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Abstract— This paper develops a novel nonlinear control
approach for slender-body underactuated underwater vehicles
with a body shape symmetric with respect to the longitudinal
axis. Compared to aerial vehicles, added-mass effects are much
more preponderant and complex for underwater vehicles, espe-
cially for slender bodies. By considering an axisymmetric body,
these added-mass effects along with dissipative hydrodynamic
force are carefully taken into account via various adaptations
and decompositions, resulting in a modified “apparent” force
independent of the vehicle’s orientation and subsequently a
nonlinear system with a triangular control structure. The
proposed controller is then complemented with an integral
correction term so as to enhance its robustness with respect
to model uncertainties and external disturbances. Comparative
simulation results conducted on a realistic model of a quasi-
axisymmetric underwater vehicle illustrate the performance
and robustness of the proposed control approach.

I. INTRODUCTION

Introduced by Bessel in 1828, the concept of added mass
has become widely accepted nowadays. Mostly neglected
in modeling and control design of heavier-than-air aircraft,
added mass in contrast has always been at the heart of preoc-
cupations of the Underwater Robotics and Automatic Control
community [3], [8]. For underwater vehicles, added-mass
effects often result in strongly nonlinear dynamics as the total
mass matrix can no longer be considered as proportional to
identity, except for spherical bodies [3]. These effects are all
the more pronounced for underwater vehicles with a slender
body shape conceived for reducing hydrodynamic drag along
a nominal axis. However, added mass is not the unique
source of complexity for control design. The complexity
of hydrodynamic effects often impedes obtaining a precise
dynamic model, valid in a large operating domain [7]. The
vehicles are often subject to strong perturbations (due to
currents) whose magnitude can be commensurable with the
available actuation power. Therefore, robust nonlinear control
design for underwater vehicles is highly recommended.

Control design for underactuated Autonomous Underwater
Vehicles (AUV) has received increasing interest during the
last three decades [2], [3], [11], [12]. When the control
objective concerns the tracking of a reference position tra-
jectory, whose velocity does not vanish for all time, various
classical control design methodologies have been applied
to provide solutions. For instance, various standard linear
and nonlinear control methods have been applied on the
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basis of linear approximations of the two subsystems “depth-
pitch” and “plane-yaw” about nominal operating points (see
[3] and the reference therein). The main limitation of these
approaches is the local nature of the control design and
analysis. Moreover, stability and performance can suffer
significantly when strong sea currents or aggressive ma-
noeuvres excite the complex hydrodynamic and added-mass
effects. Nonlinear Lyapunov-based control designs have been
recently investigated to overcome some of these limitations.
Most of them, however, only address the trajectory tracking
problem in a horizontal plane, using a simplified and reduced
“plane-yaw” 3-DOF model [2], [12]. Few works address
this problem in the 3-dimensional space [1], [11]. A non-
linear high-gain backstepping-based controller proposed in
[1] allows for exponential convergence of the position error
to a small neighborhood of the origin, which means that
asymptotic stabilization to zero is not fulfilled. Moreover,
the attitude is not explicitly controlled but guided by the
closed-loop system’s zero dynamics, thus possibly resulting
in undesirable attitude dynamics. High-gain controllers are
also known to be sensitive to measurement noise and time-
delays of control inputs. Refnes et al. [11] have addressed
the trajectory tracking for a slender-body underactuated
AUV, with a model-based control approach. However, this
approach heavily relies on the precision of the model pa-
rameters. Control performance can be drastically degraded
when model errors are important (see, e.g., [13]). Nonlinear
robust control design for underactuated AUVs thus remains
an active research topic.

This paper addresses the trajectory tracking control design
for slender-body underactuated AUVs, whose body shape is
symmetric with respect to the longitudinal axis, using a full
6-DOF model. The proposed control design methodology
makes use of simple models of added mass and of dissipative
hydrodynamic force acting on the vehicle. These models are
both representative of the physics and sufficiently simple for
control design and analysis. By considering an axisymmetric
body, added-mass effects and dissipative hydrodynamic force
are carefully accounted for via various adaptations, resulting
in a modified apparent force independent of the vehicle’s
orientation and subsequently a nonlinear system with a
triangular control structure. The proposed controller is also
complemented with bounded integral correction actions to
compensate for unavoidable model uncertainties and external
disturbances. Compared to [1], here almost global asymp-
totical stability is achieved and the attitude is explicitly
controlled. The proposed control approach endowed with
a cascade inner-outer loop architecture can be seen as an



extension of the thrust direction control paradigm that has
been exploited for aerial vehicles [4], [6], [10], making a
step towards a unified control approach for both aerial and
underwater vehicles.

