
A Modular Architecture for
Multi-Purpose Conversational System

Development

Adrián ARTOLA a,1, Zoraida CALLEJAS a and David GRIOL a,2

a Dept. of Software Engineering, University of Granada, Granada, Spain

Abstract. As the complexity of intelligent environments grows, there is a need for
more sophisticated and flexible interfaces. Conversational systems constitute a very
interesting alternative to ease the users’ workload when interacting with such envi-
ronments, as they can operate them in natural language. A number of commercial
toolkits for their implementation have appeared recently. However, these are usu-
ally tailored to specific implementations of the processes involved for processing
the user’s utterance and generate the system response. In this paper, we present a
modular architecture to develop conversational systems by means of a plug-and-
play paradigm that allows the integration of developers’ specific implementations
and commercial utilities under different configurations that can be adapted to the
specific requirements for each system.

Keywords. conversational systems, chatbots, modular architectures, natural language
understanding, dialog management, conversational framework, human-machine
interaction

1. Introduction

Intelligent Environments (IE) comprise a set of interconnected devices and sensors sur-
rounding users to provide access to a plethora of information and services, which may
create a great cognitive load in the users, specially in industrial settings (see e.g. [1]).
Consequently, user empowerment can only be sustained in enhanced and more intuitive
human-machine interactions.

Conversational systems have become very important to achieve this objective in-
volving speech interaction and being able to process semantic and pragmatic knowl-
edge [2, 3]. These interfaces have experienced a vast development in the recent years
propelled by the widespread adoption of voice assistants and smart devices, the advances
in Artificial Intelligence techniques and the increasing amount of data currently available
to learn statistical models. These advances have created a whole new market for conver-
sational systems, and in particular for IE assistants. The most renowned technological
companies offer their language processing services both as assistants ready to be used

1A. Artola was with University of Granada during the realization of this work as part of his Master Thesis.
2Corresponding Author: David Griol, Periodista Daniel Saucedo Aranda SN, 18071 Granada, Spain; E-mail:

dgriol@ugr.es.

Intelligent Environments 2021
E. Bashir and M. Luštrek (Eds.)

© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/AISE210077

36

(e.g. Amazon Alexa, Microsoft Cortana, Google Voice Assistant...) or as services that
developers can employ to develop their own conversational systems or provide new skills
to the already existing ones.

Such commercial tools offer different services, including natural language under-
standing and interaction management, which may vary in complexity. Task-oriented sys-
tems can be implemented easily with commercial toolkits such as DialogFlow or Ama-
zon Lex. However, developers may find it difficult to combine the services from different
vendors, specially natural language processing and dialogue management, as they are
usually highly coupled in commercial systems.

Our aim is to offer a framework to develop multi-purpose conversational systems,
which allows developers to use REST services to integrate their own implementations of
specific modules of the system and also to combine them with the solutions provided by
commercial toolkits.

The rest of the paper is organised as follows. Section 2 presents the state of the
art about the different existing frameworks and architectures to develop conversational
systems. Section 3 introduces our architecture as well as the terminology employed.
Section 4 presents a practical implementation of our proposal, while Section 5 presents
several configurations developed that show the appropriateness of the proposal to develop
conversational systems in the same domain using different components from different
vendors. Finally, Section 6 draws the conclusions and presents lines for future work.

2. Background

The typical pipeline to develop conversational interfaces consists of five components:
automatic speech recognition, natural language understanding, dialogue management,
natural language generation and text to speech synthesis [4].

Each component has specific purposes:

• The automatic speech recogniser receives the audio signal corresponding to the
user’s input and outputs a textual transcription. Typically, this module also pro-
vides confidence scores representing how confident the system is about the cor-
rectness of the returned text.

• The Natural Language Understanding module receives the text input and returns
its semantic representation, as the perceived required task and the values for the
necessary pieces of information required to perform it.

• The Dialogue Manager decides the next system action considering the semantic
representation of the user’s utterance, the previous dialogue history, the result of
accessing the data repositories of the system, the specific regulations of the task,
among others.

• The Natural Language Generator translates the action selected by the dialogue
manager into one or more sentences in natural language (system prompt).

• Finally, the Text-to-Speech synthesizer translates the system prompt into an acous-
tic signal.

As mentioned before, there exist different frameworks for conversational systems
development that try to accommodate some or all the previously described modules.
McTear [3] presents a very complete and updated review of tools for developing dialogue

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development 37

systems, which are divided into tools for visual design, scripting tools, advanced toolkits
and frameworks and research-based toolkits.

