
On ws of Neural Ordinary Differential
Equations at e lutions of

Lotka-Volterra namical stems

Argimiro ARRATIA a,1, Carlos ORTIZ band Marcel ROMANÍ a

a Soft Computing Research Group (SOCO)
at Intelligent Data Science and Artificial Intelligence Research Center

Department of Computer Sciences,
Polytechnical University of Catalonia, Barcelona, Spain.

argimiro@cs.upc.edu, marcel.romani@estudiantat.upc.edu
b Dept. of Computer Science and Mathematics,

Arcadia University, Glenside, PA, U.S.A.
ortiz@arcadia.edu

Abstract. Neural Ordinary Differential Equations (NODE) have emerged as a
novel approach to deep learning, where instead of specifying a discrete sequence
of hidden layers, it parameterizes the derivative of the hidden state using a neural
network [1]. The solution to the underlying dynamical system is a flow, and vari-
ous works have explored the universality of flows, in the sense of being able to ap-
proximate any analytical function. In this paper we present preliminary work aimed
at identifying families of systems of ordinary differential equations (SODE) that
are universal, in the sense that they encompass most of the systems of differential
equations that appear in practice. Once one of these (candidate) universal SODEs is
found, we define a process that generates a family of NODEs whose flows are pre-
cisely the solutions of the universal SODEs found above. The candidate universal
SODE family that we present here is the generalized Lotka-Volterra (LV) families
of differential equations. We present the NODE models built upon this LV systems
and a description of their appropriate flows and some preliminary implementations
of this process.

Keywords. Neural Ordinary Differential Equations, Lotka-Volterra system, neural
networks, flows.

1. Introduction

Models from the class of neural networks with an infinite impulse response such as recur-
rent neural networks, and more in particular Residual Neural Networks (ResNet), are the
inspiration for the Neural Ordinary Differential Equations (NODE) network model [1].
In a residual network each layer can be defined as a finite transformation of the previous
layer:

1Corresponding Author: Argimiro Arratia, e-mail: argimiro@cs.upc.edu

Flo
Th Ar So

Dy Sy

Artificial Intelligence Research and Development
A. Cortés et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220337

191

ht+1 = ht +g(ht ,θt) (1)

where ht is the hidden state at layer t, g is a dimension preserving function and θ is
a vector of parameters. These iterative updates can also be interpreted as an Euler dis-
cretization of a continuous transformation [3]. By augmenting the number of layers and
taking smaller steps Δt, the ResNet dynamics expressed by (1) becomes in the limit an
ordinary differential equation (ODE) specified by a neural network

dy(t)
dt

= f (y(t),θ(t), t) (2)

Here f represents the Euler’s discretization method to approximate a continuous func-
tion, and at each discrete time t, y(t) = ht , θ(t) = θt and Δt f (ht ,θt , t) = g(ht ,θt). Thus, a
neural ODE extends the traditional residual network model in that it has infinitely many
layers at different point in time, and instead of fitting different weights and biases at each
layer, it needs to fit a set of parameters θ that minimizes some cost function that depends
on the initial values of y(t), say y(0) = h0, and the output of the system, say at some
time T , y(T) = hT (w.l.o.g. we will consider T = 1). In other words, given the task of
modeling a mapping F : Rn →R

n, we are interested in optimizing the parameters θ such
that the solution to the initial value problem

dy
dt

= f (y,θ , t), y(0) = x (3)

will accurately predict F at time T = 1. This value can be computed by an ODE solver,
which evaluates the hidden unit dynamics of f wherever necessary from input layer
y(0) = h0 to output layer y(1) = h1. There are many powerful and accurate optimizing
algorithms, for instance, the family of algorithms based on the adjoint method [4].

Because we are interested in how the values of y(1) change given the initial values
y(0), we study the flow of the NODEs. The NODE approach promises to yields ben-
efits in terms of memory management as well as harnessing the theoretical wealth of
minimization techniques, and stability results, in dynamical systems.

