
PREPRINT - Accepted at Design, Automation, and Test in Europe (DATE) Conference 2024

CLSA-CIM: A Cross-Layer Scheduling Approach
for Computing-in-Memory Architectures

Rebecca Pelke , Jose Cubero-Cascante , Nils Bosbach , Felix Staudigl , Rainer Leupers , Jan Moritz Joseph
Institute for Communication Technologies and Embedded Systems

RWTH Aachen University, Germany
{pelke, cubero, bosbach, staudigl, leupers, joseph}@ice.rwth-aachen.de

Abstract—The demand for efficient machine learning (ML)
accelerators is growing rapidly, driving the development of novel
computing concepts such as resistive random access memory
(RRAM)-based tiled computing-in-memory (CIM) architectures.
CIM allows to compute within the memory unit, resulting in
faster data processing and reduced power consumption. Efficient
compiler algorithms are essential to exploit the potential of
tiled CIM architectures. While conventional ML compilers focus
on code generation for CPUs, GPUs, and other von Neumann
architectures, adaptations are needed to cover CIM architectures.
Cross-layer scheduling is a promising approach, as it enhances
the utilization of CIM cores, thereby accelerating computations.
Although similar concepts are implicitly used in previous work,
there is a lack of clear and quantifiable algorithmic definitions
for cross-layer scheduling for tiled CIM architectures.

To close this gap, we present CLSA-CIM, a cross-layer schedul-
ing algorithm for tiled CIM architectures. We integrate CLSA-
CIM with existing weight-mapping strategies and compare per-
formance against state-of-the-art (SOTA) scheduling algorithms.
CLSA-CIM improves the utilization by up to 17.9 × , resulting in
an overall speedup increase of up to 29.2 × compared to SOTA.

Index Terms—RRAM, CIM, compiler, cross-layer scheduling

I. INTRODUCTION

The increasing demand for efficient computation of data-
intensive machine learning (ML) applications has led to
specialized architectures such as graphics processing units
(GPUs) and tensor processing units (TPUs). However, a major
performance limitation is the data movement between main
memory and compute units, known as the von Neumann bot-
tleneck [1]. Novel computing-in-memory (CIM) technologies,
such as resistive random access memory (RRAM), tackle this
bottleneck by unifying memory and computation unit [2].
These designs outperform their CMOS-based counterparts in
memory capacity, device density, and power consumption [3].

In recent years, several CIM architectures have been in-
troduced [4], [5], [6], [7]. These architectures adopt a tiled
structure, as shown in Figure 1(a), wherein tiles are inter-
connected via a network on chip (NoC). To achieve high
energy efficiency and inference performance, maximizing the
utilization of the processing elements (PEs), located inside the
tiles, is essential. This imposes a special challenge for CIM
architectures since the neural network (NN)’s weights are stat-
ically assigned to the PEs and remain there during inference.
To increase the PEs’s utilization, the compiler needs to exploit

This work was funded by the Federal Ministry of Education and Research
(BMBF, Germany) in the project NeuroSys (Project Nos. 03ZU1106CA).

Fig. 1: NN inference on (a) tiled CIM architectures: (b) Layer-
by-layer scheduling, (c) weight duplication mapping, and (d)
cross-layer scheduling

both intra- and cross-layer scheduling of the workload [8].
Previous research has mainly focused on intra-layer scheduling
techniques [9], [10], [11], [12], which only consider parallel
execution of individual layers. Weight duplication, a mapping
method proposed in [13], [14], [15], involves assigning the
same weights to multiple PEs to divide input data between
them. This approach is restricted by the limited number of
PEs and can only accelerate individual layers. It does not
increase the utilization of the PEs. In contrast, cross-layer
scheduling accomplishes this by considering optimizations
across layer boundaries [16]. Cross-layer scheduling forwards
parts of a layer’s output feature map (OFM) to subsequent
layers before the entire OFM has been computed (Figure 1(d)).
While previous research has addressed the development of
tiled CIM architectures that enable cross-layer scheduling
in hardware [6], [13], [17], there is a lack of a software
methodology to fully exploit this feature. We want to close
this gap by presenting the following contributions:

• We extend the existing weight duplication approaches by
developing an algorithm that decides which parts of the
NN are duplicated to achieve minimum inference latency.
Details of the TensorFlow implementation are provided.

