
HAL Id: hal-03601725
https://hal.science/hal-03601725v1

Submitted on 8 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unifying temporal and spatial locality for cache
management inside SSDs

Zhibing Sha, Zhigang Cai, François Trahay, Jianwei Liao, Dong Yin

To cite this version:
Zhibing Sha, Zhigang Cai, François Trahay, Jianwei Liao, Dong Yin. Unifying temporal and spatial
locality for cache management inside SSDs. DATE 2022: 25th Design, Automation and Test in Europe,
Mar 2022, Online, France. pp.891-896, �10.23919/DATE54114.2022.9774532�. �hal-03601725�

https://hal.science/hal-03601725v1
https://hal.archives-ouvertes.fr

Unifying Temporal and Spatial Locality for
Cache Management inside SSDs

Zhibing Sha∗, Zhigang Cai∗, François Trahay†, Jianwei Liao∗, Dong Yin‡
∗College of Computer and Information Science, Southwest University, Chongqing, China

†Telecom SudParis, Institut Polytechnique de Paris, France
‡School of Computer Science and Technology, Huaihua University, Huaihua, China
Corresponding author: Z. Cai (czg@swu.edu.cn); D. Yin (yindong2050@126.com)

Abstract—To ensure better I/O performance of solid-state
drivers (SSDs), a dynamic random access memory (DRAM) is
commonly equipped as a cache to absorb overwrites or writes,
instead of directly flushing them onto underlying SSD cells. This
paper focuses on the management of the small amount cache
inside SSDs. First, we propose to unify both factors of temporal
and spatial locality of user applications by employing the visibility
graph technique, for directing cache management. Next, we
propose to support batch adjustment of adjacent or nearby (hot)
cached data pages by referring to the connection situations in the
visibility graph of all cached pages. At last, we propose to evict the
buffered data pages in batches, to maximize the internal flushing
parallelism of SSD devices, without worsening I/O congestion.
The trace-driven simulation experiments show that our proposal
can yield improvements on cache hits by more than 2.8%, and
the overall I/O latency by 20.2% on average, in contrast to
conventional cache schemes inside SSDs.

Index Terms—Solid-state Drivers, Cache Management, Local-
ity of Reference, Visibility Graph, Batch Adjustment.

I. INTRODUCTION

The NAND flash memory-based solid-state drives (SSDs)
have gradually become the dominant storage devices for
embedded systems, personal computers, and high perfor-
mance platforms, thanks to their small size, high performance,
random-access and low energy consumption [1], [2]. Apart
from NAND flash arrays that hold data, an SSD device com-
monly has a faster but small amount of dynamic random access
memory (DRAM) that acts as a cache for I/O operations. For
instance, the Silicon Armor SP A80 SSD is equipped with
512GB flash array and 8MB∼480MB cache [3].

Generally, the SSD cache is utilized to not only keep logic-
physical address mapping data structures, but also temporarily
buffer the contents of overwrite or write requests [4]. The
write requests can be quickly responded after their contents are
buffered in the cache, Consequently, it can greatly reduce the
number of flush operations onto the underlying flash array, and
then improve the I/O performance and the lifetime of SSDs [5],
[6]. Once the cache space is full, the cache management
scheme must evict some buffered data and flush them to the
underlying flash array, for making room for new data.

Cache management significantly impacts the I/O perfor-
mance because of the limited cache capacity in SSDs [7].
Locality of reference characterizes the ability to predict future
accesses from the past accesses, and is the base of cache
management. There are two main types of locality: temporal

and spatial. Temporal locality refers to repeated accesses to
the same data, and spatial locality refers to adjacent accesses
to the nearby data, within short time periods [8].

Least recently used (LRU) is the most widely used cache
management scheme due to the simplicity and adaptability [9].
It is based on the temporal locality of reference, as it only
analyzes very limited information on recency. Clean first least
recently used (CFLRU) is a variation of LRU that additionally
considers whether the cached data are modified or not [10].
Similarly, the LFU cache management algorithm follows the
concept of factoring out locality from reference counts, and
the cached data having the least access frequency during the
recent period will be firstly evicted [11].

