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Abstract

Cranston and Kim conjectured that if G is a connected graph with maximum
degree ∆ and G is not a Moore Graph, then χ`(G

2) 6 ∆2 − 1; here χ` is the list
chromatic number. We prove their conjecture; in fact, we show that this upper
bound holds even for online list chromatic number.

1 Introduction

Graph coloring has a long history of upper bounds on a graph’s chromatic number χ in
terms of its maximum degree ∆. A greedy coloring (in any order) gives the trivial upper
bound χ 6 ∆ + 1. In 1941, Brooks [4] proved the following strengthening: If G is a graph
with maximum degree ∆ > 3 and clique number ω 6 ∆, then χ 6 ∆. In 1977, Borodin
and Kostochka [3] conjectured the following further strengthening.

Conjecture 1 (Borodin-Kostochka Conjecture [3]). If G is a graph with ∆ > 9 and
ω 6 ∆− 1, then χ 6 ∆− 1.

If true, this conjecture is best possible in two senses. First, the condition ∆ > 9 cannot
be dropped (or even weakened), as shown by the following graph (see Figure 1). Let Di

induce a triangle for each i ∈ {1, . . . , 5}; if |i−j| ≡ 1 (mod 5), then add all edges between
vertices of Di and Dj. This yields an 8-regular graph on 15 vertices with clique number 6
and chromatic number 8; it would be a counterexample to the conjecture if we weakened
the hypothesis ∆ > 9. Similarly, even if we require ω 6 ∆− 2, we cannot conclude that
χ 6 ∆ − 2, as is shown by the join of a clique and a 5-cycle. For each ∆ ∈ {3, . . . , 8},
examples are known [6, 13] where ω 6 ∆− 1 but χ = ∆. Kostochka has informed us that
already in 1977 when he and Borodin posed Conjecture 1, they believed the following
stronger “list version” was true; however they omitted this version from their paper, and
it appeared in print [6] only in 2013. We define the list chromatic number, denoted χ`, in
Section 2 below.
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Figure 1: The hypothesis ∆ > 9 in the Borodin–Kostochka Conjecture is best possible.

Conjecture 2 (Borodin-Kostochka Conjecture (list version)). If G is a graph with ∆ > 9
and ω 6 ∆− 1, then χ` 6 ∆− 1.

The purpose of this paper is to prove the following conjecture of Cranston and Kim [5].
In fact, we will prove this conjecture in the more general setting of online list coloring. It
is easy to show, as we do below, that Conjecture 2 implies Conjecture 3.

Conjecture 3 (Cranston-Kim [5]). If G is a connected graph with maximum degree
∆ > 3, and G is not a Moore graph, then χ`(G

2) 6 ∆2 − 1.

A Moore graph is a ∆-regular graph G on ∆2 + 1 vertices such that G2 = K∆2+1; the
sole example when ∆ = 3 is the Petersen graph. Hoffman and Singleton [12] famously
proved that Moore graphs exist only when ∆ ∈ {2, 3, 7, 57}. When ∆ ∈ {2, 3, 7} Moore
graphs exist and are known to be unique, and when ∆ = 57 no Moore graph is known.

In 2008 Cranston and Kim [5] proved Conjecture 3 when ∆ = 3, and suggested that
a similar but more detailed approach might prove the whole conjecture. As mentioned
above, it is easy to show that Conjecture 3 is implied by Conjecture 2. The key is the
following easy lemma at the end of [5]: If G is connected and is not a Moore graph and G
has maximum degree ∆ > 3, then G2 has clique number at most ∆2−1. The proof is short
once we have a result of Erdős, Fajtlowicz, and Hoffman [11] stating that a “near-Moore
graph”, i.e., a ∆-regular graph such that G2 = K∆2 , exists only when ∆ = 2. For details,
see the start of the proof of the Main Theorem.

We note that recently Conjecture 3 was generalized to higher powers. Let M denote
the maximum possible degree when a graph of maximum degree k is raised to the dth
power, i.e., vertices are adjacent in Gd if they are distance at most d in G. Miao and
Fan [14] conjectured that if G is connected and Gd is not KM+1, then we can save one
color over the bound given by Brooks Theorem, i.e., χ(Gd) 6M − 1. This was proved by
Bonamy and Bousquet [2] in the more general context of online list coloring.

The following conjecture is due to Wegner [20], in the 1970’s. It is a less well-known
variant of Wegner’s analogous conjecture when the class Gk is restricted to planar graphs.
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Figure 2: On the left is a 4-regular graph G1 such that G2
1 = K15.

On the right is a 5-regular graph G2 such that G2
2 = K24.

Conjecture 4 (Wegner [20]). For each fixed k, let Gk denote the class of all graphs with
maximum degree at most k and form G2

k by taking the square G2 of each graph G in Gk.
Now maxH∈G2k χ(H) = maxH∈G2k ω(H).

Wegner in fact posed a more general conjecture for all powers of Gk; however, here we
restrict our attention to Conjecture 4, specifically for small values of k. For each H ∈ G2

k ,
we have ∆(H) 6 k2, so Brooks’ Theorem implies that χ(H) 6 k2 unless some component
of H is Kk2+1. For k = 1 Wegner’s Conjecture is trivial. For k ∈ {2, 3, 7} it is easy; in
each case Gk contains a Moore graph G, and letting H = G2, we have H = Kk2+1, so
χ(H) = ω(H) = k2 + 1. Thus, the first two open cases of Conjecture 4 are k = 4 and
k = 5. Our Main Theorem shows that every graph G in G4 satisfies χ`(G

2) 6 15 and
every graph G in G5 satisfies χ`(G

2) 6 24. Matching lower bounds are shown in Figure 2:
we have G1 ∈ G4 with ω(G2

1) = 15 and G2 ∈ G5 with ω(G2
2) = 24. Both graphs were

discovered by Elspas ([9] and p. 14 of [15]) and are known to be the unique graphs G with
∆ ∈ {4, 5} and G2 = K∆2−1. This confirms Wegner’s Conjecture when k = 4 and k = 5.

Rather than coloring, or even list coloring, this paper is about online list coloring,
a generalization introduced in 2009 by Schauz [16] and Zhu [22], and the online list
chromatic number, χp, also called the paint number. We give the definition in Section 2,
but for now if you are unfamiliar with χp, you can substitute χ` (or even χ) and the Main
Theorem remains true. Our main result is the following.

Main Theorem. If G is a connected graph with maximum degree ∆ > 3 and G is not
the Peterson graph, the Hoffman-Singleton graph, or a Moore graph with ∆ = 57, then
χp(G

2) 6 ∆2 − 1.

We conclude this section with the following conjecture, which generalizes our Main
Theorem as well as Conjecture 2.

Conjecture 5 (Borodin-Kostochka Conjecture (online list coloring version)). If G is a
graph with ∆ > 9 and ω 6 ∆− 1, then χp 6 ∆− 1.
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The structure of the paper is as follows. In Section 2 we give background and defini-
tions. In Section 3, we prove the Main Theorem, subject to a number of lemmas about
forbidden subgraphs in a minimal counterexample. In Section 4 we prove the lemmas
that we deferred in Section 3. Finally, in Section 5, we generalize the online list chromatic
number to the Alon–Tarsi number, and extend our Main Theorem to that setting.

2 Preliminaries

Here we give definitions and background. Most of our terminology and notation is stan-
dard. We write A\B for A∩B. If H is a subgraph of G, then G\H means G[V (G)\V (H)],
that is G with the vertices of H deleted. For graphs G and H, the join G ∨H is formed
from the disjoint union of G and H by adding all edges with one endpoint in each of V (G)
and V (H). For any undefined terms, see West [21].

A list size assignment f : V (G) → Z+ assigns to each vertex in G a list size. An f -
assignment L assigns to each vertex v a subset of the positive integers L(v) with |L(v)| =
f(v). An L-coloring is a proper coloring φ such that φ(v) ∈ L(v) for all v. A graph G
is f -list colorable (or f -choosable) if G has an L-coloring for every f -assignment L. In
particular, we are interested in the case where f(v) = k for all v and some constant k.
The list chromatic number of G or choice number of G, denoted χ`(G), or simply χ` when
G is clear from context, is the minimum k such that G is k-choosable. List coloring was
introduced by Vizing [19] and Erdős, Rubin, and Taylor [10] in the 1970s. Both groups
proved the following extension of Brooks’ Theorem. If G is a graph with maximum degree
∆ > 3 and clique number ω 6 ∆, then χ` 6 ∆.

The next idea we need came about 30 years later. In 2009, Schauz [16] and Zhu [22]
independently introduced the notion of online list coloring. This is a variation of list
coloring in which the list sizes are determined (each vertex v gets f(v) colors), but the
lists themselves are provided online by an adversary.

We consider a game between two players, Lister and Painter. In round 1, Lister
presents the set of all vertices whose lists contain color 1. Painter must then use color 1
on some independent subset of these vertices, and cannot change this set in the future. In
each subsequent round k, Lister chooses some subset of the uncolored vertices to contain
color k in their lists, and Painter chooses some independent subset of these vertices to
receive color k. Painter wins if he succeeds in painting all vertices. Alternatively, Lister
wins if he includes a vertex v among those presented on each of f(v) rounds, but Painter
never paints v.

A graph is online k-list colorable (or k-paintable) if Painter can win whenever f(v) = k
for all v. The minimum k such that a graph G is online k-list colorable is its online list
chromatic number, or paint number, denoted χp. A graph is d1-paintable if it is paintable
when f(v) = d(v)−1 for each vertex v. In [7], the authors introduced d1-choosable graphs,
which are the list-coloring analogue. Interest in d1-paintable graphs owes to the fact that
none can be induced subgraphs of a minimal graph with maximum degree ∆ that is not
(∆− 1)-paintable. In particular, if G is a minimal counterexample to our Main Theorem,
then G2 contains no induced d1-paintable subgraph.
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Lemma 1. Let G be a graph with maximum degree ∆ and H be an induced subgraph of
G that is d1-paintable. If G \H is (∆− 1)-paintable, then G is (∆− 1)-paintable.

Proof. Let G and H satisfy the hypotheses. We give an algorithm for Painter to win
the online coloring game when f(v) = ∆− 1 for all v. Painter will simulate playing two
games simultaneously: a game on G \ H with f(v) = ∆ − 1 and a game on H with
f(v) = dH(v) − 1. Let Sk denote the set of vertices presented by Lister on round k.
Painter first plays round k of the game on G\H, pretending that Lister listed the vertices
Sk \H. Let Ik denote the independent set of these that Painter chooses to color k.

Let S ′k = (Sk ∩ V (H)) \N(Ik), the vertices of H that are in Sk and have no neighbor
in Ik. Now Painter plays round k of the game on H, pretending that Lister listed S ′k.
Each vertex in V (G \H) will clearly be listed ∆− 1 times. Consider a vertex v in V (H).
It will appear in N(Ik) for at most dG(v) − dH(v) rounds. So v will appear in S ′k for at
least (∆−1)− (dG(v)−dH(v)) > dH(v)−1 rounds. Now Painter will win both simulated
games, and thus win the actual game on G.