• We introduce CLSA-CIM, a novel approach for cross-
layer scheduling on tiled CIM architectures. CLSA-CIM
seamlessly integrates with existing mapping strategies,
such as weight duplication, while leveraging established
intra-layer scheduling techniques.

• In a case study, we show that CLSA-CIM has the
potential to achieve up to 29.2 × speedup by massively
improving the PE utilization.

ar
X

iv
:2

40
1.

07
67

1v
2 

 [
cs

.A
R

] 
 1

7 
Ja

n 
20

24

https://orcid.org/0000-0001-5156-7072
https://orcid.org/0000-0001-9575-0856
https://orcid.org/0000-0002-2284-949X
https://orcid.org/0000-0001-9673-3070
https://orcid.org/0000-0002-6735-3033
https://orcid.org/0000-0001-8669-1225


PREPRINT - Accepted at Design, Automation, and Test in Europe (DATE) Conference 2024

II. BACKGROUND AND RELATED WORK

A. RRAM-based Tiled CIM Architectures

RRAM devices offer programmable conductance values and
are used in crossbar structures for efficient in-memory matrix-
vector multiplication (MVM) operations [18]. RRAM cells
have a limited endurance [19]. It therefore makes sense to store
all NN weights only once before inference. This also avoids
costly rewriting processes [4]. Consequently, RRAM-based
CIM architectures typically incorporate a large number of
crossbars to store the entire NN [5]. Various CIM architectures
have been proposed to enable efficient and parallel MVM
execution [4], [5], [6], [20]. Drawing from these accelerators,
we will define fundamental hardware requirements that must
be fulfilled to support cross-layer scheduling (see Figure 1(a)):

• Tiles that exchange data with other tiles via a NoC.
• All tiles operate in parallel and independently.
• Within the tiles, there are buffers to store parts of the

input and output data.
• Due to limited buffer memory, all tiles have fast access

to a global DRAM for data exchange.
• Inside the tiles, there are crossbar(s), also called PE(s).
• The number of tiles and PEs is sufficient to store all

weights of the NN at least once on the architecture.
• Each tile has general purpose execution unit (GPEU) to

execute other operations than MVM (e.g., pooling).

While the majority of the tiled CIM accelerators meet these
cross-layer scheduling requirements [5], [6], [20], they differ
in GPEU logic, NoC structure, tile count, PE dimensions, or
buffer capacities. From the cross-layer scheduling perspective,
these differences are not relevant as long as the above-
mentioned requirements are met.

B. Intra-Layer Scheduling and Layer-by-Layer Inference

The performance gains of tiled CIM accelerators stem
from the fact that the PEs can efficiently perform MVMs
in parallel. Previous works exploit intra-layer parallelism to
speed up inference [9], [10], [11], [12]. However, the overall
PE utilization remains low as only one layer’s PE(s) are active
at any time, which is called layer-by-layer inference.

C. Weight Duplication Mapping

To speed up layer-by-layer inference, weight duplication
aims to further enhance the intra-layer parallelization capabil-
ities of NNs by storing the same weight sets in two or more
PEs. This creates parallel duplicated layer nodes in the NNs
graph, which can be executed in parallel on CIM architectures
(see Figure 1(c)). This idea has been proposed in previous
works [13], [14], [15]. Weight duplication comes at the cost of
increased resource requirements. It is mandatory to determine
which layers should be duplicated and how often. We extend
existing approaches by developing an algorithm that estimates
the costs and values of duplicating certain weights. This is
explained in more detail in Section III-C.

