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CONVERGENCE OF THE COMPLETE ELECTROMAGNETIC

FLUID SYSTEM TO THE FULL COMPRESSIBLE

MAGNETOHYDRODYNAMIC EQUATIONS

SONG JIANG AND FUCAI LI ˚

Abstract. The full compressible magnetohydrodynamic equations can be de-

rived formally from the complete electromagnetic fluid system in some sense

as the dielectric constant tends to zero. This process is usually referred as

magnetohydrodynamic approximation in physical books. In this paper we jus-

tify this singular limit rigorously in the framework of smooth solutions for

well-prepared initial data.

1. Introduction and Main Results

Electromagnetic dynamics studies the motion of an electrically conducting fluid

in the presence of an electromagnetic field. In electromagnetic dynamics the fluid

and the electromagnetic field are connected closely with each other, hence the fun-

damental system of electromagnetic dynamics usually contains the hydrodynamical

equations and the electromagnetic ones. The complete electromagnetic fluid system

includes the conservation of mass, momentum, and energy to the fluid, the Maxwell

system to the electromagnetic field, and the conservation of electric charge, which

take the forms ( [5, 14, 21])

Btρ ` div pρuq “ 0, (1.1)

ρpBtu ` u ¨ ∇uq ` ∇P “ divΨpuq ` ρeE ` µ0J ˆ H, (1.2)

ρ
Be
Bθ pBtθ ` u ¨ ∇θq ` θ

BP
Bθ divu

“ div pκ∇θq ` Ψpuq : ∇u ` pJ ´ ρeuq ¨ pE ` µ0u ˆ Hq, (1.3)

ǫBtE ´ curlH ` J “ 0, (1.4)

BtH ` 1

µ0

curlE “ 0, (1.5)
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Btpρeq ` div J “ 0, (1.6)

ǫdivE “ ρe, divH “ 0. (1.7)

The system (1.1)–(1.7) consists of 14 equations in 12 unknowns, namely, the mass

density ρ, the velocity u “ pu1, u2, u3q, the absolute temperature θ, the electric

field E “ pE1, E2, E3q, the magnetic field H “ pH1, H2, H3q, and the electric charge

density ρe. The quantity Ψpuq is the viscous stress tensor given by

Ψpuq “ 2µDpuq ` λdiv u I3, Dpuq “ p∇u ` ∇uJq{2, (1.8)

where I3 denotes the 3 ˆ 3 identity matrix, and ∇uJ the transpose of the matrix

∇u. The pressure P “ P pρ, θq and the internal energy e “ epρ, θq are smooth

functions of ρ and θ of the flow, and satisfy the Gibbs relation

θdS “ de ` P d

ˆ

1

ρ

˙

, (1.9)

for some smooth function (entropy) S “ Spρ, θq which expresses the first law of the

thermodynamics. The current density J is expressed by Ohm’s law, i.e.,

J ´ ρeu “ σpE ` µ0u ˆ Hq, (1.10)

where ρeu is called the convection current. The symbol Ψpuq : ∇u denotes the

scalar product of two matrices:

Ψpuq : ∇u “
3
ÿ

i,j“1

µ

2

ˆ Bui

Bxj

` Buj

Bxi

˙2

` λ|divu|2 “ 2µ|Dpuq|2 ` λ|trDpuq|2. (1.11)

The viscosity coefficients µ and λ of the fluid satisfy µ ą 0 and 2µ ` 3λ ą 0. The

parameters ǫ ą 0 is the dielectric constant, µ0 ą 0 the magnetic permeability, κ ą 0

the heat conductivity, and σ ą 0 the electric conductivity coefficient, respectively.

In general, the conductivity σ may be a tensor depending on the present magnetic

field. However, in this paper, we shall suppose that the Hall effect is negligible and

σ is a scalar quantity. If the Hall effect is to be taken into account, (1.10) must be

replaced by

J ´ ρeu “ σpE ` µ0u ˆ Hq ´ σσ0µ0

nee0
pE ` µ0u ˆ Hq ˆ H,

where σ0 is the electric conductivity in the absence of a magnetic field, ne the

electron number density, and e0 the charge of an electron. For simplicity, in the

following consideration, we shall assume that µ, λ, ǫ, µ0, κ, and σ are constants.

Mathematically, it is very difficult to study the properties of solutions to the

electromagnetic fluid system (1.1)–(1.7). The reason is that, as pointed out by

Kawashima [21], the system of the electromagnetic quantities pE,H, ρeq in the sys-

tem (1.1)–(1.7), which is regarded as a first-order hyperbolic system, is neither
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symmetric hyperbolic nor strictly hyperbolic in the three-dimensional case. The

same difficulty also occurs in the first-order hyperbolic system of pE,Hq which is

obtained from the above system by eliminating ρe with the aid of the first equation

of (1.7). Therefore, the classic hyperbolic-parabolic theory (for example [37]) can

not be applied here. There are only a few mathematical results on the electromag-

netic fluid system(1.1)–(1.7) in some special cases. Kawashima [21] obtained the

global existence of smooth solutions in the two-dimensional case when the initial

data are a small perturbation of some given constant state. Umeda, Kawashima

and Shizuta [35] obtained the global existence and time decay of smooth solutions

to the linearized equations of the system (1.1)–(1.7) in the three-dimensional case

near some given constant equilibria. Based on the above arguments, it is desirable

to introduce some simplifications without sacrificing the essential feature of the

phenomenon.

As it was pointed out in [14], the assumption that the electric charge density

ρe » 0 is physically very reasonable for the study of plasmas. In this situation,

the convection current ρeu is negligible in comparison with the conduction current

σpE`µ0uˆHq, thus we can eliminate the terms involving ρe in the electromagnetic

fluid system (1.1)–(1.7) and obtain the following simplified system:

Btρ ` div pρuq “ 0, (1.12)

ρpBtu ` u ¨ ∇uq ` ∇P “ divΨpuq ` µ0J ˆ H, (1.13)

ρ
Be
Bθ pBtθ ` u ¨ ∇θq ` θ

BP
Bθ divu “ κ∆θ ` Ψpuq : ∇u ` J ¨ pE ` µ0u ˆ Hq, (1.14)

ǫBtE ´ curlH ` J “ 0, (1.15)

BtH ` 1

µ0

curlE “ 0, divH “ 0, (1.16)

with

J “ σpE ` µ0u ˆ Hq. (1.17)

We remark here that the assumption ρe » 0 is quite different from the assumption

of exact neutrality ρe “ 0, which would lead to the superfluous condition divE “ 0

by (1.7).

Formally, if we take the dielectric constant ǫ “ 0 in (1.15), i.e. the displacement

current ǫBtE is negligible, then we obtain that J “ curlH. Thanks to (1.17), we

can eliminate the electric field E in (1.13), (1.14), and (1.16) and finally obtain the

system

Btρ ` div pρuq “ 0, (1.18)

ρpBtu ` u ¨ ∇uq ` ∇P “ divΨpuq ` µ0curlH ˆ H, (1.19)
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ρ
Be
Bθ pBtθ ` u ¨ ∇θq ` θ

BP
Bθ divu “ κ∆θ ` Ψpuq : ∇u ` 1

σ
|curlH|2, (1.20)

BtH ´ curl pu ˆ Hq “ ´ 1

σµ0

curl pcurlHq, divH “ 0. (1.21)

The equations (1.18)–(1.21) are the so-called full compressible magnetohydrody-

namic equations, see [5, 28, 30]. It should be pointed that although it has been

completely eliminated in the limit equations (1.18)–(1.21), the electric field E still

plays an essentially important role in the phenomena under consideration. In fact,

it determines the electric current σpE ` µ0u ˆ Hq which generates the magnetic

field H. The electric field E and the magnetic field H satisfy the relation

E “ 1

σ
curlH ´ µ0u ˆ H.

The above formal derivation is usually referred as magnetohydrodynamic approx-

imation, see [5,14]. In [23], Kawashima and Shizuta justified this limit process rig-

orously in the two-dimensional case for local smooth solutions, i.e., u “ pu1, u2, 0q,
E “ p0, 0, E3q, and H “ pH1, H2, 0q with spatial variable x “ px1, x2q P R

2. In

this situation, we can obtain that ρe “ 0 and the system (1.1)–(1.7) is reduced

to (1.12)–(1.17). Later, in [24], they also obtained the global convergence of the

limit in the two-dimensional case under the assumption that both the initial data

of the electromagnetic fluid equations and those of the compressible magnetohydro-

dynamic equations are a small perturbation of some given constant state in some

Sobolev spaces in which the global smooth solution can be obtained. Recently, we

studied the magnetohydrodynamic approximation for the isentropic electromag-

netic fluid system in a three-dimensional period domain and deduced the isentropic

compressible magnetohydrodynamic equations [18].