When the graph G in Lemma 1 is a square, we immediately get that G\H is (∆− 1)-
paintable, as we note in the next lemma.

Lemma 2. Let G be a connected graph with maximum degree ∆ and let H be an induced
subgraph of G2. If H is d1-paintable, then G2 is d1-paintable. If there exists v with
dG2(v) < ∆2 − 1, then G2 is (∆2 − 1)-paintable.

Proof. We prove the first statement first. Let V = V (G) and V1 = V (H). Clearly a
graph is d1-paintable only if each component is. So we assume that G2[V1] is connected.
For simplicity, we assume also that G[V1] is connected. If not, then some vertex v has
neighbors in two or more components of G[V1]. We simply add v to V1, since we can color
v first (when it still has at least two uncolored neighbors).

Form G′ from G by contracting G[V1] to a single vertex r. Let T be a spanning tree
in G′ rooted at r. Let σ be an ordering of the vertices of G \H by nonincreasing distance
in T from r. Each time that Lister presents a list of vertices, Painter chooses a maximal
independent subset of them, by greedily adding vertices in order σ. Each vertex v ∈ V \V1

is followed in σ by the first two vertices on a path in T from v to r. Thus v will be colored.
We now combine strategies for G2 \H and H as in the proof of Lemma 1.

Now we prove the second statement, which has a similar proof. Suppose there exists v
with dG2(v) < ∆2 − 1. As before we order the vertices by nonincreasing distance in some
spanning tree T from v, and we put v and some neighbor u last in σ. The difference now
is that even for u and v we are given ∆2−1 colors. Since dG2(v) < ∆2−1, either (i) v lies
on a 3-cycle or 4-cycle or else (ii) dG(v) < ∆ or v has some neighbor u with dG(u) < ∆;
in Case (ii), by symmetry we assume dG(v) < ∆. In Case (i), dG2(u) 6 ∆2 − 1 for some
neighbor u of v on the short cycle and by assumption dG2(v) < ∆2 − 1; so the two final
vertices of σ are u and v. In Case (ii), we again have dG2(v) < ∆2−1 and dG2(u) 6 ∆2−1,
so again u and v are last in σ.

The previous lemma implies that ∆2 − 1 6 dG2(v) 6 ∆2 for every vertex v in a graph
G such that G2 is not (∆2−1)-paintable. A vertex v is high if dG2(v) = ∆2, and otherwise
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it is low. The proof of Lemma 2 proves something slightly more general, which we record
in the following corollary.

Corollary 3. Let G be a graph with maximum degree ∆ and let H be an induced subgraph
of G2. Let f(v) = d(v)−1 for each high vertex of G2 and f(v) = d(v) for each low vertex.
If H is f -paintable, then G2 is (∆2 − 1)-paintable.

Now we will introduce the Alon–Tarsi Theorem, but we need a few definitions first.
Let G be a graph and let ~D be a digraph arising by orienting the edges of G. A circulation
is a subgraph of ~D in which each vertex has equal indegree and outdegree; circulations
are also called eulerian subgraphs. The parity of a circulation is the parity of its number
of edges. For a digraph ~D, let EE( ~D) (resp. EO( ~D)) denote the set of circulations that
are even (resp. odd).

Theorem A (Alon and Tarsi [1]). For a digraph ~D, if |EE( ~D)| 6= |EO( ~D)|, then ~D is
f -choosable, where f(v) = 1 + d ~D(v) for all v.

The proof that Alon and Tarsi gave was algebraic and not constructive. In their pa-
per, they asked for a combinatorial proof. This was provided by Schauz [17], in the more
general setting of paintability. His proof relies on an elaborate inductive argument. The
argument does yield a constructive algorithm, although in general it may run in expo-
nential time. In [18], Schauz proved an online version of the combinatorial nullstellensatz
from which the paintability version of Alon and Tarsi’s theorem can also be derived.

Theorem B (Schauz [17]). For a digraph ~D, if |EE( ~D)| 6= |EO( ~D)|, then ~D is f -
paintable, where f(v) = 1 + d ~D(v) for all v.

Our main result relies heavily on forbidding d1-paintable subgraphs. For many of the
smaller d1-paintable graphs that we need, we give direct proofs. However, for some of
the larger d1-paintable graphs, particularly the classes of unbounded size, our proofs of
d1-paintability use Theorem B.

3 Proof of Main Theorem

In this section we prove our main result, subject to a number of lemmas on forbidden
subgraphs, which we defer to the next section. We typically prove that a subgraph is
forbidden by showing that it is d1-paintable. If a copy of a subgraph H in G2 contains low
vertices, then this configuration is reducible as long as H is f -paintable, where f(v) =
dH(v) − 1 for each high vertex v and f(w) = dH(w) for each low vertex w. For many of
the graphs, we give an explicit winning strategy for Painter. In contrast, for some of the
graphs, particularly those of unbounded size, we don’t give explicit winning strategies.
Instead, we show that they are d1-paintable via Schauz’s extension of the Alon–Tarsi
Theorem (Theorem B).

Main Theorem. If G is a connected graph with maximum degree ∆ > 3 and G is not
the Peterson graph, the Hoffman-Singleton graph, or a Moore graph with ∆ = 57, then
χp(G

2) 6 ∆2 − 1.
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Proof. Let G be a connected graph with maximum degree ∆ > 3, other than the graphs
excluded in the Main Theorem. Assume that G2 is not (∆2− 1)-paintable. By Lemma 2,
if there exists v ∈ V (G) with dG2(v) < ∆2 − 1, then G2 is (∆2 − 1)-paintable. So G is
∆-regular and has girth at least 4. Further, no vertex of G lies on two or more 4-cycles.
It will be helpful in what follows to show that ω(G2) 6 ∆2 − 1.

Clearly ∆(G2) 6 ∆2. Further, ω(G2) = ∆2 + 1 only if G2 = K∆2+1. Hoffman
and Singleton [12] showed this is possible only if ∆ ∈ {2, 3, 7, 57}; such a graph G is
called a Moore graph. When ∆ ∈ {2, 3, 7}, the unique realizations are the 5-cycle, the
Peterson graph, and the Hoffman-Singleton graph. When ∆ = 57, no realization is
known. These are precisely the graphs excluded from the theorem. Now we consider the
case ω(G2) = ∆2. Erdős, Fajtlowicz, and Hoffman [11] showed that the only graph H
such that H2 = K∆(H)2 is C4. Cranston and Kim noted that if H2 is not a clique on
at least ∆2 vertices, then in fact ω(H2) 6 ∆2 − 1. For completeness, we reproduce the
details.

Suppose that ω(G2) = ∆2, and let U be the vertices of a maximum clique in G2. The
result of Erdős, Fajtlowicz, and Hoffman implies that U is not all of V . Choose v, w ∈ V
with v ∈ U , w /∈ U and v adjacent to w. Since dG2(v) = ∆2 and w /∈ U , every neighbor of
w must be in U . Applying the same logic to these neighbors, every vertex within distance
2 of w must be in U . But now we can add w to U to get a larger clique in G2. This
contradiction implies that in fact ω(G2) 6 ∆2 − 1.

Two vertices are linked if they are adjacent in G2, and otherwise they are unlinked.
When we write that vertices are adjacent or nonadjacent, we mean in G; otherwise we
write linked or unlinked. We write v ↔ w if v and w are adjacent, and v 6↔ w otherwise.

Now we are ready to present the details of the proof. Before that, it is useful to give
a general outline. Our approach is to show that G2 must contain a forbidden induced
subgraph. Above, we noted that G must be ∆-regular and have girth at least 4. Now
we consider the possibilities for the girth of G, which we denote by g. Suppose g = 4.
For each vertex v on a 4-cycle, dG2(v) 6 ∆2 − 1. So it is straightforward to show that G
contains a forbidden subgraph.

When G has sufficiently high girth, the situation is also simpler than the general case.
Now we let U denote the vertices of a shortest cycle, as well as a few off-cycle neighbors.
Because the girth is high enough, we know that G2[U ] has only the edges guaranteed by
its definition. In other words, no pairs of vertices in U have edges in G2 due to common
neighbors outside of U ; if they did, then we could find a shorter cycle. This allows us
again to show that G2 contains a forbidden subgraph. Each of our forbidden subgraphs
contains an induced cycle in G, so the case of high girth is interesting, since we need to
show that an infinite family of subgraphs (with unbounded girth) are forbidden. It turns
out the the girth is sufficiently high for this approach to succeed when g > 9. This leaves
us with the cases g ∈ {5, 6, 7, 8}.

The case g = 6 is quite easy, since C2
6 is a forbidden subgraph. The cases g = 7 and

g = 8 are not hard, but involves some tedious details. So the real difficulty is in the case
g = 5. This makes sense, since the Moore graphs have girth 5. At some point, we must
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explicitly use our assumption that G is not a Moore graph. This argument requires some
detailed structural analysis of G. It is this structural analysis that makes up much of the
proof in this section. Most of the other possibilities for girth are deferred to lemmas that
we prove in the next section.

Case 1: G has girth 4
Let C be a 4-cycle with vertices v1, . . . , v4, and let C = V (C). It is helpful to note

that every vi is low. We need two lemmas. These were first proved in [8] for list coloring,
and we generalize them to online list coloring in Lemmas 5 and 6. The following two
configurations in G2 are reducible: (A) K4∨K2 where some vertex w ∈ V (K4) is low and
(B) K3 ∨K2 where some vertices w ∈ V (K3) and x ∈ V (K2) are both low.

Note that G2[C] ∼= K4. This implies that every w adjacent to some vi ∈ C must be
linked to all of C. Suppose not, and let w be adjacent to v1 and not linked to v3. Now
G2[C ∪ {w}] ∼= K3 ∨K2, and every vi is low; this is (B), which is forbidden. Now suppose
that w1 and w2 are vertices adjacent to vi and vj, respectively. We must have w1 linked
to w2, since otherwise G2[C ∪ {w1, w2}] is (A), which is forbidden.

Now let x be a vertex at distance 2 from v1 and not adjacent to any vi; let w1 be a
common neighbor of v1 and x. Since w1 is linked to v3, they have a common neighbor
w3. Now x is linked to v1, w1, and w3. To avoid configuration (B), x must be linked to
all of C. Thus, all vertices within distance 2 of v1 must be linked to all of C. Now every
pair of vertices x and y that are both within distance 2 of v1 must be linked; otherwise
G2[C ∪ {x, y}] is (A). So the vertices within distance 2 of v1 induce in G2 a clique of size
∆2, which contradicts that ω(G2) 6 ∆2 − 1.

