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Abstract—In this paper, a novel robust Rauch-Tung-Striebel
smoother is proposed based on the Slash and generalized
hyperbolic skew Student’s t-distributions. A novel hierarchical
Gaussian state-space model is constructed by formulating the
Slash distribution as a Gaussian scale mixture form and formu-
lating the generalized hyperbolic skew Student’s t-distribution
as a Gaussian variance-mean mixture form, based on which
the state trajectory, mixing parameters and unknown noise
parameters are jointly inferred using the variational Bayesian
approach. The posterior probability density functions of mixing
parameters of the Slash and generalized hyperbolic skew Studen-
t’s t-distributions are, respectively, approximated as truncated
Gamma and generalized inverse Gaussian. Simulation results
illustrate that the proposed robust Rauch-Tung-Striebel smoother
has better estimation accuracy than existing state-of-the-art
smoothers.

Index Terms—State estimation, Rauch-Tung-Striebel smoother,
heavy-tailed and/or skew noise, Slash distribution, generalized
hyperbolic skew Student’s t-distribution, variational Bayesian

I. INTRODUCTION

As a smoothing extension of the Kalman filter, the Rauch-

Tung-Striebel (RTS) smoother has been widely used in a range

of applications, including target tracking, navigation, position-

ing, and signal processing [1], [2]. It employs the Kalman

filter as its building block, and it is an optimal estimator in

terms of minimum mean square error for a linear state-space

model with Gaussian state and measurement noises. However,

in some engineering applications, the state and measuremen-

t noises may have heavy-tailed and/or skew distributions,

such as in manoeuvring target tracking [3]–[5], integrated

navigation [6], and cooperative localization of autonomous

underwater vehicles [7], [8], which are often induced by the

impulsive interferences, outliers and modelling artifacts [9].

The performance of the conventional RTS smoother degrades
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considerably for such engineering applications with heavy-

tailed and/or skew non-Gaussian noises [10], [11]. Generally,

it is difficult to derive an analytical non-Gaussian smoother

since there is no general mathematical formulation for non-

Gaussian noises nor an analytical and closed form solution for

non-Gaussian posterior probability density function (PDF).

Recently, Student’s t and Skew t-distributions based smooth-

ing algorithms have been proposed [11]–[14] to solve a class

of non-Gaussian smoothing problems, in which the state noise

may have heavy-tailed distribution and the measurement noise

may have heavy-tailed and/or skew distribution. A robust and

trend-following Student’s t-RTS (RTF-ST-RTS) smoother has

been proposed by modelling the state and measurement noises

as Student’s t-distributed and utilizing the convex composite

extension of the Gauss-Newton method to find an approximate

maximum a posteriori estimate of the state trajectory [15]. A

Student’s t-smoother has been proposed based on Student’s t

modelling of the state and measurement noises and Student’s

t approximations of the posterior PDFs [16], [17]. To further

improve the performance of Student’s t-distribution based

smoothers, the variational Bayesian (VB) and Student’s t-

based RTS (VB-ST-RTS) smoother has been proposed, in

which the VB approach is utilized to jointly infer the state

trajectory, auxiliary random variables, and unknown noise

parameters so that the models of the noise terms can be more

accurate [11]. A Skew t-RTS smoother has also been proposed

by modelling the measurement noise as the Skew t-distribution

[13]. Unfortunately, the above smoothers all cannot solve the

smoothing problem of a linear state-space model with a heavy-

tailed state noise and a heavy-tailed and skew measuremen-

t noise, which may be encountered in manoeuvring target

tracking, integrated navigation, and cooperative localization of

autonomous underwater vehicles. A combined method of the

VB-ST-RTS smoother for heavy-tailed state and measurement

noises [11] and the Skew t-RTS smoother [13] for heavy-tailed

and skew measurement noise may address such a smoothing

problem. However, the performance of the combined method

is very sensitive to the distribution parameters of the Skew



t-distribution, which are difficult to be determined in practical

engineering applications. Moreover, the combined method still

cannot solve the smoothing problem of a linear state-space

model with heavy-tailed and skew state and measurement

noises.

In this paper, we focus on the smoothing problem of a linear

state-space model with heavy-tailed and/or skew noises. We

propose to model heavy-tailed noises using a Gaussian scale

mixture distribution and model heavy-tailed and skew noises

using a Gaussian variance-mean mixture distribution. As an

example, the state and measurement noises are, respectively,

assumed to have a heavy-tailed distribution and a heavy-

tailed and skew distribution, and the heavy-tailed state noise is

modelled by a Slash distribution which is a special Gaussian

scale mixture distribution, and the heavy-tailed and skew

measurement noise is modelled by a generalized hyperbolic

(GH) skew Student’s t-distribution which is a special Gaussian

variance-mean mixture distribution, so that a novel robust

RTS smoother is thereby proposed. By formulating the Slash

distribution as a Gaussian scale mixture form and formulating

the GH skew Student’s t-distribution as a Gaussian variance-

mean mixture form, a novel hierarchical Gaussian state-space

model is achieved. The state trajectory, mixing parameters and

unknown noise parameters are jointly inferred based on the

constructed hierarchical Gaussian state-space model using the

VB approach. The posterior PDFs of mixing parameters of the

Slash and GH skew Student’s t-distributions are, respectively,

approximated by truncated Gamma and generalized inverse

Gaussian. Simulation results of a manoeuvring target tracking

example show that the proposed robust RTS smoother has bet-

ter estimation accuracy than existing state-of-the-art smoothers

[11], [13], [15], [17], [18].

The remainder of this paper is organized as follows. Section

II presents notations and brief descriptions about Slash and GH

skew Student’s t-distributions. Section III proposes a novel

robust RTS smoother. In Section IV, the proposed robust

RTS smoother is applied to a manoeuvring target tracking

example and simulation results are given. Finally, conclusions

are summarised in Section V.