With respect to sophisticated cache management in SSDs,
Sun et al. [6] proposed a collaborative active write-back cache
management scheme, which is collaboratively aware of I/O
access patterns and the idle status of flash arrays (e.g. flash
chips), to minimize the negative impacts of cache evictions.
Wang et al. [4] introduced a cache management scheme for
SSDs, with consideration of the access frequency of the
buffered pages. They used the particle swarm optimization
(PSO) technique [14] to predict the access frequency of pages,
in order to guide cache evictions. In addition, Du et al. [15]
proposed a virtual block-based buffer management scheme
for SSD devices, that groups the buffered data pages into
virtual blocks according to their access patterns (i.e. random or
sequential), and manages the pages at the virtual block level.

Although such sophisticated methods can improve the cache
use efficiency in many cases compared to LRU or LFU, their
computational power consumption is increased because of the
analysis of I/O workloads or the monitoring the idle status
of SSD devices. As a result, they cannot cover all scenarios
with expected I/O improvements [17]. Considering SSD de-
vices normally have computing power-limited controllers, it is
expected to integrate a simple and effective cache management
scheme with such devices.

On the other hand, most workloads have a high spatial
locality and temporal locality, and designing a cache that
leverages this locality can boost the storage performance in
computing systems [16]. The spatial locality of reference,
however, has not been utilized together with the factor of
temporal locality in cache management for SSDs.

In this paper, we propose VS-Batch, a cache management

scheme for SSDs devices that considers both temporal and
spatial locality of references. VS-Batch unifies both types of
locality by using a visibility graph. In summary, it makes the
following three contributions:

• We propose to use the visibility graph technique [18]
for unifying both temporal locality and spatial locality of
references in cache management of SSDs. Then, it uses
four levels of linked lists that correspond to 4 connection
cases of nodes in the visibility graph of cached data
pages, for managing the pages in a differentiated manner.

• We present a batch-based upgrade and downgrade adjust-
ment on the cached data pages. It upgrades the hit pages,
their neighboring pages and their (nearby) frequently
accessed pages to high-level linked lists in batches, and
it degrades the cold data pages to low-level linked lists
till they are evicted from the cache.

• We conduct simulation evaluation by replaying 6 block
traces of real world applications. As our measurements
indicate, VS-Batch effectively increases cache hits by
more than 2.8% and reduces the I/O latency by more
than 10.7%.

The remainder of the paper is organized as follows: in
Section II, we describe the related work and motivation.
Section III presents the proposed cache management scheme
that takes both temporal and spatial locality into account.
Section IV presents the evaluation methodology and reports
the experimental results. Section V concludes the paper.

II. RELATED WORK AND MOTIVATION

A. Related Work

Caching inside of SSD can absorb certain overwrite and
write requests to optimize SSD performance. Cache manage-
ment mainly focuses on the replacement strategy to make room
for new data by evicting some of the buffered data.

Most of cache replacement strategies are basically built on
the top of temporal locality, such as LRU, CFLRU, or LFU.
Moreover, Sun et al. [6] proposed considering I/O access
patterns of applications and the idle status of flash chips, to
determine which buffered data pages should be evicted. Then,
it proactively evicts the (cold) cached items from the cache
if their destination (underlying) SSD channels are idle (i.e.
the spatial factor), for reducing the wait time of flushing data.
Thus, it can minimize the delay on normal I/O processing
caused by cache evictions and then reduce I/O latency. Similar
to [12], Chen et al. [13] presented ECR, that gives a higher
probability to evict a page when it needs the shortest waiting
time in the corresponding chip (or channel) queue. Besides,
Wang et al. [4] introduced a scheme for the management of
SSD cache with consideration of the access frequency of the
buffer pages. They used the particle swarm optimization (PSO)
technique [14] to predict the access frequency of the buffered
data pages for guiding cache evictions.

Du et al. [15] proposed a buffer management scheme called
VBBMS that takes both temporal and spatial factors into
account. It manages the cached data pages at the granularity

to
ta

l
ca

ch
e

ev
ic

ti
o
n
s

R
at

io
o
f

ca
ch

e
th

ra
sh

in
g

to

(a) 32MB Cache (b) 128MB Cache

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0
0k

2k

4k

6k
 Neighboring

 Frequent

 Ratio

0%

4%

8%

12%

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0
0k

2k

4k

6k

8k
 Neighboring Frequent Ratio

0%

6%

12%

18%

24%

Fig. 1: The number of cache thrashings and the proportion
of thrashing events to the total evictions (with LRU). The
labels of Neighboring and Frequent correspondingly represent
the thrashed items are either neighbors and nearby frequently
accessed data pages.

of virtual blocks, and the data pages that reside in the same
virtual block may have a similar access pattern. Moreover,
it divides the cache into two regions for responding random
requests and sequential requests, and employs LRU and first
in first out (FIFO) for selecting the victims of virtual blocks
to be evicted in two regions of cache.

