. Backbone: The Encoder Layer

We use a ResNet50 [10] encoder that was pre-trained on the ImageNet dataset as a
backbone for our model. We selected this model because ResNet is the state-of-the-art
backbone for many computer vision tasks [4,11].

The main goal of the backbone in our proposed model is to encode the input eye
fundus image and extract abstracted and meaningful features at different levels of scales.
The key advantage of ResNet50 is the residual connection which is used to add the output
from an earlier layer to a later layer which helps to avoid the gradient vanishing problem.
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Figure 2. Gated Skip Connections network.

2.2. Neck: ASPP

To help extract high-resolution feature maps and enhance capturing the contextual
information of the tiny lesions lost after multiple scales. We add the Atrous Spatial Pyra-
mid Pooling (ASPP) [12] as a bridge between the ResNet encoder and the dual-decoder
resolutions in the EDBNet framework.
2.3. Head: The Decoder Layer

The main new component of our methodology is the design of the head part. EDB-
Net employs a shared ResNet50 encoder to improve the performance without computa-
tion, and memory overload and dual-decoder boosted for lesions segmentation. The dual-
decoder boosted has the same internal Gated Skip Connections (GSCs) architecture in
each decoder block. Figure 2 presents the GSCs mechanism of each decoder block. GSCs
modified the standard UNet decoder with a boosted feature maps production to enhance
the discrimination between the lesion and background pixels for exudates segmentation.

EDBNet has four encoder blocks and four GSCs mechanism blocks for each de-
coder. In dec#1, the GSCs mechanism receives feature maps from the corresponding
ResNet encoder layers. It concatenates them with the feature maps produced by the previ-
ous block (either the ASPP neck block or a previous dec#1 block). For dec#2, it receives
feature maps from the corresponding dec#1 layers. Then concatenate them with the pre-
vious block’s feature maps (either the ASPP neck block or a previous dec#2 block). We
can express these feature maps as S1 ∈ Rh×w× f , and S2 ∈ Rh/2×w/2×2 f . Then, S2 feeds to
UpSampled2D transposed convolution layer with a kernel size of 2×2 to produce feature
maps Ŝ2. Ŝ2 and S1 should have the same width and height to perform the concatenation
process as follows:

C = ϕ1×1([S1||Ŝ2]) (1)
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In this expression, ϕ1×1 stands for the convolution operation with a kernel size of
1× 1 and || refers to the concatenation operation. C feature maps are fed to a sigmoid
activation function to generate the weights ϑ , which helps to improve the discrimination
between the lesion pixels and background pixels for EX or SE segmentation tasks. These
weights are multiplied by the summation of S1, Ŝ2 as follows:

D = ϑ ∗ (S1 + Ŝ2) (2)

After that, the improved feature maps of D are fed into two convolution layers, batch
normalization and rectified linear unit activation function. The final output blocks of both
dec#1 and dec#2 are followed by a sigmoid activation function and fed into a fusion
process by the average weighted aggregation to take the benefits of multiple information
sources and generate an optimal joint lesion segmentation [13]. In addition, the fusion
aims to produce one final output with a fewer output channels as follows:

M = (M1 +M2)/2.0 (3)

Where M stands for the final output of the proposed framework, whereas M1 and M2
indicate the output masks of dec#1 and dec#2, respectively. The final output mask is a
binary image that includes the EX or SE lesions and has a size identical to the size of the
input image size (384×256).

3. Experimental Results and Discussions

This section describes the conducted experiments to evaluate the effectiveness of the
proposed model, including the description of the dataset, the experimental setup, the
evaluation metrics and the analysis of the obtained results.

3.1. Dataset, pre-processing, and experimental setup

We used the popular Indian Diabetic Retinopathy Image Dataset (IDRiD) in our exper-
iments [14]. It composed of 81 high-resolution retinal fundus images of 4288× 2848.
Each image contains at least one mask labelled as one out of four types of DR lesions
EX, SE, MA, and HE. The dataset was split into 54 images as the training set and the
rest of 27 as the testing set.

We used the following training pipeline (including some data augmentation tech-
niques to enrich the data and improve the regularity of the model) to process the images
in the training set. First, each image is divided into four non-overlapped sub-images, and
the corresponding sub masks are constructed. We ignored the negative sub-images, i.e.,
the sub-images only with the background mask. Hence, each example in the training
process is a sub-image with the size of 2144× 1424 pixels with its corresponding sub
mask. Next, we resized the sub-images and the sub masks to 384×256. The interpolation
mechanism used is cubic for the images and the nearest neighbour for the masks.

