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Abstract

We define a zeta function of a graph by using the time evolution matrix of a
general coined quantum walk on it, and give a determinant expression for the zeta
function of a finite graph. Furthermore, we present a determinant expression for
the zeta function of an (inifinite) periodic graph.

Mathematics Subject Classifications: 60F05, 05C50, 15A15, 05C25

1 Introduction

Starting from p-adic Selberg zeta functions, Ihara [12] introduced the Ihara zeta functions
of graphs. Ihara [12] showed that the reciprocal of the Ihara zeta function of a regular
graph is an explicit polynomial. Serre [17] pointed out that the Ihara zeta function is
the zeta function of a regular graph. A zeta function of a regular graph G associated
to a unitary representation of the fundamental group of G was developed by Sunada
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[18, 19]. Hashimoto [10] treated multivariable zeta functions of bipartite graphs. Bass
[1] generalized Ihara’s result on the Ihara zeta function of a regular graph to an irregular
graph, and showed that its reciprocal is a polynomial.

The Ihara zeta function of a finite graph was extended to an infinite graph in [1, 3,
6, 7, 8, 9], and its determinant expressions were presented. Bass [1] defined the zeta
function for a pair of a tree X and a countable group Γ which acts discretely on X with
quotient being a graph of finite groups. Clair and Mokhtari-Sharghi [3] extended Ihara
zeta functions to infinite graphs on which a group Γ acts isomorphically and with finite
quotient. In [6], Grigorchuk and Żuk defined zeta functions of infinite discrete groups,
and of some class of infinite periodic graphs. Guido, Isola and Lapidus [7] defined the
Ihara zeta function of a periodic simple graph. Furthermore, Guido, Isola and Lapidus
[8] presented a determinant expression for the Ihara zeta function of a periodic graph.

The time evolution matrix of a discrete-time quantum walk in a graph is closely related
to the Ihara zeta function of a graph. A discrete-time quantum walk is a quantum analog
of the classical random walk on a graph whose state vector is governed by a matrix called
the time evolution matrix. Ren et al. [16] gave a relationship between the discrete-time
quantum walk and the Ihara zeta function of a graph. Konno and Sato [13] obtained a
formula of the characteristic polynomial of the Grover matrix by using the determinant
expression for the second weighted zeta function of a graph.

In this paper, we define a zeta function of a periodic graph by using the time evolution
matrix of a general coined quantum walk on it, and present its determinant expression.
The proof is an analogue of Bass’ method [1].

In Section 2, we state a review for the Ihara zeta function of a finite graph and infinite
graphs, i.e., a periodic simple graph, a periodic graph. In Section 3, we state about the
Grover walk on a graph as a discrete-time quantum walk on a graph. In Section 4, we
define a zeta function of a finite graph G by using the time evolution matrix of a general
coined quantum walk on G, and present its determinant expression. Furthermore, we
give an explicit formula for the characteristic polynomial of the time evolution matrix of
a general coined quantum walk on G, and so present its spectrum. In Section 5, we state
the definition of a periodic graph. In Section 6, we review a determinant for bounded
operators acting on an infinite dimensional Hilbert space and belonging to a von Neumann
algebra with a finite trace. In Section 7, we present a determinant expression for the above
zeta function of a periodic graph.

2 The Ihara zeta function of a graph

All graphs in this paper are assumed to be simple. Let G be a connected graph with
vertex set V (G) and edge set E(G), and let R(G) = {(u, v), (v, u) | uv ∈ E(G)} be the
set of oriented edges (or arcs) (u, v), (v, u) directed oppositely for each edge uv of G. For
e = (u, v) ∈ R(G), u = o(e) and v = t(e) are called the origin and the terminal of e,
respectively. Furthermore, let e−1 = (v, u) be the inverse of e = (u, v).

