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Abstract.The adoption of algorithms based on Artificial Intelligence (AI)
has been rapidly increasing during the last years. However, some aspects
of AI techniques are under heavy scrutiny. For instance, in many cases, it
is not clear whether the decisions of an algorithm are well-informed and
reliable. Having an answer to these concerns is crucial in many domains,
such as those in were humans and intelligent agents must cooperate in
a shared environment. In this paper, we introduce an application of an
explainability method based on the creation of a Policy Graph (PG)
based on discrete predicates that represent and explain a trained agent’s
behaviour in a multi-agent cooperative environment. We also present
a method to measure the similarity between the explanations obtained
and the agent’s behaviour, by building an agent with a policy based on
the PG and comparing the behaviour of the two agents.
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1. Introduction and Motivation

Over the last decade, methods based on machine learning have achieved remark-
able performance in many seemingly complex tasks such as image processing and
generation, speech recognition or natural language processing. It is reasonable
to assume that the range of potential applications will keep growing bigger in
future years. However, there are still many concerns about the transparency, un-
derstandability and trustworthiness [1] of systems built using these methods, esp.
when they are based on so-called blackbox models. For example, there is still a
need for proper explanations of the behaviour of autonomous vehicles and this
could be a risk for their real-world applicability and regulation [2].

Since AI has an increasing impact on people’s everyday lives, it becomes ur-
gent to keep progressing on the field of Explainable Artificial Intelligence (XAI)
[3]. In fact, there are already regulations that require AI model creators to en-
able mechanisms that can produce explanations for them, such as the European
Union’s General Data Protection Regulation (GDPR) that went into effect on
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May 25, 2018 [4]. This law creates a “Right to Explanation” whereby a user can
ask for the explanation of an algorithmic decision that was made about them.
Therefore, XAI is not only desirable but also a frequent requirement. This is also
the case for virtual or physical agents trained via Reinforcement Learning (RL),
and explainability in RL (XRL) is starting to gain momentum as a different field
of XAI.

This paper aims to continue the line of research opened in [5; 6], which consists
in producing explanations from predicate-based Policy Graphs (PG) generated
from the observation of RL-trained agents in the Cartpole environment. In this
paper, we present an application of the same methodology in order to generate
explanations for agents trained in a cooperative environment using Multi-Agent
Reinforcement Learning (MARL) methods. In the physical world, cooperation
between humans and AIs will gradually become more common [7], and thus we
believe that it is crucial to be able to explain the behavior of cooperative agents
so that their actions are understandable and can be trusted by humans.

Currently, there are several approaches to explain RL agents. In this work,
we briefly overview some of them in Section 2, we choose one that builds a graph
that represents the agent’s behaviour and we apply it to a MARL environment in
Section 4, also giving insight in how to generate explanations. Once we apply the
method, we build a new agent using the graph as a policy in order to compare both
agents in Section 5 and finally, we end with a summary of the main conclusions
and contributions from the work done in Section 6.

2. Related work

The area of explainability in reinforcement learning is still relatively new, espe-
cially when dealing with policies as blackbox models. In this section, we will pro-
vide a brief overview of some state-of-the-art XRL methods as well as discuss
in more depth the method chosen in this work. A more detailed study of the
explainability methods in RL can be found in [8].

According to [8], XRL methods can be classified by their scope of ex-
planation (global/local), timing of explanation (post-hoc/intrinsic), time hori-
zon of explanation (reactive/proactive), type of the environment (determinis-
tic/stochastic), type of policy (deterministic/stochastic) and their agent cardinal-
ity (single-agent/multi-agent).

Reactive explanations are those that are focused on the immediate moment.
A family of reactive methods is policy simplification, which finds solutions based
on tree structures. In these, the agent answers the questions from the root to
the bottom of the tree in order to decide which action to take. For instance,
Coppens et al. [9] use Soft Decision Trees (SFT), structures that work similarly
to binary trees but where each decision node works as a single perceptron that
returns, for a given input x, the probability of going right or left. This allows the
model to learn a hierarchy of filters in its decision nodes. Another family is reward
decomposition, which tries to decompose the reward into meaningful components.
In [10], Juozapaitis et al. decompose the Q-function into reward types to try to
explain why an action is preferred over another. With this, they can know whether
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the agent is taking an action to be closer to the objective or to avoid penalties.
Another approach is feature contribution and visual methods, like LIME [11] or
SHAP [12], which try to find which of the model features are the most relevant
in order to make decisions. On the other hand, Greydanus et al. differentiate
between gradient-based and perturbation-based saliency methods [13]. The first
ones try to answer the question “Which features are the most relevant to decide
the output?” while the latter are based on the idea of perturbing the input of the
model in order to analyse how its predictions changes.