D. Cross-Layer Inference

The idea of cross-layer inference is that partial results can
be passed to the next PEs even before an entire layer has
been fully computed. This improves the inference latency and
PE utilization. While cross-layer inference approaches have
been proposed for tiled accelerators [8], they have not yet
been applied to CIM systems. It is particularly well-suited for
CIM architectures because of their weight-stationary data flow.
Some architectures are specifically designed for this purpose.
For instance, the authors of [13] presented a CIM architecture
that includes synchronization mechanisms particularly tailored
to support cross-layer inference. However, they do not provide
a general approach on the software side. CLSA-CIM, our
software-based scheduling approach, overcomes this limita-
tion. Implementation details are presented in Section III and
Section IV.

III. CROSS-LAYER SCHEDULING - PREPARATION

Preprocessing transforms the NN model (from TensorFlow)
into a unified structure, which serves as input for the CLSA-
CIM algorithm. It involves architecture-specific high-level
optimizations, the refinement of existing mapping approaches
including concepts like im2col and weight duplication, as well
as the use of existing intra-layer scheduling concepts.

A. High-Level Optimizations

BN folding: Batch normalization (BN) layers enhance train-
ing stability and convergence speed by normalizing the input
distributions. For inference, the BN layer can be merged with
the previous operation, known as BN folding [21]. It improves
computational efficiency and memory utilization by adjusting
the kernel weights w and the bias b in the Conv2D operation.

Partitioning: The NN is divided into base layers, i.e.,
operations executed on the PE (like convolutions and dense
layers), and non-base layers (all remaining layers). In the NN
graph, padding and bias addition are decoupled from the base
layer, eliminating redundancy in the graph representation.

Quantization: Base layers need to be quantized due to the
limited resolution of PE (RRAM) cells. For existing PEs, this
resolution can be up to 4 Bits [4]. The preprocessing steps are
summarized in Figure 2 using a minimal example.

Fig. 2: Partitioning, quantization (Q), and BN folding. The
resulting canonical NN representation is split into base (green)
and non-base (blue) layers

B. Im2col and Intra-Layer Scheduling

Base layers must be translated into MVMs to execute them
on the PEs. One widely used technique for convolutions is
converting them into general matrix multiplys (GEMMs). This
can be accomplished through the use of im2col [9]. Figure 3
illustrates the im2col algorithm, which unrolls the individual
kernels and arranges them in columns which leads to a (KW ·
KH ·KI)×KO kernel matrix. The kernel matrix is subdivided



PREPRINT - Accepted at Design, Automation, and Test in Europe (DATE) Conference 2024

into submatrices of size M ×N , which are statically mapped
to the accelerators PEs [12]. Previous research shows that all
PEs within a layer can operate in parallel with minimal latency
overhead, a concept known as intra-layer scheduling [22].

Fig. 3: Conv2D to GEMM transformation using im2col

Therefore, we simplify by assuming that the calculation of
an (1×1×OC) OFM vector takes place within tMVM , which
represents the MVM latency of a PE. Accordingly, the total
latency to compute the OFM of a single layer using intra-layer
scheduling is tOFM = OH ·OW · tMVM .

C. Weight Duplication Mapping

Weight duplication reduces the inference latency of a single
layer since the work, i.e., the input vectors, is evenly dis-
tributed among the duplicates. The latency of the Conv2D
operation reduces to tOFM = 1

D ·OH ·OW ·tMVM , where D is
the number of duplicates. Duplicating the kernel matrix comes
at the cost of requiring more PEs to store all weights. This
means that weight duplication is rather beneficial for layers
with high calculation latency (large OH · OW factor) and a
small number of required PEs. As discussed in Section II-A,
it is assumed that the architecture has a sufficient number of
PEs to store all weights without rewriting. If the architecture
has F PEs and the NN needs Cnum PEs, with Cnum < F ,
weight duplication can be applied to further reduce the in-
ference latency (see Section II-C). The solution vector d of
Optimization Problem 1 determines which layers should be
duplicated to achieve the best inference latency:

Optimization Problem 1 Weight Duplication
minimize:

∑
i
ti
di

subject to: cT · d ≤ F ,
d ≥ 1,
d ∈ ZN

+

Vector t contains the latencies needed to calculate the OFM
of the base layers with tT =

(
tOFM0 , tOFM1 , ..., tOFMN−1

)
.