A first step to explore this approach is to study the universality of the NODEs in
terms of their flows being able to approximate any function F : Rn → R

n. Results have
been obtained that give topological and analytical conditions on collections of functions
such that their flows are universal for different measures of approximations [6]. Most of
these approaches, however, study NODEs where the function f (y,θ , t) itself is a neural
network, e.g. [5]. We note that these characterizations do not generate in themselves
interesting families of SODEs.

We are interested in a more direct approach. We want to identify first families G of
systems of differential equations that are universal, in the sense that they encompass most
of the systems of differential equations that appear in practice. Then we want to find a
family F of functions f for which the flows of the differential equation in (1) is exactly
the family F . Thirdly, we want to explore the process of optimizing the parameters of a
differential equation (1) for functions f in F .

In the following sections, we first present our general scheme for defining flows of
universal SODEs and then the Lotka-Volterra system as our first candidate of universal
SODE for building Neural ODE.

A. Arratia et al. / On Flows of Neural Ordinary Differential Equations192

2. Computing the flow

Definition 2.1 Let f : Rn → R
n be a time independent vector field and let y(t) be the

solution of the Initial Value Problem (IVP)

dy

dt
= f(y(t),θ) with y(0) = x.

Then the function

ϕ : Rn ×R→ R
n,

defined as ϕ(x, t) = y(t) is called the flow of the vector field f.

We can define the optimization process the neural ODE appearing in (3) in terms of
the flow as follows:

Given the IVP in (3), the optimization process (by the gradient method based on the
adjoint approach) obtains the values of the parameters θ that minimize a total error (or
cost function) constructed from comparing a collection of training data

T̂ = {(xi, ŷi)}i∈I

with a collection of calculated outputs of the IVP in (3):

T = {(xi,ϕ(xi,1))}i∈I .

Once the optimal values of θ are obtained, the solution to the optimization problem
is given by the function ϕ(x,1). More specifically, for any input x, the value of ϕ(x,1) is
the output of neural SODE solution of the IVP (3) at t = 1, with the optimal parameters
and with initial value y(0) = x.

Observe that for the optimization process and for the generation of the approxima-
tion functions, the key role is played by the flow value ϕ(x,1) and not by the solution of
the IVP in (3) in the interval (0,1) of t.

In order for the Neural SODEs approach to be useful, one needs to ensure that the
flows of the SODEs involved are universal, in the sense that there exists a family S
of SODEs such that any function F : Rn → R

n can be approximated by the flow of an
SODE S ∈ S . Here the definition of “approximate” can take many different meanings,
as discussed elsewhere, but essentially means that for any F , there exists an S ∈ S with
associated flow ϕS such that for any x ∈ R

n, F(x) is close to ϕS(x,1).
Here is how we propose to find a collection S of SODEs that is universal. First,

we simplify the situation above as follows. Observe that for every natural n there exists
(computationally) easy bijections R into R

n. Let us call one such (computable) bijection
h. Thus we can recast approximating a function F : Rn → R

n into approximating an
equivalent function F∗ : R → R

n defined as F∗(t) = F(h(t)). Thus we can recast the
following concepts:

1. The IVP (3) is now: dy
dt = f(y,θ) with y(0) = (x,x, . . . ,x).

A. Arratia et al. / On Flows of Neural Ordinary Differential Equations 193

2. The training data set T̂ = {(xi, ŷi)}i∈I is now of the form T̂1 = {(xi, ŷi)}i∈I .
3. The set of inputs-outputs of the IVP is now T1 = {(xi,ϕ(xi,1))}i∈I , where ϕ(x,1)

is the solution of the IVP with initial condition y(0) = (x,x, . . . ,x), at t = 1.

Note that ϕ(x,1) is a function from R to R
n. Hence our optimization process for

neural SODE becomes the following.