The purpose of this paper is to give a rigorous derivation of the full compress-

ible magnetohydrodynamic equations (1.18)–(1.21) from the electromagnetic fluid

system (1.12)–(1.17) as the dielectric constant ǫ tends to zero. For the sake of

simplicity and clarity of presentation, we shall focus on the ionized fluids obeying

the perfect gas relations

P “ Rρθ, e “ cV θ, (1.22)

where the parameters R ą 0 and cV ą0 are the gas constant and the heat capacity

at constant volume, respectively. We consider the system (1.12)–(1.17) in a periodic

domain of R3, i.e., the torus T3 “ pR{p2πZqq3.
Below for simplicity of presentation, we take the physical constants R, cV , σ, and

µ0 to be one. To emphasize the unknowns depending on the small parameter ǫ, we
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rewrite the electromagnetic fluid system (1.12)–(1.17) as

Btρǫ ` div pρǫuǫq “ 0, (1.23)

ρǫpBtuǫ ` uǫ ¨ ∇uǫq ` ∇pρǫθǫq “ divΨpuǫq ` pEǫ ` uǫ ˆ Hǫq ˆ Hǫ, (1.24)

ρǫpBtθǫ ` uǫ ¨ ∇θǫq ` ρǫθǫdivuǫ “ κ∆θǫ ` Ψpuǫq : ∇uǫ ` |Eǫ ` uǫ ˆ Hǫ|2, (1.25)

ǫBtEǫ ´ curlHǫ ` Eǫ ` uǫ ˆ Hǫ “ 0, (1.26)

BtHǫ ` curlEǫ “ 0, divHǫ “ 0, (1.27)

where Ψpuǫq and Ψpuǫq : ∇uǫ are defined through (1.8) and (1.11) with u replaced

by uǫ. The system (1.23)–(1.27) is supplemented with the initial data

pρǫ,uǫ, θǫ,Eǫ,Hǫq|t“0 “ pρǫ0pxq,uǫ
0pxq, θǫ0pxq,Eǫ

0pxq,Hǫ
0pxqq, x P T

3. (1.28)

We also rewrite the limiting equations (1.18)–(1.21) (recall that R “ cV “ σ “
µ0 “ 1) as

Btρ0 ` div pρ0u0q “ 0, (1.29)

ρ0pBtu0 ` u0 ¨ ∇u0q ` ∇pρ0θ0q “ divΨpu0q ` curlH0 ˆ H0, (1.30)

ρ0pBtθ0 ` u0 ¨ ∇θ0q ` ρ0θ0divu0 “ κ∆θ0 ` Ψpu0q : ∇u0 ` |curlH0|2, (1.31)

BtH0 ´ curl pu0 ˆ H0q “ ´curl pcurlH0q, divH0 “ 0, (1.32)

where Ψpu0q and Ψpu0q : ∇u0 are defined through (1.8) and (1.11) with u replaced

by u0. The system (1.29)–(1.32) is equipped with the initial data

pρ0,u0, θ0,H0q|t“0 “ pρ00pxq,u0
0pxq, θ00pxq,H0

0pxqq, x P T
3. (1.33)

Notice that the electric field E0 is induced according to the relation

E0 “ curlH0 ´ u0 ˆ H0 (1.34)

by moving the conductive flow in the magnetic field.

Before stating our main results, we recall the local existence of smooth solu-

tions to the problem (1.29)–(1.33). Since the system (1.29)–(1.32) is parabolic-

hyperbolic, the results in [37] imply that

Proposition 1.1 ( [37]). Let s ą 7{2 be an integer and assume that the initial data

pρ00,u0
0, θ

0
0 ,H

0
0q satisfy

ρ00,u
0
0, θ

0
0,H

0
0 P Hs`2pT3q, divH0

0 “ 0,

0 ă ρ̄ “ inf
xPT3

ρ00pxq ď ρ00pxq ď ¯̄ρ “ sup
xPT3

ρ00pxq ă `8,

0 ă θ̄ “ inf
xPT3

θ00pxq ď θ00pxq ď ¯̄θ “ sup
xPT3

θ00pxq ă `8
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for some positive constants ρ̄, ¯̄ρ, θ̄, and ¯̄θ. Then there exist positive constants T˚ pthe
maximal time interval, 0 ă T˚ ď `8q, and ρ̂, ρ̃, θ̂, θ̃, such that the problem (1.29)–

(1.33) has a unique classical solution pρ0,u0, θ0,H0q satisfying divH0 “ 0 and

ρ0 P Clpr0, T˚q, Hs`2´lpT3qq, u0, θ0,H0 P Clpr0, T˚q, Hs`2´2lpT3qq, l “ 0, 1;

0 ă ρ̂ “ inf
px,tqPT3ˆr0,T˚q

ρ0px, tq ď ρ0px, tq ď ρ̃ “ sup
px,tqPT3ˆr0,T˚q

ρ0px, tq ă `8,

0 ă θ̂ “ inf
px,tqPT3ˆr0,T˚q

θ0px, tq ď θ0px, tq ď θ̃ “ sup
px,tqPT3ˆr0,T˚q

θ0px, tq ă `8.

The main results of this paper can be stated as follows.

Theorem 1.2. Let s ą 7{2 be an integer and pρ0,u0, θ0,H0q be the unique classical
solution to the problem (1.29)–(1.33) given in Proposition 1.1. Suppose that the

initial data pρǫ0,uǫ
0, θ

ǫ
0,E

ǫ
0,H

ǫ
0q satisfy

ρǫ0,u
ǫ
0, θ

ǫ
0,E

ǫ
0,H

ǫ
0 P HspT3q, divHǫ

0 “ 0, inf
xPT3

ρǫ0pxq ą 0, inf
xPT3

θǫ0pxq ą 0,

and

}pρǫ0 ´ ρ00,u
ǫ
0 ´ u0

0, θ
ǫ
0 ´ θ00 ,H

ǫ
0 ´ H0

0q}s
`

?
ǫ
›

›Eǫ
0 ´ pcurlH0

0 ´ u0
0 ˆ H0

0q
›

›

s
ď L0ǫ, (1.35)

for some constant L0 ą 0. Then, for any T0 P p0, T˚q, there exist a constant L ą 0,

and a sufficient small constant ǫ0 ą 0, such that for any ǫ P p0, ǫ0s, the problem

(1.23)–(1.28) has a unique smooth solution pρǫ,uǫ, θǫ,Eǫ,Hǫq on r0, T0s enjoying

}pρǫ ´ ρ0,uǫ ´ u0, θǫ ´ θ0,Hǫ ´ H0qptq}s
`

?
ǫ
›

›

 

Eǫ ´ pcurlH0 ´ u0 ˆ H0q
(

ptq
›

›

s
ď Lǫ, t P r0, T0s. (1.36)

Here } ¨ }s denotes the norm of Sobolev space HspT3q.

Remark 1.1. The inequality (1.36) implies that the sequences pρǫ,uǫ, θǫ,Hǫq con-

verge strongly to pρ0,u0, θ0,H0q in L8p0, T ;HspT3qq and Eǫ converge strongly to

E0 in L8p0, T ;HspT3qq but with different convergence rates, where E0 is defined

by (1.34).

Remark 1.2. Theorem 1.2 still holds for the case with general state equations with

minor modifications. Furthermore, our results also hold in the whole space R
3.

Indeed, neither the compactness of T3 nor Poincaré-type inequality is used in our

arguments.

Remark 1.3. In the two-dimensional case, our result is similar to that of [23] (see

Remark 5.1 of [23]). In addition, if we assume that the initial data are a small

perturbation of some given constant state in the Sobolev norm HspT3q for s ą
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3{2 ` 2, we can extend the local convergence result stated in Theorem 1.2 to a

global one.

Remark 1.4. For the local existence of solutions pρ0,u0, θ0,H0q to the problem

(1.29)–(1.33), the assumption on the regularity of initial data pρ00,u0
0, θ

0
0,H

0
0q be-

longs to HspT3q, s ą 7{2, is enough. Here we have added more regularity assump-

tion in Proposition 1.1 to obtain more regular solutions which are needed in the

proof of Theorem 1.2.

Remark 1.5. The viscosity and heat conductivity terms in the system (1.23)–(1.27)

play a crucial role in our uniformly bounded estimates (in order to control some

undesirable higher-order terms). In the case of λ “ µ “ κ “ 0, the original system

(1.23)–(1.27) are reduced to the so-call non-isentropic Euler-Maxwell system. Our

arguments can not be applied to this case directly, for more details, see [19].

We give some comments on the proof of Theorem 1.2. The main difficulty in

dealing with the zero dielectric constant limit problem is the oscillatory behavior of

the electric field as pointed out in [18], besides the singularity in the Maxwell equa-

tions, there exists an extra singularity caused by the strong coupling of the electro-

magnetic field (the nonlinear source term) in the momentum equation. Moreover,

comparing to the isentropic case studied in [18], we have to circumvent additional

difficulties in the derivation of uniform estimates induced by the nonlinear dif-

ferential terms (such as Ψpuǫq : ∇uǫ) and higher order nonlinear terms (such as

|Eǫ ` uǫ ˆ Hǫ|2) involving uǫ,Eǫ, and Hǫ in the temperature equation. In this

paper, we shall overcome all these difficulties and derive rigorously the full com-

pressible magnetohydrodynamic equations from the electromagnetic fluid equations

by adapting the elaborate nonlinear energy method developed in [18,32]. First, we

derive the error system (2.1)–(2.5) by utilizing the original system (1.23)–(1.27)

and the limit equations (1.29)–(1.32). Next, we study the estimates of Hs-norm to

the error system. To do so, we shall make full use of the special structure of the

error system, Sobolev imbedding, the Moser-type inequalities, and the regularity

of limit equations. In particular, very refined analyses are carried out to deal with

the higher order nonlinear terms in the system (2.1)–(2.5). Finally, we combine

these obtained estimates and apply Gronwall’s type inequality to get the desired

results. We remark that in the isentropic case in [18], the density is controlled by

the pressure, while in our case the density is controlled through the viscosity terms

in the momentum equations.