Vector c contains the number of required M × N PEs for
every base layer, e.g., convolutions (see Figure 3):

ci =

⌈
KW,l ·KH,l ·KI,l

N

⌉
︸ ︷︷ ︸

=:PV,i

·
⌈
KO,l

M

⌉
︸ ︷︷ ︸
=:PH,i

,
∑
i

ci = Cnum (1)

The vector d also specifies the number of base layer
duplicates to be created. The latency values ti for calculating
one layer i using intra-layer scheduling are set according to
Section III-B. Note that the solution determines which weights
to duplicate, but it does not determine how to distribute the
work, i.e., the input feature map (IFM), among the dupli-
cates. Keeping in mind the intra-layer scheduling algorithm
in Section III-B, the IFMs and OFMs should be cut along the
IW /OW and/or IH /OH dimensions, as shown in Figure 4.

Fig. 4: Implementation of weight duplication using three
duplicates

The example provides details of the TensorFlow-specific
implementation of weight duplication. The OFM is di-
vided into 2 × 2 × 1 disjoint parts. In the NN graph,
this is realized by applying one tf.slice operation on
the IFM for each duplicate. The IFM slices may over-
lap depending on the kernel shape and stride. After the
distributed calculations, the OFMs are concatenated using
tf.keras.layers.Concatenate. The depth of the
concatenated tree corresponds to the number of dimensions
along which it has been cut. The influence of weight duplica-
tion on the inference latency will be discussed in Section V-A.

IV. CROSS-LAYER SCHEDULING - CLSA-CIM

CLSA-CIM builds upon the mapping and intra-layer
scheduling concepts from Section III. It aims to minimize the
inference latency by maximizing the utilization of the tiles
(see Section II-A). The algorithm comprises two preprocessing
stages for creating the necessary data structures, determine
sets and determine dependencies (Figure 5(a)-(b)), followed by
two scheduling stages: First, intra-layer scheduling is applied,
followed by the actual cross-layer scheduling (Figure 5(c)).

1) Stage I - Determine Sets: The OFMs is divided into
disjoint sets, which are the minimum scheduling units. This
means that all elements within this set must be processed
before elements from another set of the same OFM can be
calculated. The sets should ideally contain a similar number
of elements; otherwise, the execution time for each set may
vary. Additionally, a hyperrectangle shape allows to identify
the set’s location and size using two coordinates. Increasing
the number of sets provides a more detailed scheduling gran-
ularity. The sets should be sufficiently large to facilitate the
execution of non-base layer operations, such as pooling. In
the example in Figure 5(a), the sets must contain at least
2 × 2 values to accommodate (2, 2) pooling with a stride of
(2, 2). Next, the intra-layer dependencies are determined. For
each set of the OFM, the corresponding set of the IFM is
calculated. When adding new base layers to the algorithms,
this dependency has to be specified.



PREPRINT - Accepted at Design, Automation, and Test in Europe (DATE) Conference 2024

Fig. 5: Minimal example for CLSA-CIM using two consecutive Conv2D layers and a non-base layer path including bias,
activation, pooling, and padding: Determine sets (a), determine dependencies (b), and cross-layer scheduling (c)

2) Stage II - Determine Dependencies: This stage calcu-
lates the dependencies between consecutive base layers. The
two points specifying the location and size of the OFM set
of a predecessor are propagated along the non-base layer path
to determine which IFM sets are affected. In Figure 5(b), it
is evident that each OFM set can influence multiple IFM sets
(denoted as Q), and likewise, each IFM set can be affected by
multiple OFM sets (denoted as P ).