II. PRELIMINARIES

A. Notations

Throughout this paper, we denote y𝑖:𝑗 ≜ {y𝑘∣𝑖 ≤ 𝑘 ≤ 𝑗};

N(𝝁,Σ) denotes the multivariate Gaussian distribution with

mean vector 𝝁 and covariance matrix Σ, and g(x;𝝁,Σ)
denotes the PDF of x ∼ N(𝝁,Σ); ST(⋅;𝝁,Σ,Δ, 𝜈) denotes

the Skew-t PDF with location parameter 𝝁, scale matrix Σ,

shape parameter Δ and degrees of freedom (dof) parameter

𝜈; IW(⋅; 𝜈,Σ) denotes the inverse-Wishart PDF with dof

parameter 𝜈 and inverse scale matrix Σ; N+(𝝁,Σ) denotes the

truncated Gaussian distribution with the closed positive orthant

as support, location parameter 𝝁 and squared-scale matrix Σ;

G(⋅; 𝑎, 𝑏) denotes the Gamma PDF with shape parameter 𝑎
and rate parameter 𝑏; Be(⋅; 𝑎, 𝑏) denotes the Beta PDF with

shape parameters 𝑎 and 𝑏; IG(⋅; 𝑎, 𝑏) denotes the inverse-

Gamma PDF with shape parameter 𝑎 and scale parameter

TABLE I: Tail behaviours of Gaussian distribution, Student’s

t-distribution, Slash distribution, Skew normal distribution,

Skew t-distribution and GH skew Student’s t-distribution for

a scalar case.

Distributions Tail behaviours Conditions

Gaussian 𝑐 exp(−0.5𝑥2) 𝑥 → ±∞

Student’s t 𝑐∣𝑥∣−𝜈−1 𝑥 → ±∞

Slash 𝑐∣𝑥∣−2𝜈−1 𝑥 → ±∞

Skew normal 𝑐 exp(−0.5𝑥2)
𝑐 → 1 as 𝛽𝑥 → +∞

𝑐 → 0 as 𝛽𝑥 → −∞

Skew t-distribution 𝑐∣𝑥∣−𝜈−1 𝑥 → ±∞

GH skew Student’s t
𝑐∣𝑥∣−

𝜈
2
−1 𝛽𝑥 → +∞

𝑐∣𝑥∣−
𝜈
2
−1 exp(−2∣𝛽∣∣𝑥∣) 𝛽𝑥 → −∞

𝑏; GIG(⋅; 𝑎, 𝑏, 𝑝) denotes the Generalized Inverse Gaussian

(GIG) PDF with shape parameters 𝑎, 𝑏 and 𝑝; 𝐾𝜌(⋅) denotes

a modified Bessel function of the second kind with the order

𝜌; log denotes the natural logarithm; exp denotes the natural

exponential; I𝑛 denotes the 𝑛×𝑛 identity matrix; ∣A∣ denotes

the determinant of a square matrix A; the superscript “−1”
denotes the inverse operation of a matrix; the superscript “T”

denotes the transpose operation of a vector or matrix; E𝑥[⋅]
is the expectation operator with respect to the distribution of

𝑥;
∪

denotes the union operation; and tr(⋅) denotes the trace

operation of a matrix.

B. Slash and GH skew Student’s t-distributions

In engineering practice, many types of noises, which are

induced by impulsive interferences, outliers and modelling

artifacts, are naturally non-Gaussian. The non-Gaussian noises

often have heavy-tailed and/or skew distributions. The heavy-

tailed noise can be modelled by a Slash distribution, and

the heavy-tailed and skew noise can be modelled by a GH

skew Student’s t-distribution. The Slash distribution is a heavy-

tailed non-Gaussian distribution, and the GH skew Student’s

t-distribution is a heavy-tailed and skew non-Gaussian distri-

bution. A random vector X obeys a Slash distribution and a

random vector Z follows a GH skew Student’s t-distribution if

their PDFs can be, respectively, formulated as [9], [19], [20]
{

𝑝(x) =
∫ 1

0
g(x;𝝁,Σ/𝑦)Be(𝑦; 𝜈, 1)𝑑𝑦

𝑝(z) =
∫ +∞

0
g(z;𝝁+ 𝑦𝜷, 𝑦Σ)IG(𝑦; 𝜈2 ,

𝜈
2 )𝑑𝑦

(1)

where 𝑦 > 0 is the mixing parameter, and 𝝁, Σ and 𝜈
are, respectively, the location parameter, scale matrix and dof

parameter, and 𝜷 is a shape parameter. The shape parameter

𝜷 dominates the symmetry and skewness of a GH skew

Student’s t-distribution. The GH skew Student’s t-distribution

is symmetric when 𝜷 = 0 and non-symmetric when 𝜷 ∕= 0,

and it is positive skew when 𝜷𝑖 > 0 and negative skew when

𝜷𝑖 < 0, where 𝜷𝑖 is an arbitrary element of 𝜷.

The Slash distribution has heavier tails than the Gaussian

distribution, and the GH skew Student’s t-distribution has

both heavier tails and higher skewness than the Gaussian



Fig. 1: Gaussian, Student’s t, Slash densities, corresponding log plots, and influence functions for a scalar case.