It should be pointed out that there are a lot of works on the studies of compress-

ible magnetohydrodynamic equations by physicists and mathematicians due to its
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physical importance, complexity, rich phenomena, and mathematical challenges.

Below we just mention some mathematical results on the full compressible magneto-

hydrodynamic equations (1.18)–(1.21), we refer the interested reader to [1,28,30,33]

for many discussions on physical aspects. For the one-dimensional planar com-

pressible magnetohydrodynamic equations, the existence of global smooth solutions

with small initial data was shown in [22]. In [11, 34], Hoff and Tsyganov obtained

the global existence and uniqueness of weak solutions with small initial energy.

Under some technical conditions on the heat conductivity coefficient, Chen and

Wang [2,3,36] obtained the existence, uniqueness, and Lipschitz continuous depen-

dence of global strong solutions with large initial data, see also [7, 8] on the global

existence and uniqueness of global weak solutions, and [6] on the global existence

and uniqueness of large strong solutions with large initial data and vaccum. For

the full multi-dimensional compressible magnetohydrodynamic equations, the ex-

istence of variational solutions was established in [4, 9, 13], while a unique local

strong solution was obtained in [10]. The low Mach number limit is a very inter-

esting topic in magnetohydrodynamics, see [20, 27, 29, 31] in the framework of the

so-called variational solutions, and [15–17] in the framework of the local smooth

solutions with small density and temperature variations, or large density/entropy

and temperature variations.

Before ending this introduction, we give some notations and recall some basic

facts which will be frequently used throughout this paper.

(1) We denote by x¨, ¨y the standard inner product in L2pT3q with xf, fy “
}f}2, by Hk the standard Sobolev space W k,2 with norm } ¨ }k. The notation

}pA1, A2, . . . , Alq}k means the summation of }Ai}k from i “ 1 to i “ l. For a multi-

index α “ pα1, α2, α3q, we denote Bα
x “ Bα1

x1
Bα2

x2
Bα3

x3
and |α| “ |α1| ` |α2| ` |α3|.

For an integer m, the symbol Dm
x denotes the summation of all terms Bα

x with the

multi-index α satisfying |α| “ m. We use Ci, δi, Ki, and K to denote the constants

which are independent of ǫ and may change from line to line. We also omit the

spatial domain T
3 in integrals for convenience.

(2) We shall frequently use the following Moser-type calculus inequalities (see

[25]):

(i) For f, g P HspT3q X L8pT3q and |α| ď s, s ą 3{2, it holds that

}Bα
x pfgq} ď Csp}f}L8}Ds

xg} ` }g}L8}Ds
xf}q. (1.37)

(ii) For f P HspT3q, D1
xf P L8pT3q, g P Hs´1pT3q X L8pT3q and |α| ď s,

s ą 5{2, it holds that

}Bα
x pfgq ´ fBα

xg} ď Csp}D1
xf}L8}Ds´1

x g} ` }g}L8}Ds
xf}q. (1.38)
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(3) Let s ą 3{2, f P CspT3q, and u P HspT3q, then for each multi-index α,

1 ď |α| ď s, we have ( [25, 26]):

}Bα
x pfpuqq} ď Cp1 ` }u}|α|´1

L8 q}u}|α|; (1.39)

moreover, if fp0q “ 0, then ( [12])

}Bα
x pfpuqq} ď Cp}u}sq}u}s. (1.40)

This paper is organized as follows. In Section 2, we utilize the primitive system

(1.23)–(1.27) and the target system (1.29)–(1.32) to derive the error system and

state the local existence of the solution. In Section 3 we give the a priori energy

estimates of the error system and present the proof of Theorem 1.2.

2. Derivation of the error system and local existence

In this section we first derive the error system from the original system (1.23)–

(1.27) and the limiting equations (1.29)–(1.32), then we state the local existence of

solution to this error system.

SettingN ǫ “ ρǫ´ρ0,Uǫ “ uǫ´u0,Θǫ “ θǫ´θ0,Fǫ “ Eǫ´E0, andGǫ “ Hǫ´H0,

and utilizing the system (1.23)–(1.27) and the system (1.29)–(1.32) with (1.34), we

obtain that

BtN ǫ ` pN ǫ ` ρ0qdivUǫ ` pUǫ ` u0q ¨ ∇N ǫ “ ´N ǫdivu0 ´ ∇ρ0 ¨ Uǫ, (2.1)

BtUǫ ` rpUǫ ` u0q ¨ ∇sUǫ ` ∇Θǫ ` Θǫ ` θ0

N ǫ ` ρ0
∇N ǫ ´ 1

N ǫ ` ρ0
divΨpUǫq

“ ´pUǫ ¨ ∇qu0 ´
„

Θǫ ` θ0

N ǫ ` ρ0
´ θ0

ρ0



∇ρ0 `
„

1

N ǫ ` ρ0
´ 1

ρ0



divΨpu0q

´ 1

ρ0
curlH0 ˆ H0 ` 1

N ǫ ` ρ0
rFǫ ` u0 ˆ Gǫ ` Uǫ ˆ H0s ˆ H0

` 1

N ǫ ` ρ0
rFǫ ` u0 ˆ Gǫ ` Uǫ ˆ H0s ˆ Gǫ

` 1

N ǫ ` ρ0
pUǫ ˆ Gǫq ˆ pGǫ ` H0q, (2.2)

BtΘǫ ` rpUǫ ` u0q ¨ ∇sΘǫ ` pΘǫ ` θ0qdivUǫ ´ κ

N ǫ ` ρ0
∆Θǫ

“ ´pUǫ ¨ ∇qθ0 ´ Θǫdivu0 `
„

κ

N ǫ ` ρ0
´ κ

ρ0



∆θ0

` 2µ

N ǫ ` ρ0
|DpUǫq|2 ` λ

N ǫ ` ρ0
|trDpUǫq|2

` 4µ

N ǫ ` ρ0
DpUǫq : Dpu0q ` 2λ

N ǫ ` ρ0
rtrDpUǫqtrDpu0qs

`
„

2µ

N ǫ ` ρ0
´ 2µ

ρ0



|Dpu0q|2 `
„

λ

N ǫ ` ρ0
´ λ

ρ0



ptrDpu0qq2
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` 1

N ǫ ` ρ0
|Fǫ ` Uǫ ˆ Gǫ|2 ` 1

N ǫ ` ρ0
|u0 ˆ Gǫ ` Uǫ ˆ H0|2

` 2

N ǫ ` ρ0
pFǫ ` Uǫ ˆ Gǫq ¨ rcurlH0 ` u0 ˆ Gǫ ` Uǫ ˆ H0s

` 2

N ǫ ` ρ0
curlH0 ¨ pu0 ˆ Gǫ ` Uǫ ˆ H0q

`
„

1

N ǫ ` ρ0
´ 1

ρ0



|curlH0|2, (2.3)

ǫBtFǫ ´ curlGǫ “ ´rFǫ ` Uǫ ˆ H0 ` u0 ˆ Gǫs ´ Uǫ ˆ Gǫ

´ ǫBtcurlH0 ` ǫBtpu0 ˆ H0q, (2.4)

BtGǫ ` curlFǫ “ 0, divGǫ “ 0, (2.5)

with initial data

pN ǫ,Uǫ,Θǫ,Fǫ,Gǫq|t“0 :“ pN ǫ
0 ,U

ǫ
0,Θ

ǫ
0,F

ǫ
0,G

ǫ
0q

“
`

ρǫ0 ´ ρ00,u
ǫ
0 ´ u0

0, θ
ǫ
0 ´ θ00,E

ǫ
0 ´ pcurlH0

0 ´ u0
0 ˆ H0

0q,Hǫ
0 ´ H0

0

˘

. (2.6)

Denote

Wǫ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

N ǫ

Uǫ

Θǫ

Fǫ

Gǫ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, Wǫ
0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

N ǫ
0

Uǫ
0

Θǫ
0

Fǫ
0

Gǫ
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, Dǫ “

¨

˚

˚

˚

˝

I5 0

0

¨

˝

ǫI3 0

0 I3

˛

‚

˛

‹

‹

‹

‚

,

Aǫ
i “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˝

pUǫ ` u0qi pN ǫ ` ρ0qeTi 0

Θǫ`θ0

Nǫ`ρ0 ei pUǫ ` u0qiI3 ei

0 pΘǫ ` θ0qeTi pUǫ ` u0qi

˛

‹

‹

‚

0

0

¨

˝

0 Bi

BT
i 0

˛

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Aǫ
ij “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0

0 µ
Nǫ`ρ0 peieTj I3 ` eTi ejq ` λ

Nǫ`ρ0 e
T
j ei 0 0

0 0 κ
Nǫ`ρ0 eie

T
j 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‚

,
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SǫpWǫq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´N ǫdivu0 ´ ∇ρ0 ¨ Uǫ

Rǫ
1

Rǫ
2

Rǫ
3

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where Rǫ
1,R

ǫ
2, and Rǫ

3 denote the right-hand side of (2.2), (2.3), and (2.4), respec-

tively. pe1, e2, e3q is the canonical basis of R3, Id (d “ 3, 5) is a d ˆ d unit matrix,

yi denotes the i-th component of y P R
3, and

B1 “

¨

˚

˚

˝

0 0 0

0 0 1

0 ´1 0

˛

‹

‹

‚

, B2 “

¨

˚

˚

˝

0 0 ´1

0 0 0

1 0 0

˛

‹

‹

‚

, B3 “

¨

˚

˚

˝

0 1 0

´1 0 0

0 0 0

˛

‹

‹

‚

.