A path P of length n in G is a sequence P = (e1, · · · , en) of n arcs such that ei ∈ R(G),
t(ei) = o(ei+1)(1 6 i 6 n − 1). If ei = (vi−1, vi), 1 6 i 6 n, then we also denote P by
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(v0, v1, · · · , vn). Set | P |= n, o(P ) = o(e1) and t(P ) = t(en). Also, P is called an
(o(P ), t(P ))-path. A (v, w)-path is called a v-closed path if v = w. The inverse of a closed
path C = (e1, · · · , en) is the closed path C−1 = (e−1

n , · · · , e−1
1 ).

We say that a path P = (e1, · · · , en) has a backtracking if e−1
i+1 = ei for some i(1 6 i 6

n− 1). A path without backtracking is called proper. Let Br be the closed path obtained
by going r times around a closed path B. Such a closed path is called a multiple of B.
Multiples of a closed path without backtracking may have a backtracking. Such a closed
path is said to have a tail. If its length is n, then the closed path can be written as

(e1, · · · , ek, f1, f2, · · · , fn−2k, e
−1
k , · · · , e−1

1 ),

where (f1, f2, · · · , fn−2k) is a closed path. A closed path is called reduced if C has no
backtracking nor tail. Furthermore, a closed path C is primitive if it is not a multiple of
a strictly shorter closed path.

We introduce an equivalence relation between closed paths. Two closed paths C1 =
(e1, · · · , em) and C2 = (f1, · · · , fm) are called equivalent if there exists an integer k such
that fj = ej+k for all j, where the subscripts are read modulo n. The inverse of C is not
equivalent to C if | C |> 3. Let [C] be the equivalence class which contains a closed path
C. Also, [C] is called a cycle.

Let P be the set of primitive, reduced cycles of G. Also, primitive, reduced cycles are
called prime cycles. Note that each equivalence class of primitive, reduced closed paths
of a graph G passing through a vertex v of G corresponds to a unique conjugacy class of
the fundamental group π1(G, v) of G at v.

The Ihara zeta function of a graph G is a function of a complex variable u with |u|
sufficiently small, defined by

Z(G, u) = ZG(u) =
∏

[C]∈P

(1− u|C|)−1,

where [C] runs over all prime cycles of G.
Let G be a connected graph with n vertices v1, · · · , vn. The adjacency matrix A =

A(G) = (aij) is the square matrix such that aij = 1 if vi and vj are adjacent, and aij = 0
otherwise. The degree of a vertex vi of G is defined by deg vi = deg Gvi =| {vj | vivj ∈
E(G)} |. If deg Gv = k(constant) for each v ∈ V (G), then G is called k-regular.

Theorem 1 (Bass). Let G be a connected graph. Then the reciprocal of the Ihara zeta
function of G is given by

Z(G, u)−1 = (1− u2)r−1 det(I− uA(G) + u2(D− I)),

where r is the Betti number of G, and D = (dij) is the diagonal matrix with dii = deg vi
and dij = 0, i 6= j, (V (G) = {v1, · · · , vn}).

Let G = (V (G), E(G)) be a countable simple graph, and let Γ be a countable discrete
subgroup of automorphisms of G, which acts freely on G, and with finite quotient G/Γ.
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The graph G is called a periodic graph. Then the Ihara zeta function of a periodic simple
graph is defined as follows:

ZG,Γ(u) =
∏

[C]Γ∈[P]Γ

(1− u|C|)−1/|Γ[C]|,

where Γ[C] is the stabilizer of [C] in Γ, and [C]Γ runs over all Γ-equivalence classes of
prime cycles in G.

Guido, Isola and Lapidus [7] presented a determinant expression for the Ihara zeta
function of a periodic simple graph.

Theorem 2 (Guido, Isola and Lapidus). For a periodic simple graph G,

ZG,Γ(u) = (1− u2)−(m−n) det Γ(I− uA(G) + (D− I)u2)−1,

where det Γ is a determinant for bounded operators belonging to a von Neumann algebra
with a finite trace.

Guido, Isola and Lapidus [8] presented a determinant expression for the Ihara zeta
function of a periodic graph G and a countable discrete subgroup Γ of aoutomorphisms
of G which acts discretely without inversions, and with bounded covolume.