3) Stage III - Intra-Layer Scheduling: In the third stage, the
scheduling order of the OFM sets is determined for each base
layer individually. The execution order of the OFM sets can be
seen in Figure 5(b). The orange-colored connections between
OFM sets of the same layer indicate resource dependencies,
which means that the same crossbars are needed to calculate
those sets. In the example, OFM1set0 has to be scheduled
before the other sets of Conv1 since it allocates the resources
first. The dependencies marked in black are data dependencies.
To generate the IFM set of Conv2 from the OFM sets of
Conv1, non-base layer operations, e.g., pooling, are applied.

4) Stage IV - Cross-Layer Scheduling: Figure 5(c) shows
the resulting schedule. Note that the non-base layer operations
are not illustrated due to simplicity. CLSA-CIM ascertains the
earliest feasible starting point for computing each OFM set in
the NN. In other words, an OFM set is scheduled once all the
required IFM sets of its predecessors have been scheduled.

A. Combine Weight Duplication and Cross-Layer Scheduling

Weight duplication is a mapping technique, whereas cross-
layer inference is a scheduling technique. These concepts can
be used independently. Combining them can further reduce
inference latency. The weight duplication algorithm is applied
first, resulting in a non-sequential NN graph where each
layer can have multiple predecessors and successors. CLSA-
CIM is applied after that. It is designed to handle non-
sequential models in a generic manner, requiring no additional
modifications or adjustments. This allows for the seamless
integration of weight duplication and CLSA-CIM.

V. EVALUATION

This chapter evaluates the performance of CLSA-CIM.
We distinguish between three approaches: weight duplica-
tion mapping combined with layer-by-layer inference (wdup),
cross-layer inference (xinf), and the combination of weight
duplication mapping and cross-layer inference (wdup+xinf).

All speedup measurements are referenced to the layer-by-
layer inference (see Section II-B). As there are currently no
commercially available CIM chips, we use a custom system-
level simulator, similar to previous works [13], [14], [23]. We
calculate the maximum achievable utilization and minimum
inference latency achievable with CLSA-CIM. For the simu-
lation, three core parameters are required: the number of PEs,
the dimensions of a PE, and the MVM latency. In a case study,
we assume a 256 × 256 crossbar and an MVM latency of
tMVM = 1,400 ns [4], which we call a cycle. The number
of CIM cores is kept variable in the simulation to investigate
its impact on the latency. If future CIM architectures meet the
prerequisites outlined in Section II-A, CLSA-CIM can be used.
CLSA-CIM increases the architecture utilization Ut, which is
defined as the mean over the ratio of the active cycle time
tp,active cycles to the total inference time of the NN tNN cyles

for PE p:

Ut :=
1

#PE

 ∑
p∈PE

tp,active cycles

tNN cyles

 (2)

The number of PEs is varied for each benchmark to enable
weight duplication. The notation “wdup+x”, e.g., “wdup+32”,
means that the architecture has 32 PEs more than needed to
store all NN weights exactly once.

A. CLSA-CIM - A Case Study

We analyze our scheduling approach (CLSA-CIM) with a
TinyYOLOv4 case study. TinyYOLOv4 is a non-sequential
NN for object detection and classification. Table I shows an
extract of the base layer structure of TinyYOLOv4.

TABLE I: Extract of the base layer structure of TinyYOLOv4

Layer IFM shape OFM shape #PE Cycles
(HWC) (HWC) 256×256 tinit

conv2d (417, 417, 3) (208, 208, 32) 1 43264
conv2d 1 (209, 209, 32) (104, 104, 64) 2 10816
conv2d 2 (106, 106, 64) (104, 104, 64) 3 10816
... ... ... ... ...
conv2d 16 (15, 15, 256) (13, 13, 512) 18 169
conv2d 20 (26, 26, 256) (26, 26, 255) 1 676
conv2d 17 (13, 13, 512) (13, 13, 255) 2 169

TinyYOLOv4 has 18 Conv2D layers. The minimum number
of PEs required to store all weights at least once, PEmin, is
117. The time tinit is the duration of executing the layer (in
cycles) using only intra-layer scheduling (see Section III-B).