Fig. 2: Skew normal, Skew-t and GH skew Student’s t densities, corresponding log plots, and influence functions for a scalar

case.

distribution. The tail behaviours of the Gaussian distribution,

Student’s t-distribution, Slash distribution, Skew normal dis-

tribution [21], Skew t-distribution [22] and GH skew Student’s

t-distribution for a scalar case are listed in Table I. Also, com-

parisons of the probability densities and influence functions

of these distributions are shown in Fig.1–Fig.2, where the

parameters are selected as 𝜇 = 0, Σ = 1, 𝜈 = 3, and 𝛽 = 2.
It is seen from Table I that the tail behaviours of the Student’s

t-distribution, Slash distribution, and Skew t-distribution are

only determined by the dof parameter 𝜈, but the tail behaviour

of the GH skew Student’s t-distribution is determined by both

the dof parameter 𝜈 and shape parameter 𝛽. It can be seen

from Table I and Fig. 1 that the Student’s t-distribution has

heavier tails than the Slash distribution, and the influence

function of the Student’s t-distribution redescends faster than

that of the Slash distribution. Thus, the Slash distribution may

be more suitable for fitting and modelling moderately heavy-

tailed data as compared with the Student’s t-distribution. We

can see from Table I and Fig. 2 that the Skew t-distribution

has two moderately heavy tails, and the GH skew Student’s t-

distribution has one heavy tail and one slightly heavy tail, but

they both have heavier tails than the Skew normal distribution.

We can also observe from Fig. 2 that the influence function

of the GH skew Student’s t-distribution redescends slightly

faster than that of the Skew t-distribution when 𝑥 > 0 and

significantly slower than that of the Skew t-distribution when

𝑥 < 0. Therefore, as compared with the Skew t-distribution,

the GH skew Student’s t-distribution may be more suitable for

modelling substantially skew and heavy-tailed data. Moreover,

for the problem of designing a robust RTS smoother, the GH

skew Student’s t-distribution is easier to handle as compared

with the Skew t-distribution since it can be written as the

Gaussian variance-mean mixture form in (1). Next, a novel

robust RTS smoother will be proposed based on the Slash

and GH skew Student’s t-distributions using the VB approach,

where the heavy-tailed state noise is modelled by a Slash

distribution and the heavy-tailed and skew measurement noise

is modelled by a GH skew Student’s t-distribution.

III. A NOVEL ROBUST RTS SMOOTHER

A. Novel Hierarchical Gaussian State-Space Model

Consider the following discrete-time linear stochastic sys-

tem as represented by a linear state-space model
{

x𝑘 = F𝑘x𝑘−1 +w𝑘−1 (state equation)

z𝑘 = H𝑘x𝑘 + v𝑘 (measurement equation)
(2)

where 𝑘 = 1, . . . , 𝑇 is the discrete time index, x𝑘 ∈ ℝ
𝑛

is the state vector, z𝑘 ∈ ℝ
𝑚 is the measurement vector,

F𝑘 ∈ ℝ
𝑛×𝑛 and H𝑘 ∈ ℝ

𝑚×𝑛 are, respectively, the known

state transition matrix and measurement matrix, and w𝑘 ∈ ℝ
𝑛

and v𝑘 ∈ ℝ
𝑚 are, respectively, state and measurement noise

vectors. The initial state vector x0 is assumed to have a

Gaussian distribution, i.e., x0 ∼ N(x̂0∣0,P0∣0), where x̂0∣0

and P0∣0, respectively, denote the initial state estimate and

the initial estimation error covariance matrix. Moreover, x0,

w𝑘 and v𝑘 are assumed to be mutually independent. Our aim



is to obtain a smoothing estimate of state trajectory x0:𝑇 based

on a linear state-space model and all available measurements

z1:𝑇 from time sample 1 to time sample 𝑇 . Note that the

filtering estimate of state vector x𝑘 is only based on available

measurements z1:𝑘 from time sample 1 to time sample 𝑘,

but the smoothing estimate of state vector x𝑘 is based on

all available measurements z1:𝑇 from time sample 1 to time

sample 𝑇 .

In this paper, the state and measurement noises are, respec-

tively, assumed to have heavy-tailed distribution and heavy-

tailed and skew distribution, which are, respectively, modelled

by the stationary Slash distributed and the stationary GH skew

Student’s t-distributed as
{

𝑝(w𝑘−1) =
∫ 1

0
g(w𝑘−1;0,Q/𝜉𝑘)Be(𝜉𝑘;𝜔, 1)𝑑𝜉𝑘

𝑝(v𝑘) =
∫ +∞

0
g(v𝑘;𝜆𝑘𝜷, 𝜆𝑘R)IG(𝜆𝑘;

𝜈
2 ,

𝜈
2 )𝑑𝜆𝑘

(3)

where Q, R, 𝜔, 𝜈, 𝜉𝑘 and 𝜆𝑘 are, respectively, the scale

matrices, dof parameters and mixing parameters of the state

and measurement noises, and 𝜷 is the shape parameter of the

measurement noise.

In this paper, the scale matrices Q and R and shape

parameter 𝜷 are unknown, whose joint prior PDF is defined

over a limited support and assumed to be a constant, i.e.,

𝑝(Q,R,𝜷) = 𝑐 (4)

and they will be jointly estimated using the VB approach.

Exploiting (2)–(3), the state transition PDF 𝑝(x𝑘∣x𝑘−1) and

the likelihood PDF 𝑝(z𝑘∣x𝑘) can be formulated as
{

𝑝(x𝑘∣x𝑘−1) =
∫ 1

0
g(x𝑘;F𝑘x𝑘−1,Q/𝜉𝑘)Be(𝜉𝑘;𝜔, 1)𝑑𝜉𝑘

𝑝(z𝑘∣x𝑘) =
∫ +∞

0
g(z𝑘;H𝑘x𝑘 + 𝜆𝑘𝜷, 𝜆𝑘R)IG(𝜆𝑘;

𝜈
2 ,

𝜈
2 )𝑑𝜆𝑘

(5)

According to (5), the state transition PDF and the likelihood

PDF can be, respectively, written in the following hierarchical

Gaussian forms
⎧





⎨





⎩

𝑝(x𝑘∣x𝑘−1, 𝜉𝑘) = g(x𝑘;F𝑘x𝑘−1,Q/𝜉𝑘)
𝑝(𝜉𝑘) = Be(𝜉𝑘;𝜔, 1), s.t. 0 < 𝜉𝑘 < 1
𝑝(z𝑘∣x𝑘, 𝜆𝑘) = g(z𝑘;H𝑘x𝑘 + 𝜆𝑘𝜷, 𝜆𝑘R)
𝑝(𝜆𝑘) = IG(𝜆𝑘;