The paper is organized as follows. Notation and system
modeling are provided in Section II. Then in the same sec-
tion, a more simplified model for control design is derived for
a class of axisymmetric underactuated underwater vehicles.
Control design supported by rigourous stability analysis is
presented in Section III. In section IV, comparative simula-
tion results using a realistic model of a quasi-axisymmetric
underwater vehicle illustrate the performance and robustness
of the proposed control approach. Finally, a concluding
section follows.

II. NOTATION AND MODELING

A. Notation

• {e1, e2, e3} denotes the canonical basis of R3. I3 denotes
the identity matrix of R3×3. The notation u×, ∀u ∈ R3,
denotes the skew-symmetric matrix associated with the cross
product by u, i.e., u×v = u × v, ∀v ∈ R3. The Euclidean
norm in Rn and the transpose operator are, respectively,
denoted as | · | and (·)>. πx = I3 − xx> is the projection
onto the tangent space of the sphere S2 of a point x ∈ S2.
• Let G and B respectively denote the vehicle’s center of
mass (CoM) and center of buoyancy (CoB), m its mass and
J0 its inertia matrix. Let g denote the gravity constant.
• Let {I} = {O;

−→
i 0,
−→
j 0,
−→
k 0} and {B} = {B;

−→
i ,
−→
j ,
−→
k }

denote an inertial frame and a body-fixed frame attached to
the vehicle, respectively.
• Let rG denote the vector of coordinates expressed in {B}
of the Euclidean vector

−−→
BG.

• The orientation of {B} relative to {I} is represented by
the rotation matrix R ∈ SO(3). Denote the position of the
origin of the frame {B}, expressed in {I} as ξ ∈ R3.
• The angular velocity of the frame {B} with respect to
(w.r.t.) {I}, expressed in {B}, is denoted as Ω ∈ R3.
• The vectors of coordinates of the linear velocity of the CoB
B, expressed in the frames {I} and {B}, are respectively
denoted as v ∈ R3 and V ∈ R3.
• Let vf and Vf denote the current velocity expressed in
the frames {I} and {B}, respectively. Denote Vh , V−Vf

as the CoB’s velocity w.r.t. the current.

B. System modeling

We consider a slender-body underactuated underwater
vehicle with a body shape symmetric with respect to the
longitudinal axis (e.g. the popular class of torpedo-shaped
AUVs). The vehicle is endowed with four control inputs,
namely a thrust force intensity T ∈ R of a control force
vector T acting along the vehicle’s longitudinal axis (i.e.
T = Te1) and three independent torque inputs Γ ∈ R3

w.r.t. the CoB to control the vehicle’s orientation. The thrust
force is assumed to apply at a point lying on the {B;~i}-axis
so that it does not create any torque at the CoB.

The vehicle’s rigid-body kinematic equations are{
ξ̇ = RV

Ṙ = RΩ×
(1)

Defining the translational and rotational momentums as{
Ph , MVh + D>Ω

Πh , JΩ + DVh
(2)

with M , mI3 + Ma, J , J0 + Ja, D , mrG×, and Ma,
Ja respectively denoting the added-mass and added-inertia
matrices. Then, according to the formulation of Leonard [8],
the vehicle’s dynamics are given by{

Ṗh = Ph×Ω + Fgb + Fd + Te1

Π̇h = Πh×Ω + Ph×Vh + Γg + Γd + Γ
(3)

where Fgb , βgbR
>e3, with βgb , mg − Fb, is the sum

of the gravity and buoyancy forces; Γg , mgrG×R>e3 is
the gravity torque; and Fd and Γd denote the dissipative
hydrodynamic force and torque vectors expressed in the
body-fixed frame {B}.

The following classical model of Fd is used:

Fd(Vh) = −KdlVh︸ ︷︷ ︸
,Fdl(Vh)

−|Vh|KdqVh︸ ︷︷ ︸
,Fdq(Vh)

with the damping diagonal matrices
Kdl = diag(kdl1, kdl2, kdl2)
Kdq = diag(kdq1, kdq2, kdq2)

The second and third diagonal components of Kdl and Kdq

are equal due to the body symmetry about the longitudinal
axis. Similarly, the added-mass matrix can also be modeled
as a diagonal matrix with the same second and third diagonal
components, i.e. Ma = diag(ma1,ma2,ma2), with ma1 �
ma2. Thus, the summed mass matrix M has the form M =
diag(m1,m2,m2) with m1 , m+ma1, m2 , m+ma2.