Theorem 3 (Guido, Isola and Lapidus). For a periodic graph G,

ZG,Γ(u)−1 = (1− u2)χ
(2)(G) det Γ(∆(u)),

where χ(2)(G) is the L2-Euler characteristic of (G,Γ) (see [2]), and ∆(u) = I − uA +
u2(D− I).

3 The Grover walk on a graph

Let G be a connected graph with n vertices and m edges, V (G) = {v1, . . . , vn} and
R(G) = {e1, . . . , em, e

−1
1 , . . . , e−1

m }. Set dj = dvj = deg vj for i = 1, . . . , n. The Grover
matrix U = U(G) = (Uef )e,f∈R(G) of G is defined by

Uef =


2/dt(f)(= 2/do(e)) if t(f) = o(e) and f 6= e−1,
2/dt(f) − 1 if f = e−1,
0 otherwise.

The discrete-time quantum walk with the matrix U as a time evolution matrix is called
the Grover walk on G.

Let G be a connected graph with n vertices and m edges. Then the n × n matrix
T(G) = (Tuv)u,v∈V (G) is given as follows:

Tuv =

{
1/(deg Gu) if (u, v) ∈ R(G),
0 otherwise.

Note that the matrix T(G) is the transition matrix of the simple random walk on G.
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Theorem 4 (Konno and Sato). Let G be a connected graph with n vertices v1, . . . , vn and
m edges. Then the characteristic polynomial for the Grover matrix U of G is given by

det(λI2m −U) = (λ2 − 1)m−n det((λ2 + 1)In − 2λT(G))

= (λ2−1)m−n det((λ2+1)D−2λA(G))
dv1 ···dvn

.

From this Theorem, the spectra of the Grover matrix on a graph is obtained by means
of those of T(G) (see [4]). Let Spec(F) be the spectra of a square matrix F.

Corollary 5 (Emms, Hancock, Severini and Wilson). Let G be a connected graph with n
vertices and m edges. The Grover matrix U has 2n eigenvalues of the form

λ = λT ± i
√

1− λ2
T ,

where λT is an eigenvalue of the matrix T(G). The remaining 2(m−n) eigenvalues of U
are ±1 with equal multiplicities.

4 Spectra for the time evolution matrix of a general coined
quantum walk on a graph

We consider a generalization of a coined quantum walk on a graph. We replace the coin
operator C of a coined quantum walk with unitary matrix with two spectra which are
distinct from ±1.

For a given connected graph G with n vertices and m edges, let d : `2(V (G)) −→
`2(R(G)) such that

dd∗ = Iq,

and let S = (Sef )e,f∈R(G) be the 2m× 2m matrix defined by

Sef =

{
1 if f = e−1,
0 otherwise.

Furthermore, let
C = ad∗d + b(I2m − d∗d)

and U = SC(see [11]). Note that q = dim ker(a−C). A discrete-time quantum walk on
G with U as a time evolution matrix is called a general coined quantum walk on G. Then
we define a zeta function of G by using U as follows:

ζ(G, u) = det(I2m − uU)−1 = det(I2m − uS(ad∗d + b(I2m − d∗d)))−1.

Now, we have the following result.
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Theorem 6. Let G be a connected graph n vertices and m edges, U = SC the time
evolution matrix of a general coined quantum walk on G. Suppose that σ(C) = {a, b}.
Set q = dim ker(a−C). Then, for the unitary matrix U = SC, we have

ζ(G, u) = (1− b2u2)m−q det((1− abu2)In − cudSd∗), c = a− b.
Proof. At first, we have

ζ(G, u) = det(I2m − uU) = det(I2m − uSC)

= det(I2m − uS(ad∗d + b(I2m − d∗d)))

= det(I2m − uS((a− b)d∗d + bI2m)))

= det(I2m − buS− cuSd∗d)

= det(I2m − cuSd∗d(I2m − buS)−1) det(I2m − buS).