𝜈
2 ,

𝜈
2 ), s.t. 𝜆𝑘 > 0

(6)

Equations (4) and (6) constitute a novel hierarchical Gaus-

sian state-space model based on Slash and GH skew S-

tudent’s t-distributions. The smoothing estimation problem

for a linear state-space model with heavy-tailed state noise

and heavy-tailed and skew measurement noise is transformed

into the smoothing estimation problem for a hierarchical

Gaussian state-space model formulated in (4) and (6). Next,

we propose to jointly estimate the state trajectory, mixing

parameters, scale matrices and shape parameter, i.e., Θ =
{x0:𝑇 , 𝜉1:𝑇 , 𝜆1:𝑇 ,Q,R,𝜷}, based on the constructed hierar-

chical Gaussian state-space model using the VB approach.

B. Joint Estimates of State Trajectory, Mixing Parameters and

Unknown Noise Parameters

To jointly infer state trajectory, mixing parameters and

unknown noise parameters, the joint posterior PDF 𝑝(Θ∣z1:𝑇 )

needs to be calculated. Unfortunately, optimal solution of the

joint posterior PDF is unavailable for hierarchical Gaussian

state-space model (4) and (6) since beta, inverse-Gamma,

inverse-Wishart PDFs don’t have corresponding closed forms.

In this paper, the standard VB approach is utilized to achieve

an approximation to the true joint posterior PDF 𝑝(Θ∣z1:𝑇 ) as

follows [23]

𝑝(Θ∣z1:𝑇 ) ≈ 𝑞(x0:𝑇 )𝑞(𝜉1:𝑇 )𝑞(𝜆1:𝑇 )𝑞(Q)𝑞(R)𝑞(𝜷) (7)

where 𝑞(𝜃) denotes a free form factored approximation of the

true posterior PDF 𝑝(𝜃), and 𝜃 ∈ Θ is an arbitrary element of

the set Θ. The approximate posterior PDF 𝑞(𝜃) satisfies the

equation as follows [23], [24]

log 𝑞(𝜃) = EΘ(−𝜃) [log 𝑝(Θ, z1:𝑘)] + 𝑐𝜃 (8)

where Θ(−𝜃) is a subset of Θ and it has all elements in Θ

except for 𝜃, i.e., {𝜃}
∪

Θ(−𝜃) = Θ, and 𝑐𝜃 denotes a constant

value with respect to variable 𝜃.

Due to the mutual dependence and coupling, it is not

possible to achieve an analytic solution of 𝑞(𝜃) using (8). To

address this problem, the fixed-point iteration is employed to

achieve an approximation of 𝑞(𝜃) by iteratively solving (8),

and a local optimum approximation can be obtained. That is

to say, at the 𝑖+ 1-th iteration, for an arbitrary element 𝜃, its

approximate posterior PDF 𝑞(𝜃) is updated as 𝑞(𝑖+1)(𝜃) by

using 𝑞(𝑖)(Θ(−𝜃)) to calculate the expectation in (8).

1) Variational Approximations of Posterior PDFs: Using

(4) and (6), the joint PDF 𝑝(Θ, z1:𝑇 ) is formulated as

𝑝(Θ, z1:𝑇 ) = 𝑐g(x0; x̂0∣0,P0∣0)

𝑇
∏

𝑘=1

[g(z𝑘;H𝑘x𝑘 + 𝜆𝑘𝜷,

𝜆𝑘R)g(x𝑘;F𝑘x𝑘−1,Q/𝜉𝑘)IG(𝜆𝑘;
𝜈

2
,
𝜈

2
)Be(𝜉𝑘;𝜔, 1) (9)

Let 𝜃 = x0:𝑇 and employing (9) in (8), 𝑞(𝑖+1)(x0:𝑇 ) can be

updated as Gaussian, i.e.,

𝑞(𝑖+1)(x0:𝑇 ) = g(x0:𝑇 ; x̂
(𝑖+1)
0:𝑇 ∣𝑇 ,P

(𝑖+1)
0:𝑇 ∣𝑇 ) (10)

where the smoothing estimate x̂
(𝑖+1)
0:𝑇 ∣𝑇 and corresponding esti-

mation error covariance matrix P
(𝑖+1)
0:𝑇 ∣𝑇 are obtained using the

standard RTS smoother with modified state and measurement

noise covariance matrices Q̃
(𝑖+1)
𝑘 and R̃

(𝑖+1)
𝑘 and modified

mean vector of measurement noise r̃
(𝑖+1)
𝑘 , which are given by

⎧



⎨



⎩

Q̃
(𝑖+1)
𝑘 =

{

E
(𝑖)
Q

[Q−1]
}

−1

E
(𝑖)
𝜉𝑘

[𝜉𝑘]
, R̃

(𝑖+1)
𝑘 =

{

E
(𝑖)
R

[R−1]
}

−1

E
(𝑖)
𝜆𝑘

[1/𝜆𝑘]

r̃
(𝑖+1)
𝑘 = E

(𝑖)
𝜷 [𝜷]/E

(𝑖)
𝜆𝑘
[1/𝜆𝑘]

(11)

where E
(𝑖)
𝑥 [⋅] denotes the expectation with respect to the

approximate posterior PDF 𝑞(𝑖)(𝑥) at the 𝑖-th iteration.