Case 2: G has girth at least 5
Let g denote the girth of G. First suppose that g = 6, and let U be the vertices of a

6-cycle. Note that G2[U ] = C2
6 , since girth 6 implies there are no extra edges. Since C2

6

is d1-paintable, by Lemma 9, we are done by Lemma 2.
Suppose g = 7. Let U denote the vertices of some 7-cycle in G, with a pendant edge at

a single vertex of the cycle. Because G has girth 7, G2[U ] has only the edges guaranteed
by its definition. We show in Lemma 18 that G2[U ] is d1-paintable. So again, we are done
by Lemma 2.

Suppose instead that g > 8. Let U = {v1, . . . , vg, w1, w5} be the vertices of some
g-cycle in G together with pendant edges v1w1 and v5w5. If g > 9, then G2[U ] has only
the edges guaranteed by its definition. If g = 8, then G2[U ] has the edges guaranteed
by its definition as well as possibly the extra edge w1w5. For each girth g at least 8, we
show in Lemma 19 and Lemma 16 that G2[U ] is d1-paintable. So again, we are done by
Lemma 2.

Now we consider girth 5. Our approach is similar to that for girth 4, but we must
work harder since we don’t necessarily have any low vertices. Let C be a 5-cycle with
vertices v1, . . . , v5. Let k = ∆− 2. For each i, let Vi denote the neighbors of vi not on C.
Let C = V (C) and let D = ∪5

i=1Vi. Each vertex of D is linked to either 5, 4, or 3 vertices
of C. We call these B0-vertices, B1-vertices, and B2-vertices, respectively (a Bi-vertex is
unlinked to i vertices of C). We will consider four possibilities for the number and location
of each type of vertex. In each case we find a d1-paintable subgraph. Let L denote the
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subgraph G[D]. Since G has girth 5, we have ∆(L) 6 2. Each vertex w with dL(w) = 2−i
is a Bi-vertex (for i ∈ {0, 1, 2}).

Suppose that G has two B1-vertices w1 and w2 and they are unlinked with distinct
vertices in C. Let H = G2[C ∪ {w1, w2}]. If w1 and w2 are linked, then H = K3 ∨ C4 ⊃
K2 ∨ C4, which is d1-paintable, by Lemma 10. If instead w1 and w2 are unlinked, then
H = K3∨P4, which is also d1-paintable, by Lemma 11. So we assume that all B1-vertices
are unlinked with the same vertex v ∈ C. As a result, each B1-vertex is an endpoint of a
path of length 3 (mod 5) in L, for otherwise the two endpoints of the path are unlinked
with different vertices in C (here we use that G contains no 3-cycle and no 4-cycle). Since
the number of odd degree vertices in any graph is even, here the number of B1-vertices is
even.

Case 2.1: G has a B1-vertex w1 and a B2-vertex w2.
Let H = G2[C ∪ {w1, w2}]. Suppose the four vertices of C linked to w1 include the

three vertices of C linked to w2. If w1 and w2 are linked, then H = K3∨P4, and if w1 and
w2 are unlinked, then H = K3∨ (K1 +P3). In each case, H is d1-paintable, by Lemmas 11
and 12, respectively.

Suppose instead that the four vertices of C linked to w1 do not include all three vertices
of C linked to w2. If w1 is linked with w2, then H ⊃ K2 ∨ C4, which is d1-paintable by
Lemma 10. If w1 is unlinked with w2, then we will finish by Lemma 15, but we need a
little explanation first.

Since each B1-vertex is an endpoint of a path in L with length 3 (mod 5), if G has
any B1-vertices, then it has B1-vertices adjacent to two successive cycle vertices. So, if G
has a B1-vertex and a B2-vertex, then we may choose them so that their corresponding
cycle vertices are either identical or nonadjacent. If these cycle vertices are identical, then
the B2-vertex is linked with three cycle vertices contained among those linked with the
B1-vertex. So the situation is as in the first paragraph of Case 2.1. If these cycle vertices
are nonadjacent, then the situation is covered by Lemma 15, so H is again d1-paintable.
Thus, G2 cannot contain both B1-vertices and B2-vertices.

Case 2.2: G has no B1-vertices, but only some B2-vertices, and possibly
also B0-vertices.

Now L consists of disjoint cycles, each with length a multiple of 5. This implies that
each Vi contains the same number of B2-vertices; by assumption this number is at least 1.
We call a pair of B2 vertices with distinct cycle neighbors near if their cycle neighbors are
adjacent and far if their cycle neighbors are nonadjacent. If any pair of far B2-vertices
are linked, then G has a d1-paintable subgraph, by Lemma 13. If any pair of near B2-
vertices are linked, then, together with their adjacent cycle vertices, they induce K2 ∨C4,
which is d1-paintable by Lemma 10. Thus, we consider the subgraph induced by C and
3 non-successive B2-vertices, say with cycle neighbors v1, v2, v4. Each such subgraph is
d1-paintable, by Lemma 14.

Combining Cases 2.1 and 2.2, we conclude that G contains no B2-vertices.
Case 2.3: G has B1-vertices (and also B0-vertices).
Recall that G has an even number of B1-vertices and they are all unlinked with the

same vertex. By symmetry, assume that G has B1-vertices w2 ∈ V2 and w3 ∈ V3 and they
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are both unlinked with v5. We will find two disjoint pairs of nonadjacent vertices, such
that all four are linked with C − v5.

Since w3 is a B1-vertex, it is the endpoint of some path in L; let w1 ∈ V1 be the
neighbor of w3 on this path. We will show that w1 is unlinked with some vertex in D.

Recall that |D| = 5k. Suppose that w1 is linked to each vertex of D. Since dL(w1) = 2
and dL(w3) = 1, at most 3 of these 5k− 1 vertices linked with w1 can be reached from w1

by following edges in L. Clearly w1 is linked to the other k − 1 vertices of V1. Now for
each vertex w of the remaining (5k−1)−3− (k−1) = 4k−3 vertices in D, w1 must have
a common neighbor x with w and x /∈ D ∪ C. Furthermore, each such common neighbor
x can link u to at most 4 of these vertices (at most one in each other Vi, since the girth
is 5). However, this requires at least

⌈
4k−3

4

⌉
= k additional neighbors of w1, but we have

already accounted for 3 neighbors of w1. Thus, w1 is unlinked with some vertex y ∈ D.
Let z be a B1-vertex distinct from y, e.g., either w2 or w3 will do. Now z and v5 are

unlinked and w1 and y are unlinked. But every vertex of {w1, v5, y, z} is linked to C − v5.
Thus G2[(C−v5)∪{w1, v5, y, z}] = K4∨H, where H contains disjoint pairs of nonadjacent
vertices. So K4 ∨H is d1-paintable, by Lemma 7.

Case 2.4: D has only B0-vertices.
Let H = G2[C ∪ D]. We will show that if H is not a clique, then we can choose a

different 5-cycle and be in an earlier case. Suppose that H is not a clique. Since D is
linked to C and G2[C] = K5, we must have w1, w2 ∈ D with w1 and w2 unlinked. By
symmetry, we have only two cases.

First suppose that w1 ∈ V1 and w2 ∈ V2 and w1 and w2 are unlinked. Since w1 is a
B0-vertex, we have w3 ∈ V3 with w1 ↔ w3. Consider the 5-cycle w1v1v2v3w3. Now w2

is not linked to w1, which makes w2 not a B0-vertex for that 5-cycle. So we are in Case
2.1, 2.2, or 2.3 above. Now suppose instead that w1 ∈ V1 and w3 ∈ V3 and w1 and w3 are
unlinked. Now we pick some w′3 ∈ V3 with w1 ↔ w′3 and consider the 5-cycle w1v1v2v3w

′
3.

Since w3 and w1 are unlinked, w3 is not a B0-vertex for this 5-cycle, so we are in Case
2.1, 2.2, or 2.3 above. Hence G2[C ∪ D] must be a clique.

To link all vertices in D, we must have k(k − 1) additional vertices in G, at distance
2 from C; call the set of them F . We see that |F| > k(k − 1) as follows. All

(
5k
2

)
pairs

of vertices in D are linked. The 5
(
k
2

)
pairs contained within a common Vi are linked via

vertices of C. Each of the 5k vertices is linked with exactly 4 vertices via edges of L. The
remaining links all must be due to vertices of F , and each vertex of F can link at most(

5
2

)
= 10 pairs of vertices in D (at most one vertex in each Vi, since G has girth 5). Thus

|F| > (
(

5k
2

)
− 5

(
k
2

)
− 5k(4)/2)/

(
5
2

)
= k(k− 1). If any vertex x ∈ F has fewer than exactly

one neighbor in each Vi, then some pair of vertices in D will be unlinked. Thus, each
x ∈ F has exactly one neighbor in each Vi. This implies that F is linked to C, and hence
that |F| = k(k − 1). We will show that every pair of vertices in C ∪ D ∪ F is linked.

Suppose there exists w ∈ D and x ∈ F with w and x unlinked. By symmetry, we
assume w ∈ V1. There exist w1 ∈ V1 and w2 ∈ V2 with x↔ w1 and x↔ w2. Now consider
the 5-cycle xw1v1v2w2. Since w and x are unlinked, w is not a B0-vertex for that 5-cycle.
This puts us in Case 2.1, 2.2, or 2.3 above. So F must be linked to D.

Finally suppose there exist x1, x2 ∈ F with x1 and x2 unlinked. Now there exist
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w1, w2 ∈ V1 with x1 ↔ w1 and x2 ↔ w2. Since G has girth 5, we have x1 6↔ w2. And
since x1 is linked with w2, they have some common neighbor y ∈ D∪F . Now consider the
5-cycle x1w1v1w2y. Since x1 and x2 are unlinked, x2 is not a B0-vertex for this 5-cycle.
Hence, we are in Case 2.1, 2.2, or 2.3.

Thus, all vertices of C∪D∪F are pairwise linked. Now |C∪D∪F| = 5+5k+k(k−1) =
k2 + 4k+ 5 = (k+ 2)2 + 1 = ∆2 + 1. This contradicts that ω(G2) 6 ∆2− 1 and completes
the proof.

We note that many of the cases of the above proof actually prove that G2 is d1-
paintable (rather than only (∆(G)2− 1)-paintable), and hence has paint number at most
∆(G2)− 1. In particular, this is true when G has girth 6, 7, or at least 9. Probably with
more work, we could also adapt the proof to the case when G has girth 8. The Conjecture
that G2 is (∆(G2)− 1)-paintable unless ω(G2) > ∆(G2) is a special case of Conjecture 5.
The main obstacle to proving this stronger result is the case when G has girth at most 5,
particularly girth 3 or girth 4.