After that, we applied horizontal flipping, rotation, Gaussian noise and grayscale
augmentation techniques for 12 times. The total of training data calculated as: ((4×
54)−20% (for validation)) ×12.

We trained each model for 50 epochs using Adam optimizer and a batch size of 4.
The learning rate is set to 0.001. We sampled a subset (20%) from the training set and
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used it as a validation set to save the best checkpoint of the trained models. We used the
binary cross-entropy as a loss function to train the models.

During the inference phase, we only resize the input image to 768×512 and perform
a full image segmentation process (i.e., no image splitting or image augmentation is used
during the inference).

3.2. Evaluation Metrics

In this study, we used the most common evaluation metrics in the lesions segmenta-
tion task, specifically:

• Area Under Precision-Recall curve (AUPR): it is known to be a realistic measure
for lesion segmentation performance like exudates [15].

• Pixel Accuracy (ACC): It can be defined as the percent of pixels in the image
which were correctly classified. Formally it is defined as the following:

Accuracy =
TP+TN

TP+TN+FP+FN
(4)

• Intersection-over-Union (IoU): also known as the Jaccard index, is basically a
method to compute the percent overlap between the ground truth mask and the
predicted mask.

IoU =
TP

TP+FP+FN
(5)

• Dice Coefficient: also referred to as F-score, it is the harmonic mean of precision
and recall. It can be expressed as follows:

Dice =
2 ·TP

2 ·TP+FP+FN
(6)

• TPR/Sensitivity: denotes the proportion of real lesion pixels classified as lesion
pixels. Formally it is defined as the following:

T PR/Sensitivity =
TP

TP+FN
(7)

• FNR: denotes the model incorrectly predicts the negative class (background pix-
els). Formally it is defined as the following:

FNR = 1−TPR (8)

In these expressions, TP refers to the true positive (the pixels were labelled as fore-
ground, i.e., retinal lesion pixels, and correctly classified). The term FP means false pos-
itive (the pixels were labelled as background and misclassified as foreground). Also, TN
is a true negative, which refers to the healthy pixels correctly classified by the network.
whereas FN is a false negative representing the lesion pixels misclassified as healthy pix-
els. Finally, the TPR refers to the true positive rate of TP lesion pixels prediction, and the
FNR indicates the false negative rate.
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3.3. Different Decoder Architectures Evaluation of Retinal Exudates Segmentation

In this section, we evaluate the performance of the used decoder architectures on
the test set images of the IDRiD dataset. Table 1 presents the performance of EX and
SE retinal lesion segmentation models with the IDRiD dataset. We conducted three
different experiments of decoder-side architecture for each EX and SE retinal lesions
segmentation—Unet, UNet + GSCs, and EDBNet. We achieved the result of 74.4% of

Table 1. Performance comparison on IDRiD dataset. Values in bold highlight idicates to the highest case of
accuracy

Methods
SE EX

ACC AUPR IOU Dice ACC AUPR IOU Dice

UNet 99.8±0.001 70.7±0.289 74.3±0.064 85.3±0.049 99.5±0.002 81.4±0.149 76.5±0.024 86.7±0.015

UNet + GSCs 99.8±0.001 73.4±0.271 76.5±0.071 86.7±0.053 99.5±0.002 82.0±0.149 78.1±0.023 87.7±0.014

EDBNet 99.8±0.001 74.4±0.273 78.0±0.072 87.6±0.053 99.5±0.002 85.3±0.157 80.3±0.009 89.1±0.006

SE lesion segmentation and 85.3% of EX lesion segmentation with the AUPR metric that
common uses of the IDRiD dataset challenge. For the Accuracy metric of SE and EX,
we reached 99.8 and 99.5%, respectively. Regarding the Dice metric, we obtained 87.6%
of SE and 89.1% of EX. We noted our GSCs mechanism enhanced the performance of
SE and EX lesions segmentation when it has added to the UNet decoder, as shown in the
second row of Table 1. At the same time, when we used the EDBNet, the performance
of SE and EX lesions segmentation improved compared to the method that just used
GSCs in one decoder, as shown in the third row. As a result, the SE lesion segmentation
performance has improved by 1%, 1.5%, and 0.9% of AUPR, IOU, and Dice metrics,
respectively.

Figure 3. BoxPlot of Dice for Hard and Soft Exudates Segmentation results (green dashed lines indicate the
mean, and the oranges indicate the median). All values outside the whiskers are considered as outliers, which
are marked with the (◦) symbol.