The sophisticated cache management methods cost comput-
ing power for analyzing I/O workloads or identifying hot/cold
data, to make an “accurate” eviction decision. We emphasize
that such approaches are not good solutions for computing
power-limited SSD devices, and it is necessary to propose
a simple and effective cache management scheme for SSD
devices, by unifying both temporal and spatial localities.

B. Motivations

As discussed, existing cache management approaches for
SSDs, only take the temporal locality of reference (or with
the spatial factor) into account when carrying out cache
replacement1. In order to verify whether the factor of spatial
locality matters or not in cache management of SSDs, we have
performed a series of trace-driven simulation experiments and
collected the results. Read Section IV-A about the specifica-
tions on the experimental platform and benchmarks.

We first define a term of cache thrashing, and a cache
thrashing event indicates while a specific data page is invari-
ably kept in the SSD cache, its address (i.e. logical page num-
ber) neighboring or nearby frequently accessed cached item is
evicted out and loaded into the cache again. After replaying
the traces, we record the number of cache thrashing events
and count the ratio of such events to the total evicted data
items. Figure 1 shows the results when using the commonly
used LRU scheme.

In this experiment, it brings about 1585∼7233 cache
thrashing events, taking up to 18.1% of total evictions, after
running the selected traces. It is possible to avoid a cache
thrashing case if the thrashed data item is managed in a batch
with its in-cached neighboring or nearby data items. Thus, we
summarize that the spatial locality of cached pages is worth

1Though VBBMS [15] declares considering the factor of spatial locality
by organizing buffered data pages as fixed-size virtual blocks, we think it is
based on access patterns and fails to unify both locality of references.

A
cc

es
s C

ou
nt

Logic Addresses of Cached Data Pages (ascending order)

0	

4	

8	

12	

1	 3	 5	 7	 9	 11	 13	 15	

❸ ❶	

❷	

00 … 11 00 00 00 00
① … ⑤ ⑥ ⑦ ⑧ ⑨ …

①

⑤

⑥

⑦

⑧

…

…

 00 01 00 01 11

 11 01 00 01 00

…

…

…

…

…

…

…

…

…

…

…

 01 00 10 11 00

 11 00 10 00 01

(a) Visibility graph (b) Matrix representation

11: not adjacent & higher freq.
10: adjacent & lower freq.
01: adjacent & higher freq.
00: others

Two-bit label Indication

Fig. 2: The visibility graph of access frequency of 16 cached data pages. (a) visibility graph. The marked node (#6) has three
kinds of connected (visible) nodes: ❶adjacent and higher access frequency, ❷adjacent and lower access frequency, and ❸not
adjacent and higher access frequency. (b) matrix representation of visibility graph. Two-bit value implies the connection case.

considering in cache management of SSDs, to boost cache use
efficiency and I/O performance.

Such observation motivates us to build an efficient and
simple approach on the top of temporal locality-based cache
management for SSDs, by also unifying the spatial locality of
reference. As a result, the number of cache hits and the I/O
performance of SSDs can be improved when running a wide
range of applications.

III. VISIBILITY GRAPH-BASED CACHE MANAGEMENT

A. System Overview

The basic principle of our approach, called VS-Batch, is to
take both spatial locality and temporal locality into account,
for guiding cache management in SSDs. Once a specific data
page is hit in the cache or is newly loaded into the cache,
VS-Batch accordingly adjusts the cached data pages adjacent
to it, as well as the hot access data pages near it in batches.

To this end, we first leverage visibility graph [18] to unify
both locality of references of the cached data pages. Next,
we introduce four-level linked lists that help managing the
different visible types of cached data pages, where each node
in the lists corresponds to a buffered data page. After that, we
can identify the hot buffered data with their neighboring data
and nearby (hot) data, and preferably keep them in the SSD
cache. Through reducing the number of cache thrashings, we
can yield performance gains if the cached data are requested
again shortly by following the spatial locality of reference.