C. Model for control design

Due to the coupling matrix D involved in the definition
(2) of the momentum terms and their dynamics (3), the
translational and rotational dynamics are tightly coupled.
These complex dynamic couplings are often neglected in
the literature by neglecting all terms involving the matrix
D using the fact that the distance between the CoB and
CoM is small enough. This results in the following simpler
control model that decouples the translational and rotational
dynamics [1], [11], [12]:

MV̇ = (MV)×Ω + Fgb + Fd(V) + Te1 + ∆F (4a)

JΩ̇ = (JΩ)×Ω + (MV)×V + Γg + Γd + Γ + ∆Γ (4b)

with the “disturbance” terms

∆F , −(MVf )×Ω−MΩ×Vf + Fd(Vh)− Fd(V)

∆Γ , (MVh)×Vh − (MV)×V

which are null if the current velocity is null. For the sake of
simplicity, the disturbance term ∆F will not be considered
for control design (i.e. ∆F ≡ 0). However, integral cor-
rections will be added so as to enhance control robustness
w.r.t. unavoidable model errors and additive disturbances (i.e.
current).



In the sequel, the simplified dynamics (4) (with ∆F ≡ 0)
will be used for control design, whereas the dynamic equa-
tions (3) are still of use to simulate the vehicle’s dynamics
in the simulation section IV. Discrepancies between the two
models represent an opportunity to test the robustness of the
proposed controller.

Denote P , MV and p , RP = RMV as the
“simplified” translational momentums expressed in the body-
fixed frame and the inertial frame, respectively. One easily
verifies from (4a) that the dynamics of p (i.e. ṗ) does not
depend on Ω.

According to the basic control methodology for thrust-
propelled underactuated vehicles presented in [4], control
solution may become implicit (or even ill-posed) if the
external force expressed in the inertial frame fe , R(Fgb +
Fd(V)) = βgbe3 + RFd(V) depends strongly on the
vehicle’s orientation R but is not properly taken into account.
The solution here proposed (similarly to the one developed
in [10] for the control of axisymmetric aerial underactuated
vehicles) consists in decomposing Fd(V) into two parts with
the first one acting along P and the second one acting along
e1. More precisely, one rewrites

Fdl(V) = −kdl2m2
P−

(
kdl1 − m1kdl2

m2

)
V1e1

Fdq(V) = −kdq2m2
|V|P−

(
kdq1 − m1kdq2

m2

)
|V|V1e1

so that Eq. (4a) can be rewritten as
Ṗ = P×Ω + Fgb + F̄dl + F̄dq + T̄e1 (5)

with
F̄dl , −βdlP, with βdl ,

kdl2
m2

F̄dq , −βdq|V|P, with βdq ,
kdq2
m2

T̄ , T −
(
kdl1−m1kdl2

m2

)
V1−

(
kdq1−m1kdq2

m2

)
|V|V1

Note that the quadratic drag force RF̄dq , expressed in the
inertial frame {I}, is not simply a function of p but also
depends on the norm of V (= M−1R>p) and thus on the
attitude R. This in turn implies that the time derivative of
RF̄dq (= −βdq|M−1R>p|p) involves the angular velocity
Ω, making the control design more delicate.

III. TRAJECTORY TRACKING CONTROL DESIGN

A. Basic developments
Let ξr ∈ R3 denote a smooth differentiable reference

position trajectory. Define vr , ξ̇r ∈ R3 as the reference
velocity expressed in the inertial frame {I}. Assume that
|vr(t)| ≥ cv > 0 and also that vr(t) and v̇r(t) remain
bounded for all time t > 0.

The position and velocity errors are defined as{
ξ̃ , ξ − ξr
ṽ , v − vr

(6)

whereas the velocity error and the translational momentum
error, both expressed in the body-fixed frame, are defined as{

Ṽ , V −R>vr = R>ṽ

P̃ , MṼ
(7)

Then, the control objective consists in stabilizing (ξ̃, ṽ) or,
equivalently, (ξ̃, P̃) about zero.

One easily verifies that

˙̃
ξ = RṼ = RM−1P̃ (8)

On the other hand, using the decomposition

M = m2I3 +m12e1e
>
1

with m12 , m1−m2 = ma1−ma2 < 0, one deduces from
(5) and (7) that

˙̃P = −Ω×P + Fgb + F̄dl + F̄dq + T̄e1

+ MΩ×R>vr −MR>v̇r

= −Ω×P̃−Ω×MR>vr + MΩ×R>vr

+ Fgb + F̄dl + F̄dq −m2R
>v̇r

+ (T̄ −m12e
>
1 R>v̇r)e1

= −Ω×P̃− βdq(|V| − |vr|)P + αre1×Ω

+ R>(βgbe3−βdlp−βdq|vr|p−m2v̇r)+(T̄−α̇r)e1

(9)

with
αr , m12e

>
1 R>vr (10)

The term −βdq(|V|− |vr|)P involved in the last equality of
(9) requires further developments. Using the decomposition

P̃ = P−m2R
>vr − αre1

one deduces

(|V| − |vr|)P
=−(|V|−|vr|)αre1+(|V|−|vr|)(P̃+m2R

>vr)

=−(|V|−|vr|)αre1+ |Ṽ+R>vr|2−|vr|2
|V|+|vr| (P̃+m2R

>vr)