4 Proofs of forbidden subgraph lemmas

In what follows, we slightly abuse the terminology of high and low vertices defined earlier.
Now a vertex is high if its list size is one less than its degree and low if its list size equals
its degree. Note that if a vertex v is high (resp. low) in G by our old definition, then it
will be high (resp. low) in each induced subgraph H by our new definition. A vertex is
very low if its list size is greater than its degree. When a vertex v in a graph G is very
low, we may say that we delete v. If G − v is paintable from its lists, then so is G. On
each round, we play the game on G− v and consider v after all other vertices, coloring it
only if its list contained the color for that round and we have colored none of its neighbors
on that round. Recall that Sk denotes the vertices with lists containing color k. We write
Ek for the empty graph on k vertices, i.e., Ek = Kk. In what follows, all vertices not
specified to be low are assumed to be high.

4.1 Direct proofs

For pictures of the graphs in Lemmas 4 through 12, see Figures 6 and 6 in Section 5.

Lemma 4. If G is K4 − e with one degree 3 vertex high and the other vertices low, then
G is f -paintable.

Proof. Let v1, v2 denote the degree 3 vertices, with v1 low, and let w1, w2 denote the degree
2 vertices. If w1, w2 ∈ S1, then color them both with 1. Now the remaining vertices are
low and very low, so we can finish. Otherwise, color some vi with 1, choosing v2 if possible.
Now at least one wj becomes very low and the uncolored vk is low, so we can finish.

Lemma 5. If G is K3 ∨E2 with a low vertex in the K3 and a low vertex in the E2, then
G is f -paintable.
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Proof. Denote the vertices of the K3 by v1, v2, v3, with v1 low, and the vertices of E2 by
w1, w2, with w1 low. If w1, w2 ∈ S1, then color them both 1. Now v1 becomes very low
and v2 and v3 each become low, so we finish greedily, ending with v2 and v1. Suppose
w2 ∈ S1. If v2 ∈ S1 (or v3 ∈ S1, by symmetry), then color v2 with 1. Now w1 becomes
very low (since S1 6⊇ {w1, w2}), and v1 remains low, so we can finish greedily. If instead
v1 ∈ S1 and v2, v3 /∈ S1, then color v1 with 1. Again w1 becomes very low and v2 and v3

become low, so we can finish greedily. The situation is similar if S1 contains only a single
wi. Thus, w2 /∈ S1. Since S1 6= {w1}, some vi is in S1. Use color 1 on vi, choosing v2 or
v3 if possible. What remains is K4 − e with one degree 3 vertex high and all others low
(or very low). So we finish by Lemma 4.

Lemma 6. If G is K4 ∨ E2 with a low vertex in the K4, then G is f -paintable.

Proof. Denote the vertices of the K4 by v1, . . . , v4, with v1 low and the vertices of E2 by
w1, w2. If w1, w2 ∈ S1, then color them both 1. Now v1 becomes very low and the other
vi become low, so we can finish by coloring greedily, with v1 last. So S1 contains at most
one wi, say w2. Suppose S1 contains a vj other than v1. Color vj with 1. Now w1 becomes
low, v1 remains low, and the other vertices remain high. So we can finish the coloring
by Lemma 5. If the only vi in S1 is v1, then color it 1. Now the other vj become low,
so again we finish by Lemma 5. Finally, if the only vertex in S1 is w2, then color it 1.
Now v1 becomes very low, and the other vi become low, so again we can finish by coloring
greedily, ending with a low vertex and a very low vertex.

Lemma 7. If G is K4 ∨H with H containing two disjoint nonadjacent pairs, then G is
d1-paintable.

Proof. We may assume |H| = 4. Denote the vertices of K4 by v1, . . . , v4 and the vertices
of H by w1, . . . , w4 with w1 6↔ w2 and w3 6↔ w4. If w1, w2 ∈ S1, then color w1 and w2

with 1. Now every vi becomes low, so we can finish by Lemma 6. Similarly, if w3, w4 ∈ S1.
If some vi is missing from S1, then use 1 to color either some vj or some wk. In the

first case, we finish by Lemma 5 and in the second by Lemma 6. So color v4 with 1. Now,
by symmetry, w2, w4 /∈ S1, so they each become low. If w1, w2 ∈ S2, then color them both
with 2. Now every vi becomes low, so we can finish by Lemma 5. Similarly if w3, w4 ∈ S2.
So S2 contains at most one of w1, w2 and at most one of w3, w4. If S2 contains no vi, then
we color some wj with 2. This makes every vi low. Now we can finish by Lemma 5. So
S2 contains some vi, say v3.

Color v3 with 1. Recall that S1 was missing at least one of w1, w2 and at least one of
w3, w4. (i) If w2, w4 /∈ S2, then they both become very low, so we can delete them. This
in turn makes v1 and v2 both very low, so we can finish greedily. (ii) If w2, w3 /∈ S2, then
w2 becomes very low, so we delete it. Now v1 and v2 become low; also w3 and w4 are
low. Since v1, v2, w3, w4 induce K4 − e with all vertices low, we can finish by Lemma 4.
By symmetry, this handles the case w1, w4 /∈ S2. (iii) If w1, w3 /∈ S2, then the uncolored
vertices induce K2 ∨ H, with all vertices of H low. Now consider S3. If S3 contains a
nonadjacent pair in H, then color them both 3. This makes v1 and v2 low, so what remains
is K4 − e with all vertices low. We now finish by Lemma 4. Similarly, if S3 contains no
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vi, then color some wj with 3, and we can finish by Lemma 4. So S3 contains some vi,
say v2, and we color v2 with 3. Now one of w1, w2 becomes very low and one of w3, w4

becomes very low. We can delete the very low vertices, which in turn makes v1 very low.
We can now finish greedily, since what remains is a 3-vertex path with two low vertices
and a very low vertex.

We won’t use Lemma 8 in the proof, but it is generally useful so we record it here.

Lemma 8. If G is K6 ∨ E3, then G is d1-paintable.

Proof. Denote the vertices of K6 by v1, . . . , v6 and the vertices of E3 by w1, w2, w3. If
w1, w2, w3 ∈ S1, then color w1, w2, w3 all with 1. Now all vi are very low, so we finish
greedily. If no vi appears in S1, then color some wj with 1. Now all the vi are low, so we
can finish by Lemma 6. So some vi is in S1, say v6. Color v6 with 1. This makes some
wi low, say w3. Repeating this argument, we get by symmetry that v5 ∈ S2 and S2 is
missing some wj. If S2 is missing w3, then color v5 with 2. Now w3 becomes very low, so
we delete it. This in turn makes all uncolored vk low. Now we can finish by Lemma 6.
So instead S2 is missing (by symmetry) w2. Again repeating the argument, we must have
v4 ∈ S3 and w1 /∈ S3; otherwise we finish by Lemma 5 or Lemma 6. Now we color v4 with
3. What remains is K3 ∨ E3 with every wi low.

Now consider S4. If w1, w2, w3 ∈ S4, then color them all with 3. Now all remaining
vertices become very low, so we finish greedily. Suppose instead that w1 ∈ S4 and v1 /∈ S4.
Color w1 with 4. What remains is K3 ∨E2 with both wi low and some vj low. So we can
finish by Lemma 4. A similar approach works for any wi ∈ S4 and vj /∈ S4. So instead,
assume by symmetry that v1 ∈ S4 and w1 /∈ S4. Color v1 with 4. Now w1 becomes very
low, so we delete it. This in turn makes v2 and v3 low. Now we can finish by Lemma 4.

Lemma 9. If G is C2
6 , then G is d1-paintable.

Proof. Denote the vertices of the 6-cycle by v1, . . . , v6 in order. So vi is adjacent to all
but v(i+3) mod 6. Consider S1. If S1 contains some nonadjacent pair, then color them
with 1. What remains is C4 with all vertices low, so we can complete the coloring since
C4 is 2-paintable. So assume that S1 contains no nonadjacent pairs. Now without loss
of generality, we assume S1 = {v1, v2, v3}, since adding vertices to S1 only makes things
harder to color, as long as S1 induces a clique; we may also need to permute a nonadjacent
pair. Color v1 with 1.

Now v5 and v6 become low. Consider S2. Again, if S2 contains a nonadjacent pair,
then we color both vertices with 2 and can finish greedily since all remaining vertices are
low, except for one that is very low. If v2, v3 ∈ S2, then color v2 with 2. Now v6 becomes
very low and v5 remains low, so we can finish greedily. So S2 misses at least one of v2, v3.
Suppose v4 ∈ S2. Color v4 with 3. What remains is C4. If v2, v3 /∈ S2, then all vertices
are low, and we can finish since C4 is 2-paintable. Otherwise, v5 or v6 becomes very low
and the other remains low. Now we can finish greedily. So v4 /∈ S2. If v2 ∈ S2, then
color v2 with 2. Now v3 and v4 become low, so we can finish by Lemma 4. An analogous
argument works if v3 ∈ S2. So assume v2, v3, v4 /∈ S2. Now color v5 or v6 with 2. Again
we can finish by Lemma 4.
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Lemma 10. If G is K2 ∨ C4, then G is d1-paintable.

Proof. Denote the vertices of K2 by v1, v2 and the vertices of C4 by w1, . . . w4 in order.
If S1 contains a pair of nonadjacent vertices, then color them both 1. What remains is
K4 − e, with all vertices low. So we can finish by Lemma 4. So S1 misses at least one
of w1, w3 and at least one of w2, w4. By symmetry, say it misses w1 and w2. Suppose
v1, v2 /∈ S1. Now by symmetry w3 ∈ S1, so color w3 with 1. This makes each of w2, v1, v2

low. So what remains is K3 ∨E2 with two low vertices in the K3 and a low vertex in the
E2. Hence, we can finish by Lemma 5.

So instead (by symmetry) v2 ∈ S1. Color v2 with 1. What remains is K1 ∨C4 with w1

and w2 low. Consider S2. Again if S2 contains a nonadjacent pair, then we color them
both 2, and we can finish greedily. Suppose that w3 ∈ S2. If w4 /∈ S2, then we color
w3 with 4; now w4 becomes low, so we can finish by Lemma 4. If instead w4 ∈ S2, then
w2 /∈ S2. Now when we color w3 with 2, w2 becomes very low, so we can finish greedily.
So assume w3, w4 /∈ S2. If v1 ∈ S2, then color v1 with 1. What remains is C4 with all
vertices low. Now we can finish the coloring since C4 is 2-paintable. The proof is similar
to that for 2-choosability, so we omit it. So assume that v1 /∈ S2. By symmetry, we have
w1 ∈ S2. Color w1 with 2. What remains is K4 − e with only w3 high. Hence we can
finish by Lemma 4.

Lemma 11. If G K3 ∨ P4, then G is d1-paintable.