Definition 2.2 (The optimization process for a Neural SODEs) Given an IVP:

dy

dt
= f(y,θ) with y(0) = (x,x, . . . ,x) (4)

The optimization process (by the gradient method based on the adjoint approach)
obtains the values of the parameters θ that minimize a total error (or cost function)
constructed from comparing a collection of training data

T̂ = {(xi, ŷi)}i∈I

with a collection of calculated outputs of the IVP in (4):

T = {(xi,ϕ(xi,1))}i∈I .

Once the optimal values of θ are obtained, the solution to the optimization problem
is given by the function ϕ(x,1). More specifically, for any input x, the value of ϕ(x,1) is
the output of our optimized Neural SODE.

3. The Lotka-Volterra system

Now we consider the Lotka-Volterra n-dimensional SODE. We begin by observing,
as done elsewhere, that there is heuristic evidence that the families of n-dimensional
Lotka-Volterra are universal in the sense that most of the types of systems of differen-
tial equations used in practice can be reduced to SODE’s that are n-dimensional Lotka-
Volterra [2]. Thus, a vast collection of functions F , the solutions of a very general col-
lection of SODEs, can be seen as solutions of a Lotka Volterra n-dimensional SODE.

We propose then to study the flows ϕ(x, t) that are associated with n-dimensional
Lotka-Volterra SODEs. More specifically, given an n-dimensional Lotka Volterra Initial
Value Problem:

LV (n,θ ,z0) :
dz

dx
= L(z,θ) with z(0) = z0, (5)

where the n-dimensional Lotka-Volterra equations LV (n,θ ,z0) with parameters θ =
(λ1, . . . ,λn;Ai j : 1 ≤ i ≤ n,1 ≤ j ≤ m) are:

A. Arratia et al. / On Flows of Neural Ordinary Differential Equations194

z′i = λizi + zi

m

∑
j=1

Ai jz j, i = 1, . . . ,n

we will associate to it a (trivial) SODE with flow ϕn,θ ,z0(t,x) such that ϕn,θ ,z0(x,1) =
z(x).

Since the Lotka Volterra SODE’s capture all the useful SODEs, we can hope that the
functions ϕn,θ ,z0(,1) will capture all solutions of the useful SODEs.

Our proposed process to use Neural SODE’s on a training problem defined by a col-
lection of points T̂ = {(xi, ŷi)}i∈I , with, for every i, ŷi ∈R

n is explained in the following
section.

3.1. Proposed optimization Process for Neural SODEs

We consider the Lotka-Volterra n-dimensional IVP defined in (5):

LV (n,θ ,z0) :
dz

dx
= L(z,θ) with z(0) = z0

We define an associated IVP for a SODE in the independent variable t and with
parameters θ , t as follows

dy

dt
=

⎡
⎢⎢⎣
−x
−x
. . .
−x

⎤
⎥⎥⎦+ z(x) with y(0) =

⎡
⎢⎢⎣

x
x
. . .
x

⎤
⎥⎥⎦ , (6)

where z(x) is the solution of the LV (n,θ ,z0) defined in (5), evaluated at x. Since the
solution of the IVP (6) is simply

y(t,x) = (1− t)

⎡
⎢⎢⎣

x
x
. . .
x

⎤
⎥⎥⎦+(t)z(x).

We see that y(1,x) = z(x). Since ϕ(x,1), the flow of the IVP (6) at t = 1 , is y(1,x),
we have that ϕ(x,1) = z(x).

We apply the optimization process (by the gradient method based on the adjoint
approach) to LV (n,θ ,z0) to obtain the values of the parameters (θ ,z0) that minimize a
total error (or cost function) constructed from comparing the collection of training data

T̂1 = {(xi, ŷi)} i ∈ I

with a collection of calculated outputs of the LV (n,θ ,z0), and defined as

T = {(xi,ϕ(xi,1))}i∈I = {(xi,z(xi))}i∈I ,

A. Arratia et al. / On Flows of Neural Ordinary Differential Equations 195

(since ϕ(x,1) = z(x)).
Once the optimal values of θ ,z0 are obtained, the solution to the optimization

problem is given by the function z(x). More specifically, for any input x, the value of
ϕ(x,1) = z(x) is the output of our approximation function.