PREPRINT - Accepted at Design, Automation, and Test in Europe (DATE) Conference 2024

(a) Weight duplication (wdup+16), layer-by-layer (b) Weight duplication (wdup+16), CLSA-CIM (xinf) (c) Speedup and utilization

Fig. 6: Visualization of weight duplication mapping (a) and CLSA-CIM (b) using x = 16 additional PEs, speedup and PE
utilization for different weight mapping (weight duplication) and scheduling (layer-by-layer, CLSA-CIM) combinations (c)

Since the OH ·OW factor is higher for the first layers, they are
more time-consuming to compute. The first layers need fewer
PEs, which makes them a good choice for weight duplication.

Figure 6 provides an illustration of the weight duplication
mapping (wdup) of the TinyYOLOv4 benchmark combined
with layer-by-layer scheduling (Figure 6a) and CLSA-CIM
(Figure 6b). The solution of Algorithm 1 in Section III-C
reveals that for x = 16 additional PEs, the first 6 Conv2D
layers need to be duplicated according to the table in Figure 6a.
Figure 6c confirms what is visible in Figure 6b: CLSA-CIM
(xinf) increases the utilization of the PEs to a total of 4.1 %.
In combination with weight duplication and x = 32 additional
PEs (wdup+32), in total 117+32 PEs, the utilization increases
up to 28.4 %. This corresponds to an inference speedup of up
to 21.9 × . The relationship between speedup S and utilization
Ut for +x PEs and configuration c is

Sx,c ≈
Utx,c · (PEmin + x)

Utlayer by layer · PEmin
. (3)

B. Performance Results

We further evaluate benchmarks that have a higher demand
for PEs than TinyYOLOv4. This includes sequential models
like VGG16 and VGG19, and non-sequential models like
TinyYOLOv3, ResNet50, ResNet101, and ResNet152. Since
the latency and utilization depend on the dimensions of the
IFM, the dimensions are listed in Table II.

TABLE II: List of benchmarks

Benchmark Input shape Base layers Min. # required
(HWC) (number) 256×256 PEs

TinyYOLOv3 (416, 416, 3) 13 142
VGG16 (224, 224, 3) 13 233
VGG19 (224, 224, 3) 16 314
ResNet50 (224, 224, 3) 53 390
ResNet101 (224, 224, 3) 104 679
ResNet152 (224, 224, 3) 155 936

The inference latency speedups and PE utilizations are com-
pared for different combinations of mapping (wdup+x) and
scheduling (layer-by-layer, xinf). For additional PEs,

we consider the setups x ∈ {4, 8, 16, 32}, i.e., for VGG19, 314
to 346 PEs. This enables a better comparison across different
benchmarks. In the tested configurations in Figure 7a, pure
weight duplication yields a modest speedup for large models,
from 1.1 × to 1.9 × . This is because the number of additional
PEs (up to 32) is small compared to the minimum required
PEs to store the entire NN on the accelerator. CLSA-CIM
(xinf) achieves a speedup of up to 4.4 × for large models
compared to layer-by-layer scheduling. The best results are
achieved by combining CLSA-CIM and weight duplication.
This approach yields the highest speedup of 29.2 × for the
TinyYOLOv3 benchmark. Of particular interest is that only
x = 4 additional PEs are sufficient to outperform the pure
xinf configuration by a factor of almost 2 × . We observe this
even for ResNet152, where x = 4 PEs is very small compared
to the minimum PE requirement of 936. This can be attributed
to the fact that, as demonstrated in Figure 6a, the first layer is
relatively computation-intensive. Figure 7b illustrates the PE
utilizations for each benchmark. The utilization is increased by
CLSA-CIM across all benchmarks, surpassing the impact of
pure weight duplication. Again, the combination of weight du-
plication and CLSA-CIM delivers the best performance values.
For smaller models, higher utilization rates can be achieved,
with TinyYOLOv3 reaching a maximum utilization of 20.1%.
This represents an improvement of 17.9 × compared to layer-
by-layer scheduling. Since the final layers often require many
PEs (see Table I), but at the same time are less computationally
intensive, the utilization of the architecture for a single NN
inference usually remains below 10 %. As the model depth
increases, the utilization decreases, as observed in the ResNet
benchmarks. This is due to the limited parallelization capabil-
ities between layers which are far apart in the NN graph.