Proof. Let v1, v2, v3 denote the vertices of K3 and w1, . . . , w4 denote the vertices of the
P4 in order. If w1, w3 ∈ S1, then color them both 1. Now what remains is K3 ∨ E2 with
all but one vertex low, so we can finish by Lemma 5. An analagous strategy works if
w2, w4 ∈ S1. So assume S1 misses at least one of w1, w3 and at least one of w2, w4. If
S1 misses v1, then use color 1 on some wj, choosing w2 or w3 if possible. Again, we can
finish by Lemma 5. So assume v1 ∈ S1. Now color v3 with 1. What remains is K2 ∨ P4

with at least two vertices of the P4 low. Consider S2. If w1, w3 ∈ S2 (or (w2, w4 ∈ S2),
then color them both 2, and we can finish greedily since all vertices are low except for
one that is very low. If v2 ∈ S2, then color it with 2. Now in each case we can finish
by repeatedly deleting very low vertices, possibly using Lemma 4. So v2 /∈ S2 (and by
symmetry v3 /∈ S2). If possible use color 2 on w1 or w4. This leaves K3 ∨E2 with enough
low vertices to finish by Lemma 5. Finally, if w1, w4 /∈ S2, then by symmetry w2 ∈ S2, so
color s2 with 2. What remains contains a K4 − e with all vertices low, so we can finish
by Lemma 4.

Lemma 12. If G is K3 ∨ (K1 + P3), then G is d1-paintable.

Proof. Let v1, v2, v3 denote the vertices of K3; let w1, w2, w3 denote the vertices of P3 in
order, and let w4 be the K1. If w1, w3 ∈ S1, then color them both 1 and we can finish
by Lemma 5. If instead w2, w4 ∈ S1, then color them both 1, and again we can finish by
Lemma 5. If S1 = {w4}, then color w4 with 1. What remains is K3 ∨ P3 with all vertices
of the K3 low. Since K3 ∨ P3

∼= K4 ∨ E2, we can finish by Lemma 6. If w1 ∈ S1 (or
w2 ∈ S1 or w3 ∈ S1) and v3 /∈ S1, then color w1 with 1. Again we can finish by Lemma 5.
This implies that v3 ∈ S1.
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Since v3 ∈ S1, color v3 with 1. Now at least one of w1, w3 becomes low and at least
one of w2, w4 becomes low. What remains is K2 ∨ (K1 + P3), and by symmetry either (i)
w1 and w2 are low or (ii) w1 and w4 are low. Consider (i). If we ignore w4, then what
remains is K2∨P3

∼= K3∨E2. Since w1 and w2 are low, we can finish by Lemma 5. Instead
consider (ii). If w1, w3 ∈ S2, then color them both with 2. What remains is K4 − e and
all vertices are low, so we finish by Lemma 4. Suppose instead that w2, w4 ∈ S2. Color
them both with 2, which makes v1 and v2 low. If w1 became very low, then we finish
greedily. Otherwise w3 became low, so we finish by Lemma 4. Now suppose v1 ∈ S2, and
color v1 with 2. We have four possibilities. If w2 and w3 become low, then we can finish
by Lemma 4. Similarly, if w4 becomes very low, we delete it; now v2 becomes low, so we
can finish by Lemma 4. In the two remaining cases, we can finish greedily by repeatedly
deleting very low vertices.

4.2 Proofs via the Alon–Tarsi Theorem

Our goal in each of the next lemmas is to prove that a certain graph is d1-paintable.
Recall the definitions of EE and EO from Section 2, preceding Theorem A. For a digraph−→
D , we write diff(

−→
D) to denote |EE(

−→
D)| − |EO(

−→
D)|. In each case we find an orientation

−→
D such that each vertex has indegree at least 2 and diff(

−→
D) 6= 0. Now the Alon–Tarsi

Theorem, specifically the generalization in Theorem B, proves the graph is d1-paintable.

To compute diff(
−→
D), sometimes we simply calculate |EE(

−→
D)| and |EO(

−→
D)| and take

the difference. However, this it typically quite difficult if we are considering a set of

subgraphs of unbounded size. In that case we want to avoid calculating |EE(
−→
D)| and

|EO(
−→
D)| explicitly. Rather, we look for a parity-reversing bijection that pairs elements

of EE(
−→
D) with elements of EO(

−→
D). In computing diff(

−→
D), we can ignore all circulations

paired by such a bijection. We also use the following trick to reduce our work. We explain
it via an example, but it holds more generally.

Let
−→
D contain a 5-clique and two other vertices w1 and w2 such that for each v either

d+(v) 6 3 or d+(v) = 4 and w1, w2 ∈ N+(v). In computing diff(
−→
D), we want to restrict

the difference to the set of circulations in which d+(w1) > 1 and d+(w2) > 1; call this

diff ′(
−→
D). By inclusion-exclusion, we have diff ′(

−→
D) = diff(

−→
D)− diff(

−→
D − w1)− diff(

−→
D −

w2) + diff(
−→
D − w1 − w2). So it suffices to show that the final three terms on the right

side are 0. If any term were nonzero, then, by the Alon–Tarsi Theorem, we would be able
to color the corresponding subgraph from lists of size at most 4. However, the subgraph
contains a 5-clique, making this impossible. Thus, each term is 0, and we have the desired
equality. (In some cases we use a slight variation of this approach, instead concluding
that the induced subgraph H with diff(H) 6= 0 is d1-paintable.) Finally, we combine this
technique with the parity-reversing bijection mentioned above, by restricting the bijection
only to the set of circulations where d+(w1) > 1 and d+(w2) > 1.

For brevity, in this section our proofs of Lemmas 13, 14, 15, and 16 consist simply
of orientations in which each vertex has in-degree at least 2 and |EE| 6= |EO|. In each
case, we provide the sizes of EE and EO, which are easy to check with a computer
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Figure 3: (a) The orientation for Lemma 13 has |EE| = 57 and |EO| = 59.
(b) The orientation for Lemma 14 has |EE| = 105 and |EO| = 106.
(c) The orientation for Lemma 15 has |EE| = 63 and |EO| = 64.
(d) The orientation for Lemma 16 has |EE| = 299 and |EO| = 298.

program. (Ours is available at https://dl.dropboxusercontent.com/u/8609833/Web/
WebGraphs/WebGraphsTestPage.html.) For the curious reader, in the appendix we pro-
vide hand checkable proofs of these lemmas.

Lemma 13. Let H be a 5-cycle v1, . . . , v5 with pendant edges at v2 and v4, leading to
vertices w2 and w4, respectively, and let w2 and w4 have a common neighbor x (off the
cycle). Let G = H2 − x; now G is d1-paintable.

Proof. The orientation
−→
D shown in Figure 3(a) has |EE(

−→
D)| = 57 and |EO(

−→
D)| = 59.

Hence, the Alon–Tarsi Theorem implies that the graph is d1-paintable.

Lemma 14. Let H be a 5-cycle v1, . . . , v5 with pendant edges at v2, v4, and v5, leading
to vertices w2, w4, and w5, respectively. Let G = H2; now G is d1-paintable.
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Proof. The orientation
−→
D shown in Figure 3(b) has |EE(

−→
D)| = 105 and |EO(

−→
D)| = 106.

Hence, the Alon–Tarsi Theorem implies that the graph is d1-paintable.

Lemma 15. Let H be a 5-cycle v1, . . . , v5 with pendant edges at v2 and v5, leading to
vertices w2 and w5, respectively, and let w5 and v3 have a common neighbor x (off the
cycle). Let G = H2 − x; now G is d1-paintable.

Proof. The orientation
−→
D shown in Figure 3(c) has |EE(

−→
D)| = 63 and |EO(

−→
D)| = 64.

Hence, the Alon–Tarsi Theorem implies that the graph is d1-paintable.

Lemma 16. 8-cycle + two pendant edges + extra edge: Let J8 consist of an 8-cycle on
vertices v1, . . . , v8 (in clockwise order) with pendant edges at v1 and v5 leading to vertices

w1 and w5. Form
−→
D 8 by squaring J8, adding the edge w1w5 and orienting the edges as

follows. Orient edges vivi+1 and vivi+2 away from vi (with subscripts modulo 8). Orient
w1v8 away from w1 and v1w1 and v2w1 toward w1; similarly, orient w5v4 away from
w5 and v5w5 and v6w5 toward w5. Finally, orient w5w1 toward w1. We will show that

diff(
−→
D8) 6= 0 (or else diff(

−→
D8 \B) 6= 0 for some subset B ⊆ {w1, w5}).

Proof. The orientation
−→
D shown in Figure 3(d) has |EE(

−→
D)| = 299 and |EO(

−→
D)| = 298.

Hence, the Alon–Tarsi Theorem implies that the graph is d1-paintable.

Form
−→
Pn from (Pn)2 by orienting all edges from left to right. Number the vertices

as v1, . . . , vn from left to right. A subgraph
−→
T ⊆

−→
Pn is weakly eulerian if each vertex

w /∈ {v1, vn} satisfies d+(w) = d−(w) and d+(v1) = d−(vn) = i for some i ∈ {1, 2}. Let

EEi(
−→
Pn) (resp. EOi(

−→
Pn)) denote the set of even (resp. odd) weakly eulerian subgraphs

where d+(v1) = d−(vn) = i. Finally, let fi(n) = |EEi(
−→
Pn)|− |EOi(

−→
Pn)|. We will not apply

the following lemma directly to find d1-paintable subgraphs. However, it will be helpful in
the proofs for some of the remaining d1-paintable graphs, specifically those that include
cycles of arbitrary length.

Lemma 17. If n = 3k + j for some positive integer k and j ∈ {−1, 0, 1}, then f1(n) = j
and for n > 4 also f2(n) = −f1(n− 2), with fi(n) as defined above.

Proof. Rather than directly counting weakly eulerian subgraphs, we again use a parity-
reversing bijection. We first prove that f2(n) = −f1(n − 2). The complement of each
−→
D ∈ EE2(

−→
Pn) ∪ EO2(

−→
Pn) has d+(v2) = d−(vn−1) = 1 and d+(w) = d−(w) for each

w /∈ {v1, v2, vn−1, vn} (and d+(v1) = d−(vn) = d−(v2) = d+(vn−1) = 0). Since
−→
Pn has

2n− 3 edges, each digraph has parity opposite its complement; so f2(n) = −f1(n− 2).

Now we determine f1(n). Let
−→
T be a weakly eulerian subgraph with d+(v1) = 1.

Consider the directed paths v1v3 and v1v2, v2v3. If
−→
T contains all of one path and none of

the other, then we can pair
−→
T with its complement, which has opposite parity. If neither

of these cases holds, then we must have v1v2, v2v4 ∈
−→
T and v1v3, v2v3 /∈

−→
T . This yields

f1(n) = f1(n−3). It remains only to check that f1(2) = −1, f1(3) = 0, and f1(4) = 1.
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v1

v2v7

v3v6

v4

u

v5

Figure 4: The orientation for Lemma 18 with n = 7.

Lemma 18. Cycle + one pendant edge: Let Jn consist of an n-cycle on vertices v1, . . . , vn
(in clockwise order) with a pendant edge at v1 leading to vertex u. Form

−→
Dn by squaring

Jn and orienting the edges as follows. Orient edges vivi+1 and vivi+2 away from vi (with
subscripts modulo n). Orient uvn away from u and v1u and v2u toward u. We will show

that diff(
−→
Dn) 6= 0 when n 6≡ 2 mod 3 (or else diff(

−→
Dn − u) 6= 0).