Let 𝜃 = 𝜉1:𝑇 and using (9) in (8), 𝑞(𝑖+1)(𝜉𝑘) can be updated

as truncated Gamma PDF, and let 𝜃 = 𝜆1:𝑇 and employing

(9) in (8), 𝑞(𝑖+1)(𝜆𝑘) can be updated as GIG PDF, i.e.,
{

𝑞(𝑖+1)(𝜉𝑘) = 𝑐𝑘G(𝜉𝑘;𝛼
(𝑖+1)
𝑘 , 𝛽

(𝑖+1)
𝑘 )

𝑞(𝑖+1)(𝜆𝑘) = GIG(𝜆𝑘; 𝜂
(𝑖+1)
𝑘 , 𝜑

(𝑖+1)
𝑘 , 𝜚

(𝑖+1)
𝑘 )

(12)



where 𝑐𝑘 is a normalizing constant formulated as

𝑐𝑘 = 1/

∫ 1

0

G(𝜉𝑘;𝛼
(𝑖+1)
𝑘 , 𝛽

(𝑖+1)
𝑘 )𝑑𝜉𝑘 (13)

and the shape and rate parameters are given by
⎧



⎨



⎩

𝛼
(𝑖+1)
𝑘 = 0.5𝑛+ 𝜔, 𝛽

(𝑖+1)
𝑘 = 0.5Δ

(𝑖+1)
0

𝜂
(𝑖+1)
𝑘 = Δ

(𝑖+1)
2 , 𝜑

(𝑖+1)
𝑘 = Δ

(𝑖+1)
1 + 𝜈

𝜚
(𝑖+1)
𝑘 = 0.5(𝑚− 𝜈)

(14)

and the auxiliary parameters are given by
⎧





















⎨





















⎩

Δ
(𝑖+1)
0 = tr

(

A
(𝑖+1)
𝑘 E

(𝑖)
Q [Q

−1]
)

Δ
(𝑖+1)
1 = tr

(

B
(𝑖+1)
𝑘 E

(𝑖)
R [R

−1]
)

Δ
(𝑖+1)
2 = tr

(

E
(𝑖)
𝜷 [𝜷𝜷

T]E
(𝑖)
R [R

−1]
)

A
(𝑖+1)
𝑘 = E

(𝑖+1)
x𝑘−1:𝑘 [(x𝑘 − F𝑘x𝑘−1)(x𝑘 − F𝑘x𝑘−1)

T]

B
(𝑖+1)
𝑘 = E

(𝑖+1)
x𝑘

[(z𝑘 −H𝑘x𝑘)(z𝑘 −H𝑘x𝑘)
T]

b
(𝑖+1)
𝑘 = E

(𝑖+1)
x𝑘

[z𝑘 −H𝑘x𝑘]
(15)

Let 𝜃 = 𝜷 and using (9) in (8), 𝑞(𝑖+1)(𝜷) is updated as

Gaussian, i.e.,

𝑞(𝑖+1)(𝜷) = g(𝜷;𝜷(𝑖+1),P
(𝑖+1)
𝜷 ) (16)

where the mean vector 𝜷(𝑖+1) and covariance matrix P
(𝑖+1)
𝜷

are given by
⎧















⎨















⎩

𝜷(𝑖+1) =
(

D(𝑖+1)
)−1

d(𝑖+1)

P
(𝑖+1)
𝜷 =

(

D(𝑖+1)
)−1

d(𝑖+1) = E
(𝑖)
R [R

−1]
𝑇
∑

𝑘=1

b
(𝑖+1)
𝑘

D(𝑖+1) = E
(𝑖)
R [R

−1]
𝑇
∑

𝑘=1

E
(𝑖+1)
𝜆𝑘

[𝜆𝑘]

(17)

Let 𝜃 = Q and exploiting (9) in (8), 𝑞(𝑖+1)(Q) is updated

as inverse-Wishart PDF, and let 𝜃 = R and employing (9) in

(8), 𝑞(𝑖+1)(R) is updated as inverse-Wishart PDF, i.e.,
{

𝑞(𝑖+1)(Q) = IW(Q; 𝑡(𝑖+1),T(𝑖+1))
𝑞(𝑖+1)(R) = IW(R;𝑢(𝑖+1),U(𝑖+1))

(18)

where the dof parameters 𝑡(𝑖+1) and 𝑢(𝑖+1) and inverse scale

matrices T(𝑖+1) and U(𝑖+1) are, respectively, given by
{

𝑡(𝑖+1) = 𝑇 − 𝑛− 1, T(𝑖+1) = E(𝑖+1)

𝑢(𝑖+1) = 𝑇 −𝑚− 1, U(𝑖+1) = F(𝑖+1) (19)

where E(𝑖+1) and F(𝑖+1) are, respectively, given by
⎧













⎨













⎩

E(𝑖+1) =
𝑇
∑

𝑘=1

E
(𝑖+1)
𝜉𝑘

[𝜉𝑘]A
(𝑖+1)
𝑘

F(𝑖+1) =
𝑇
∑

𝑘=1

{

E
(𝑖+1)
𝜆𝑘

[1/𝜆𝑘]B
(𝑖+1)
𝑘 − E

(𝑖+1)
𝜷 [𝜷]

(

b
(𝑖+1)
𝑘

)T

−b
(𝑖+1)
𝑘

(

E
(𝑖+1)
𝜷 [𝜷]

)T

+ E
(𝑖+1)
𝜆𝑘

[𝜆𝑘]E
(𝑖+1)
𝜷 [𝜷𝜷T]

}

(20)

After fixed-point iteration 𝑁 , the posterior PDF of the state

trajectory is approximated as

𝑝(x0:𝑇 ∣z1:𝑇 ) ≈ g(x0:𝑇 ; x̂
(𝑁)
0:𝑇 ∣𝑇 ,P

(𝑁)
0:𝑇 ∣𝑇 ) (21)