Using these notations we can rewrite the problem (2.1)–(2.6) in the form
$

’

’

&

’

’

%

DǫBtWǫ `
3
ÿ

i“1

Aǫ
iW

ǫ
xi

`
3
ÿ

i,j“1

Aǫ
ijW

ǫ
xixj

“ SǫpWǫq,

Wǫ|t“0 “ Wǫ
0.

(2.7)

It is not difficult to see that the system for Wǫ in (2.7) can be reduced to a

quasilinear symmetric hyperbolic-parabolic one. In fact, if we introduce

Aǫ “

¨

˚

˚

˚

˚

˚

˝

¨

˚

˚

˝

Θǫ`θ0

pNǫ`ρ0q2 0 0

0 I3 0

0 0 1
Θǫ`θ0

˛

‹

‹

‚

0

0 I6

˛

‹

‹

‹

‹

‹

‚

,

which is positively definite when }N ǫ}L8
T
L8

x
ď ρ̂{2 and }Θǫ}L8

T
L8

x
ď θ̂{2, then

Ãǫ
0 “ AǫDǫ and Ãǫ

i “ AǫAǫ
i are positive symmetric on r0, T s for all 1 ď i ď 3.

Moreover, the assumptions that µ ą 0, 2µ ` 3λ ą 0, and κ ą 0 imply that

A
ǫ “

3
ÿ

i,j“1

AǫAǫ
ijW

ǫ
xixj

is an elliptic operator. Thus, we can apply the result of Vol’pert and Hudiaev [37]

to obtain the following local existence for the problem (2.7).

Proposition 2.1. Let s ą 7{2 be an integer and pρ00,u0
0, θ

0
0 ,H

0
0q satisfy the condi-

tions in Proposition 1.1. Assume that the initial data pN ǫ
0 ,U

ǫ
0,Θ

ǫ
0,F

ǫ
0,G

ǫ
0q satisfy

N ǫ
0 ,U

ǫ
0,Θ

ǫ
0,F

ǫ
0,G

ǫ
0 P HspT3q, divGǫ

0 “ 0, and

}N ǫ
0}s ď δ, }Θǫ

0}s ď δ
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for some constant δ ą 0. Then there exist positive constants T ǫ p0 ă T ǫ ď
`8q and K such that the Cauchy problem (2.7) has a unique classical solution

pN ǫ,Uǫ,Θǫ,Fǫ,Gǫq satisfying divGǫ “ 0 and

N ǫ,Fǫ,Gǫ P Clpr0, T ǫq, Hs´lq, Uǫ,Θǫ P Clpr0, T ǫq, Hs´2lq, l “ 0, 1;

}pN ǫ,Uǫ,Θǫ,Fǫ,Gǫqptq}s ď Kδ, t P r0, T ǫq.

Note that for smooth solutions, the electromagnetic fluid system (1.23)–(1.27)

with the initial data (1.28) are equivalent to (2.1)–(2.6) or (2.7) on r0, T s, T ă
mintT ǫ, T˚u. Therefore, in order to obtain the convergence of electromagnetic fluid

equations (1.23)–(1.27) to the full compressible magnetohydrodynamic equations

(1.29)–(1.32), we only need to establish uniform decay estimates with respect to

the parameter ǫ of the solution to the error system (2.7). This will be achieved by

the elaborate energy method presented in next section.

3. Uniform energy estimates and proof of Theorem 1.2

In this section we derive uniform decay estimates with respect to the parameter

ǫ of the solution to the problem (2.7) and justify rigorously the convergence of elec-

tromagnetic fluid system to the full compressible magnetohydrodynamic equations

(1.29)–(1.32). Here we adapt and modify some techniques developed in [18,32] and

put main efforts on the estimates of higher order nonlinear terms.

We first establish the convergence rate of the error equations by establishing the

a priori estimates uniformly in ǫ. For presentation conciseness, we define

}Eǫptq}2s :“ }pN ǫ,Uǫ,Θǫ,Gǫqptq}2s,

~Eǫptq~2
s :“ }Eǫptq}2s ` ǫ}Fǫptq}2s,

~Eǫ~s,T :“ sup
0ătďT

~Eǫptq~s.

The crucial estimate of our paper is the following decay result on the error system

(2.1)–(2.5).

Proposition 3.1. Let s ą 7{2 be an integer and assume that the initial data

pN ǫ
0 ,U

ǫ
0,Θ

ǫ
0,F

ǫ
0,G

ǫ
0q satisfy

}pN ǫ
0 ,U

ǫ
0,Θ

ǫ
0,G

ǫ
0q}2s ` ǫ}Fǫ

0}2s “ ~Eǫpt “ 0q~2
s ď M0ǫ

2 (3.1)

for sufficiently small ǫ and some constant M0 ą 0 independent of ǫ. Then, for any

T0 P p0, T˚q, there exist two constantsM1 ą 0 and ǫ1 ą 0 depending only on T0, such

that for all ǫ P p0, ǫ1s, it holds that T ǫ ě T0 and the solution pN ǫ,Uǫ,Θǫ,Fǫ,Gǫq
of the problem (2.1)–(2.6), well-defined in r0, T0s, enjoys that

~Eǫ~s,T0
ď M1ǫ. (3.2)
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Once this proposition is established, the proof of Theorem 1.2 is a direct proce-

dure. In fact, we have

Proof of Theorem 1.2. Suppose that Proposition 3.1 holds. According to the defini-

tion of the error functions pN ǫ,Uǫ,Θǫ,Fǫ,Gǫq and the regularity of pρ0,u0, θ0,H0q,
the error system (2.1)–(2.5) and the primitive system (1.23)–(1.27) are equivalent

on r0, T s for some T ą 0. Therefore the assumption (1.35) in Theorem 1.2 imply

the assumption (3.1) in Proposition 3.1, and hence (3.2) implies (1.36). �

Therefore, our main goal next is to prove Proposition 3.1 which can be ap-

proached by the following a priori estimates. For some given T̂ ă 1 and any T̃ ă T̂

independent of ǫ, we denote T ” Tǫ “ mintT̃ , T ǫu.

Lemma 3.2. Let the assumptions in Proposition 3.1 hold. Then, for all 0 ă t ă T

and sufficiently small ǫ, there exist two positive constants δ1 and δ2, such that

~Eǫptq~2
s `

ż t

0

"

δ1}∇Uǫ}2s ` δ2}∇Θǫ}2s ` 1

4
}Fǫ}2s

*

pτqdτ

ď~Eǫpt “ 0q~2
s ` C

ż t

0

 

p}Eǫ}2ss ` }Eǫ}2s ` 1q}Eǫ}2s
(

pτqdτ ` Cǫ2. (3.3)

Proof. Let 0 ď |α| ď s. In the following arguments the commutators will disappear

in the case of |α| “ 0.

Applying the operator Bα
x to (2.1), multiplying the resulting equation by Bα

xN
ǫ,

and integrating over T3, we obtain that

1

2

d

dt
xBα

xN
ǫ, Bα

xN
ǫy “ ´

@

Bα
x prpUǫ ` u0q ¨ ∇sN ǫq, Bα

xN
ǫ
D

´
@

Bα
x ppN ǫ ` ρ0qdivUǫq, Bα

xN
ǫ
D

`
@

Bα
x pp´N ǫdivu0 ´ ∇ρ0 ¨ Uǫq, Bα

xN
ǫ
D

. (3.4)

Next we bound every term on the right-hand side of (3.4). By the regularity of

u0, Cauchy-Schwarz’s inequality, and Sobolev’s imbedding, we have

xBα
x prpUǫ ` u0q ¨ ∇sN ǫq, Bα

xN
ǫy

“ xrpUǫ ` u0q ¨ ∇sBα
xN

ǫ, Bα
xN

ǫy `
@

H
p1q, Bα

xN
ǫ
D

“ ´1

2
xdiv pUǫ ` u0qBα

xN
ǫ, Bα

xN
ǫy `

@

H
p1q, Bα

xN
ǫ
D

ď Cp}Eǫptq}s ` 1q}Bα
xN

ǫ}2 ` }Hp1q}2, (3.5)

where the commutator

H
p1q “ Bα

x prpUǫ ` u0q ¨ ∇sN ǫq ´ rpUǫ ` u0q ¨ ∇sBα
xN

ǫ
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can be bounded as follows:

›

›H
p1q

›

› ď Cp}D1
xpUǫ ` u0q}L8 }Ds

xN
ǫ} ` }D1

xN
ǫ}L8}Ds´1

x pUǫ ` u0q}q

ď Cp}Eǫptq}2s ` }Eǫptq}sq. (3.6)

Here we have used the Moser-type and Cauchy-Schwarz’s inequalities, the regularity

of u0 and Sobolev’s imbedding.