We remark that in this approach, we are optimizing the parameters θ ,z0 of the initial
value problem LV (n,θ ,z0) using the adjoint method, as in the classical Neural SODE
approach. The advantages of this approach are: the process is easily adapted to other
universal families of SODEs, such as Riccati equations; the process is easily scalable to
any dimension n; as with the canonical Neural SODE approach, the use of memory may
be limited in this approach.

4. Experiments

4.1. Reproducing the evolution of Lotka-Volterra populations

We initialized a Neural ODE whose differential equation corresponds to an n-dimensional
Lotka-Volterra system with random parameters θ ∈ [−0.05,0.05]n(n+1) and initial condi-
tions z0 ∈ [0,1]n. The goal was to find such optimal values that minimize a loss function
given by

Loss(Ŷ,Y) = ∑
i
|ŷi −yi|2. (7)

The first experiment was performed on an easy data set produced by solving a
Lotka-Volterra system of equations. Populations following n-dimensional Lotka-Volterra
systems for n = 2,5,10 were generated by (randomly) choosing values of parameters
θ̂ ∈ [−0.25,0.25]n(n+1) and initial conditions ẑ0 ∈ [0,1]n and letting the system evolve
for a limited time span of [0,2]. Population values ŷi at each time step xi were recorded
every 0.05 time units to generate the data sets T̂n = {(xi, ŷi)}i. Random noise was added
to ŷi.

Results are shown in Figures 1 and 2. As we can see, our Neural ODE model pa-
rameters have been optimized correctly using the adjoint method.

Figure 1. Plot of the estimated data (dashed lines) over the target data (thick lines, the noise added in the
training set is not shown).

A. Arratia et al. / On Flows of Neural Ordinary Differential Equations196

Figure 2. Loss of our Neural ODE model through the training phase.

4.2. Approximation of 1+ sin(x)

Now the goal is to approximate the function 1+ sin(x) with a Neural ODE whose differ-
ential equation is a high dimensional (n = 20) Lotka-Volterra system. In this case, given
that the target ŷi is 1-dimensional, the loss function is defined as to take into account only
the first dimension of the system, while the other 19 may take whatever values are best.

Figure 3 shows that for a small interval [0,π] our algorithm has been able to approx-
imate the target function pretty well.

Figure 3. Plot of the 1st dimension of the Neural ODE output over the target 1+ sin(x).

On the other hand, in Figure 4 we can see that even though the loss has not reached a
minimum, numerical instabilities on the differential equation solvers complicate a further
optimization.

References

[1] Chen, R. T., Rubanova, Y., Bettencourt, J., Duvenaud, D. K. (2018). Neural ordinary differential equa-
tions. Advances in Neural Information Processing Systems, 31, pp. 6571-6583.

[2] Hernndez-Bermejo, B., Fairén, V. (1997). Lotka-Volterra representation of general nonlinear systems.
Mathematical Biosciences, 140 (1), 1-32.

[3] Lu, Y., Zhong, A., Li, Q., Dong, B. (2018). Beyond finite layer neural networks: Bridging deep archi-
tectures and numerical differential equations. In: International Conference on Machine Learning (pp.
3276-3285). PMLR.

[4] Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.

A. Arratia et al. / On Flows of Neural Ordinary Differential Equations 197

Figure 4. Loss of our Neural ODE model through the training phase.

[5] Rackauckas, C., et al (2020). Universal differential equations for scientific machine learning. arXiv
preprint arXiv:2001.04385.

[6] Teshima, T., Tojo, K., Ikeda, M., Ishikawa, I., Oono, K. (2020). Universal approximation property of
neural ordinary differential equations. arXiv preprint arXiv:2012.02414.

A. Arratia et al. / On Flows of Neural Ordinary Differential Equations198