2) Calculation of Expectations: Using (12), (16) and (18),

the required expectations are calculated as follows
⎧













































⎨













































⎩

E
(𝑖+1)
𝜉𝑘

[𝜉𝑘] = 𝑐𝑘
∫ 1

0
𝜉𝑘G(𝜉𝑘;𝛼

(𝑖+1)
𝑘 , 𝛽

(𝑖+1)
𝑘 )𝑑𝜉𝑘

E
(𝑖+1)
𝜆𝑘

[𝜆𝑘] =

√

𝜑
(𝑖+1)
𝑘

𝐾
𝜚
(𝑖+1)
𝑘

+1
(

√

𝜂
(𝑖+1)
𝑘

𝜑
(𝑖+1)
𝑘

)

√

𝜂
(𝑖+1)
𝑘

𝐾
𝜚
(𝑖+1)
𝑘

(

√

𝜂
(𝑖+1)
𝑘

𝜑
(𝑖+1)
𝑘

)

E
(𝑖+1)
𝜆𝑘

[ 1
𝜆𝑘
] =

√

𝜂
(𝑖+1)
𝑘

𝐾
𝜚
(𝑖+1)
𝑘

+1
(

√

𝜂
(𝑖+1)
𝑘

𝜑
(𝑖+1)
𝑘

)

√

𝜑
(𝑖+1)
𝑘

𝐾
𝜚
(𝑖+1)
𝑘

(

√

𝜂
(𝑖+1)
𝑘

𝜑
(𝑖+1)
𝑘

)
−

2𝜚
(𝑖+1)
𝑘

𝜑
(𝑖+1)
𝑘

E
(𝑖+1)
𝜷 [𝜷] = 𝜷(𝑖+1)

E
(𝑖+1)
𝜷 [𝜷𝜷T] = P

(𝑖+1)
𝜷 + 𝜷(𝑖+1)

(

𝜷(𝑖+1)
)T

E
(𝑖+1)
Q [Q−1] = 𝑡(𝑖+1)

(

T(𝑖+1)
)−1

E
(𝑖+1)
R [R−1] = 𝑢(𝑖+1)

(

U(𝑖+1)
)−1

(22)

where the integrals in (13) and (22) are calculated using the

rectangular integration method with step size length 0.01.

Employing (10), A
(𝑖+1)
𝑘 , B

(𝑖+1)
𝑘 and b

(𝑖+1)
𝑘 are, respective-

ly, calculated as follows [11]
⎧





















⎨





















⎩

A
(𝑖+1)
𝑘 = (x̂

(𝑖+1)
𝑘∣𝑇 − F𝑘x̂

(𝑖+1)
𝑘−1∣𝑇 )(x̂

(𝑖+1)
𝑘∣𝑇 − F𝑘x̂

(𝑖+1)
𝑘−1∣𝑇 )

T+

P
(𝑖+1)
𝑘∣𝑇 −

(

F𝑘G
(𝑖+1)
𝑘−1 P

(𝑖+1)
𝑘∣𝑇

)T

− F𝑘G
(𝑖+1)
𝑘−1 P

(𝑖+1)
𝑘∣𝑇 +

F𝑘P
(𝑖+1)
𝑘−1∣𝑇F

T
𝑘

B
(𝑖+1)
𝑘 = (z𝑘 −H𝑘x̂

(𝑖+1)
𝑘∣𝑇 )(z𝑘 −H𝑘x̂

(𝑖+1)
𝑘∣𝑇 )T+

H𝑘P
(𝑖+1)
𝑘∣𝑇 HT

𝑘

b
(𝑖+1)
𝑘 = z𝑘 −H𝑘x̂

(𝑖+1)
𝑘∣𝑇

(23)

where G
(𝑖+1)
𝑘−1 denotes the RTS smoothing gain at the 𝑖+ 1th

iteration.

The proposed robust RTS smoother is composed of vari-

ational approximations of posterior PDFs in (10)-(21) and

calculations of expectations in (22)-(23). The implementation

pseudo-code for the proposed robust RTS smoother is sum-

marized in Table II, where Σ𝑤 and Σ𝑣 denote the nominal

state and measurement noise covariance matrices, respectively,

and 𝜎 denotes the initial variance of shape parameter. The

proposed robust RTS smoother can be easily extended to a

nonlinear case by employing standard Gaussian approximate

smoother and modifying calculation of expectations in (23).

IV. PERFORMANCE VALIDATION

A problem of tracking an agile target is used to demonstrate

the efficiency and superiority of the proposed robust RTS

smoother. The agile target runs in a plane with a constant

velocity. A constant velocity model is employed to track the

agile target, and the position of the target is observed online in

clutter. By choosing Cartesian coordinates and corresponding

velocities as the state variables, the discrete-time linear state-

space model can be formulated as (2), and state transition

matrix and measurement matrix are, respectively, given by [10]

F𝑘 =

[

I2 Δ𝑡I2
0 I2

]

, H𝑘 =
[

I2 0
]

(24)



TABLE III: Parameter selections of existing state-of-the-art smoothers and the proposed smoother.

Smoothers Parameter selections

Standard RTS-true q = q𝑡, r = r𝑡, Q = Q𝑡, R = R𝑡

Standard RTS-nominal q = 0, r = 0, Q = Σ𝑤 , R = Σ𝑣

Adaptive RTS q = 0, r = 0, 𝜈0 = 6, 𝜇0 = 4, V0 = Σ𝑤 , M0 = Σ𝑣 , 𝑁 = 10

VB-ST-RTS q = 0, r = 0, 𝑡0 = 6, T0 = Σ𝑤 , 𝑢0 = 4, U0 = Σ𝑣 , 𝑎0 = 𝑐0 = 5, 𝑏0 = 𝑑0 = 1, 𝑁 = 10

Skew t-RTS q = 0, Q = Σ𝑤 , Δ = Ω, 𝜈 = 𝜂, 𝑁 = 10

Student’s t q = 0, r = 0, Q = Σ𝑤 , R = Σ𝑣 , 𝜈1 = 3, 𝜈2 = 3

RTF-ST-RTS q = 0, r = 0, Q = Σ𝑤 , R = Σ𝑣 , 𝜈1 = 5, 𝜈2 = 5, 𝑁 = 10

The proposed smoother 𝜎 = 10−8, 𝜔 = 1, 𝜈 = 5, 𝑁 = 10

TABLE II: Implementation pseudo-code for the proposed

robust RTS smoother.