But, if A and B are an m×n matrix and an n×m matrix, respectively, then we have

det(Im −AB) = det(In −BA).

Thus, we have

det(I2m − uU) = det(I2m − uSC) = det(In − cud(I2m − buS)−1Sd∗) det(I2m − buS).

But, we have
det(I2m − buS) = (1− b2u2)m.

Furthermore, we have

(I2m − buS)−1 =
1

1− b2u2
(I2m + uS).

Therefore, it follows that

det(I2m − uU)

= (1− b2u2)m det(I2m −
cu

1− b2u2
Sd∗d(I2m + buS))

= (1− b2u2)m det(Iq −
cu

1− b2u2
d(I2m + buS)Sd∗)

= (1− b2u2)m−n det((1− b2u2)Iq − cudSd∗ − bcu2dS2d∗)

= (1− b2u2)m−n det((1− b2u2)Iq − cudSd∗ − bcu2In)

= (1− b2u2)m−n det((1− abu2)Iq − cudSd∗).
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Corollary 7. Let G be a connected with n vertices and m edges. Then, for the unitary
matrix U = SC, we have

det(λI2m − uU) = (λ2 − b2)m−q det((λ2 − ab)Iq − cλdSd∗),

where q = dim ker(1−C).

Proof. Let u = 1/λ. Then, by Theorem 6, we have

det(I2m − 1/λU) = (1− b2/λ2)m−q det((1− ab/λ2)Iq − c/λdSd∗),

and so,
det(λI2m −U) = (λ2 − b2)m−q det((λ2 − ab)Iq − cλdSd∗).

By Corollary 7, the following result holds.

Corollary 8. Let G be a connected with n vertices and m edges. Then, the spectra of the
unitary matrix U = SC are given as follows:

1. 2q eigenvalues:

λ =
cµ±

√
c2µ2 + 4ab

2
, µ ∈ Spec(dSd∗);

2. The rest eigenvalues are ±b with the same multiplicity m− q.

Proof. By Corollary 7, we have

det(λI2m −U)

= (λ2 − b2)m−q
∏

µ∈Spec(dSd∗)(λ
2 − cµλ− ab).

Solving λ2 − 2µλ+ 1 = 0, we obtain

λ =
cµ±

√
c2µ2 + 4ab

2
.

The result follows.

5 Periodic graphs

Let G = (V (G), E(G)) be a simple graph. Assume that G is countable (V (G) and E(G)
are countable), and with bounded degree, i.e., d = supv∈V (G) deg v < ∞. Let Γ be a
countable discrete subgroup of automorphisms of G, which acts

1. without inversions: γ(e) 6= e−1 for any γ ∈ Γ, e ∈ R(G),

2. discretely: Γv = {γ ∈ Γ | γv = v} is finite for any v ∈ V (G),
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3. with bounded covolume: vol(G/Γ) :=
∑

v∈F0

1
|Γv | < ∞, where F0 ⊂ V (G) contains

exactly one representative for each equivalence class in V (G/Γ).

Then G is called a periodic graph with a countable discrete subgroup Γ of Aut G. Note
that the third condition is equivalent to the following condition:

vol(R(G)/Γ) :=
∑
e∈F1

1

| Γe |
<∞,

where a subset F1 of R(G) contains exactly one representative for each equivalence class
in R(G/Γ).

Let `2(V (G)) be the Hilbert space of functions f : V (G) −→ C such that || f ||:=∑
v∈V (G) | f(v) | 2 <∞. We define the left regular representation λ0 of Γ on `2(V (G)) as

follows:
(λ0(γ)f)(x) = f(γ−1x), γ ∈ Γ, f ∈ `2(V (G)), x ∈ V (G).

We state the definition of a von Neumann algebra. Let H be a separable complex
Hilbert space, and let B(H) denote the C∗-algebra of bounded linear operators on H. For
a subset M ⊂ B(H), the commutant of M is M ′ = {T ∈ B(H) | ST = TS,∀S ∈ M}.
Then a von Neumann algebra is a subalgebra A 6 B(H) such that A′′ = A. It is known
that a determinant is defined for a suitable class of operators in a von Neumann algebra
with a finite trace (see [5, 7]).