C. Limitations and Future Work

As mentioned in Section II-A, our current work focuses on
cases where the number of crossbars is sufficient to accom-
modate complete NNs on the architecture. However, in future
research, we aim to explore more general scenarios. CLSA-



PREPRINT - Accepted at Design, Automation, and Test in Europe (DATE) Conference 2024

(a) Inference speedup in relation to layer-by-layer scheduling (b) Utilization in relation to layer-by-layer scheduling

Fig. 7: Combinations of mapping and scheduling in contrast to layer-by-layer scheduling without weight duplication: layer-by-
layer scheduling with weight duplication (wdup), CLSA-CIM (xinf), and weight duplication with CLSA-CIM (wdup+xinf)

CIM is already designed to accept the crossbar dimensions
as an input parameter, allowing for adaptability to arbitrary
sizes. It is important to acknowledge that the speedup values
presented in this study represent peak performance. There
may be architecture-dependent factors that could potentially
impact latency. For example, the costs associated with data
movement have not been differentiated yet. Depending on the
topology, forwarding partial results may incur varying costs.
Furthermore, it is possible for cores to share resources such
as adders, further imposing constraints on scheduling algo-
rithms. Our future work will involve extending our abstract
architecture description to account for these factors, enabling
full architecture retargetability.

VI. CONCLUSION

The development of efficient scheduling algorithms for tiled
CIM architectures is crucial to fully utilize the potential of
CIM concepts. Our scheduling approach, CLSA-CIM, enables
cross-layer inference on top of existing intra-layer scheduling
and weight duplication mapping algorithms, which signifi-
cantly enhances the utilization of PEs of up to 17.9 × , result-
ing in an inference speedup of up to 29.2 × . We conducted
evaluations using state-of-the-art NNs, including a case study
of the TinyYOLOv4 model to visualize the algorithms. In sum-
mary, our work contributes to the advancement of scheduling
approaches and algorithms for CIM architectures. It sheds light
on the benefits of combining cross-layer inference and weight
duplication, paving the way for enhanced performance of ML
applications on CIM architectures.

REFERENCES

[1] X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, “Breaking the von Neu-
mann bottleneck: architecture-level processing-in-memory technology,”
Science China Information Sciences, 2021.

[2] Y.-F. Chang et al., “Memcomputing (Memristor + Computing) in Intrin-
sic SiOx-Based Resistive Switching Memory: Arithmetic Operations for
Logic Applications,” IEEE (T-ED), 2017.

[3] J. S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory
Systems in Extreme-Scale High Performance Computing,” Computing
in Science & Engineering, 2015.

[4] W. Wan et al., “A compute-in-memory chip based on resistive random-
access memory,” Nature, 2022.

[5] A. Ankit et al., “PUMA: A Programmable Ultra-efficient Memristor-
based Accelerator for Machine Learning Inference,” in ASPLOS XXIV,
2019.

[6] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer
Architecture News, 2016.

[7] P. Chi et al., “Prime: A novel processing-in-memory architecture for neu-
ral network computation in reram-based main memory,” ACM SIGARCH
Computer Architecture News, 2016.