Inputs: z1:𝑇 , x̂0∣0, P0∣0, {F𝑘,H𝑘∣1 ≤ 𝑘 ≤ 𝑇}, Σ𝑤 , Σ𝑣 , 𝜎, 𝜔, 𝜈, 𝑁 .

1. Initialization:
{

E
(0)
𝜉𝑘

[𝜉𝑘] = E
(0)
𝜆𝑘

[𝜆𝑘] = E
(0)
𝜆𝑘

[ 1
𝜆𝑘

] = 1∣1 ≤ 𝑘 ≤ 𝑇
}

,

E
(0)
Q

[Q−1] = Σ
−1
𝑤 , E

(0)
R

[R−1] = Σ
−1
𝑣 , E

(0)
𝜷

[𝜷𝜷T] = 𝜎I𝑚,

E
(0)
𝜷

[𝜷] = 0.

for 𝑖 = 0 : 𝑁 − 1

2. Calculate the modified noise covariance matrices Q̃
(𝑖+1)
𝑘

and R̃
(𝑖+1)
𝑘

from time sample 1 to time sample 𝑇 using (11).

3. Calculate the modified mean vector of measurement noise r̃
(𝑖+1)
𝑘

from time sample 1 to time sample 𝑇 using (11).

4. Calculate {x̂
(𝑖+1)
𝑘∣𝑇

,P
(𝑖+1)
𝑘∣𝑇

∣0 ≤ 𝑘 ≤ 𝑇} and {G
(𝑖+1)
𝑘−1 ∣1 ≤ 𝑘 ≤ 𝑇}

by running standard RTS smoother with inputs z1:𝑇 , x̂0∣0, P0∣0, and
{

F𝑘,H𝑘, r̃
(𝑖+1)
𝑘

, Q̃
(𝑖+1)
𝑘

, R̃
(𝑖+1)
𝑘

∣1 ≤ 𝑘 ≤ 𝑇
}

.

5. Calculate A
(𝑖+1)
𝑘

, B
(𝑖+1)
𝑘

and b
(𝑖+1)
𝑘

using (23).

6. Calculate Δ
(𝑖+1)
0 , Δ

(𝑖+1)
1 , and Δ

(𝑖+1)
2 using (15).

7. Update 𝑞(𝑖+1)(𝜉𝑘) and 𝑞(𝑖+1)(𝜆𝑘) using (12)-(15).

8. Calculate E
(𝑖+1)
𝜉𝑘

[𝜉𝑘], E
(𝑖+1)
𝜆𝑘

[𝜆𝑘] and E
(𝑖+1)
𝜆𝑘

[ 1
𝜆𝑘

] using (22).

9. Update 𝑞(𝑖+1)(𝜷) using (16)-(17).

10. Calculate E
(𝑖+1)
𝜷

[𝜷] and E
(𝑖+1)
𝜷

[𝜷𝜷T] using (22).

11. Update 𝑞(𝑖+1)(Q) and 𝑞(𝑖+1)(R) using (18)-(20).

12. Calculate E
(𝑖+1)
Q

[Q−1] and E
(𝑖+1)
R

[R−1] using (22).

end

13. {x̂𝑘∣𝑇 = x̂
(𝑁)
𝑘∣𝑇

,P𝑘∣𝑇 = P
(𝑁)
𝑘∣𝑇

∣0 ≤ 𝑘 ≤ 𝑇}.

Outputs: {x̂𝑘∣𝑇 ,P𝑘∣𝑇 ∣0 ≤ 𝑘 ≤ 𝑇}.

where the state vector x𝑘 ≜ [𝑥𝑘 𝑦𝑘 𝑥̇𝑘 𝑦̇𝑘], 𝑥𝑘, 𝑦𝑘, 𝑥̇𝑘 and 𝑦̇𝑘
denote the Cartesian coordinates and corresponding velocities,

respectively, and the parameter Δ𝑡 = 1s denotes the sampling

interval.

Outlier contaminated state noise, which has a heavy-tailed

and symmetric distribution, is generated in terms of [25]– [27]

w𝑘 ∼

{

N(0,Σ𝑤) w.p. 0.90
N(0, 500Σ𝑤) w.p. 0.10

(25)

where w.p. denotes “with probability”, and the nominal state

noise covariance matrix Σ𝑤 is given by

Σ𝑤 = 𝑞

[

Δ𝑡3

3 I2
Δ𝑡2

2 I2
Δ𝑡2

2 I2 Δ𝑡I2

]

(26)

where the noise parameter 𝑞 = 0.1m2/s3.

Outlier corrupted measurement noise is assumed to have a

Skew t-distribution, which is produced in terms of [13]
⎧

⎨

⎩

v𝑘 ∼ N(Ωu𝑘,Λ
−1
𝑘 Σ𝑣)

u𝑘 ∼ N+(0,Λ
−1
𝑘 )

[Λ𝑘]𝑖𝑖 ∼ G(
𝜂
2 ,

𝜂
2 )

(27)

and the corresponding PDF is formulated as

𝑝(v𝑘) = ST(v𝑘;0,Σ𝑣,Ω, 𝜂) (28)

where the nominal measurement noise covariance matrix

Σ𝑣 = 100I2, and Ω = 10I2 with shape parameters as diagonal

elements, and Λ𝑘 is a 2 × 2 diagonal matrix whose random

diagonal elements [Λ𝑘]𝑖𝑖 are independent and identically dis-

tributed, and u𝑘 is an auxiliary random vector, and 𝜂 = 2 is

a dof parameter.