B. Design and Implementation of VS-Batch

1) Visibility Graph: In order to model the temporal and
spatial localities of all cached data pages, we employ the
visibility graph technique, which was proposed to generate
mapping networks from time series [18]. A sequence of logical
page addresses of cached data pages can be transformed to a
connected graph where each node represents a cached data
page, and the node’s value is set as the access count of the
cached page in previous time windows. Two nodes in the
visibility graph are connected by an edge if visibility exists,
indicating it does not intersect any intermediate data height. It
has the following visibility criteria: two arbitrary data values

(xa, ya) and (xb, yb) will have visibility, and then become two
connected nodes in the graph, if any other data (xc, yc) placed
between them fulfills:

yc < yb + (ya − yb)×
xb − xc

xb − xa
(1)

where xi indicate the sequential number of the ith node, and
yi means the access count of the ith node.

Figure 2 (a) illustrates an example of a visibility graph that
is transformed from a given sequence of access counts of 16
cached pages. Given a specific node (for example node #6
in Figure 2), we define three types of visibility: (1) adjacent
(the nearest neighbors) and higher access frequency (eg. node
#5), (2) adjacent and lower access frequency (eg. node #7),
and (3) not adjacent and higher access frequency (eg. node
#8). Then, we adjust the “visible” data pages of a data page
being accessed, according to its visibility type. The visibility
graph is stored as a matrix that depicts the connection between
couples of data pages, as shown in Figure 2(b).

2) Batch Adjustment: In order to manage the data pages
located in the cache, VS-Batch maintains four-level linked lists:
Eviction list (level 3), Adjacent list (level 2), Hot list (level 1),
and Hit list (level 0) with the ascending order. Basically, the
proposed VS-Batch method evicts the buffered data page to
make space for the new data, if-and-only-if its corresponding
node is the head of Eviction list. When a data page is accessed,
VS-Batch moves the corresponding node to the tail of the Hit
list, and adjusts the nodes that can be seen in the visibility
graph. To be specific, the visible and high frequency access
nodes will be moved to the Hot list, and other adjacent nodes
are moved to the Adjacent list.

At the initialization stage (i.e. all lists are empty), all the
nodes of cached data pages are linked in the Eviction list with a
LRU fashion. Once a given cached page is hit again, VS-Batch
carries out the upgraded batch adjustment, to move the nodes
of hit page and their visible (cached) pages into higher-level
lists. As the example in Figure 3(a) shows, once Page F is hit,
its node is directly moved to tail of the Hit list. Meanwhile,
the nodes labeling with F11 and F01 are moved to the Hot
list as they have a larger access count than Page F, and the

(a) Data page is hit & upgradation (b) List becomes empty & degradation

Hot list E

Adjacent list K D

Eviction list F T

Page F is hit again

F11

Hit list Y Z X

F01 F10

Hot list E

Adjacent list K D

Eviction list F T

F11

Hit list Y Z X

F01

F10

F

Hot list E

Adjacent list K D

Eviction list F T

F11

Hit list Y Z X

F01

F10

F

Page N is currently accessed
(T is evicted to make space)

Hot list

E Adjacent list

K D Eviction list G

F11

Hit list

Y Z X

F01

F10

F

N

head

Fig. 3: Batch adjustment of cached items in VS-Batch (assuming the SSD cache buffers only 11 data pages in total for
illustration simplicity). In the node, the identifier with a subscript indicates the connection case in the visibility graph, from
the view of the identifier page.

Algorithm 1: Batch Adjustment in VS-Batch

1 Function vs_batch_move(node addr)
2 /*obtain the set of page addrs of visible nodes/
3 addr set = get_addrs_from_vs(node addr);
4 for each addr in addr set do
5 /*obtain the level of original list of addr*/;
6 ori level = get_node_level(addr);
7 /*obtain the dest list of addr with visibility

type*/
8 vs t = get_vs_t(addr, node addr);
9 dst level = get_dst_level(addr, vs t);

10 if src level ≤ dst level then
11 /*move to the head of destination list*/

move_to_list(addr, dst level);
12 end
13 end

node labeling with F10 is moved to the Adjacent list as it is
adjacent to Page F, even though it has a smaller access count.

On the other side, VS-Batch also conducts hierarchical
downgraded movements when a lower-level list becomes
empty. As illustrated in Figure 3(b), Page N is requested to
be written to SSDs, but it is not in the cache and the cache
is currently full. To service this request, VS-Batch first evicts
the head of the Eviction list (i.e. Page T). As the Eviction list
becomes empty, all the nodes of other high level linked lists
are moved downward step by step: the nodes of the Adjacent
list move to the Eviction list, the nodes of the Hot list move
to the Adjacent list, etc. Finally, Page N is loaded into the
cache, and its node is inserted as the new head of Hot list.