Similarly, the second term on the right-hand side of (3.4) can bounded as follows.

@

Bα
x ppN ǫ ` ρ0qdivUǫq, Bα

xN
ǫ
D

“ xpN ǫ ` ρ0qBα
xdivU

ǫ, Bα
xN

ǫy `
@

H
p2q, Bα

xN
ǫ
D

ď η1}∇Bα
xU

ǫ}2 ` Cη1
}Bα

xN
ǫ}2 `

›

›H
p2q

›

›

2
(3.7)

for any η1 ą 0, where the commutator

H
p2q “ Bα

x ppN ǫ ` ρ0qdivUǫq ´ pN ǫ ` ρ0qBα
xdivU

ǫ

can be estimated by

›

›H
p2q

›

› ď Cp}D1
xpN ǫ ` ρ0q}L8 }Ds

xU
ǫ} ` }D1

xU
ǫ}L8}Ds´1

x pN ǫ ` ρ0q}q

ď Cp}Eǫptq}2s ` }Eǫptq}sq. (3.8)

By the Moser-type and Cauchy-Schwarz’s inequalities, and the regularity of u0

and ρ0, we can control the third term on the right-hand side of (3.4) by

ˇ

ˇ

@

Bα
x p´N ǫdivu0 ´ ∇ρ0 ¨ Uǫq, Bα

xN
ǫ
Dˇ

ˇ ď Cp}Bα
xN

ǫ}2 ` }Bα
xU

ǫ}2q. (3.9)

Substituting (3.5)–(3.9) into (3.4), we conclude that

1

2

d

dt
xBα

xN
ǫ, Bα

xN
ǫy ď η1}∇Bα

xU
ǫ}2 ` Cη1

}Bα
xN

ǫ}2

` C
“

p}Eǫptq}s ` 1q}Bα
xN

ǫ}2 ` }Eǫptq}4s ` ǫ2
‰

. (3.10)

Applying the operator Bα
x to (2.2), multiplying the resulting equation by Bα

xU
ǫ,

and integrating over T3, we obtain that

1

2

d

dt
xBα

xU
ǫ, Bα

xU
ǫy ` xBα

x prpUǫ ` u0q ¨ ∇sUǫq, Bα
xU

ǫy

` xBα
x∇Θǫ, Bα

xU
ǫy `

B

Bα
x

ˆ

Θǫ ` θ0

N ǫ ` ρ0
∇N ǫ

˙

, Bα
xU

ǫ

F

´
B

Bα
x

ˆ

1

N ǫ ` ρ0
divΨpUǫq

˙

, Bα
xU

ǫ

F

“ ´
@

Bα
x

“

pUǫ ¨ ∇qu0
‰

, Bα
xU

ǫ
D

´
B

Bα
x

"

1

ρ0
curlH0 ˆ H0

*

, Bα
xU

ǫ

F

`
B

Bα
x

"„

Θǫ ` θ0

N ǫ ` ρ0
´ θ0

ρ0



∇ρ0
*

, Bα
xU

ǫ

F
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`
B

Bα
x

"„

1

N ǫ ` ρ0
´ 1

ρ0



divΨpu0q
*

, Bα
xU

ǫ

F

`
B

Bα
x

"

1

N ǫ ` ρ0
rFǫ ` u0 ˆ Gǫ ` Uǫ ˆ H0s ˆ H0

*

, Bα
xU

ǫ

F

`
B

Bα
x

"

1

N ǫ ` ρ0
rFǫ ` u0 ˆ Gǫ ` Uǫ ˆ H0s ˆ Gǫ

*

, Bα
xU

ǫ

F

`
B

Bα
x

"

1

N ǫ ` ρ0
pUǫ ˆ Gǫq ˆ pGǫ ` H0q

*

, Bα
xU

ǫ

F

:“
7
ÿ

i“1

R
piq. (3.11)

We first bound the terms on the left-hand side of (3.11). Similar to (3.5) we

infer that

xBα
x prpUǫ ` u0q ¨ ∇sUǫq, Bα

xU
ǫy

“ xrpUǫ ` u0q ¨ ∇sBα
xU

ǫ, Bα
xU

ǫy `
@

H
p3q, Bα

xU
ǫ
D

“ ´1

2
xdiv pUǫ ` u0qBα

xU
ǫ, Bα

xU
ǫy `

@

H
p3q, Bα

xU
ǫ
D

ď Cp}Eǫptq}s ` 1q}Bα
xU

ǫ}2 `
›

›H
p3q

›

›

2
, (3.12)

where the commutator

H
p3q “ Bα

x prpUǫ ` u0q ¨ ∇sUǫq ´ rpUǫ ` u0q ¨ ∇sBα
xU

ǫ

can be bounded by

›

›H
p3q

›

› ď Cp}D1
xpUǫ ` u0q}L8 }Ds

xU
ǫ} ` }D1

xU
ǫ}L8}Ds´1

x pUǫ ` u0q}q

ď Cp}Eǫptq}2s ` }Eǫptq}sq. (3.13)

By Holder’s inequality, we have

xBα
x∇Θǫ, Bα

xU
ǫy ď η2}Bα

x∇Θǫ}2 ` Cη2
}Bα

xU
ǫ}2 (3.14)

for any η2 ą 0. For the fourth term on the left-hand side of (3.11), similar to (3.7),

we integrate by parts to deduce that
B

Bα
x

ˆ

Θǫ ` θ0

N ǫ ` ρ0
∇N ǫ

˙

, Bα
xU

ǫ

F

“
B

Θǫ ` θ0

N ǫ ` ρ0
Bα
x∇N ǫ, Bα

xU
ǫ

F

`
@

H
p4q, Bα

xU
ǫ
D

“ ´
B

Bα
xN

ǫ, div

ˆ

Θǫ ` θ0

N ǫ ` ρ0
Bα
xU

ǫ

˙F

`
@

H
p4q, Bα

xU
ǫ
D

ď η3}∇Bα
xU

ǫ}2 ` Cη3
}Bα

xN
ǫ}2 ` C}Eǫptq}4s `

›

›H
p4q

›

›

2
(3.15)
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for any η3 ą 0, where the commutator

H
p4q “ Bα

x

ˆ

Θǫ ` θ0

N ǫ ` ρ0
∇N ǫ

˙

´ Θǫ ` θ0

N ǫ ` ρ0
Bα
x∇N ǫ

can be bounded as follows by using (1.38) and (1.39), and Cauchy-Schwarz’s in-

equality:

›

›H
p4q

›

› ď C

ˆ›

›

›

›

D1
x

ˆ

Θǫ ` θ0

N ǫ ` ρ0

˙›

›

›

›

L8

}Ds
xN

ǫ} ` }D1
xN

ǫ}L8

›

›

›

›

Ds´1
x

ˆ

Θǫ ` θ0

N ǫ ` ρ0

˙›

›

›

›

˙

ď Cp}Eǫptq}2ps`1q
s ` }Eǫptq}2s ` }Eǫptq}sq. (3.16)

For the fifth term on the left-hand side of (3.11), we integrate by parts to deduce

´
B

Bα
x

ˆ

1

N ǫ ` ρ0
divΨpUǫq

˙

, Bα
xU

ǫ

F

“ ´
B

1

N ǫ ` ρ0
Bα
xdivΨpUǫq, Bα

xU
ǫ

F

´
@

H
p5q, Bα

xU
ǫ
D

, (3.17)

where the commutator

H
p5q “ Bα

x

ˆ

1

N ǫ ` ρ0
divΨpUǫq

˙

´ 1

N ǫ ` ρ0
Bα
xdivΨpUǫq.