In this simulation, the proposed robust RTS smoother is

compared with the existing state-of-the-art smoothers, includ-

ing Standard RTS smoother, Adaptive RTS smoother [18], VB-

ST-RTS smoother [11], Skew t-RTS smoother [13], Student’s

t-smoother [17], and RTF-ST-RTS smoother [15]. To better

show the advantages of the proposed robust RTS smoother,

both the standard RTS smoother with nominal noise mean vec-

tors and covariance matrices and the standard RTS smoother

with true noise mean vectors and covariance matrices are

compared with the proposed method. For convenience, the two

standard RTS smoothers mentioned above are, respectively,

abbreviated as “standard RTS-nominal smoother” and “stan-

dard RTS-true smoother”. The parameter selections of existing

state-of-the-art smoothers and the proposed smoother are listed

in Table III, where q𝑡 = 0, r𝑡 = [14.0 14.0]
T, Q𝑡 = 50.9Σ𝑤

and R𝑡 = diag([2400 2400]) denote the true mean vectors and



TABLE IV: ARMSEs and implementation times in a single

Monte Carlo run of existing state-of-the-art smoothers and the

proposed smoother when 𝑁 = 10.

Smoothers ARMSEpos (m) ARMSEvel (m/s) Time (s)

Standard RTS-true 19.222 4.212 0.010

Standard RTS-nominal 28.161 4.370 0.010

Adaptive RTS 27.690 4.207 0.139

VB-ST-RTS 16.866 3.474 0.196

Skew t-RTS 25.878 5.173 0.747

Student’s t 167.417 14.193 0.013

RTF-ST-RTS 21.144 4.289 1.094

The proposed smoother 14.901 3.386 0.915
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Fig. 3: RMSEs of the position when 𝑁 = 10.

covariance matrices of state and measurement noises, respec-

tively, and r𝑡 and R𝑡 are obtained based on random sampling

method using 105 samples. The parameters of existing state-

of-the-art smoothers are chosen as suggested by the original

authors. The true initial state vector and the initial estima-

tion error covariance matrix are, respectively, set as x0 =
[10 10 10 10]T and P0∣0 = diag([1000 1000 1000 1000]),
and the initial state estimate x̂0∣0 is randomly chosen from

a Gaussian distribution 𝑁(x0,P0∣0). The simulation time is

set as 200s, and 1000 independent Monte Carlo runs are

executed. All smoothing algorithms are coded with MATLAB

and simulations are run on a computer with Intel Core i7-

6900K CPU @ 3.20 GHz.

To compare the estimation accuracy of existing smoothers

and the proposed smoother, the root mean square errors

(RMSEs) and the averaged RMSEs (ARMSEs) are selected

as performance metrics. The RMSE and ARMSE of position

are defined as follows [10]
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Fig. 4: RMSEs of the velocity when 𝑁 = 10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10
2

Number of iteration

A
R

M
S

E
p

o
s
 (

m
)

 

 

Standard RTS−true smoother

Standard RTS−nominal smoother

Adaptive RTS smoother

VB−ST−RTS smoother

Skew t−RTS smoother

Student’s t−smoother

RTF−ST−RTS smoother

The proposed smoother

Fig. 5: ARMSEs of the position when 𝑁 = 1, 2, . . . , 20.
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Fig. 6: ARMSEs of the velocity when 𝑁 = 1, 2, . . . , 20.

where RMSEpos denotes the RMSE of position, and (𝑥𝑠
𝑘, 𝑦

𝑠
𝑘)

and (𝑥̂𝑠
𝑘∣𝑇 , 𝑦

𝑠
𝑘∣𝑇 ) are, respectively, the true and estimated posi-

tions at the 𝑠-th Monte Carlo run, and 𝑇 = 200 and 𝐿 = 1000



denote the simulation steps and the total number of Monte

Carlo runs, respectively. Similar to the RMSE and ARMSE

in position, we can also define the RMSE and ARMSE in

velocity, which are, respectively, formulated as RMSEvel and

ARMSEvel.

Fig.3 – Fig.4 and Table IV, respectively, show the RMSEs

and ARMSEs of position and velocity and the implementation

times in a single Monte Carlo run of the proposed robust

RTS smoother and existing smoothers when 𝑁 = 10. The

ARMSEs of position and velocity from the proposed robust

RTS smoother and existing smoothers when 𝑁 = 1, 2, . . . , 20
are, respectively, shown in Fig.5 – Fig.6. It is observed from

Fig.3 – Fig.4 and Table IV that the proposed robust RTS

smoother has smaller RMSEs and ARMSEs than existing

smoothers. Also, we can observe from Table IV that the

proposed robust RTS smoother needs more implementation

times than existing smoothers except for the existing RTF-

ST-RTS smoother. Moreover, it can be observed from Fig.5

– Fig.6 that the proposed robust RTS smoother has smaller

ARMSEs than existing smoothers when 𝑁 ≥ 4. Thus, the

proposed robust RTS smoother has better estimation accuracy

but higher computational complexity than existing state-of-the-

art smoothers.

V. CONCLUSIONS

In this paper, a novel robust RTS smoother was proposed by

modelling the state noise as Slash distributed and modelling

the measurement noise as GH skew Student’s t-distributed. A

novel hierarchical Gaussian state-space model was constructed

by formulating the Slash distribution as a Gaussian scale

mixture form and formulating the GH skew Student’s t-

distribution as a Gaussian variance-mean mixture form, based

on which the state trajectory, mixing parameters and unknown

noise parameters were jointly inferred using the VB approach.

The posterior PDFs of mixing parameters of the Slash and GH

skew Student’s t-distributions were, respectively, approximated

as truncated Gamma and GIG. Simulation results demonstrated

that the proposed robust RTS smoother has better estimation

accuracy but higher computational complexity than existing

state-of-the-art smoothers.
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