3) Implementation: Algorithm 1 illustrates the details on
batch adjustment on the nodes in four-level linked lists. As

shown, Lines 1-13 present batch adjustment of nodes in the
lists, while the corresponding data page is hit. It moves the
hit node to Level 0 of Hit list, and the relevant visible nodes
to Hot list and Adjacent list accordingly.

IV. EXPERIMENTS AND EVALUATION

A. Experiment Setup

We have performed trace-driven simulation with SSDsim
(ver2.1) [19], which has been modified to support the newly
proposed cache management scheme, on a local ARM-based
machine. The machine has an ARM Cortex A7 Dual-Core
with 800MHz and 128MB memory. Table I shows our settings
of experiments, by mainly referring to [2], [15]. To further
investigate how our proposal works with varied scales of SSD
cache, we set the cache size as 32MB and 128MB.

To evaluate VS-Batch, we employ 6 commonly used disk
traces. 4 of these traces are from the block I/O trace collection
of Microsoft Research Cambridge [20]. The remainder two
block I/O traces are recently collected from a part of an en-
terprise virtual desktop infrastructure (VDI) [21]. Specifically,
they are additional-01-1619-LUN0 (LUN0) and additional-01-
1620-LUN0 (LUN1). The detailed specifications on the traces
are shown in Table II.

Apart from LRU and the proposed VS-Batch approach, the
following two schemes are also used in comparison evaluation:

- VBBMS [15] considers both temporal and spatial factors
and manages the cached data pages as the granularity of
virtual block. Moreover, it refers to access patterns and
divides the buffer into two regions for separately fulfilling
random requests and sequential requests. We argue that
VBBMS is the most related work of our approach.

- Co-active [6] first classifies the data into hot and cold
categories, by referring to the factor of temporal locality.

TABLE I: Experimental settings of SSDsim
Parameters Values Parameters Values
Channel Size 8 Read latency 0.075ms

Chip Size 4 Write latency 2ms

Plane Size 4 Erase latency 15ms

Block per plane 256 Transfer (Byte) 10ns

Page per block 256 GC Threshold 10%

Page Size 8KB DRAM Cache 32/128
FTL Scheme Page level

TABLE II: Specifications on traces (ordered by write ratio)
Traces Req # Wr Ratio Wr Size Frequent R (Wr)
src2 0 1557814 88.6% 7.1KB 32.6%(58.5%)

mds 0 1211034 88.1% 7.2KB 0.3%(49.8%)

ts 0 1801734 82.4% 8.0KB 28.5%(41.4%)

web 0 2029945 70.1% 8.6KB 22.7%(71.3%)

LUN1 1124327 41.6% 12.3KB 2.9%(6.9%)

LUN0 1430675 41.1% 11.6KB 6.9%(4.7%)

Note: Frequent R means the ratio of addresses requested not less than 3,
and (Wr) implies the percent of write addresses in which.

Then, it proactively evicts the (cold) data pages from the
cache if their destination (underlying) SSD channels are
idle, for cutting down the wait time of flushing.

For periodically generating the visibility graph of buffered
data pages, we perform a round of visibility graph processing
when the total amount of write data of I/O requests becomes
greater than the size of cache, since the last processing round.
Then, we employ the obtained visibility graph to direct cache
management in the forthcoming time window. Considering the
range of spatial locality and the overhead of visibility graph
processing, we only check 64 cached pages on the left and
right of the vertical axis by referring to their addresses, when
building the visibility connections for a given data page.

B. Results and Discussion

1) Cache Hits and Thrashing: We first define the metric
of the number of cache hits without flushing the buffered
data onto underlying SSD cells. This term means the write
contents can be directly saved in the cache without ejecting
other buffered data. In other words, the write request can be
completed with a lower latency if its contents can be directly
absorbed in the cache.

Figure 4 reports the cache hits ratio after running the bench-
marks with varied cache management schemes. As illustrated,
VS-Batch performs the bests, and achieves an improvement
on cache hits by 15.9%, 2.8%, and 5.1%, compared to
LRU, VBBMS, and Co-active. To further analyze why VS-
Batch improves the cache hit ratio, Figure 5 reports the number
of cache thrashing events. On average, VS-Batch reduces the
number of cache thrashing events by 23.1%, in contrast to
other comparison schemes. This is because VS-Batch keeps the
neighboring data pages of currently accessed data pages in the
SSD cache with batches. In summary, our strategy leverages
the spatial locality of reference, which reduces cache thrashing
and thus improves the cache hits ratio.