=−(|V|−|vr|)αre1+ |Ṽ|
2+2Ṽ>R>vr
|V|+|vr| (P̃+m2R

>vr)
(11)

From (9) and (11) one obtains

˙̃P = −Ω×P̃− βdq
|Ṽ|2 + 2Ṽ>R>vr
|V|+ |vr|

(P̃ +m2R
>vr)

+αre1×Ω + R>fp + Tpe1

(12)
with {

fp , βgbe3 − βdlp− βdq|vr|p−m2v̇r

Tp , T̄ − α̇r + βdq(|V| − |vr|)αr
(13)

Let us call fp the “apparent” force (expressed in the inertial
frame). Note that its time derivative is independent of the
angular velocity Ω (i.e. ḟp � Ω), which is an important
property for control design.

The proposed controller will be derived from Eqs. (8),
(12) and (4b), which are in cascade form. In fact, the
rotational dynamics given by (4b) are fully-actuated with a
3-dimensional control torque vector Γ monitoring 3 degrees
of freedom of rotation. It is thus straightforward to design
an “inner-loop” controller that asymptotically stabilizes Ω
about any bounded smooth desired angular velocity Ωd,
provided that the time derivative of the latter is available



as feedforward. For instance, assuming that ∆Γ is constant,
the following torque controller

Γ = −K1Ω̃−K2IΩ̃ + JΩ̇d

−(JΩ)×Ωd − (MV)×V − Γg − Γd
(14)

with Ω̃,Ω−Ωd, IΩ̃ an integrator of Ω̃, and K1,2 ∈R3×3

positive diagonal gain matrices, results in a closed-loop
stable sub-system. Hence, the underlying idea for “outer-
loop” control design consists in using Ω as an intermediate
control variable for the translational dynamics (i.e. Eq. (12)).

B. Outer-loop control design

Let y , Kξξ̃ denote the position error scaled by a
diagonal positive gain matrix Kξ ∈ R3×3. By introducing
feedback terms (i.e. functions of P̃ and ξ̃), the translational
error dynamics (12) can be rewritten as

˙̃P = −Ω×P̃ −KPP̃−M−1R>Kξ

(
h(|y|2)y

)︸ ︷︷ ︸
feedback terms

− βdq
|Ṽ|2 + 2Ṽ>R>vr
|V|+ |vr|

(P̃ +m2R
>vr)

+ αre1×Ω + R>f̄p + T̄pe1

(15)

with KP , diag(kp1 + kp2, kp1, kp1), kp1, kp2 > 0, h(·)
denoting a smooth bounded strictly positive function defined
on [0,+∞) such that for some positive numbers η, β{

∀s ∈ R, h(s2)s < η
∀s ∈ R, ∂

∂s (h(s2)s) < β

and
f̄p , fp + kp1(p−m2vr) +

1

m2
Kξ

(
h(|y|2)y

)
T̄p , Tp − kp1αr + kp2P̃1 −

m12

m1m2
e>1 R>Kξ

(
h(|y|2)y

)
(16)

Note that the augmented apparent force f̄p does not depend
on the vehicle’s attitude R nor on Ω. Thus, its time derivative
does not depend on the angular velocity Ω.

If the outer-loop controller asymptotically stabilizes

εP , αre1×Ω + R>f̄p + T̄pe1 (17)

about zero, then the resulting zero dynamics of (15) are

˙̃P = −Ω×P̃−KPP̃−M−1R>Kξ

(
h(|y|2)y

)
− βdq

|Ṽ|2 + 2Ṽ>R>vr
|V|+ |vr|

(P̃ +m2R
>vr)

(18)

We show next that appropriate choices of gains kp1 and kp2
(i.e. KP) will render the origin of the zero-dynamic time-
varying system (8)+(18) globally asymptotically stable.

Lemma 1 Choose kp1 and kp2 such that kp1 >
(

1 + m2

2m1

)2

βdq sup(|vr|)

kp2 >
(

1− m2

m1

)2

βdq sup(|vr|)
(19)

then the equilibrium (ξ̃, P̃) = (0,0) of the zero-dynamic
system (8)+(18) is globally asymptotically stable.

Proof: The time derivative of the Lyapunov function
candidate

L ,
1

2
|P̃|2 +

∫ |y|
0

h(s2)s ds

satisfies
L̇ = −kp1|P̃|2 − kp2|P̃1|2

−βdq |Ṽ|
2+2Ṽ>R>vr
|V|+|vr| (|P̃|2 +m2P̃

>R>vr)

≤ −kp1|P̃|2 − βdq
|V|+|vr| |Ṽ|

2|P̃|2

+
2βdq|vr|
|V|+|vr| |Ṽ||P̃|

2 +
βdqm2|vr|
|V|+|vr| |Ṽ|

2|P̃|

−kp2|P̃1|2 − 2βdqm
2
2

|V|+|vr| (Ṽ
>R>vr)