For the Hilbert space `2(V (G)), we consider a von Neumann algebra. Let B(`2(V (G)))
be the C∗-algebra of bounded linear operators on `2(V (G)). A bounded linear operator
A of B(`2(V (G))) acts on `2(V (G)) by

A(f)(v) =
∑

w∈V (G)

A(v, w)f(w), v ∈ V (G), f ∈ `2(V (G)).

Then the von Neumann algebra N0(G,Γ) of bounded operators on `2(V (G)) commuting
with the action of Γ is defined as follows:

N0(G,Γ) = {λ0(γ) | γ ∈ Γ}′ = {T ∈ B(`2(V (G))) | λ0(γ)T = Tλ0(γ),∀γ ∈ Γ}.

The von Neumann algebra N0(G,Γ) inherits a trace by

TrΓ(A) =
∑
x∈F0

1

| Γx |
A(x, x), A ∈ N0(G,Γ).

Let the adjacency matrix A = A(G) of G be defined by

(Af)(v) =
∑

(v,w)∈R(G)

f(w), f ∈ `2(V (G)).

By [14, 15], we have
|| A ||6 d = sup

v∈V (G)

deg Gv <∞,
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and so A ∈ N0(G,Γ).
Similarly to `2(V (G)), we consider the Hilbert space `2(R(G)) of functions f : R(G)→

C such that || ω ||:=
∑

e∈R(G) | ω(e) | 2 <∞. We define the left regular representation λ1

of Γ on `2(R(G)) as follows:

(λ1(γ)ω)(e) = ω(γ−1e), γ ∈ Γ, ω ∈ `2(R(G)), e ∈ R(G).

Then the von Neumann algebra N1(G,Γ) = {λ1(γ) | γ ∈ Γ}′ of bounded operators on
`2(R(G)) commuting with the action of Γ, inherits a trace by

TrΓ(A) =
∑
e∈F1

1

| Γe |
A(e, e), A ∈ N1(G,Γ).

6 An analytic determinant for von Neumann algebras with a
finite trace

In an excellent paper [5], Fuglede and Kadison defined a positive-valued determinant for
a von Neumann algebra with trivial center and finite trace τ . For an invertible operator
A with polar decomposition A = UH, the Fuglede-Kadison determinant of A is defined
by

Det(A) = exp ◦τ ◦ logH,

where logH may be defined via functional calculus.
Guido, Isola and Lapidus [7] extended the Fuglede-Kadison determinant to a deter-

minant which is an analytic function. Let (A, τ) be a von Neumann algebra with a finite
trace τ . Then, for A ∈ A, let

det τ (A) = exp ◦τ ◦ logA,

where

log(A) :=
1

2πi

∫
Λ

log λ(λ− A)−1dλ,

and Λ is the boundary of a connected, simply connected region Ω containing the spectrum
σ(A) of A. Then the following lemma holds (see Lemma 5.1 of [7]).

Lemma 9 (Guido, Isola and Lapidus). Let A,Ω,Γ be as above, and φ, ψ two branches of
the logarithm such that both domains contain Ω. Then

exp ◦τ ◦ φ(A) = exp ◦τ ◦ ψ(A).

Next, we consider a determinant on some subset of A. Let (A, τ) be a von Neumann
algebra with a finite trace, and A0 = {A ∈ A | 0 /∈ conv σ(A)}, where conv σ(A) is the
convex hull of σ(A). For any A ∈ A0, we set

det τ (A) = exp ◦τ ◦ (
1

2πi

∫
Λ

log λ(λ− A)−1dλ),
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where Λ is the boundary of a connected, simply connected region Ω containing the spec-
trum conv σ(A), and log is a branch of the logarithm whose domain contains Ω. Then the
above determinant is well-defined and analytic on A0 (see Corollary 5.3 of [7]). Further-
more, Guido, Isola and Lapidus of [7, 8] showed that det τ has the following properties.