H
it

 R
at

io

(a) 32MB Cache (b) 128MB Cache

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
30%

45%

60%

75%

90%
 LRU

 VBBMS

 Co-Active

 VS-Batch

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
30%

45%

60%

75%

90%
 LRU

 VBBMS

 Co-Active

 VS-Batch

Fig. 4: Comparison of cache hit ratio with varied cache
configurations (note that Y-axis starts from 30%).

N
u

m
b

er
 o

f
C

ac
h

e
T

h
ra

sh
in

g

(a) 32MB Cache (b) 128MB Cache

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
0k

3k

6k

9k

12k

15k
 LRU

 VBBMS

 Co-Active

 VS-Batch

Frequent

Neighboring

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
0k

4k

8k

12k

16k

 LRU

 VBBMS

 Co-Active

 VS-Batch

Fig. 5: Comparison of cache thrashing.

Another noticeable clue shown in Figures 4 and 5 is about
that VBBMS causes the largest number of cache thrashings but
not the worst hit ratio. This is because VBBMS manages the
cached data pages as virtual blocks, and each virtual block
unconditionally has more than 6 pages. So it worsens cache
thrashing while increasing cache hits for sequential accesses.

2) I/O Latency: Figure 6 presents the results of overall I/O
time. Clearly, the proposed VS-Batch cache management ap-
proach outperforms others regarding the measure of the overall
I/O time. More precisely, VS-Batch can cut down the overall
I/O latency by 27.9%, 10.7%, and 22.1% on average, in
contrast to LRU, VBBMS, and Co-active. Additionally, the
performance improvement of VS-Batch increases when the
cache size becomes large, which demonstrates its scalability.

For read-intensive workloads of LUN0 and LUN1, the per-
formance of VS-Batch and other comparison counterparts are
similar. We argue that both trace have around 41.3% of write
requests, that limits the room for I/O improvements with the
cache. On the other hand, VS-Batch can bring about more than
11.8% reduction of I/O response time for the selected write-
intensive workloads. This confirms that VS-Batch offers better
cache use efficiency (i.e. more cache hits), which contribute
to the reduction in I/O latency for write-heavy workloads.

3) Overhead: The main memory overhead of VS-Batch
is due to the storage of the matrix of visibility graph and
the four linked lists. This overhead depends on the size of
SSD cache. The visibility matrix consumes at most 128KB (=
4096(nodes) * (64+64) (visible nodes) * 2bit / 8) in the
case of 32MB cache. Besides, linked lists contain two links
(2*4B) and page addresses (8B), which need 64KB in the
case of 32MB cache. Note that all cache management schemes
expect the same size of memory for managing the cached
items, whether using one linked list or multiple lists.

O
v

er
al

l
I/

O

T

im
e

（
u

n
it

:k
s）

(a) 32MB Cache (b) 128MB Cache

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
0

5

10

15

20
 LRU

 VBBMS

 Co-Active

 VS-Batch

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
0

3

6

9

12
 LRU

 VBBMS

 Co-Active

 VS-Batch

Fig. 6: Comparison of overall I/O response time.

T
im

e
O

v
er

h
ea

d

（
u

n
it

:s
）

(a) 32MB Cache (b) 128MB Cache

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
0

2

4

6

8
 Time(unit:s) Ratio

0.0%

0.4%

0.8%

1.2%

1.6%

sr
c2

_0

m
ds

_0
ts
_0

w
eb

_0

LU
N

1

LU
N

0
0

2

4

6

8
 Time(unit:s) Ratio

0.0%

0.4%

0.8%

1.2%

1.6%

Fig. 7: Time overhead of batch adjustment in VS-Batch.

We record the time overhead of VS-Batch with various
cache configurations, and report the results in Figure 7. As
read, it causes an average of 3.1 µs per I/O request, or less
than 1.3% of the overall I/O time. This is because VS-Batch
brings about more operations on the linked lists due to batch
adjustment in cache management, as well as reconstructions
of visibility graph.

Thus, we conclude that the time overhead caused by our
proposal is acceptable, even though it runs on a compute
power-limited platform. Note that the computation overhead
does bring about impacts on I/O response time by postponing
dispatch on incoming I/O requests, and relevant I/O time
results have been previously reported in Section IV-B2.