2

+
2βdqm2|m12||vr|
m1(|V|+|vr|) |P̃1||Ṽ>R>vr|

Using the relation |Ṽ| ≤ 1
m1
|P̃| one then deduces

L̇ ≤ −kp1|P̃|2 − βdq
|V|+|vr| |Ṽ|

2|P̃|2 +
(2+

m2
m1

)βdq|vr|
|V|+|vr| |Ṽ||P̃|2

−kp2|P̃1|2 −
2βdqm

2
2

|V|+ |vr|
(Ṽ>R>vr)

2

+
2βdqm2|m12||vr|
m1(|V|+ |vr|)

|P̃1||Ṽ>R>vr|

The gain condition (19) then ensures that all the negative
quadratic terms dominate the cross terms, i.e.

kp1|P̃|2 +
βdq

|V|+|vr| |Ṽ|
2|P̃|2 >

(2+
m2
m1

)βdq|vr|
|V|+|vr| |Ṽ||P̃|2

kp2|P̃1|2 +
2βdqm

2
2

|V|+|vr| (Ṽ
>R>vr)

2

>
2βdqm2|m12||vr|
m1(|V|+|vr|) |P̃1||Ṽ>R>vr|

This in turn implies the existence of a positive number c
such that L̇ ≤ −c|P̃|2. From there one can easily verify
the boundedness of L̈ (i.e. the uniform continuity of L̇) so
that direct application of Barbalat’s lemma then ensures the
convergence of L̇ and, thus, of P̃ to zero. From (18) and
the convergence of P̃ to zero, one deduces by application of
the extended Barbalat’s lemma [9] that ˙̃P also converges to
zero, which in turn implies the convergence of y (i.e. ξ̃) to
zero. The remainder of the proof then follows.

Now the remaining task consists in designing the desired
value Ωd for Ω and the thrust intensity T̄p (or equivalently
T ) to stabilize

αre1×Ωd + R>f̄p + T̄pe1 → 0 (20)

which is also equivalent to the stabilization of εP defined by
(17) about zero as a consequence of the inner-loop controller
that asymptotically stabilizes Ω about Ωd.

Remark 1 By assumption vr does not vanish for all time
and m12 = ma1 −ma2 6= 0 due to the slender-body form
of the vehicle, one may expect that αr defined by (10) does
not vanish for all time either. Assuming that αr(t) 6= 0 ∀t,
in view of (20) one may define the outer-loop controller as
follows: 

T̄p = −e>1 R>f̄p

Ωd,2 = − 1
αr

e>3 R>f̄p

Ωd,3 = 1
αr

e>2 R>f̄p

(21)



However, the outer-loop controller (21) leaves the attitude
uncontrolled and ultimately guided by the system’s zero
dynamics, which may be excessively oscillating.

The outer-loop control solution proposed in this paper, by
contrast, defines a desired direction u ∈ S2 for R>γ with
γ , f̄p/|f̄p| ∈ S2 representing the direction of f̄p, where u is
obtained by integration of the following differential equation

u̇ = u×Ωu, u(0) = −e1 (22)

with Ωu an augmented control input to be designed there-
after. For instance, assuming that f̄p does not vanish for all
time, one then verifies that

γ̇ = γ ×Ωγ (23)

with Ωγ , − f̄p × ˙̄fp
|f̄p|2

, which does not depend on Ω. In view

of the expression of f̄p in (16), one ensures that Ωγ does not
depend on the angular velocity Ω.

Lemma 2 Assume that initially (R>γ)(0) 6= −u(0) and
that the inner-loop controller ensures the convergence of Ω̃
about zero and also its boundedness. Then, by setting the
following constraint

πu(Ωd −Ωu) = −πu(R>Ωγ)− ku(R>γ × u)

1 + u>R>γ
(24)

with ku > 0, one ensures that R>γ converges asymptotically
to u.

Proof: Using (22), (23) and (24), the time derivative
of the positive function L1 , 1− u>R>γ verifies

L̇1 = (Ω−Ωu + R>Ωγ)>(R>γ × u)

= Ω̃>(R>γ × u) + (Ωd −Ωu + R>Ωγ)>(R>γ × u)

= Ω̃>(R>γ × u)− ku
|R>γ × u|2

1 + u>R>γ

where the first term Ω̃>(R>γ × u) is bounded thanks to
the boundedness of Ω̃, whereas the division by 1 + u>R>γ
in the second term prevents R>γ from tending close to −u
since L̇1 tends to −∞ in this case.

Using the relation |R>γ × u|2 + (u>R>γ)2 = 1, one
then deduces that

L̇1 = Ω̃>(R>γ × u)− kuL1

Since Ω̃ converges to zero, the application of the singular
perturbation theory then ensures the convergence of L1 to
zero or equivalently of R>γ to u.