Proactive models are those that focus on longer-term consequences. One pos-
sible approach is to analyse the relationships between variables. This family of
techniques give explanations that are very close to humans because we see the
world through a causal lens [14]. According to [15], the causal model tries to
describe the world using random variables. Each of these variables has a causal
influence on the others. This influence is modelled through a set of structural
equations. Madumal et al. generate explanations of behaviour based on a coun-
terfactual analysis of the structural causal model that is learned during RL [16].
Another approach tries to break down one task into multiple subtasks in order to
represent different abstraction levels [17]. Therefore, each task can only be carried
out if its predecessor tasks have been finished.

According to [18], in order to achieve interoperability, it is important that
the tasks had been described by humans. For instance, [17] defines two different
policies in hierarchical RL, local and global policies. The first one uses atomic
actions in order to achieve the sub-objectives while the second one uses the local
policies in order to achieve the final goal.

In addition, there is another approach that combines relational learning or
inductive logic programming with RL. The idea behind these methods [19] is to
represent states, actions and policies using first order (or relational) language.
Thanks to this, it is easier to generalize over goals, states and actions, exploiting
knowledge learnt during an earlier learning phase. Finally, another approach con-
sists in building a Markov Decision Process and follow the graph from the input
state to the main reward state [16]. This allows us to ask simple questions about
the chosen actions. As an optional step, we can simplify the state representation
(discretizing it if needed). This step becomes crucial when we are talking about
more complex environments [5]. In this work, we will use this last approach. In
our case, we will use a method that consists of building a policy graph by mapping
the original state to a set of predicates (discretization step) and then repeatedly
running the agent policy, recording its interactions with the environment. This
graph of states and actions can then be used for answering simple questions about
the agent’s execution which is shown at the end of Section 4. This is a post-
hoc and proactive method, with a global scope of explanation, which works with
both stochastic environments and policies and has until now only been tested in
single-agent environments.

3. Training agents in a cooperative environment: Overcooked-AI

In this paper, we have used the PantheonRL [20] package for training and testing
an agent in Overcooked-AI[21]. Overcooked-AI is a benchmark environment for
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fully cooperative human-AI task performance, based on the popular video game
Overcooked. The goal of the game is to deliver soups as fast as possible. Each soup
requires placing up to 3 ingredients in a pot, waiting for the soup to cook, and
then having an agent pick up the soup and delivering it. The agents should split
up tasks on the fly and coordinate effectively in order to achieve high rewards.

The environment has the following reward function: 3 points if the agent
places an onion in a pot or if takes a dish, and 5 points if it takes a soup. Here in
this work, we have worked with five different layouts: simple, unident s, random0,
random1 and random3 (Figure 1).

Figure 1. Overcooked layouts (simple, unident s, random1, random0, random3)

At each timestep, the environment returns a list with the objects not owned
by the agent present in the layout and, for each player, the position, orientation,
and object that it is holding and its information. We can also get the location of
the basic objects (dispensers, etc.) at the start of the game.

Figure 2. Overcooked-AI game dynamics.

For example, the agent would receive the following data from Figure 2:

• Player 1: Position (5, 1) - Facing (1, 0) - Holding Soup
• Player 2: Position (1, 3) - Facing (-1, 0) - Holding Onion
• Not owned objects: Soup at (4, 0) - with 1 onion and 0 cooking time.