On the other hand, the EX lesion segmentation performance has significantly en-
hanced the AUPR, IOU, and Dice metrics of 3.3%, 1.8%, and 1.4%, respectively.

The EDBNet reduced the standard deviation from ±0.015 to ±0.006 with Dice and
±0.024 to ±0.009 with IOU metrics of EX segmentation. These effects reveal that EDB-
Net can present more precise and robust segmentation than the UNet and UNet + GSCs
models.
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Figure 4. Average of TPR and FNR with different decoder architectures (EX left, SE right).
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Figure 5. Hard and Soft Exudates Segmentation results.

Figure 4 shows that the EDBNet model of the dual-decoder yields the highest True
Positive Rate (TPR/Sensitivity) and lowest True Negative Rate (TNR) for all testing set
images of the IDRiD dataset. The dashed line indicates the performance enhancement
when we used the GSCs decoder and the EDBNet. In addition, we present some sample
masks obtained for the three SE and EX lesion segmentation models to demonstrate the
efficacy as shown in Figure 5. Figure 5 shows that the final output masks of EDBNet
are better segmented than those final output masks of UNet+GSCs and UNet baseline
models.

Finally, we show the boxplots of the Dice of the proposed model, UNet, and
UNet+GSCs. As shown in Figure 3 among the tested models, the proposed model has
the highest mean, median, and smallest standard deviation of the Dice for the EX and
has the highest mean and median for the SE.

It is engaging to determine the statistical significance of the differences in perfor-
mance between the proposed EDBNet and UNet + GSCs (the second best model) in
terms of Dice. To do so, we used Student’s t-test (significance level < 0.05) to specify
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the difference between Dice values. The p-values obtained are less than 0.05 for EX and
higher than 0.05 for SE, indicating a statistical significance for Ex but not for SE.

3.4. Comparison with existing methods

To confirm the effectiveness of the proposed method, we conduct a comparison be-
tween EDBNet and state-of-the-art on the AUPR metric (same as the one used in the
IDRiD competition) as shown in Table 2. The comparison includes the top 5 teams on
the IDRiD competition [16] (the first five rows in the table), as well as CARNet [4],
EAD-Net [5], L-Seg [17], and SAA [7]. EDBNet surpasses all the state-of-the-art re-
sults of segmenting the SE retinal lesion segmentation by 1.55% of the AUPR metric.
Regarding the EX, EDBNet achieves acceptable performance. The results of EDBNet

Table 2. Comparison with state-of-the-art results on IDRiD

Method AUPR on SE AUPR on EX

VRT (1st) [16] 0.6995 0.7127

PATech (2nd) [16] - 0.8850

IFLYTEK-MIG (3rd) [16] 0.6588 0.8741

SOONER (4th) [16] 0.5395 0.7390

SAIHST (5th) [16] - 0.8582

CARNet [4] 0.7125 0.8675

EAD-Net [5] 0.6083 0.7818

L-Seg [17] 0.7113 0.7945

SAA [7] 0.7281 0.8792

Proposed 0.7436 0.8534

are comparable with IFLYTEK-MIG, CARNet, and SAA, while they had good results of
EX lesion segmentation but not with SE. On the other hand, PATech and SAIHST have
the best results for EX retinal lesion segmentation but did not introduce SE retinal lesion
segmentation results to compare. Therefore, as shown in Table 2 there is no method with
the best results for the two retinal lesions segmentation at the same time.

4. Conclusions and future work

This paper presented a new deep learning architecture called EDBNet for image segmen-
tation problems. It has been used for segmenting retinal exudates in fundus images of the
human eye. EDBNet is composed of three main elements: ResNet50 backbone, ASPP
neck, and dual-decoder using several GSCs in cascade. EDBNet framework led to high
segmentation performance of both SE and EX retinal lesions for the IDRiD dataset, ob-
taining an accuracy, AUPR, IOU, and Dice metrics of 99.8, 74.4, 78.0, and 87.6% of soft
exudates, respectively; while for hard exudates, we achieve 99.5, 85.3, 80.3, and 89.1%,
respectively. EDBNet showed superiority with respect to other state-of-the-art models,
with performance higher than 1.55% of the AUPR metric for the SE retinal lesion seg-
mentation with the IDRiD dataset.

The EDBNet framework is not designed exclusively for retinal lesion segmentation
on fundus images; it may also work well in cases of medical images with tiny objects.
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Future work will include using the proposed exudates segmentation model to develop
segmentation methods for four kinds of eye lesions: microaneurysm (MA), haemorrhage
(HE), hard exudate (EX), and soft exudate (SE) to diagnose diabetic retinopathy.
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