Now the main result of this section can be stated.

Proposition 1 Let T̄p and f̄p be defined by (16)+(13) and
αr be defined by (10). Apply the outer-loop controller

T̄p = −e>1 R>f̄p

Ωd =
|f̄p|
αr

e1 × u− ku(R>γ × u)

1 + u>R>γ
+ λe1

(25)

where u is obtained by integration of (22) with the aug-
mented control input Ωu given by

Ωu =
|f̄p|
αr

e1 × u + πu(R>Ωγ) + λπue1 (26)

and λ(·) is a function that can be independently assigned for
other control objective related to the roll motion. Assume
that αr 6= 0 and |f̄p| > 0 for all time. Assume that all
conditions and assumptions in Lemmas 1 and 2 hold. Then,
the equilibrium (ξ,v,R>γ) = (ξr,vr,u) is almost globally
asymptotically stable.

The proof of this proposition is a direct result of Lemmas
1 and 2.

Remark 2 In the case m12 < 0, αr is nominally negative.
So if Ωγ is not too large, the term |f̄p|

αr
e1 × u involved in

(26) allows u not to depart too far from −e1. This can be
justified by examining the derivative of 1 + e>1 u:

d

dt
(1 + e>1 u) =

|f̄p|
αr
|e1 × u|2︸ ︷︷ ︸
≤0

+(e1 × u)>(R>Ωγ)

Remark 3 Since αr may evolve near zero during a transient
phase, to avoid the division by zero we suggest to replace
the expressions of Ωd and Ωu given in (25) and (26) by

Ωd =
|f̄p|
σ(αr)

e1 × u− ku(R>γ × u)

1 + u>R>γ
+ λe1

Ωu =
|f̄p|
σ(αr)

e1 × u + πu(R>Ωγ) + λπue1

(27)

with σ(·) given by

σ(x) =

 x if |x| > ε
ε if 0 < x ≤ ε
−ε if 0 ≥ x ≥ −ε

(28)

with ε a small positive number. With this modification,
relation (24) is always satisfied and, thus, the convergence
of R>γ about u is still ensured.

C. Outer-loop control design with integral term

In practice it is often desirable to complement the control
action with a position error integral correction term in order
to compensate for model uncertainties and external distur-
bances. Bearing in mind that classical integrator of ξ̃ is often
prone to the well-known phenomenon of integrator windup
that may cause large overshoots of the position tracking error,
we make use of the following bounded nonlinear second-
order integrator of ξ̃ (initially proposed in [5]):

Ïξ̃ = −2kvIİξ̃ + satÏmax/2
(kpI(−Iξ̃ + satδI(Iξ̃ + ξ̃))) (29)

with Ïmax, δI, kpI, kvI denoting positive constants and with
initial conditions satisfying |Iξ̃(0)| < δI + Ïmax/(2k

2
vI) and

|İξ̃(0)| < Ïmax/(2kvI). As specified in [5], the ultimate
upper-bounds of |Iξ̃|, |İξ̃|, and |Ïξ̃| are δI + Ïmax/(2k

2
vI),

Ïmax/(2kvI), and Ïmax, respectively.
Define the augmented reference variables{

ξ̄r , ξr −KIIξ̃
v̄r , vr −KIİξ̃

(30)



with KI ∈ R3×3 a diagonal positive integral gain matrix.
Define also the augmented error terms (compared to (6)–(7))

¯̃
ξ , ξ − ξ̄r = ξ̃ + KIIξ̃
¯̃v , v − v̄r = ṽ + KIİξ̃
¯̃V , V −R>v̄r = R> ¯̃v
¯̃P , M ¯̃V = P−MR>v̄r

(31)

One verifies that
˙̃̄
ξ = RM−1 ¯̃P (32)

On the other hand, analogously to the developments carried
out in (9)–(13) one deduces

˙̃̄
P = −Ω×

¯̃P

− βdq
| ¯̃V|2 + 2 ¯̃V>R>v̄r
|V|+ |v̄r|

( ¯̃P +m2R
>v̄r)

+ αre1×Ω + R>fp + Tpe1

(33)

where αr is now defined by (instead of (10))

αr , m12e
>
1 R>v̄r (34)

and fp and Tp are defined by (instead of (13)){
fp , βgbe3 − βdlp− βdq|v̄r|p−m2 ˙̄vr

Tp , T̄ − α̇r + βdq(|V| − |v̄r|)αr
(35)

Then, similarly to Eq. (15), Eq. (33) can be rewritten as

˙̃̄
P = −Ω×

¯̃P−KP
¯̃P−M−1R>Kξ

(
h(|ȳ|2)ȳ

)
− βdq

| ¯̃V|2 + 2 ¯̃V>R>v̄r
|V|+ |v̄r|

( ¯̃P +m2R
>v̄r)