The aim of our work is not to solve the Overcooked game but rather to analyze
the potential of explainability in this cooperative setting. Therefore, we do not
really care about what method is used to train our agent. However, it is important
that the agent performs reasonably well in order to verify that we are explaining
an agent with a reasonable policy. Therefore, we have used the Proximal Policy

M. Domènech i Vila et al. / Testing Reinforcement Learning Explainability Methods358

http://www.ghosttowngames.com/overcooked


Optimization (PPO) algorithm because it is one of the methods that has achieved
the best results in [21]. Indeed, if we get good results with PPO, we should also get
good results with other methods since this explainability method is independent
from the RL method used. In our case, we have trained five different agents (one
for each layout) for 1M total timesteps and with an episode length of 400 steps.
The results are the following:

• simple: Mean Episode Reward = 387.87 and Standard Deviation = 25.33
• unident s: Mean Episode Reward = 757.71 and Standard Deviation = 53.03
• random0 : Mean Episode Reward = 395.01 and Standard Deviation = 54.43
• random1 : Mean Episode Reward = 266.01 and Standard Deviation = 48.11
• random3 : Mean Episode Reward = 62.5 and Standard Deviation = 5.00

4. Building a policy graph for the trained agent

As we mentioned in Section 2, we have chosen a method based on the creation
of a policy graph. This method consists of building a directed graph where each
node represents a state, and each edge represents the transition going from one
node to another taking a specific action.

In order to build the policy graph, we need to discretise the state represen-
tation. This step is crucial since we need to map each state to a node in our PG.
We have created a total of 10 predicates to represent each state.

The first two are held and held partner, which have 5 possible values depend-
ing on which object the agent and its partner, respectively, are holding (e.g., ”O”
for ”Onion” object or ”*” if is not holding anything). The third is pot state, which
has 4 possible values depending on the state of each pot:

- “Of”, when [pot.onions = 0].
- “Fi” , when [pot.onions = 3 ∧ pot.timer = 20].
- “Co” , when [pot.onions = 3 ∧ pot.timer < 20].
- “Wa” , when [pot.onions < 3].

To relate the actions of the agent with the relative position of the objects,
we introduce another 6 predicates: onion pos(X), tomato pos(X), dish pos(X),
pot pos(X), service pos(X) and soup pos(X). All of them with the same 6 possible
values depending on the next action to perform to reach the object quickly (e.g.,
“T” for “Top” action). The last one is partner zone, intended to help the agents
cooperate along with held partner. It has 8 possible values depending on which
cardinal point the partner is located (e.g., “NE” for “North East”).

As we mentioned in Section 2, the aim of the PG algorithm is to apply the
same method as in Figure 3: record all the interactions of the original trained
agent by executing it in a large set of random environments and build a graph
relating predicate-based states and actions. Our work has followed two approaches
for building this graph:

• Partial Policy Graph: This algorithm builds a directed graph. For each
state, it takes the most probable action. Therefore, we do not add all the
agent interactions to our graph, only those that belong to the most used
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action by the agent. This means that for each node, we only have one
possible action (the most probable in this case). We think this could be an
interesting approach since we are building a deterministic agent.

• Complete Policy Graph: This algorithm builds a multi-directed graph. For
each state, it takes all the agent interactions, adding them to our graph.
This means that for each node, we have multiple possible actions with an
associated probability. We think this could be an interesting approach since
we are maintaining stochasticity.

Figure 3. Extract of two states from a Complete PG generated from Overcooked.

Once we have built our PG (regardless of the PG algorithm), we have access
to the generation of natural language explanations as in [5], where the authors
validate the PG by comparing the sentences generated by the algorithm against
sentences written by human experts. While this is valid as a qualitative approach
for validation, it becomes obvious that this method heavily depends on experts
and on the nature of the specific domain. However, the authors propose three
questions to help explain the agent’s behaviour. These questions are:

1. What will you do when you are in state X?: Look for the possible actions
in the policy graph from the input state that the user wants to check.

2. When do you perform action X?: Look for these states where the action
X is the most probable action.

3. Why did you not perform action X in state Y ?: Look at which state it
would reach if it had chosen actionX in state Y . Once we have those nearby
(similar) states, then we compute the difference between both states.