There is a huge variety of commercial toolkits offered by the largest IT companies.
These toolkits offer all the necessary services to create a conversational system with high-
level interaction and with improved possibilities to connect the developed system with
different platforms, e.g., existing voice assistants, Telegram or Twitter. The most popular
alternatives require the developer to define intents and entities for the understanding pro-
cess, and dialogue management is determined according to the most relevant intent and
the use of slots or active contexts that can be complemented with web services through
webhooks.

Despite their flexibility, many times a considerable effort is required to handcraft a
dialogue tree that is then coded into the system following the intents and entities format.
Also these tools hinder the complexity and details of language and dialogue processing to
developers, which is interesting to democratise conversational system development, but
it may not be adequate for contexts in which developers want to have a broader control,
including for example explainability of the decisions and security requirements, which
are commonplace with IE interactions.

User confidence is key to IE [5]. As illustrated in [6], the capacity for self explain-
ability is crucial for users to find IE trustworthy and reliable, specially when populated
by smart assistants.

In academic settings, more sophisticated approaches are used for natural language
understanding and dialogue management and can be used in controlled environments.
This is the case of toolkits and implementation resources such as OpenDial [7], PyOpen-
Dial [8], which also encompass a modular architecture, or the recent ConveRSE [9] and
HRIChat [10], but are sometimes not straightforward to use in conjunction with com-
mercial solutions.

Some of the previously mentioned alternatives do not offer the possibility of plug-
ging different services for each of the modules that conform the conversational system.
In fact, it is common to merge NLU and DM in commercial chatbot toolkits, as it is a
trend to combine both options, specially when using machine learning to decide system
responses.

However, in our approach, these two modules can be considered in isolation. This
makes it possible to develop end-to-end systems in which both processes are performed
at once, or to divide them into two independent services when it is necessary to have
control over them. For example in hybrid systems where rules have to be applied into
dialogue management. This is particularly interesting for IE as usually safety rules must
be applied when operating the environments (e.g. always confirm when turning the oven
on).

More versatile platforms like RASA [11] and DeepPavlov [12] provide more
flexibility in the implementation. This paper presents exploratory work for a simple
lightweight architecture that can be used to easily create conversational systems.

3. Proposed Architecture

We have chosen a service-oriented modular architecture based but not limited to the tra-
ditional pipeline. To foster interoperability, each part of the system is independent of the

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development38

rest and the information shared is orchestrated by an Information homogenisation mod-
ule. This new module receives the output of the Natural Language Understanding mod-
ule and produces a technology-agnostic parsing into a registry, that can be subsequently
translated into the format required by the rest of the services employed.

The dialogue history is stored as a board of registries that are categorised into in-
tents (representing the intentions or actions required by the user) and entities (relevant
pieces of information required to fulfil the task). The actions taken by the system are also
incorporated into the board.

All the modules except the Information Homogenisation (IH) Module are divided
into infrastructure and superstructure. On the one hand, the infrastructure is dedicated
to connect all services and to interact with the container application. On the other hand,
the superstructure is a specific Language Processing service that can be plugged and
unplugged into the infrastructure.

Every service has a different format as input and output but all of them offer an
interface using REST services. The advantage of doing this type of connection is that the
developer is free to choose the best platform or programming language to develop each
service.

Our infrastructure connects to the services using HTTP with REST calls and the
message is sent in JSON format, so the modules have simple responsibilities:

• Generate a JSON with the input in the specific format required by the plugged
service.

• Connect to the REST interface of the service with the required parameters such as
API keys or any other authentication data.

• Receive the data from the REST service and parse it to the proper format required
by the infrastructure.

The proposed framework can orchestrate new services either from commercial ven-
dors or generated by the developer, just complying with the simple requisites described
below. All services must be connected by REST calls so that the different modules are
not coupled to the infrastructure. REST calls take the form of JSON messages, a de-facto
standard in commercial systems.

The interaction with the container application can be done by directly calling the
functions that the infrastructure offers or creating a new web service dedicated exclu-
sively to the interaction with the infrastructure. In particular, the connection of the main
modules of a conversational system works as follows.

To connect a Speech-to-Text service, the infrastructure will send to the new connec-
tor the path of the audio file. Depending on the service the connector will have to send
the file in a different way. For example, Google Speech-to-Text requires a JSON message
with the content of the audio file encoded in the message and IBM Watson Speech-to-
Text just needs to upload the file on the request. Independently, the architecture will only
require the connector to work sending the given audio file and returning the transcript
text as shown in Fig. 1.

The Natural Language Understanding (NLU) service connector requires the output
of the Speech-to-Text module, which is the transcribed user input. Generally, at least in
the tested services (Google, Amazon and IBM), the request requires a JSON message
with the user’s query and the returned answer is also in JSON format. Thus, the Connec-
tor will have to send the transcribed text to the Natural Language Understanding service
and this service will return a JSON with the intents and entities.