Proposition 10 (Guido, Isola and Lapidus). Let (A, τ) be a von Neumann algebra with
a finite trace, A ∈ A0. Then

1. det τ (zA) = zτ(I) det τ (A) for any z ∈ C \ {0}.

2. If A is normal, and A = UH is its polar decomposition,

det τ (A) = det τ (U) det τ (H).

3. If A is positive, det τ (A) = Det(A), where Det(A) is the Fuglede-Kadison determi-
nant of A.

Proposition 11 (Guido, Isola and Lapidus). Let (A, τ) be a von Neumann algebra with
a finite trace. Then

1. For A,B ∈ A and sufficiently small u ∈ C,

det τ ((I + uA)(I + uB)) = det τ (I + uA) det τ (I + uB).

2. If A ∈ A has a bounded inverse, and T ∈ A0, then

det τ (ATA
−1) = det τ (T ).

3. If

T =

[
T11 T12

0 T22

]
∈ Mat2(A),

with Tii ∈ A such that σ(Tii) ⊂ B1(1) := {z ∈ C | | z − 1 |< 1} for i = 1, 2, then

det τ (T ) = det τ (T11) det τ (T22).

Corollary 12 (Guido, Isola and Lapidus). Let Γ be a discrete group, π1, π2 unitary
representations of Γ, τ 1, τ 2 finite traces on π1(Γ)′ and π2(Γ)′, respectively. Let π = π1⊕π2,

τ = τ 1 + τ 2 and T =

[
T11 T12

0 T22

]
∈ π(Γ)′, with σ(Tii) ⊂ B1(1) := {z ∈ C | | z − 1 |< 1}

for i = 1, 2, then
det τ (T ) = det τ1(T11) det τ2(T22).
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7 A zeta function with respect to a general coined quantum
walk of an infinite periodic graph

We define a zeta function with respect to a general coined quantum walk of an infinite
periodic graph.

Let G be a periodic graph with a countable discrete subgroup Γ of Aut G. Moreover,
let

IV = Id`2(V (G)), IR = Id`2(R(G)).

Then, let d : `2(V (G)) −→ `2(R(G)) such that

dd∗ = IV .

Furthermore, let
C = ad∗d + b(IR − d∗d)

and U = SC, where S is the operator on `2(R(G)) such that

(Sω)(e) = ω(e−1), ω ∈ `2(R(G)), e ∈ R(G).

Now, we consider the following determinant:

det Γ(B) = exp ◦TrΓ ◦ logB

for B ∈ N1(G,Γ)0. Then a zeta function with respect to a general coined quantum walk
of G is defined as follows:

ζ(G,Γ, u) = det Γ(IR − uU)−1 = det Γ(IR − uS(ad∗d + b(IR − d∗d)))−1,

where u ∈ C are sufficiently small so that the infinite product converges.
Then we have the following result.

Theorem 13. Let G be a periodic graph with a countable discrete subgroup Γ of Aut G.
Then

ζ(G,Γ, u) = (1− b2u2)TrΓ(IV )− 1
2

TrΓ(IR) det Γ((1− abu2)IV − cudSd∗),

where TrΓ(IR) =
∑

e∈F1

1
|Γe| and TrΓ(IV ) =

∑
v∈F0

1
|Γv |(see [2]).

Proof. The argument is an analogue of the method of Bass [1].
Let G be a periodic graph with a countable discrete subgroup Γ of Aut G.
Now we consider the direct sum of the unitary representations λ0 and λ1: λ(γ) :=

λ0(γ)⊕ λ1(γ) ∈ B(`2(V (G))⊕ `2(R(G))). Then the von Neumann algebra λ(Γ)′ := {S ∈
B(`2(V (G))⊕ `2(R(G))) | Sλ(γ) = λ(γ)S, γ ∈ Γ} consists of operators

S =

[
S00 S01

S10 S11

]
,
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where Sijλj(γ) = λi(γ)Sij, γ ∈ Γ, i, j = 0, 1, so that Sii ∈ Λi ≡ Ni(G,Γ), i = 0, 1. Thus,
λ(Γ)′ inherits a trace given by

TrΓ

[
S00 S01

S10 S11

]
:= TrΓ(S00) + TrΓ(S11).