+ αre1×Ω + R>f̄p + T̄pe1

(36)

with ȳ , Kξ
¯̃
ξ, Kξ a diagonal positive gain matrix, KP ,

diag(kp1 + kp2, kp1, kp1) (with kp1, kp2 > 0), and f̄p and T̄p
defined by (instead of (16))

f̄p , fp + kp1(p−m2v̄r) +
1

m2
Kξ

(
h(|ȳ|2)ȳ

)
T̄p , Tp − kp1αr + kp2

¯̃P1 −
m12

m1m2
e>1 R>Kξ

(
h(|ȳ|2)ȳ

)
(37)

Interestingly, Eqs. (32) and (36) have identical form as
Eqs. (8) and (15), respectively. Therefore, similar outer-loop
control expressions together with associated stability result
as in Proposition 1 can be straightforwardly stated.

Proposition 2 Let T̄p and f̄p be defined by (37)+(35) and
αr be defined by (34). Apply the outer-loop controller (25)
where the involved term u is obtained by integration of (22)
with the augmented control input Ωu given by (26). Choose
kp1 and kp2 such that kp1 >

(
1 + m2

2m1

)2

βdq

(
sup(|vr|) + Ïmax

2kvI

)
kp2 >

(
1− m2

m1

)2

βdq

(
sup(|vr|) + Ïmax

2kvI

) (38)

Assume that αr 6= 0 and |f̄p| > 0 for all time. Assume that
all conditions and assumptions in Lemma 2 hold. Then, the

equilibrium (Iξ̃, İξ̃, ξ,v,R
>γ) = (0,0, ξr,vr,u) is almost

globally asymptotically stable.

Proof: The proof of this proposition is almost identical
to that of Proposition 1. Indeed, Lemma 2 and the outer-
loop control expressions (25)–(26) ensure the convergence
of the term αre1×Ω + R>f̄p + T̄pe1 involved in (36)
to zero. Then, similarly to the proof of Lemma 1, using
(38) and the fact that sup(|v̄r|) ≤ sup(|vr|) + sup(Iξ̃) ≤
sup(|vr|) + Ïmax/(2kvI) one easily deduces that the equi-
librium (

¯̃
ξ, ¯̃P) = (0,0) of the zero dynamics of (32)+(36)

is globally asymptotically stable. Then, from the definition
(31) of ¯̃

ξ and ¯̃v the proof of convergence of (Iξ̃, İξ̃, ξ̃, ṽ) to
zero follows the same lines as the proof of Lemma 3.2 in
[5]. The remainder of the proof then directly follows.

IV. SIMULATION RESULTS

Fig. 1. Quasi-axisymmetric shape of the simulated vehicle with the main
body’s dimension 2.7[m]× 0.45[m]

In this section the performance and robustness of the
proposed control approach are validated through simulation
conducted on a realistic model of a quasi-axisymmetric
underactuated vehicle. The vehicle’s body shape, as depicted
in Fig. 1, is not perfectly symmetric along the longitudinal
axis due to a large rudder and a lower base.

Specification Numerical value
Mass m [kg] 100

Fb [N ] mg
rG [m] [0 0 0.01]>

J0[kg.m2]

10 1 2
1 100 1
2 1 90


Ma [kg]

32.6 3 4
3 484.8 1
4 1 394


Ja [kg.m2]

12.7 5 10
5 133.4 8
10 8 113.1


Kdl [kg.s

−1] diag(1.5, 7.5, 5.5)
Kdq [kg.m

−1] diag(33, 341.8, 285.5)
KΩl [kg.m

2.s−1] diag(1, 35, 40)
KΩq [N.m] diag(10, 352, 437)

TABLE I
SPECIFICATIONS OF THE SIMULATED VEHICLE

The simulated dynamics are given by (3). Physical param-
eters of the simulated vehicle are provided in Tab. I, where
the added-mass, added-inertia and damping coefficients are
roughly identified from the given shape. Note that the second
and third components of the added-mass matrix Ma and



of the damping matrix Kdq are significantly different. This
represents an opportunity to test the robustness of proposed
controller w.r.t. such a violation of the axisymmetric assump-
tion used for control design. For control implementation, an
approximate axisymmetric model is used with the following
estimated and approximated parameters:

M̂a = diag(30, 440, 440) [kg]

Ĵ = Ĵ0 + Ĵa = diag(20, 200, 190) [kg.m2]

K̂dl = diag(1, 6, 6) [kg.s−1]

K̂dq = diag(30, 310, 310) [kg.m−1]

One can notice that these estimated terms are quite
different from the corresponding “real” ones given in
Tab. I. In addition, a non-null current velocity vf =[
−0.1 0.2 0.05

]>
[m.s−2] is introduced, allowing us to

test the control robustness w.r.t. both model uncertainties and
external disturbances.