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development 39

Figure 1. Scheme of the Speech-to-Text connector.

The developer will only need to implement the parser into the IH Module (see Figure
2) to generate a registry from the JSON answer of the NLU service.

Figure 2. Scheme of the Natural Language Understanding connection and the Information Homogenization
Module.

After being parsed, the generated registry is stored in the board of the IH Module.
This way, the Dialogue Manager (DM) service can retrieve from the infrastructure the
registries that the IH Module could store in the board as well as the previous system
action, to use them as a basis for decision making, as shown in Figure 3. Then the next
system action and the necessary data will be returned. The next action is stored in the IH
Module for the next turn of the conversation.

In some cases, the next system action may also contain the generated natural lan-
guage text for the user so the usage of the Natural Language Generation (NLG) module
is optional and in the case it is used it will receive the DM output and will return the nat-
ural language answer. If the developer chooses to incorporate a NLG service, the output
would be the set of sentences in natural language generated as system response.

In the case of the Text-to-Speech (TTS) module, the connector receives the text to
be synthesised from the infrastructure and the TTS service returns the synthesised voice

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development40

Figure 3. Scheme of the Dialogue Manager connector.

as an audio file to be played by the container application, this can be done including the
path in the JSON response (as it is done in Google Cloud) or initiating the download of
the audio file as a result of the REST request (as it is the case of IBM Watson Text-to-
Speech).

4. Implementation of the Architecture

The infrastructure has been implemented in Java and already incorporates connections
to the online services of the most important companies. We have tested and created con-
nectors for the following services, but the proposal is not limited to them:

• Speech-to-Text module: Google Speech-to-Text and IBM Watson Speech-to-Text.
• Natural Language Understanding: Google DialogFlow and Microsoft LUIS. We

also implemented our own Natural Language Understanding service that can be
plugged to the infrastructure (see Section 4.1).

• Dialog Manager: we have implemented our own dialogue manager (see Section
4.2. It is worth noticing that commercial systems often have NLU and DM linked,
so it is difficult to separate understanding capabilities from the dialogue manage-
ment policy.

• Natural Language Generator: we have used a template-based generation.
• Text-to-Speech: Google Text-to-Speech and IBM Watson Text-to-Speech.

To show that it is not only possible to plug-in third party services, but also to easily
implement and deploy the developers’ own implementations, we have implemented and
offer the connector for our own NLU and DM modules, which are described below.

4.1. Sample Implementation of a Natural Language Understanding Module

Our own solution for Natural Language Understanding has been developed in Python
using Okapi BM25 [13] for intent detection and Term Frequency Inverse Document Fre-
quency (TF-IDF) for entity detection. BM25 is often used by search engines to detect rel-
evant results based on the user’s input and for document-scoring [14]. We have used this

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development 41

probabilistic function to detect the intents from the input, including some improvements
to make the result more accurate according to observed training phrases. BM25 can be
trained in a similar fashion as commercial chatbot development systems, providing a cor-
pus with example phrases for every intent. When the function is applied, it computes a
score for every intent, so the one with highest score can be selected as the most probable.

For the purpose of finding relevant keywords and entities in the user’s input phrase
we use TF-IDF. For this task, we use the same corpus employed to train BM25 group-
ing phrases incorporating information about entities. TF-IDF computes the frequency of
every word in the phrase. Entity detection requires a higher level of post-processing for
which we have applied three filters: i) list of stopwords that are ignored; ii) a dictionary
of words grouped by entity types (this filter can help identifying keywords but it is not
so helpful when the same keywords belong to several entity types); and iii) aliases and
synonym detection.

4.2. Sample Implementation of a Dialogue Manager

In current toolkits dialogue management is not usually a “pluggable” service. For ex-
ample, Google DialogFlow is putting the Natural Language Understanding service, the
Dialogue Manager service and the Natural Language Generator together and despite the
fact that it is possible to use the Natural Language Understanding part as a service, the
Dialogue Manager cannot be so easily decoupled.

We developed our dialogue manager using Python following the service format de-
scribed for our proposal. The main task for the manager was to direct the conversation
depending on the current intent and the registry history. The decision about how to con-
tinue the conversation is taken using Sklearn library’s decision trees trained using a cor-
pus that considers not only the previous system actions, but also the confidence of the
natural language understanding module.

5. Implementation of Demo Systems

As a proof-of-concept we have developed two simple pizza ordering dialogue systems
for home delivery, as a sample IE service. The systems use two different configurations
of the architecture, involving different services for the same tasks. The infrastructure
worked perfectly and the objective to combine different services and make them work
together was performed successfully.