Proof. Form
−→
Dn as in the lemma. We will show that diff(

−→
Dn) 6= 0, and thus J2

n is d1-

paintable. We may assume that diff(
−−−−→
Dn − u) = 0, for otherwise

−−−−→
Dn − u is d1-paintable.

Thus, restricting our count to the set A of circulations with d+(u) = 1 does not affect the

difference. Let
−→
T be a circulation in A. Consider the directed paths v1u and v1v2, v2u.

If
−→
T contains all edges of one path and none of the other, then we can pair

−→
T via a

parity-reversing bijection. So we assume we are not in one of those cases. Clearly
−→
T

contains −→uvn and exactly one of v1u and v2u. Thus either (i) v2u ∈
−→
T and v1u, v1v2 /∈

−→
T

or (ii) v1u, v1v2 ∈
−→
T and v2u /∈

−→
T .

Case (i): v2u ∈
−→
T and v1u, v1v2 /∈

−→
T . Since v2u ∈

−→
T and v1v2 /∈

−→
T , we must

have vnv2 ∈
−→
T and v2v3, v2v4 /∈

−→
T . By removing edges uvn, vnv2, v2u, we see that these

circulations are in bijection with the circulations in
−→
Dn − u− v2 (with the parity of each

subgraph reversed). If we exclude the empty graph, these circulations are in bijection
with those counted by f1(n − 1), since d+(v1) = 1 and d−(v3) = 1. Adding 1 for the
empty subgraph, this difference is 1− f1(n− 1), and when we account for removing edges
uvn, vnv2, v2u, the difference is −1 + f1(n− 1).

Case (ii): v1u, v1v2 ∈
−→
T and v2u /∈

−→
T . Since v1u, v1v2 ∈

−→
T , we have vn−1v1, vnv1 ∈

−→
T

and v1v3 /∈
−→
T . After removing edges vnv1, v1u, uvn, we see that these circulations are in

bijection with the circulations in
−→
Dn−u−vnv1−v1v3 that contain edges vn−1v1 and v1v2.

We will count the difference of these even and odd circulations, then multiply the total
by −1 (to account for removing edges v1u, uvn, vnv1) before adding to the total above.
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We consider two subcases: vnv2 /∈
−→
T and vnv2 ∈

−→
T . In the first case, these circulations

are in bijection with circulations of
−→
Dn−1 − u − v1 (since d+(vn) = 0 and v1 may be

suppressed). This difference is counted by f1(n − 2). In the second case, the difference
is counted by −f2(n), since we may think of deleting v1v2 and replacing vnv2 with vnv1;
our path now starts at v2 and runs through vn to v1 (and the parity is changed when
accounting for v1v2).

Thus, the total difference in Case (ii) is counted by f1(n− 2)− f2(n). Thus, the total
difference overall is counted by−1+f1(n−1)−f1(n−2)+f2(n) = −1+f1(n−1)−2f1(n−2).
Substituting values from Lemma 17 shows that this expression is non-zero when n 6≡
2 mod 3.

v1

v8 v2

v7 v3

v6 v4

w1

w5

v5

Figure 5: The orientation for Lemma 19 with n = 8.

Lemma 19. Cycle + two pendant edges: For n > 7, let Jn consist of an n-cycle on
vertices v1, . . . , vn (in clockwise order) with pendant edges at v1 and v5 leading to vertices

w1 and w5. Form
−→
Dn by squaring Jn and orienting the edges as follows. Orient edges

vivi+1 and vivi+2 away from vi (with subscripts modulo n). Orient w1vn away from w1

and v1w1 and v2w1 toward w1; similarly, orient w5v4 away from w5 and v5w5 and v6w5

toward w5. We will show that diff(
−→
Dn) 6= 0 (or else diff(

−→
Dn \ B) 6= 0 for some subset

B ⊆ {w1, w5}).

Proof. Form
−→
Dn as in the lemma. We will show that diff(

−→
Dn) 6= 0, and thus J2

n is d1-

paintable. For each nonempty B ⊆ {w1, w5}, we may assume that diff(
−→
Dn \ B) = 0, for

otherwise
−→
Dn \B is d1-paintable. Thus, restricting our count to the set A of circulations

with d+(w1) = 1 and d+(w5) = 1 does not affect the difference.
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Let
−→
T be a circulation in A. Clearly

−→
T contains −−→w1vn and exactly one of −−→v1w1 and

−−→v2w1. Consider the directed paths v1w1 and v1v2, v2w1. If
−→
T contains all edges of one

path and none of the other, then we can pair
−→
T via a parity-reversing bijection. So we

assume we are not in one of those cases. Thus either (i) v2w1 ∈
−→
T and v1w1, v1v2 /∈

−→
T or

(ii) v1w1, v1v2 ∈
−→
T and v2w1 /∈

−→
T .

Now we consider the directed paths v5w5 and v5v6, v6w5. Among those circulations,

within Cases (i) and (ii), where
−→
T contains all of one path and none of the other we again

pair
−→
T via a parity-reversing bijection, by removing the edges of one path and adding the

edges of the other. Thus, we need only consider two subcases in each case: (1) v6w5 ∈
−→
T

and v5w5, v5v6 /∈
−→
T and (2) v5w5, v5v6 ∈

−→
T and v6w5 /∈

−→
T .

Case (i.1): v2w1 ∈
−→
T and v1w1, v1v2 /∈

−→
T and also v6w5 ∈

−→
T and v5w5, v5v6 /∈

−→
T .

Since v2w1 ∈
−→
T , we must have vnv2 ∈

−→
T and also v2v3, v2v4 6∈

−→
T . Similarly, since

v6w5 ∈
−→
T , we must have v4v6 ∈

−→
T and also v6v7, v6v8 6∈

−→
T . Since both triangles w1vnv2

and v4v6w5 must be included in every circulation under consideration, we may remove
w1, v2, w5, v6 without changing the total difference. Now any non-empty circulation must
contain both v1v3 and v5v7. But we have a parity reversing bijection between those
circulations containing v3v5 and those containing v3v4, v4v5, so for non-empty circulations
the difference is zero. Thus after adding in the empty circulation, we see that the total
difference is 1 for this case.

Case (i.2): v2w1 ∈
−→
T and v1w1, v1v2 /∈

−→
T and also v5w5, v5v6 ∈

−→
T and v6w5 /∈

−→
T .

Since v2w1 ∈
−→
T , we must have vnv2 ∈

−→
T and hence v2v3, v2v4 6∈

−→
T . Since the triangle

w1vnv2 must be included in every circulation under consideration, we may remove w1, v2 at

the cost of negating the difference. Since v5w5, v5v6 ∈
−→
T , we must have w5v4, v3v5, v4v5 ∈−→

T and v5v7 6∈
−→
T . But then v3v4 6∈

−→
T and hence v4v6 6∈

−→
T . Now we may remove w5

and v4 at the cost of negating the difference again. Now removing v3 and v5 we lose
three edges that must be in every circulation and the resulting difference is counted by
f1(n− 4); the paths run from v6 through vn to v1. Hence this case contributes −f1(n− 4)
to the difference.

Case (ii.1): v1w1, v1v2 ∈
−→
T and v2w1 /∈

−→
T and also v6w5 ∈

−→
T and v5w5, v5v6 /∈

−→
T .

Since v1w1, v1v2 ∈
−→
T , we get vnv1, vn−1v1 ∈

−→
T . Since v6w5 ∈

−→
T and v5v6 /∈

−→
T , we get

v4v5 ∈
−→
T and v6v7, v6v8 /∈

−→
T . Since we have vn−1v1 ∈

−→
T , we must also have v5v7 ∈

−→
T .

Since v6v7, v6v8 /∈
−→
T and v5v7 ∈

−→
T , we get d+(v2) = 1. This also implies d+(vn−1) = 1.

Now when n > 9 our difference is counted by −f1(3)f1(n − 7). Here f1(3) accounts for
the edges of the path from v2 to v5 and f1(n− 7) accounts for the edges of the path from
v7 to vn−1 (and the −1 accounts for the 9 edges that are present but not on either of these
paths). Since f1(3) = 1, the total for this case is −f1(n − 7). When n = 8 the total is
−f1(3) = −1 and when n = 7 the total is 0, since vn−1 = v6. Now by Lemma 17, together
with checking the cases n = 7 and n = 8, we get that this case is counted by −f1(n− 4).

Case (ii.2): v1w1, v1v2 ∈
−→
T and v2w1 /∈

−→
T and also v5w5, v5v6 ∈

−→
T and v6w5 /∈

−→
T . Since v1w1, v1v2 ∈

−→
T , we must have w1vn, vnv1, vn−1v1 ∈

−→
T and v1v3 6∈

−→
T . Since

v5w5, v5v6 ∈
−→
T , we must have w5v4, v3v5, v4v5 ∈

−→
T and v5v7 6∈

−→
T . Suppose vnv2 /∈

−→
T .
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Now v2v4 /∈
−→
T , so d+(v4) = 1. Now our problem reduces to computing −f1(n − 6); the

f(n − 6) accounts for the edges on the path from v6 to vn−1 and the −1 accounts for

the 11 other edges that are present. Suppose instead that vnv2 ∈
−→
T . Now our problem

reduces to computing f2(n − 4), accounting for the edges on the two paths from to v1

(after replacing vnv2 by vvv1) and the 12 edges present but not on these paths.
So, combining the contributions from all cases we get that the difference is 1− f1(n−

4)−f1(n−4)−f1(n−6)+f2(n−4). By Lemma 17 this is 1−2(f1(n−4)+f1(n−6)) 6= 0
when n > 8. When n = 7 the difference is 1− 2f1(3)− 1 + f2(3) = −1.

For n > 4, a subgraph
−→
T ⊆

−→
Pn is extra weakly eulerian if each w /∈ {v1, v2, vn−1,vn}

satisfies d+(w) = d−(w), d+(v1) = d−(vn) = 1, d+(v2) = d−(v2) + 1 and d−(vn−1) =

d+(vn−1) + 1 Let EE∗(
−→
Pn) (resp. EO∗(

−→
Pn)) denote the set of even (resp. odd) extra

weakly eulerian subgraphs. Finally, let g(n) = |EE∗(
−→
Pn)| − |EO∗(

−→
Pn)|. Lemma 20 is

analogous to Lemma 17, but for extra weakly eulerian subgraphs.

Lemma 20. If n = 3k+j > 4 for a positive integer k and j ∈ {−1, 0, 1}, then g(n) = −j.

