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Abstract— We investigate a multi-agent decision problem in
population games where each agent in a population makes a
decision on strategy selection and revision to engage in repeated
games with others. The strategy revision is subject to time
delays which represent the time it takes for an agent revising
its strategy needs to spend before it can adopt a new strategy
and return back to the game. We discuss the effect of the time
delays on long-term behavior of the agents’ strategy revision. In
particular, when the time delays are large, the strategy revision
would exhibit oscillation and the agents spend substantial time
in “transitioning” between different strategies, which prevents
the agents from attaining the Nash equilibrium of the game. As
a main contribution of the paper, we propose an algorithm that
tunes the rate of the agents’ strategy revision and show such
tuning approach ensures convergence to the Nash equilibrium.
We validate our analytical results using simulations.

I. INTRODUCTION

Consider a multi-agent decision problem where each agent
selects a strategy to engage in repeated interactions with
other agents. Agents receive payoffs as a function of their
strategy profile – the distribution of their strategy selection –
and revise their strategy selection based on the payoffs. Such
problem setting is prevalent in many engineering applications
[1]–[10] ranging from demand response in smart grids to task
allocation in multi-robot systems research.

We adopt the population game formalism [11] to model the
process of the agents’ strategy revision and assess long-term
behavior of the revision process. Different from conventional
population game problems, in this work, we investigate the
scenario where the strategy revision is subject to time delays
for which every agent revising its strategy needs to spend a
fixed amount of time for transitioning to a new strategy. As
a case in point, in multi-robot task allocation applications
[8], [10], [12] where the strategy revision corresponds to
assignment of a new task to a robot, time delays in the
strategy revision reflect the requirement for each robot to
travel to a distant location to take on a new task.

When the agents’ strategy revision is subject to time
delays, as we discuss in the paper, their strategy profile
would exhibit oscillation implying that a portion of the
agent population persistently transitions between different
strategies. In the task allocation applications, this means that
the robots would spend substantial time on traveling between
distant locations which is a disadvantage since during the
traveling, they cannot carry out assigned tasks. The authors
of [8], [12] concretely discuss such phenomenon observed in
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their linear models, and empirical results presented in [10]
illustrate the oscillation of the strategy profile in population
game models.

As a main contribution, we propose an algorithm that
tunes the rate of the agents’ strategy revision to eliminate
the oscillation of the strategy profile, and prove that the
algorithm ensures convergence of the strategy profile to
the Nash equilibrium. Of relevance to this work are [13],
[14, Section 5.9] and references therein that investigate the
scenarios where payoff mechanisms underlying population
games are subject to time delays and hence the agents revise
their strategy selection based on time-delayed payoffs. Also,
[15] examines a relevant problem in which, when revising its
strategy, each agent needs to take on a sequence of sub-tasks
(sub-strategies) which would potentially cause time delays in
the agent’s strategy revision.

Our contributions are distinct from existing work in the
following aspects: (i) unlike [13], [14, Section 5.9] and
references therein, our problem formulation considers that
the agents’ strategy revision is subject to time delays, which
is different from the delays in payoff mechanisms, and (ii)
different from [8], [12], [15], our proposed approach ensures
convergence of the strategy profile to the Nash equilibrium,
which, in our problem formulation, requires that no agents
are in transition or taking on any sub-strategies. Below we
summarize the main results of the paper.
• We model and analyze the effect of time delays in the

strategy revision using the population game formalism
and discuss long-term behavior of the agents’ strategy
profile. In particular, our analysis explains how the rate
of the agents’ strategy revision affects the convergence
of the strategy profile.

• Based on the analysis, we propose an algorithm for tun-
ing the strategy revision rate. The algorithm judiciously
decreases the revision rate and ensures the convergence
of the strategy profile to the Nash equilibrium in con-
tractive population games. We illustrate our analytical
results using simulations.

The paper is organized as follows. In Section II, we intro-
duce the population game framework and strategy revision
model we adopt in this study. We also illustrate how the rate
of the agents’ strategy revision affects long-term behavior of
their strategy profile. In Section III, we propose an algorithm
that judiciously tunes the strategy revision rate and show that
the proposed algorithm ensures the convergence of the strat-
egy profile to the Nash equilibrium in the class of contractive
population games.1 We illustrate our analytical results using

1See Definition 1 for its formal definition.
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simulations with a numerical example in Section IV. We
conclude the paper with discussions and future plans in
Section V.