The first Demo uses the Google Speech-to-Text service, the Microsoft LUIS Lan-
guage Understanding module, the Dialogue Manager we implemented with a simple Nat-
ural Language Generator and IBM Watson Text-to-Speech. The second Demo uses IBM
Watson Speech-to-Text, the Natural Language Understanding service we implemented,
the same Dialogue Manager we developed with the first demo system, and Google Text-
to-Speech.

A single container application that worked for both demo systems was implemented
in Java. The application had a button that the user had to press to speak, then the path of
the recording was given to the infrastructure and it returned the answer audio file that the
Java application played. With our framework it was possible to plug different solutions
for the several modules implied and the result was transparent and worked seamlessly
independently of the technology used.

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development42

6. Conclusions and Future Work

This paper has introduced an architecture for the creation of modular multi-purpose con-
versational systems that allows developers to combine already existing commercial ser-
vices with their own solutions. This way, developers can focus on the implementation of
specific modules and the selection of the best-suited third-party alternatives. To generate
a functional system, the developer would only need to parametrise the infrastructure part
to connect with the proper REST services, and define the system intents and the entities.
To show the appropriateness of the framework as a practical development solution, we
have already included a repertoire of already existing solutions from Google, Amazon
and IBM and also generated our own Natural Language Understanding and Dialogue
Management modules successfully.

For future work we plan to retrieve the opinion of our prospective users, developers
with different expertise in the development of conversational systems, to validate our
proposal.

Acknowledgements

The research leading to these results has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 823907
(MENHIR project: https://menhir-project.eu).

References

[1] Longo F, Padovano A. Voice-enabled Assistants of the Operator 4.0 in the Social Smart Factory:
Prospective role and challenges for an advanced humanmachine interaction. Manufacturing Letters.
2020;26:12–16.

[2] Adamopoulou E, Moussiades L. Chatbots: History, technology, and applications. Machine Learning
with Applications. 2020 Dec;2:100006.

[3] McTear M. Conversational AI: Dialogue Systems, Conversational Agents, and Chatbots. Morgan &
Claypool; 2020.

[4] McTear M, Callejas Z, Griol D. The Conversational Interface: Talking to Smart Devices. 1st ed. New
York, NY: Springer; 2016.

[5] Hornos MJ, Rodrguez-Domnguez C. Increasing user confidence in intelligent environments. Journal of
Reliable Intelligent Environments. 2018 Jul;4(2):71–73.

[6] Autexier S, Drechsler R. Towards Self-explaining Intelligent Environments. In: 2018 7th Interna-
tional Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Direc-
tions) (ICRITO); 2018. p. 1–6.

[7] Lison P, Kennington C. OpenDial: A Toolkit for Developing Spoken Dialogue Systems with Proba-
bilistic Rules. In: Proceedings of ACL-2016 System Demonstrations. Berlin, Germany: Association for
Computational Linguistics; 2016. p. 67–72.

[8] Jang Y, Lee J, Park J, Lee KH, Lison P, Kim KE. PyOpenDial: A Python-based Domain-Independent
Toolkit for Developing Spoken Dialogue Systems with Probabilistic Rules. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Com-
putational Linguistics; 2019. p. 187–192.

[9] Iovine A, Narducci F, Semeraro G. Conversational Recommender Systems and natural language:: A
study through the ConveRSE framework. Decision Support Systems. 2020 Apr;131:113250.

[10] Nakano M, Komatani K. A framework for building closed-domain chat dialogue systems. Knowledge-
Based Systems. 2020 Sep;204:106212.

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development 43

[11] Bocklisch T, Faulkner J, Pawlowski N, Nichol A. Rasa: Open Source Language Understanding and
Dialogue Management. arXiv e-prints. 2017 Dec;1712:arXiv:1712.05181.

[12] Kuratov Y, Yusupov I, Baymurzina D, Kuznetsov D, Cherniavskii D, Dmitrievskiy A, et al. DREAM
technical report for the Alexa Prize 2019. In: 3rd Proceedings of Alexa Prize; 2019. Available
from: https://m.media-amazon.com/images/G/01/mobile-apps/dex/alexa/alexaprize/

assets/challenge3/proceedings/Moscow-DREAM.pdf.
[13] Amati G. LIU L, OZSU MT, editors. BM25. Boston, MA: Springer US; 2009. Available from: https:

//doi.org/10.1007/978-0-387-39940-9_921.
[14] Robertson S, Zaragoza H. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations

and Trends in Information Retrieval. 2009 Apr;3(4):333–389.

A. Artola et al. / A Modular Architecture for Multi-Purpose Conversational System Development44