V. CONCLUSIONS

This paper proposes a visibility graph-based cache man-
agement scheme for SSDs, called VS-Batch. It unifies both
temporal and spatial locality of references, and supports batch
adjustment of adjacent or nearby hot cached data by referring
to connection situations in the visibility graph of all cached
data pages. Then, it can noticeably cut down the number of
cache thrashing and thus reduce the I/O latency, when running
user applications.

Through a series of simulation tests based on several real-
world disk traces, we show that our proposal can noticeably
enhance the cache hits by more than 2.8%, and then reduce
I/O latency by between 10.7% and 27.9%, compared with
the state-of-art cache management schemes for SSDs.

ACKNOWLEDGMENT

This work was partially supported by “National Nat-
ural Science Foundation of China (No. 61872299, No.
62032019)”, “Chongqing Talents: Exceptional Young Talents
Project (No. CQYC202005094)”, “the Natural Science Foun-
dation Project of CQ CSTC (No. cstc2021ycjh-bgzxm0199)”,

and “Chongqing Graduate Research and Innovation Project
(No. CYS20117)”.

REFERENCES

[1] Kim B., Choi J., and Min S. Design tradeoffs for SSD reliability. In
FAST, 2019.

[2] Xu X., Cai Z., Liao J., and Ishiakwa Y. Frequent access pattern-based
prefetching inside of solid-state drives. In DATE, 2020.

[3] Kim K., and Kim T. HMB in DRAM-less NVMe SSDs: Their usage
and effects on performance. In PloS one, 2020.

[4] Wang Y., Kim K., and Lee B. et al. A novel buffer management scheme
based on particle swarm optimization for SSD. In TJSC, 2018.

[5] Li J., Sha Z. and Cai Z. et al. Patch-Based Data Management for Dual-
Copy Buffers in RAID-Enabled SSDs. In IEEE TCAD, 2020.

[6] Sun H., and Dai S. et al. Co-Active: A Workload-Aware Collaborative
Cache Management Scheme for NVMe SSDs. In IEEE TPDS, 2021.

[7] Jain A., and Lin C. Back to the future: Leveraging Belady’s algorithm
for improved cache replacement. In ISCA, 2016.

[8] Kandemir M., and Ramanujam J. et al. Improving cache locality by a
combination of loop and data transformations. In IEEE TC, 1999.

[9] Wu G., He X., and Eckart B. An adaptive write buffer management
scheme for flash-based ssds. In ACM TOS, 2012.

[10] Park S., Jung D., and Kang J. et al. CFLRU: a replacement algorithm
for flash memory. In CASES, 2006.

[11] Robinson J., and Devarakonda M. Data cache management using
frequency-based replacement. In SIGMETRICS, 1990.

[12] Wu S., and Mao B. et al. Garbage collection aware cache management
with improved performance for flash-based SSDs. In ICS, 2016.

[13] Chen H., Pan Y., and Li C. et al. ECR: Eviction-cost-aware cache
management policy for page-level flash-based SSDs. In CCPE, 2019.

[14] Khan S. U., Yang S., and Wang L. et al. A modified particle swarm
optimization algorithm for global optimizations of inverse problems. In
IEEE TOM, 2015.

[15] Du C., Yao Y., Zhou J., and Xu X. VBBMS: A novel buffer management
strategy for NAND flash storage devices. In IEEE TCE, 2019.

[16] Wang M., and Li Z. A spatial and temporal locality-aware adaptive cache
design with network optimization for tiled many-core architectures. In
IEEE VLSI, 2017.

[17] Wang H., Yi X., and Huang P. et al. Efficient SSD caching by avoiding
unnecessary writes using machine learning. In ICPP, 2018.

[18] Lacasa L., Luque B., and Ballesteros F. et al. From time series to
complex networks: The visibility graph. In PNAS, 2008.

[19] Zhang W., Cao Q., and Jiang H. et al. PA-SSD: A Page-Type Aware
TLC SSD for Improved Write/Read Performance and Storage Efficiency.
In ICS, pp. 22-32, 2018.

[20] Narayanan D., Donnelly A., and Rowstron A. Write off-loading: Prac-
tical power management for enterprise storage. In ACM TOS, 2008.

[21] Lee C., and Matsuki T. et al. Understanding storage traffic characteristics
on enterprise virtual desktop infrastructure. In ACM SYSTOR, 2017.