By the Moser-type and Cauchy-Schwarz inequalities, the regularity of ρ0 and the

positivity of N ǫ`ρ0, the definition of ΨpUǫq and Sobolev’s imbedding, we find that

ˇ

ˇ

@

H
p5q, Bα

xU
ǫ
Dˇ

ˇ

ď
›

›H
p5q

›

› ¨ }Bα
xU

ǫ}

ď C

ˆ›

›

›

›

D1
x

ˆ

1

N ǫ ` ρ0

˙›

›

›

›

L8

}divΨpUǫq}s´1 ` }divΨpUǫq}L8

›

›

›

›

1

N ǫ ` ρ0

›

›

›

›

s

˙

}Bα
xU

ǫ}

ď η4}∇Uǫ}2s ` Cη4
p}Eǫptq}2s ` 1qp}Bα

xU
ǫ}2 ` }Bα

xN
ǫ}2 ` }Eǫptq}ssq (3.18)

for any η4 ą 0, where we have used the assumption s ą 3{2` 2 and the imbedding

H lpT3q ãÑ L8pR3q for l ą 3{2. By virtue of the definition of ΨpUǫq and partial

integrations, the first term on the right-hand side of (3.17) can be rewritten as

´
B

1

N ǫ ` ρ0
Bα
xdivΨpUǫq, Bα

xU
ǫ

F

“ 2µ

B

1

N ǫ ` ρ0
Bα
xDpUǫq, Bα

xDpUǫq
F

` λ

B

1

N ǫ ` ρ0
Bα
xdivU

ǫ, Bα
xdivU

ǫ

F

` 2µ

B

∇

ˆ

1

N ǫ ` ρ0

˙

b Bα
xU

ǫ, Bα
xDpUǫq

F

` λ

B

∇

ˆ

1

N ǫ ` ρ0

˙

¨ Bα
xU

ǫ, Bα
xdivU

ǫ

F

:“
4
ÿ

i“1

I
piq. (3.19)
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Recalling the facts that µ ą 0 and 2µ ` 3λ ą 0, and the positivity of N ǫ ` ρ0,

the first two terms Ip1q and Ip2q can be bounded as follows:

I
p1q ` I

p2q “
ż

1

N ǫ ` ρ0

 

2µ|Bα
xDpUǫq|2 ` λ|Bα

x trDpUǫq|2
(

dx

ě 2µ

ż

1

N ǫ ` ρ0

ˆ

|Bα
xDpUǫq|2 ´ 1

3
|Bα

x trDpUǫq|2
˙

dx

“ µ

ż

1

N ǫ ` ρ0

ˆ

|Bα
x∇Uǫ|2 ` 1

3
|Bα

xdivU
ǫ|2

˙

dx

ě µ

ż

1

N ǫ ` ρ0
|Bα

x∇Uǫ|2dx. (3.20)

By virtue of Cauchy-Schwarz’s inequality, the regularity of ρ0 and the positivity

of N ǫ ` ρ0, the terms Ip3q and Ip4q can be bounded by

|Ip3q| ` |Ip4q| ď η5}∇Bα
xU

ǫ}2 ` Cη5
p}Eǫptq}2s ` 1qp}Bα

xU
ǫ}2 ` }Bα

xN
ǫ}2q (3.21)

for any η5 ą 0, where the assumption s ą 3{2 ` 2 has been used.

Substituting (3.12)–(3.21) into (3.11), we conclude that

1

2

d

dt
xBα

xU
ǫ, Bα

xU
ǫy `

ż

µ

N ǫ ` ρ0
|∇Bα

xU
ǫ|2dx ´ pη1 ` η3 ` η4 ` η5q}∇Bα

xU
ǫ}2

ď Cη

 

p}Eǫptq}2s ` 1qp}Bα
xU

ǫ}2 ` }Bα
xN

ǫ}2 ` }Eǫptq}ssq
(

` η2}Bα
x∇Θǫ}2 `

7
ÿ

i“1

R
piq (3.22)

for some constant Cη ą 0 depending on ηi (i “ 1, . . . , 5).

We have to estimate the terms on the right-hand side of (3.22). In view of the

regularity of pρ0,u0,H0q, the positivity of N ǫ`ρ0 and Cauchy-Schwarz’s inequality,

the first two terms Rp1q and Rp2q can be controlled by

ˇ

ˇR
p1q

ˇ

ˇ `
ˇ

ˇR
p2q

ˇ

ˇ ď Cp}Eǫptq}2s ` 1qp}Bα
xN

ǫ}2 ` }Bα
xU

ǫ}2q. (3.23)

For the terms Rp3q and Rp4q, by the regularity of ρ0 and u0, the positivity of

N ǫ ` ρ0, Cauchy-Schwarz’s inequality and (1.40), we see that

ˇ

ˇR
p3q

ˇ

ˇ `
ˇ

ˇR
p4q

ˇ

ˇ ď Cp}Eǫptq}2s ` C}Bα
xU

ǫ}2q. (3.24)

For the fifth term Rp5q, we utilize the positivity of N ǫ ` ρ0 to deduce that

R
p5q “

B

Bα
xF

ǫ ˆ H0

N ǫ ` ρ0
, Bα

xU
ǫ

F

`
@

H
p6q, Bα

xU
ǫ
D

` σRp51q

ď 1

16
}Bα

xF
ǫ}2 ` C}Bα

xU
ǫ}2 `

@

H
p6q, Bα

xU
ǫ
D

` R
p51q, (3.25)

where

H
p6q “ Bα

x

"

Fǫ

N ǫ ` ρ0
ˆ H0

*

´ Bα
xF

ǫ ˆ H0

N ǫ ` ρ0
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and

R
p51q “

B

Bα
x

"

σ

N ǫ ` ρ0
ru0 ˆ Gǫ ` Uǫ ˆ H0s ˆ H0

*

, Bα
xU

ǫ

F

.

If we make use of the Moser-type inequality, (1.39) and the regularity of ρ0 and

H0, we obtain that

ˇ

ˇ

@

H
p6q, Bα

xU
ǫ
Dˇ

ˇ ď
›

›H
p6q

›

› ¨ }Bα
xU

ǫ}

ď C

„›

›

›

›

D1
x

ˆ

H0

N ǫ ` ρ0

˙›

›

›

›

L8

}Fǫ}s´1 ` }Fǫ}L8

›

›

›

›

H0

N ǫ ` ρ0

›

›

›

›

s



}Bα
xU

ǫ}

ď η6}Fǫ}2s´1 ` Cη6
p}Eǫptq}2ps`1q

s ` 1q}Bα
xU

ǫ}2 (3.26)

for any η6 ą 0. Recalling the regularity of u0 and H0, (1.37) and (1.39) and

Hölder’s inequality, we find that

ˇ

ˇR
p51q

ˇ

ˇ ď Cp}Eǫptq}ss ` 1qp}Bα
xN

ǫ}2 ` }Bα
xU

ǫ}2 ` }Bα
xG

ǫ}2q. (3.27)

For the sixth term Rp6q we again make use of the positivity of N ǫ ` ρ0 and

Sobolev’s imbedding to infer that

R
p6q “

B

Bα
xF

ǫ ˆ Gǫ

N ǫ ` ρ0
, Bα

xU
ǫ

F

`
@

H
p7q, Bα

xU
ǫ
D

` R
p61q

ď 1

16
}Bα

xF
ǫ}2 ` C}Eǫptq}2s}Bα

xU
ǫ}2 `

@

H
p7q, Bα

xU
ǫ
D

` R
p61q, (3.28)

where

H
p7q “ Bα

x

"

Fǫ

N ǫ ` ρ0
ˆ Gǫ

*

´ Bα
xF

ǫ ˆ Gǫ

N ǫ ` ρ0

and

R
p61q “

B

Bα
x

"

σ

N ǫ ` ρ0
ru0 ˆ Gǫ ` Uǫ ˆ H0s ˆ Gǫ

*

, Bα
xU

ǫ

F

.

From the Hölder’s and Moser-type inequalities we get

ˇ

ˇ

@

H
p7q, Bα

xU
ǫ
Dˇ

ˇ

ď
›

›H
p7q

›

› ¨ }Bα
xU

ǫ}

ď C

„›

›

›

›

D1
x

ˆ

Gǫ

N ǫ ` ρ0

˙›

›

›

›

L8

}Fǫ}s´1 ` }Fǫ}L8

›

›

›

›

Gǫ

N ǫ ` ρ0

›

›

›

›

s



}Bα
xU

ǫ}

ď η7}Fǫ}2s´1 ` Cη7
p}Eǫptq}2ps`1q

s ` 1q}Bα
xU

ǫ}2 (3.29)

for any η7 ą 0, while for the term Rp61q one has the following estimate

ˇ

ˇR
61q

ˇ

ˇ ď Cp}Eǫptq}2s ` }Eǫptq}s ` 1q}Eǫptq}2s. (3.30)
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For the last term Rp7q, recalling the formula paˆbq ˆ c “ pa ¨ cqb´ pb ¨ cqa and

applying (1.37), (1.39), and Hölder’s inequality, we easily deduce that

ˇ

ˇR
p7q

ˇ

ˇ “
ˇ

ˇ

ˇ

ˇ

B

Bα
x

"

1

N ǫ ` ρ0
trUǫ ¨ pGǫ ` H0qsGǫ ´ rGǫ ¨ pGǫ ` H0qsUǫu

*

, Bα
xU

ǫ

Fˇ

ˇ

ˇ

ˇ

ď Cp}Eǫptq}ss ` 1q}Eǫptq}4s ` }Eǫptq}3s. (3.31)

Substituting (3.23)–(3.31) into (3.22), we conclude that

1

2

d

dt
xBα

xU
ǫ, Bα

xU
ǫy `

ż

µ

N ǫ ` ρ0
|∇Bα

xU
ǫ|2dx ´ pη1 ` η3 ` η4 ` η5q}∇Bα

xU
ǫ}2

ď C̃η

“

p}Eǫptq}2ss ` 1q}Eǫptq}4s ` }Eǫptq}3s ` }Eǫptq}2s
‰

` η2}Bα
x∇Θǫ}2 `

ˆ

η6 ` η7 ` 1

8

˙

}Fǫ}2s. (3.32)

for some constant C̃η ą 0 depending on ηi (i “ 1, . . . , 7).