Proof. Let
−→
T ⊆

−→
Pn be extra weakly eulerian. Consider the directed paths v1v3 and

v1v2, v2v3. If
−→
T contains all of one path but none of the other, then we can pair

−→
T with

its complement which has opposite parity. If neither of these cases holds, then we must

have either v1v3, v2v3 ∈
−→
T and v1v2 /∈

−→
T or v1v2 ∈

−→
T and v1v3, v2v3 /∈

−→
T . The latter case

is impossible, so suppose we have v1v3, v2v3 ∈
−→
T and v1v2 /∈

−→
T . Then v3v4, v3v5 ∈

−→
T

and v2v4 /∈
−→
T . Hence the difference is counted by g(n− 3). It remains only to check that

g(4) = −1, g(5) = 1 and g(6) = 0.

5 Generalizing to Alon–Tarsi number

Excepting the direct proofs of paintability in Section 4.1, we have actually proved that
all the excluded subgraphs have a good Alon–Tarsi orientation. This suggests that the
main theorem might hold more generally for the Alon–Tarsi number AT(G)—the least k

for which G has an orientation ~D with ∆+( ~D) 6 k − 1 and EE( ~D) 6= EO( ~D). Here we
show that this is indeed the case.

Main Theorem for AT. If G is a connected graph with maximum degree ∆ > 3 and G
is not the Peterson graph, the Hoffman-Singleton graph, or a Moore graph with ∆ = 57,
then AT(G2) 6 ∆2 − 1.

The proof is identical to the paintability proof except that we need to replace all the
auxiliary lemmas with their AT counterparts. We first consider the two subgraph lemmas,
which are actually easier to prove in the AT context.

Lemma 21. Let G be a graph with maximum degree ∆ and H be an induced subgraph of
G that is d1-AT. If G \H is (∆− 1)-AT, then G is (∆− 1)-AT.
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Proof. Let G and H satisfy the hypotheses. Take an orientation of G \H demonstrating
that it is (∆− 1)-AT and an orientation of H demonstrating that it is d1-AT. Orient all

edges between H and G \ H into G \ H. Call the resulting oriented graph ~D. Now ~D
satisfies the outdegree requirements to be (∆−1)-AT, since the outdegree of each vertex in
G \H is unchanged and the outdegree of each v ∈ V (H) has increased by dG(v)− dH(v).

Since no directed cycle in D has vertices in both H and ~D \ H, the circulations of ~D

are just all pairings of circulations of H and ~D \ H. Therefore EE( ~D) − EO( ~D) =

EE(H)EE( ~D \H) +EO(H)EO( ~D \H)− (EE(H)EO( ~D \H) +EO(H)EE( ~D \H)) =

(EE(H)− EO(H))(EE( ~D \H)− EO( ~D \H)) 6= 0. Hence G is (∆− 1)-AT.

Lemma 22. Let G be a graph with maximum degree ∆ and let H be an induced subgraph
of G2. If H is d1-AT, then G2 is d1-AT. If there exists v with dG2(v) < ∆2 − 1, then G2

is (∆2 − 1)-AT.

Proof. We prove the first statement first. Form G′ from G by contracting V (H) to a single
vertex r. Let T be a spanning tree in G′ rooted at r. Let σ be an ordering of the vertices
of G \H by nonincreasing distance in T from r. Take an orientation of H demonstrating
that it is d1-AT; direct all edges between H and G \ H towards G \ H and direct all
other edges of G2 toward the vertex that comes earlier in σ. Call the resulting oriented
graph ~D. By construction, all circulations in ~D are contained in H, so EE( ~D) 6= EO( ~D).

Clearly, every vertex in ~D has indegree at least two and hence G2 is d1-AT.
Now we prove the second statement, which has a similar proof. Suppose there exists

v with dG2(v) < ∆2 − 1. As before we order the vertices by nonincreasing distance
in some spanning tree T from v, and we put v and some neighbor u last in σ. Since
dG2(v) < ∆2 − 1, either (i) v lies on a 3-cycle or 4-cycle or else (ii) dG(v) < ∆ or v has
some neighbor u with dG(u) < ∆; in Case (ii), by symmetry we assume dG(v) < ∆. In
Case (i), dG2(u) 6 ∆2− 1 for some neighbor u of v on the short cycle and by assumption
dG2(v) < ∆2 − 1; so the two final vertices of σ are u and v. In Case (ii), we again have
dG2(v) < ∆2 − 1 and dG2(u) 6 ∆2 − 1, so again u and v are last in σ.

The proof of Lemma 22 proves something slightly more general.

Corollary 23. Let G be a graph with maximum degree ∆ and let H be an induced subgraph
of G2. Let f(v) = d(v)−1 for each high vertex of G2 and f(v) = d(v) for each low vertex.
If H is f -AT, then G2 is (∆2 − 1)-AT.

Now each of Lemmas 13–19 was already proved for AT . It remains to prove the
lemmas in Section 4.1 for AT . We do this by exhibiting in Figure 6 a good Alon–Tarsi
orientation for each. For brevity, we do not prove that the counts differ; instead we give
the actual even/odd circulation counts for the reader to check at her leisure. Each vertex
is labeled with its indegree for easy checking. Note that three of the cases in Lemma 7 are
handled by Lemmas 10, 11, and 12 (none of which depend on Lemma 7). We conclude by
generalizing the conjectures we mentioned in the introduction to the Alon–Tarsi number.

Conjecture 6 (Borodin-Kostochka Conjecture (Alon–Tarsi version)). If G is a graph
with ∆ > 9 and ω 6 ∆− 1, then AT(G) 6 ∆− 1.
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Figure 6: Good orientations for the AT versions of Lemmas 4–12.
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A Proofs of Reducibility, without Computers

In Section 4.2, our proofs of Lemmas 13, 14, 15, and 16 consisted of simply providing
orientations for which |EE| and |EO| differ. Here we give hand-checkable proofs.

v1 v2

v3v5

v4

w2

w4

Figure 7: The orientation for Lemma 13.

Lemma 13. Let H be a 5-cycle v1, . . . , v5 with pendant edges at v2 and v4, leading to
vertices w2 and w4, respectively, and let w2 and w4 have a common neighbor x (off the
cycle). Let G = H2 − x; now G is d1-paintable.

Proof. Orient G to form
−→
D with these out-neighborhoods: N+(v1) = {v2, v3}, N+(w2) =

{v1, w4}, N+(v2) = {w2, v4, v5}, N+(v3) = {v2, w2, w4, v5}, N+(w4) = {v4, v5}, N+(v4) =
{v1, v3, v5}, N+(v5) = {v1}. See Figure 7.

We will show that diff(
−→
D) 6= 0. Since each vertex has at least two in-edges, this proves

that G is d1-paintable. Let R = {v3w2, v3w4}. For any nonempty subset S of R, we must

have diff(
−→
D \ R) = 0. This is because each vertex on the 5-cycle has outdegree at most

3, so will get a list of size at most 4. And clearly, we cannot always color K5 from lists
of size at most 4. Thus, it suffices to count the difference, when restricted to the set A of

circulations
−→
T such that v3w2, v3w4 ∈

−→
T .

Let
−→
T be such a circulation. Note that v3v2, v3v5 /∈

−→
T , and thus v1v3, v4v3 ∈

−→
T .

Now we consider the 8 possible subsets of {w4v4, w4v5, v4v5} in
−→
T . Clearly d+(w4) > 1

and d−(v5) 6 1. Also, we can pair the case w4v4, v4v5 ∈
−→
T and w4v5 /∈

−→
T with the

case coming from its complement. Thus, we can restrict to the case when w4v4 ∈
−→
T

and v4v5 /∈
−→
T (and we’re not specifying whether w4v5 is in or out). Now consider the

directed triangle v1v2, v2v4, v4v1. We can pair the cases when all or none of these edges

are in
−→
T . Thus we may assume that either exactly 1 or exactly 2 of these edges are

in. Considering indegree and outdegree of v2 shows that we must have v1v2 ∈
−→
T and

v2v4, v4v1 /∈
−→
T . This implies w2v1, v5v1 ∈

−→
T . Now we have two ways to complete

−→
T . We
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can have v2w2, w2w4, w4v5 ∈
−→
T and v2v4 /∈

−→
T or vice versa. Each of these gives |E(

−→
T )|

odd; thus, we get |diff(D)| = 2.

v1 v2

v3v5

v4

w2

w4

w5

Figure 8: The orientation for Lemma 14.

Lemma 14. Let H be a 5-cycle v1, . . . , v5 with pendant edges at v2, v4, and v5, leading
to vertices w2, w4, and w5, respectively. Let G = H2; now G is d1-paintable.

Proof. We orient G to form
−→
D with these out-neighborhoods: N+(v1) = {v2, w2, v5, w5},

N+(v2) = {w2, v3, v5}, N+(w2) = {v3}, N+(v3) = {v1, v4}, N+(v4) = {v1, v2, w4},
N+(w4) = {v3}, N+(v5) = {v3, v4, w4, w5}, N+(w5) = {v4}. See Figure 8.

We will show that diff(
−→
D) 6= 0. Since each vertex has at least two in-edges, this

proves that G is d1-paintable. If diff(
−→
D − w2) 6= 0, then we are done, since

−→
D − w2 is

d1-paintable. Thus, we can assume that diff(
−→
D −w2) = 0. Similarly, we can assume that

diff(
−→
D \S) = 0 for every S ⊆ {w2, w4, w5}. Thus, it suffices to count the difference, when

restricted to the set A of circulations such that d+(w2) = 1, d+(w4) = 1, and d+(w5) = 1.

Let
−→
T be such a circulation. So w2v3, w4v3, w5v4 ∈

−→
T . Now d+(v3) = 2, so v3v1, v3v4 ∈

−→
T

and v2v3, v5v3 /∈
−→
T . In particular, d−(v1) > 1, so d+(v1) > 1.

Now we will pair some circulations in A via a parity-reversing bijection. Consider the
paths v1w2 and v1v2, v2w2. If a circulation contains all edges in one path and none in
the other, then we can pair it via a bijection. The same is true for the paths v1w5 and

v1v5, v5w5. Since 1 6 d+(v1) 6 2, and also d−(w2) = d−(w5) = 1, the only way that
−→
T

can avoid these cases is if either (i) v1v2, v1w2 ∈
−→
T or (ii) v1v5, v1w5 ∈

−→
T . Before we

consider these cases, note that in each case v4v1 ∈
−→
T .

Case (i): Now we must have v1w5, v1v5 /∈
−→
T . Note that v2w2 /∈

−→
T , which implies

v4v2 /∈
−→
T . Also v2v5 ∈

−→
T . Further, d−(w5) = 1 implies v5w5 ∈

−→
T , which in turn yields
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v5v4, v5w4 /∈
−→
T . Finally, v4w4 ∈

−→
T . Thus, we have a unique

−→
T (with an odd number of

edges).