We introduce two operators as follows:

L =

[
(1− b2u2)IV −cd− bcudS

0 IR

]
,M =

[
IV cd + bcudS
uSd∗ (1− b2u2)IR

]
,

where c = a− b. Then we have

LM =

[
(1− b2u2)IV − cudSd∗ − bcu2dS2d∗ 0

uSd∗ (1− b2u2)IR

]

=

[
(1− abu2)IV − cudSd∗ 0

uSd∗ (1− b2u2)IR

]
.

Furthermore, we have

ML =

[
(1− b2u2)IV 0
u(1− b2u2)Sd∗ −cuSd∗d− bcu2Sd∗dS + (1− b2u2)IR

]

=

[
(1− b2u2)IV 0
u(1− b2u2)Sd∗ (IR − u(cSd∗d + bS))(IR + ubS)

]
.

Here, note that S2 = IR.
For | t |, | u | sufficiently small, we have

σ(∆(u)), σ((1− b2t2)IV ), σ((1− b2t2)IR), σ((IR − u(cSd∗d + bS))(IR + ubS))

∈ B1(1) = {z ∈ C | | z − 1 |< 1}.

Similar to the proof of Proposition 3.8 in [8], σ(LM) and σ(ML) are contained in B1(1).
Thus, L and M are invertible, with bounded inverse, for | t |, | u | sufficiently small.

By 1 of Proposition 10, 1 of Proposition 11 and Corollary 12, we have

det Γ(LM) = det Γ((1− b2u2)IV − cudSd∗ − bcu2dS2d∗) det Γ((1− b2u2)IR)

= (1− b2u2)TrΓ(IR) det Γ((1− abu2)IV − cudSd∗)

and

det Γ(ML) = det Γ((1− b2u2)IV ) det Γ(IR − u(cSd∗d + bS)) det Γ(IR + ubS)

= (1− b2u2)TrΓ(IV ) det Γ(IR − u(cSd∗d + bS)) det Γ(IR + ubS).
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Let an orientation of G be a choice of one oriented edge for each pair of edges in R(G),
which is called positively oriented. We denote by E+G the set of positively oriented
edges. Moreover, let E−G := {e−1 | e ∈ E+G}. An element of E−G is called a negatively
oriented. Note that R(G) = E+G ∪ E−G.

The operator S maps `2(E+G) to `2(E−G). Then we obtain a representation ρ of
B(`2(R(G))) onto Mat2B(`2(E+G)), under

ρ(S) =

[
0 I
I 0

]
, ρ(IR) =

[
I 0
0 I

]
.

By 1 and 3 of Proposition 11,

det Γ(IR + buS) = det Γ

[
I −buI
0 I

]
det Γ

[
I buI
buI I

]

= det Γ

[
(1− b2u2)I 0

∗ I

]
= (1− b2u2)

1
2

TrΓ(IR).

For | t |, | u | sufficiently small, we have

ML = MLMM−1,

and so, by 2 of Proposition 11,

det Γ(LM) = det Γ(ML).

Therefore, it follows that

(1− b2u2)TrΓ(IR) det Γ((1− abu2)IV − cudSd∗)

= (1− b2u2)
1
2

TrΓ(IR)+TrΓ(IV ) det Γ(IR − uS(cd∗d + bIR)),

and so
det Γ(IR − uSC) = det Γ(IR − uS(cd∗d + bIR))

= (1− b2u2)
1
2

TrΓ(IR)−TrΓ(IV ) det Γ((1− abu2)IV − cudSd∗).

Hence the result follows by the definition of TrΓ.
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