Applying the operator Bα
x to (2.3), multiplying the resulting equation by Bα

xΘ
ǫ,

and integrating over T3, we arrive at

1

2

d

dt
xBα

xΘ
ǫ, Bα

xΘ
ǫy ` xBα

x trpUǫ ` u0q ¨ ∇sΘǫu, Bα
xΘ

ǫy

`
@

Bα
x tpΘǫ ` θ0qdivUǫu, Bα

xΘ
ǫ
D

´
B

Bα
x

"

κ

N ǫ ` ρ0
∆Θǫ

*

, Bα
xΘ

ǫ

F

“ ´ xBα
x tpUǫ ¨ ∇qθ0 ´ Θǫdivu0u, Bα

xΘ
ǫy

`
B

Bα
x

"„

κ

N ǫ ` ρ0
´ κ

ρ0



∆θ0
*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"„

2µ

N ǫ ` ρ0
´ 2µ

ρ0



|Dpu0q|2
*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"„

λ

N ǫ ` ρ0
´ λ

ρ0



ptrDpu0qq2
*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"„

1

N ǫ ` ρ0
´ 1

ρ0



|curlH0|2
*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

2µ

N ǫ ` ρ0
|DpUǫq|2 ` λ

N ǫ ` ρ0
|trDpUǫq|2

*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

4µ

N ǫ ` ρ0
DpUǫq : Dpu0q

*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

2λ

N ǫ ` ρ0
rtrDpUǫqtrDpu0qs

*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

1

N ǫ ` ρ0
|Fǫ ` Uǫ ˆ Gǫ|2

*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

1

N ǫ ` ρ0
|u0 ˆ Gǫ ` Uǫ ˆ H0|2

*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

2Fǫ

N ǫ ` ρ0
¨ rcurlH0 ` u0 ˆ Gǫ ` Uǫ ˆ H0s

*

, Bα
xΘ

ǫ

F
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`
B

Bα
x

"

2pUǫ ˆ Gǫq
N ǫ ` ρ0

¨ rcurlH0 ` u0 ˆ Gǫ ` Uǫ ˆ H0s
*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

2

N ǫ ` ρ0
curlH0 ¨ pu0 ˆ Gǫ ` Uǫ ˆ H0q

*

, Bα
xΘ

ǫ

F

:“
13
ÿ

i“1

S
piq. (3.33)

We first bound the terms on the left-hand side of (3.33). Similar to (3.5), we

have

xBα
x prpUǫ ` u0q ¨ ∇sΘǫq, Bα

xΘ
ǫy

“ xrpUǫ ` u0q ¨ ∇sBα
xΘ

ǫ, Bα
xΘ

ǫy `
@

H
p8q, Bα

xΘ
ǫ
D

“ ´1

2
xdiv pUǫ ` u0qBα

xΘ
ǫ, Bα

xΘ
ǫy `

@

H
p8q, Bα

xΘ
ǫ
D

ď Cp}Eǫptq}s ` 1q}Bα
xΘ

ǫ}2 `
›

›H
p8q

›

›

2
, (3.34)

where the commutator

H
p8q “ Bα

x prpUǫ ` u0q ¨ ∇sΘǫq ´ rpUǫ ` u0q ¨ ∇sBα
xΘ

ǫ

can be bounded by

›

›H
p8q

›

› ď Cp}D1
xpUǫ ` u0q}L8 }Ds

xU
ǫ} ` }D1

xU
ǫ}L8}Ds´1

x pUǫ ` u0q}q

ď Cp}Eǫptq}2s ` }Eǫptq}sq. (3.35)

The second term on the left-hand side of (3.33) can bounded, similar to (3.7), as

follows:

@

Bα
x ppΘǫ ` θ0qdivUǫq, Bα

xΘ
ǫ
D

“ xpΘǫ ` ρ0qBα
xdivU

ǫ, Bα
xΘ

ǫy `
@

H
p9q, Bα

xΘ
ǫ
D

ď η8}∇Bα
xU

ǫ}2 ` Cη8
}Bα

xN
ǫ}2 `

›

›H
p9q

›

›

2
(3.36)

for any η8 ą 0, where the commutator

H
p9q “ Bα

x ppΘǫ ` ρ0qdivUǫq ´ pΘǫ ` θ0qBα
xdivU

ǫ

can be controlled as

›

›H
p9q

›

› ď Cp}D1
xpΘǫ ` θ0q}L8 }Ds

xU
ǫ} ` }D1

xU
ǫ}L8}Ds´1

x pΘǫ ` θ0q}q

ď Cp}Eǫptq}2s ` }Eǫptq}sq. (3.37)

For the fourth term on the left-hand side of (3.33), we integrate by parts to

deduce that

´ κ

B

Bα
x

ˆ

1

N ǫ ` ρ0
∆Uǫ

˙

, Bα
xΘ

ǫ

F
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“ ´κ

B

1

N ǫ ` ρ0
∆Bα

xΘ
ǫ, Bα

xΘ
ǫ

F

´ κ
@

H
p10q, Bα

xΘ
ǫ
D

“ κ

B

1

N ǫ ` ρ0
∇Bα

xΘ
ǫ,∇Bα

xΘ
ǫ

F

` κ

B

∇

ˆ

1

N ǫ ` ρ0

˙

∇Bα
xΘ

ǫ, Bα
xΘ

ǫ

F

´ κ
@

H
p10q, Bα

xΘ
ǫ
D

, (3.38)

where

H
p10q “ Bα

x

ˆ

1

N ǫ ` ρ0
∆Θǫ

˙

´ 1

N ǫ ` ρ0
∆Bα

xΘ
ǫ.

By the Moser-type and Hölder’s inequalities, the regularity of ρ0, the positivity of

N ǫ ` ρ0 and (1.39), we find that

ˇ

ˇ

@

H
p10q, Bα

xΘ
ǫ
Dˇ

ˇ ď
›

›H
p10q

›

› ¨ }Bα
xΘ

ǫ}

ď C

ˆ›

›

›

›

D1
x

ˆ

1

N ǫ ` ρ0

˙›

›

›

›

L8

}∆Θǫ}s´1 ` }∆Θǫ}L8

›

›

›

›

1

N ǫ ` ρ0

›

›

›

›

s

˙

}Bα
xΘ

ǫ}

ď η9}∇Θǫ}2s ` Cη9
p}Eǫptq}ss ` 1qp}Bα

xΘ
ǫ}2 ` }Bα

xN
ǫ}2q (3.39)

and
ˇ

ˇ

ˇ

ˇ

B

∇

ˆ

1

N ǫ ` ρ0

˙

∇Bα
xΘ

ǫ, Bα
xΘ

ǫ

Fˇ

ˇ

ˇ

ˇ

ď η10}∇Bα
xΘ

ǫ}2 ` Cη10

›

›

›

›

∇

ˆ

1

N ǫ ` ρ0

˙›

›

›

›

2

L8

}Bα
xΘ

ǫ}2

ď η10}∇Bα
xΘ

ǫ}2 ` Cη10
p}Eǫptq}2s ` 1q}Bα

xΘ
ǫ}2 (3.40)

for any η9 ą 0 and η10 ą 0, where we have used the assumption s ą 3{2 ` 2 in the

derivation of (3.39) and the imbedding H lpT3q ãÑ L8pR3q for l ą 3{2.
Now, we estimate every term on the right-hand side of (3.33). By virtue of the

regularity of θ0 and u0, and Cauchy-Schwarz’s inequality, the first term Sp1q can

be estimated as follows:

ˇ

ˇS
p1q

ˇ

ˇ ď Cp}Eǫptq}2s ` 1qp}Bα
xΘ

ǫ}2 ` }Bα
xU

ǫ}2q. (3.41)

For the terms Spiq pi “ 2, 3, 4, 5q, we utilize the regularity of ρ0, u0 and H0, the

positivity of N ǫ ` ρ0 , Cauchy-Schwarz’s inequality and (1.40) to deduce that

ˇ

ˇS
p2q

ˇ

ˇ `
ˇ

ˇS
p3q

ˇ

ˇ `
ˇ

ˇS
p4q

ˇ

ˇ `
ˇ

ˇS
p5q

ˇ

ˇ ď Cp}Eǫptq}2ss ` }Eǫptq}2sq ` C}Bα
xΘ

ǫ}2, (3.42)

while for the sixth term Sp6q, we integrate by parts, and use Cauchy-Schwarz’s

inequality and the positivity of Θǫ ` ρ0 to obtain that

S
p6q “ ´

B

Bα´α1

x

"

2µ

N ǫ ` ρ0
|DpUǫq|2 ` λ

N ǫ ` ρ0
|trDpUǫq|2

*

, Bα´α1

x Θǫ

F

ď η11}∇Bα
xΘ

ǫ}2 ` Cη11
p}Eǫptq}4s ` }Eǫptq}2ps`1q

s q (3.43)
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for any η11 ą 0, where α1 “ p1, 0, 0q or p0, 1, 0q or p0, 0, 1q. Similarly, we have

ˇ

ˇS
p7q

ˇ

ˇ `
ˇ

ˇS
p8q

ˇ

ˇ ď η12}∇Bα
xΘ

ǫ}2 ` Cη12
p}Eǫptq}4s ` }Eǫptq}2ps`1q

s q (3.44)

for any η12 ą 0.