Case (ii): Now we must have v1w2, v1v2 /∈
−→
T and also v5w5 /∈

−→
T . Note that v2w2 ∈

−→
T ,

which implies that v4v2 ∈
−→
T and also that v2v5 /∈

−→
T . Now we get that either (a) v5v4 ∈

−→
T ,

and thus v4w4 ∈
−→
T and v5w4 /∈

−→
T or else (b) v5w4 ∈

−→
T and v5v4, v4w4 /∈

−→
T . Again, by

a parity-reversing bijection, we see that together these circulations contribute nothing to
diff(A) (in fact there is only one of each). Now combining Cases (i) and (ii), we get that

|diff(A)| = 1, and in fact |diff(
−→
D)| = 1. Thus, G is d1-paintable.

v1 v2

v3v5

v4

w2

w5

Figure 9: The orientation for Lemma 15.

Lemma 15. Let H be a 5-cycle v1, . . . , v5 with pendant edges at v2 and v5, leading to
vertices w2 and w5, respectively, and let w5 and v3 have a common neighbor x (off the
cycle). Let G = H2 − x; now G is d1-paintable.

Proof. We orient G to form
−→
D with these out-neighborhoods: N+(v1) = {v2, w2, v5, w5},

N+(v2) = {w2, v4, v5}, N+(w2) = {v3}, N+(v3) = {v1, v2, w5}, N+(v4) = {v1, v3, v5},
N+(v5) = {v3}, N+(w5) = {v4, v5}. See Figure 9.

We will show that diff(
−→
D) 6= 0. Since each vertex has at least two in-edges, this

proves that G is d1-paintable. Note that for each nonempty subset S ⊆ {w2, w5}, we have

diff(
−→
D \S) = 0, since otherwise we can color the corresponding subgraph from lists of size

4, even though it contains a 5-clique. So by inclusion-exclusion, we can restrict our count
of diff to the set of circulations A where w2 and w5 each have positive indegree. Consider

the paths v1w2 and v1v2, v2w2. Let
−→
T be a circulation in A. If T contains all edges of one

path and none of the other, then we can pair it via a parity-reversing bijection. So we
assume we are not in these situations. Since w2 has positive indegree, and hence indegree

1, we either have (i) v1w2, v1v2 ∈
−→
T and v2w2 /∈

−→
T or (ii) v2w2 ∈

−→
T and v1w2, v1v2 /∈

−→
T .

Case (i): v1w2, v1v2 ∈
−→
T and v2w2 /∈

−→
T . Clearly w2v3 ∈

−→
T . Since d+(v1) = 2, we have

v3v1, v4v1 ∈
−→
T and v1v5, v1w5 /∈

−→
T . Suppose v3v2 ∈

−→
T . Now also v2v4, v2v5, v5v3 ∈

−→
T .

Finally, since w5 has positive indegree, v3w5, w5v4, v4v3 ∈
−→
T . The resulting circulation is
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even. Suppose instead that v3v2 /∈
−→
T . If v2v5 ∈

−→
T , then we get v5v3, v3w5, w5v4 ∈

−→
T .

The resulting circulation is odd. If instead v2v5 /∈
−→
T and v2v4 ∈

−→
T , then we have three

possibilities to ensure d+(w5) > 0. Either v3w5, w5v4, v4v5, v5v3 ∈
−→
T or v3w5, w5v4, v4v3 ∈−→

T or v3w5, w5v5, v5v3 ∈
−→
T . Two of the resulting circulations are odd and one is even.

Thus in total for Case (i), we have one more odd circulation than even.

Case (ii): v2w2 ∈
−→
T and v1w2, v1v2 /∈

−→
T . We have v2w2 ∈

−→
T , which implies w2v3 ∈

−→
T

and v3v2 ∈
−→
T . This further yields v2v4, v2v5 /∈

−→
T . Again we will pair some of the

circulations in A via a parity-reversing bijection. Consider the paths v3w5 and v3v1, v1w5.
If a circulation contains all edges in one path and none in the other, then we can pair it

via a bijection. Since 1 6 d−(w5), the only way that
−→
T can avoid these cases is if either

(a) v1w5 ∈
−→
T and v3v1 /∈

−→
T or (b) v3v1 ∈

−→
T and v1w5 /∈

−→
T (and thus v3w5 ∈

−→
T or (c)

v3v1, v1w5, v3w5 ∈
−→
T . Consider (a). v1w5 ∈

−→
T implies v4v1 ∈

−→
T , and thus w5v4 ∈

−→
T .

We also have the option of all or none of v3w5, w5v5, v5v3 in
−→
T . One of the resulting

circulations is odd and the other is even. Consider (b). Now v3v1 ∈
−→
T and v1w5 /∈

−→
T

imply v1v5 ∈
−→
T , and thus v5v3 ∈

−→
T . Now d+(w5) > 0 implies v3w5, w5v4, v4v3 ∈

−→
T . The

resulting circulation is odd. Consider (c). Now we get w5v5 ∈
−→
T , which implies v5v3 ∈

−→
T .

We also get w5v4 ∈
−→
T , which implies −−→v4v3 ∈

−→
T . The resulting circulation is even. Thus

in total for Case (ii), we have the same number of even and odd circulations.
So combining Cases (i) and (ii), we have one more odd circulation than even. Thus

diff(
−→
D) 6= 0, so G is d1-paintable.

Form
−→
Pn from (Pn)2 by orienting all edges from left to right. Number the vertices

as v1, . . . , vn from left to right. A subgraph
−→
T ⊆

−→
Pn is weakly eulerian if each vertex

w /∈ {v1, vn} satisfies d+(w) = d−(w) and d+(v1) = d−(vn) = i for some i ∈ {1, 2}. Let

EEi(
−→
Pn) (resp. EOi(

−→
Pn)) denote the set of even (resp. odd) weakly eulerian subgraphs

where d+(v1) = d−(vn) = i. Finally, let fi(n) = |EEi(
−→
Pn)|− |EOi(

−→
Pn)|. We will not apply

the following lemma directly to find d1-paintable subgraphs. However, it will be helpful in
the proof for the remaining d1-paintable graph, which includes cycles of arbitrary length.

Lemma 16. 8-cycle + two pendant edges + extra edge: Let J8 consist of an 8-cycle on
vertices v1, . . . , v8 (in clockwise order) with pendant edges at v1 and v5 leading to vertices

w1 and w5. Form
−→
D 8 by squaring J8, adding the edge w1w5 and orienting the edges as

follows. Orient edges vivi+1 and vivi+2 away from vi (with subscripts modulo 8). Orient
w1v8 away from w1 and v1w1 and v2w1 toward w1; similarly, orient w5v4 away from w5 and

v5w5 and v6w5 toward w5. Finally, orient w5w1 toward w1. We will show that f(
−→
D8) 6= 0

(or else f(
−→
D8 \B) 6= 0 for some subset B ⊆ {w1, w5}).

Proof. Form
−→
D8 as in the lemma. Suppose f(

−→
D8 \ B) = 0 for each subset ∅ 6= B ⊆

{w1, w5}. Then by Lemma 19, we have diff(
−→
D8−w5w1) 6= 0. Hence it will suffice to show

that the circulations of
−→
D8 containing w5w1 are half odd and half even.

the electronic journal of combinatorics 23(2) (2016), #P2.50 27



v1

v8 v2

v7 v3

v6 v4

w1

w5

v5

Figure 10: The orientation for Lemma 16.

Let
−→
T be a circulation of

−→
D8 containing w5w1. Then w1v8 ∈

−→
T and v1w1, v2w1 /∈

−→
T .

After suppressing w1, we are looking at all circulations containing w5v8.

Consider the directed paths v5w5 and v5v6, v6w5. If
−→
T contains all edges of one path

and none of the other, then we can pair
−→
T via a parity-reversing bijection. So we assume

we are not in one of those cases. Thus either (i) v6w5 ∈
−→
T and v5w5, v5v6 /∈

−→
T , (ii)

v5w5, v5v6 ∈
−→
T and v6w5 /∈

−→
T , (iii) v5w5, v5v6, v6w5 ∈

−→
T or (iv) v6w5, v5w5 ∈

−→
T and

v5v6 /∈
−→
T .

Case (i): v6w5 ∈
−→
T and v5w5, v5v6 /∈

−→
T . Then v4v6 ∈

−→
T and w5v4, v6v7, v6v8 /∈

−→
T .

Now we can suppress v6 and w5. First suppose v5v7 /∈
−→
T . Now v7, v5 /∈

−→
T and what

remains is counted by −f1(5). Instead suppose v5v7 ∈
−→
T . Then the difference is counted

by g(7); the path is from v7 to v5. Hence the total difference is g(7)−f1(5) = −1−(−1) =
0.

Case (ii): v5w5, v5v6 ∈
−→
T and v6w5 /∈

−→
T . Then v3v5, v4v5 ∈

−→
T and w5v4, v5v7 /∈

−→
T .

Now we can suppress w5. First suppose v4v6 ∈
−→
T . There is only one possible circulation

and it contains all edges except v7v8; this circulation is odd, hence the difference is −1.

Now suppose v4v6 /∈
−→
T . If v6v7 ∈

−→
T , then v6v8 /∈

−→
T and the difference is counted by

−g(6); the path is from v7 to v4. If v6v7 /∈
−→
T , then v6v8, v8v1, v8v2 ∈

−→
T and v7 /∈

−→
T . Now

the difference is counted by −g(4); the path is from v1 to v4. Hence the total difference
is −1− g(6)− g(4) = 0.

Case (iii): v5w5, v5v6, v6w5 ∈
−→
T . Then w5v4, v3v5, v4v5 ∈

−→
T and v5v7 /∈

−→
T . If

v4v6, v6v7 ∈
−→
T , then the difference is counted by g(6); the path is from v7 to v4. Since

v6v7 ∈
−→
T and v4v6 /∈

−→
T is impossible, we may assume either v4v6 ∈

−→
T and v6v7 /∈

−→
T or

v4v6, v6v7 /∈
−→
T . Suppose we are in the former case. Then v6v8, v8v1, v8v2 ∈

−→
T and v7 /∈

−→
T .
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This difference is counted by g(4); the path is from v1 to v4. Now suppose v4v6, v6v7 /∈
−→
T .

Then v7 /∈
−→
T and v6v8 /∈

−→
T . This difference is counted by f1(4); the path is from v8 to

v3. Hence the total difference is g(6) + g(4) + f1(4) = 0.

Case (iv): v6w5, v5w5 ∈
−→
T and v5v6 /∈

−→
T . Then w5v4, v4v6 ∈

−→
T and v6v7, v6v8 /∈

−→
T . If

v5v7 /∈
−→
T , then v7 /∈

−→
T and the difference is counted by f1(6) = 0; the path is from v8 to

v5. Hence we may assume v5v7 ∈
−→
T . Then v3v5, v4v5 ∈

−→
T and the difference is counted

by g(6) = 0; the path is from v7 to v4.
So in each of the four cases, half the circulations are even and half are odd. Thus,

the difference is not affected by the circulations that use edge w5w1. Now by Lemma 19,

f(
−→
D) 6= 0, so

−→
D is d1-paintable.
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