[8] J. Cai, Y. Wei, Z. Wu, S. Peng, and K. Ma, “Inter-layer Scheduling
Space Definition and Exploration for Tiled Accelerators,” in 50th ISCA,
2023.

[9] K. Yanai, R. Tanno, and K. Okamoto, “Efficient Mobile Implementation
of A CNN-based Object Recognition System,” in Proceedings of the
24th ACM international conference on Multimedia, 2016.

[10] X. Peng, R. Liu, and S. Yu, “Optimizing Weight Mapping and Data
Flow for Convolutional Neural Networks on Processing-in-Memory
Architectures,” IEEE Transactions on Circuits and Systems Is, 2019.

[11] S. Negi, I. Chakraborty, A. Ankit, and K. Roy, “NAX: neural architecture
and memristive xbar based accelerator co-design,” in DAC, 2022.

[12] A. Agrawal, C. Lee, and K. Roy, “X-CHANGR: Changing Mem-
ristive Crossbar Mapping for Mitigating Line-Resistance Induced
Accuracy Degradation in Deep Neural Networkss,” arXiv preprint
arXiv:1907.00285, 2019.

[13] X. Liu et al., “FPRA: A Fine-grained Parallel RRAM Architecture,” in
2021 IEEE/ACM ISLPED. IEEE, 2021.

[14] J. Rhe, S. Moon, and J. H. Ko, “VWC-SDK: Convolutional Weight
Mapping Using Shifted and Duplicated Kernel with Variable Windows
and Channels,” IEEE JETCAS, 2022.

[15] Z. Zhu et al., “Mixed Size Crossbar based RRAM CNN Accelerator
with Overlapped Mapping Method,” in IEEE/ACM ICCAD, 2018.

[16] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the
IEEE, 2017.

[17] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Ver-
helst, “Towards Heterogeneous Multi-core Accelerators Exploiting Fine-
grained Scheduling of Layer-Fused Deep Neural Networks,” arXiv
preprint arXiv:2212.10612, 2022.

[18] W. Cao, Y. Zhao, A. Boloor, Y. Han, X. Zhang, and L. Jiang, “Neural-
PIM: Efficient Processing-In-Memory With Neural Approximation of
Peripherals,” IEEE Transactions on Computers, 2021.

[19] C. Nail et al., “Understanding rram endurance, retention and window
margin trade-off using experimental results and simulations,” in IEEE
IEDM. IEEE, 2016.

[20] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning,” in IEEE HPCA, 2017.

[21] B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in CVPR, 2018.

[22] R. Pelke, N. Bosbach, J. Cubero, F. Staudigl, R. Leupers, and J. M.
Joseph, “Mapping of CNNs on multi-core RRAM-based CIM architec-
tures,” in IFIP/IEEE VLSI-SoC. IEEE, 2023.

[23] A. Lu, X. Peng, W. Li, H. Jiang, and S. Yu, “NeuroSim Simulator
for Compute-in-Memory Hardware Accelerator: Validation and Bench-
mark,” Frontiers in artificial intelligence, 2021.


	Introduction
	Background and Related Work
	rram-based Tiled cim Architectures
	Intra-Layer Scheduling and Layer-by-Layer Inference
	Weight Duplication Mapping
	Cross-Layer Inference

	Cross-Layer Scheduling - Preparation
	High-Level Optimizations
	Im2col and Intra-Layer Scheduling
	Weight Duplication Mapping

	Cross-Layer Scheduling - CLSA-CIM
	Stage I - Determine Sets
	Stage II - Determine Dependencies
	Stage III - Intra-Layer Scheduling
	Stage IV - Cross-Layer Scheduling

	Combine Weight Duplication and Cross-Layer Scheduling

	Evaluation
	CLSA-CIM - A Case Study
	Performance Results
	Limitations and Future Work

	Conclusion
	References