The simulated model of the dissipative torque Γd is given
by Γd = −KΩlΩ −KΩq|Ω|Ω, with the damping matrices
KΩl and KΩq specified in Tab. I, whereas in the inner-loop
torque control expression (14) the estimate of this dissipative
torque is simply set equal to zero (i.e. Γ̂d = 0) so that
no prior knowledge of this torque is required for control
implementation.

The gains and parameters involved in the proposed con-
troller are chosen as follows:

kp1 = 5.6154, kp2 = 8,
Kξ = diag(900, 1870, 1870), KI = 0.5I3,
h(s) = 1√

1+s/η2
, η = m̂2 = 540,

ku = 2,
σ(·) given by (28) with ε = 0.1,
λ = e>1 (e3 ×R>e3),

(39)

Note that the above expression of λ allows for maintaining
roll angle near zero. Limitations of the actuators are also
taken into account by saturating the applied thrust force and
torque control inputs according to the following inequality
constraints |T | ≤ 200[N ] and |Γi=1,2,3| ≤ 160[N.m].

The reference trajectory is a horizontal circular trajectory
with radius 20[m] and constant tangential speed 1[m/s] (i.e
|vr| = 1[m/s]). More precisely,

ξr(t) =
[
20sin

(
t

20

)
20
(
cos
(
t

20

)
− 1
)

0
]>

[m]

Note that ξr(0) = 0 and vr(0) = ξ̇r(0) = e1. The initial
conditions are chosen such that initial errors are relatively
large, namely{

ξ(0) = [−20 15 10]>, v(0) = 0,

R(0) = R{0,0, 75π180 }
, Ω(0) = 0,

• Convincing behaviour of the proposed controller:
Simulation results are reported in Figs. 2–6. Fig. 2 illus-
trates the convergence in 3-dimensional space of the actual
trajectory to the reference trajectory. The time evolutions
of the vehicle’s position ξ against the reference position
ξr, of the position error ξ̃, of the vehicle’s orientation
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Fig. 2. (Proposed controller) Actual and reference trajectories
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Fig. 3. (Proposed controller) Vehicle’s position and reference position
components v.s. time.

(represented by Euler angles), and of the applied force and
torque control inputs are respectively shown in Figs. 3, 4,
5, and 6. From both Figs. 3 and 4 one observes that despite
large initial errors and significant external disturbances, the
vehicle’s position converges quickly to the reference one
without much oscillations and overshoots. Saturation in force
(resp. yaw torque) control input occurred during the first
23[s] (resp. 3[s]) as shown in Fig. 6 marginally affects the
smooth convergence of the position error to zero. One can
also observe from Fig. 5 that during the transient period
the Euler roll angle always remains small (i.e. less than 5
degrees) and all the three Euler angles do not exhibit much
oscillations. We find that the overall performance of the
proposed controller is quite satisfactory.

• Oscillating behaviour of a simpler controller: In order
to illustrate the need of introducing the augmented variable
u and the associated control variable Ωu in the proposed
control approach, simulation results using the simpler outer-
loop controller (21) are reported next. Similarly to the
proposed outer-loop controller, the expression of Ωd given
in (21) is slightly modified by adding a term λe1, with
λ given in (39), so that the roll angle is also regulated
near zero. The inner-loop controller is the same as the one
used previously. All the gains and parameters involved in
this controller are chosen identically to those used for the
previously reported controller (i.e. given in (39)). Let us
call this controller “simple controller” for distinguishing
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Fig. 4. (Proposed controller) Position tracking error v.s. time.
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Fig. 5. (Proposed controller) Vehicle’s orientation represented by Euler
roll, pitch, yaw angles v.s. time.
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Fig. 6. (Proposed controller) Control force and torque inputs v.s. time.

with the proposed one. One observes that although the
position error still converges to zero (see Fig. 7) the vehicle’s
orientation exhibits much more oscillations during the first
10 seconds of the transient phase (see Fig. 8) in contrast with
the smooth behaviour of the proposed controller as shown
in Fig. 5. This justifies the need of explicitly controlling
the orientation rather than leaving the latter guided by the
closed-loop system’s zero dynamics.

V. CONCLUSION

A novel nonlinear control approach for slender-body ax-
isymmetric underactuated underwater vehicles is proposed.
Added-mass effects and dissipative hydrodynamic force are
carefully taken into account via various adaptations, resulting
in a modified apparent force no longer depending on the
vehicle’s orientation which is a good conditioning for con-
trol design. The proposed controller is also complemented
with an integral correction term to enhance its robustness.
Convincing simulation results conducted on a realistic model
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Fig. 7. (Simple controller) Position tracking error v.s. time.
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Fig. 8. (Simple controller) Vehicle’s orientation represented by Euler roll,
pitch, yaw angles v.s. time.

of a quasi-axisymmetric underwater vehicle illustrate the
performance and robustness of the proposed controller.
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