For the ninth term Sp9q, we rewrite it as

S
p9q “

B

Bα
x

"

1

N ǫ ` ρ0
|Fǫ ` Uǫ ˆ Gǫ|2

*

, Bα
xΘ

ǫ

F

“
B

Bα
x

"

1

N ǫ ` ρ0
|Fǫ|2

*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

2

N ǫ ` ρ0
Fǫ ¨ pUǫ ˆ Gǫq

*

, Bα
xΘ

ǫ

F

`
B

Bα
x

"

1

N ǫ ` ρ0
|Uǫ ˆ Gǫ|2

*

, Bα
xΘ

ǫ

F

:“ S
p91q ` S

p92q ` S
p93q.

By Cauchy-Schwarz’s inequality and Sobolev’s embedding, we can bound the term

Sp91q by

S
p91q “

B

1

N ǫ ` ρ0
Bα
x

`

|Fǫ|2
˘

, Bα
xΘ

ǫ

F

`
ÿ

βďα,|β|ă|α|

B

Bα´β
x

ˆ

1

N ǫ ` ρ0

˙

Bβ
x |Fǫ|2, Bα

xΘ
ǫ

F

ďγ1}Fǫ}4s ` Cγ1
}Bα

xΘ
ǫ}2p1 ` }Eptq}2ps`1q

s q (3.45)

for any γ1 ą 0. For the term Sp92q, similar to Rp6q, we have

S
p92q “ 2

B

Bα
xF

ǫ ¨ U
ǫ ˆ Gǫ

N ǫ ` ρ0
, Bα

xΘ
ǫ

F

` 2
@

H
p11q, Bα

xΘ
ǫ
D

ď 1

16
}Bα

xF
ǫ}2 ` C}Eǫptq}2s}Bα

xU
ǫ}2 ` 2

@

H
p11q, Bα

xΘ
ǫ
D

, (3.46)

where

H
p11q “ Bα

x

"

Fǫ ¨ U
ǫ ˆ Gǫ

N ǫ ` ρ0

*

´ Bα
xF

ǫ ¨ U
ǫ ˆ Gǫ

N ǫ ` ρ0
.

By the Cauchy-Schwarz’s and Moser-type inequalities, we obtain that

2
ˇ

ˇ

@

H
p11q, Bα

xΘ
ǫ
Dˇ

ˇ

ď 2
›

›H
p11q

›

› ¨ }Bα
xΘ

ǫ}

ď C

„›

›

›

›

D1
x

ˆ

Uǫ ˆ Gǫ

N ǫ ` ρ0

˙›

›

›

›

L8

}Fǫ}s´1 ` }Fǫ}L8

›

›

›

›

Uǫ ˆ Gǫ

N ǫ ` ρ0

›

›

›

›

s



}Bα
xΘ

ǫ}

ď γ2}Fǫ}2s´1 ` Cγ2
p}Eǫptq}2s ` 1q}Bα

xΘ
ǫ}2. (3.47)



COMPLETE ELECTROMAGNETIC FLUID SYSTEM TO FULL MHD EQUATIONS 23

for any γ2 ą 0. The term Sp93q can be bounded as follows, using the Cauchy-

Schwarz and Moser-type inequalities.

ˇ

ˇS
p93q

ˇ

ˇ ď C}Bα
xΘ

ǫ}2p1 ` }Eptq}2ps`1q
s q. (3.48)

By the regularity of θ0, u0 and H0, the positivity of Θǫ ` ρ0, and Cauchy-

Schwarz’s inequality, the first terms Sp10q and Sp13q can be bounded as follows:

ˇ

ˇS
p10q

ˇ

ˇ `
ˇ

ˇS
p13q

ˇ

ˇ ď Cp}Eǫptq}2ss ` 1qp}Bα
xΘ

ǫ}2 ` }Bα
xU

ǫ}2 ` }Bα
xG

ǫ}2q. (3.49)

In a manner similar to Sp92q, we can control the term Sp11q by

ˇ

ˇS
p11q

ˇ

ˇ ď γ3}Fǫ}2s´1 ` Cγ3
p}Eǫptq}2ss ` 1qp}Bα

xΘ
ǫ}2 ` }Bα

xU
ǫ}2 ` }Bα

xG
ǫ}2q (3.50)

for any γ3 ą 0. Finally, similarly to Sp93q, the term Sp12q can be bounded by

ˇ

ˇS
p12q

ˇ

ˇ ďC}Bα
xΘ

ǫ}2p1 ` }Eptq}2ps`1q
s q. (3.51)

Substituting (3.34)–(3.51) into (3.33), we conclude that

1

2

d

dt
xBα

xΘ
ǫ, Bα

xΘ
ǫy ` κ

B

1

N ǫ ` ρ0
∇Bα

xΘ
ǫ,∇Bα

xΘ
ǫ

F

´ pη9 ` η10 ` η11 ` η12q}∇Bα
xΘ

ǫ}2

ď Cη,γ

“

p}Eǫptq}2ps`1q
s ` }Eǫptq}2s ` }Eǫptq}s ` 1q}Eǫptq}2s

‰

` γ1}Fǫ}4s `
ˆ

γ2 ` γ3 ` 1

16

˙

}Fǫ}2s (3.52)

for some constant Cη,γ ą 0 depending on ηi (i “ 9, 10, 11, 12) and γj (j “ 1, 2, 3).

Applying the operator Bα
x to (2.4) and (2.5), multiplying the results by Bα

xF
ǫ and

Bα
xG

ǫ respectively, and integrating then over T3, one obtains that

1

2

d

dt
pǫ}Bα

xF
ǫ}2 ` }Bα

xG
ǫ}2q ` }Bα

xF
ǫ}2

`
ż

pcurl Bα
xF

ǫ ¨ Bα
xG

ǫ ´ curl Bα
xG

ǫ ¨ Bα
xF

ǫqdx

“
@

rBα
x pUǫ ˆ H0q ` Bα

x pu0 ˆ Gǫqs ´ Bα
x pUǫ ˆ Gǫq, Bα

xF
ǫ
D

´
@

ǫBα
x BtcurlH0 ` ǫBα

x Btpu0 ˆ H0q, Bα
xF

ǫ
D

. (3.53)

Following a process similar to that in [18] and applying (3.53), we finally obtain

that

1

2

d

dt
pǫ}Bα

xF
ǫ}2 ` }Bα

xG
ǫ}2q ` 3

4
}Bα

xF
ǫ}2

ď Cp}Eǫptq}2s ` 1q}pBα
xU

ǫ, Bα
xG

ǫq}2 ` Cǫ2. (3.54)

Combining (3.10), (3.32), and (3.52) with (3.54), summing up α with 0 ď |α| ď s,

using the fact that N ǫ ` ρ0 ě N̂ ` ρ̂ ą 0, Fǫ P Clpr0, T s, Hs´2lq (l “ 0, 1), and
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choosing ηi (i “ 1, . . . , 12) and γ1, γ2, γ3 sufficiently small, we obtain (3.3). This

completes the proof of Lemma 3.2. �

With the estimate (3.3) in hand, we can now prove Proposition 3.1.

Proof of Proposition 3.1. As in [18, 32], we introduce an ǫ-weighted energy func-

tional

Γǫptq “ ~Eǫptq~2
s.

Then, it follows from (3.3) that there exists a constant ǫ ą 0 depending only on T ,

such that for any ǫ P p0, ǫs and any t P p0, T s,

Γǫptq ď CΓǫpt “ 0q ` C

ż t

0

!

`

pΓǫqs ` Γǫ ` 1
˘

Γǫ
)

pτqdτ ` Cǫ2. (3.55)

Thus, applying the Gronwall lemma to (3.55), and keeping in mind that Γǫ pt “
0q ď Cǫ2 and Proposition 3.1, we find that there exist a 0 ă T1 ă 1 and an ǫ ą 0,

such that T ǫ ě T1 for all ǫ P p0, ǫs and Γǫptq ď Cǫ2 for all t P p0, T1s. Therefore,

the desired a priori estimate (3.2) holds. Moreover, by the standard continuation

induction argument, we can extend T ǫ ě T0 to any T0 ă T˚. �
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