5. Validating the policy graph

In this section, we study how to validate our Policy Graph. To do it, we build
another agent that follows a policy based on the PG we obtained as explained in
Section 4: at each step, the agent receives the current state and decides its next
action by querying the PG for the most probable action from the most similar
state to the current one. In order to test this new agent, we run it multiple times
in random environments. If we discretize the space as explained in Section ??, we
have 10 predicates and 37,324,800 potential states. This means it is very likely
that the new agent will find states never seen before, so it is very important to set
up a strategy to deal with these situations. We introduce a state similarity metric
to deal with unknown states: we consider that two states (S1, S2) are similar when
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diff (S1, S2) ≤ 1, where diff (S1, S2) computes the number of different predicate
values one each other. For example, if we have the states S1 = O-Co-S and
S2 = O-Co-N, then diff (S1, S2) = 1 so they are considered similar.

As we saw in Section 4, we are testing 2 different algorithms. Therefore, we
have built 2 new agents for each layout. Now, we will see how each of these
algorithms make decisions. Assuming we are in state S, we can distinguish 3 cases:

1. S ∈ PG: Picks an action using weights from the probability distribution
in the PG.

2. S /∈ PG, but a similar state is found: Same as case 1 but using the similar
state.

3. S /∈ PG and a similar state is not found: Pick a random action.

All the agents have been trained using batches of 25 seeds. Altogether, the
training consisted in 500 seeds and 3 episodes per seed. In order to validate the new
agent, we have generated 3 metrics: Transferred Learning (TL), the ratio between
the RL agent average episode reward and the new agent’s average episode reward;
Standard Deviation (STD), the ratio between the RL agent average standard
deviation of reward and the new agent’s standard deviation of reward; and New
States (NS) visited, the proportion between previously unknown and total visited
states. In order to do comparisons, we have tested both PG algorithms using
multiple discretizers (D11, D12, D13 and D14). D11 has the predicates held,
pot state and predicate pos, D12 has D11 predicates plus held partner, D13 has
D11 predicates plus partner zone and D14 has all predicates.

Figure 4. Results from layout simple

Figure 5. Results from layout unident s

Figures [4-8] show the results we have obtained from the different agents. We
can see that in the simple and unident s scenarios, the Partial agents manage to
outperform the original ones while the Complete agents do not. On the other hand,
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Figure 6. Results from layout random0

Figure 7. Results from layout random1

Figure 8. Results from layout random3

it seems that in these cases it is not necessary to introduce cooperative predicates
to explain their behaviour, unlike in the random0 and random3 scenarios. For
instance, in random0 the Partial agent needs the predicate partner zone and in
random3 the predicate held partner to get good results. We can also see how in
random1, the Partial agent is not even able to score even though the Complete
algorithm scores quite well. Regarding the standard deviation of these agents, it
is usually higher than the original agent’s, likely because the PG we have built is
based on the simplification of states and actions, so the policy also ends up being
a simplification. Finally, we can see how the vast majority of agents achieve a
really low NS percentage, which means that the agent knows exactly what action
to take most of the time.

To summarise, according to Figures [4-8], the Complete algorithm is more
stable in our 3 metrics than the Partial one, as the latter can score zero points or
perform better than the original agent depending on the layout, probably due to
its deterministic nature. Therefore, the Complete algorithm is the more reliable
from an XRL point of view and should be the one used for producing explanations.

On the other hand, we have also seen that although there are scenarios where
it is not necessary to introduce cooperative predicates to explain the agent’s
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behaviour, there are others where this information is crucial, which makes sense
due to the fact that the layout influences the need for cooperation.

6. Conclusions

XAI is a research area that is growing by leaps and bounds in recent years, due
to the need to understand and justify the decisions made by AIs, especially in the
field of RL. All the research in this area can be key not only to study the quality
of an agent’s decision but also to help people rely on AI, especially in situations
where humans and machines have to cooperate, and it is becoming necessary to be
able to give explanations about their decisions. There are already some proposals
in the literature to provide them, and it is important to test their effectiveness in
practice.

In this work, we have used an explainability method based on the construc-
tion of a PG by discretising the state representation into predicates for later ap-
plying it to a cooperative MARL environment (Overcooked). We have proposed
two different algorithms to generate the PG and we have managed to give some
explanations that according to [5] should be validated by human experts with
domain-specific knowledge. In order to validate the PG, we have applied a method
already tested in [6] to generate automatically policies based on these explana-
tions to build agents that represent them. Finally, we have seen that this tech-
nique is capable of giving explanations in a MARL cooperative environment like
Overcooked.
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