Notation: We denote by Rn the set of n-dimensional
real vectors and by Rn+ the set of (element-wise) non-
negative n-dimensional real vectors. Throughout the paper,
we adopt the Euclidean norm for matrices and vectors.

II. PROBLEM DESCRIPTION

We describe the foundation of the population game for-
malism [11] and explain how we adopt it in our multi-agent
decision problem to study the effect of time delays in strategy
revision.

A. Population Games and Evolutionary Dynamics

Consider that a population of decision-making agents are
engaged in repeated strategic interactions with one another.
Each agent has a finite set {1, · · · , n} of strategies available
and can select one strategy at a time. Based on its strategy
selection, the agent receives a payoff determined by a payoff
mechanism underlying the interactions.

Adopting the conventional notation and formalism, we de-
note the state of the population by x = (x1, · · · , xn) ∈ Rn+,
where xi represents the portion of the population selecting
strategy i and x sums up to 1, i.e.,

∑n
i=1 xi = 1. A payoff

vector p = (p1, · · · , pn) ∈ Rn is determined by a continuous
function F as p = F(x), where pi is the payoff assigned to
the agents selecting strategy i. Assuming that there are a
large number of agents in the population, we can define the
set of viable population states as X={z ∈ Rn+|

∑n
i=1 zi=1}.

Contractive population games are defined as follows.
Definition 1 (Contractive Population Game [16]): A

population game F is called contractive if it holds that

(w − z)T (F(w)−F(z)) ≤ 0, ∀w, z ∈ X. (1)
Assumption 1: We assume that the differential map DF

of F exists and is bounded: there is a positive constant BDF
satisfying ‖DF(z)‖2 ≤ BDF , ∀z ∈ X.

Note that when DF exists, the requirement (1) can be cast
as

z̃TDF(z)z̃ ≤ 0, ∀z ∈ X, z̃ ∈ TX, (2)

where TX is the tangent space of X.
The Nash equilibrium of F is defined as follows.
Definition 2 (Nash Equilibrium): An element zNE in X is

called the Nash equilibrium of a population game F if it
holds that

(zNE − z)TF(zNE) ≥ 0, ∀z ∈ X. (3)
A population game F can have multiple Nash equilibria. We
denote by NE(F) the set of Nash equilibria. We adopt the
following example to illustrate our main results.2

2For a simple presentation of the paper, we use the RPS game for the
illustration purpose.

Example 1: Consider the Rock-Paper-Scissors (RPS)
game (n = 3) whose payoff function is given by

F(x) =

−ax2 + bx3
bx1 − ax3
−ax1 + bx2

 , (4)

where a, b are positive constants. Note that (4) is a contrac-
tive game if b ≥ a, and the Nash equilibrium of F is given
by (1/3, 1/3, 1/3) for any a, b > 0.

In our study, we consider that the agents are repeatedly
engaged in a same game and given an opportunity, they can
revise their strategy selection based on the Smith revision
protocol, originally presented in [9] and defined as follows.3

ρij(p) = %[pj − pi]+ :=

{
%(pj − pi) if pj ≥ pi
0 otherwise

, (5)

where % is a positive constant satisfying4∑n
j=1 %[pj − pi]+ ≤ 1 and %[pj − pi]+ ≤ 1. (6)

According to (5), each agent switches its strategy selection i
to j with probability %[pj − pi]+; otherwise, it stays with its
current strategy selection i with probability 1−

∑n
j=1 %[pj−

pi]+. Hence, higher the payoff associated with strategy j
more likely the agent selects it. The condition (6) is required
for such probabilistic strategy revision scheme to be well-
defined.

The point in time at which the agents’ strategy revision
takes place is determined by identical and independent
Poisson processes with parameter λ. In particular, each agent
can revise its strategy selection at each jump time of an
associated Poisson process. Since the parameter λ determines
the rate of the strategy revision, we refer to it as the strategy
revision rate.

Let x(t) = (x1(t), · · · , xn(t)) be the population state at
time instant t driven by the revision protocol (5), the Poisson
processes, and payoffs determined by a population game F .
By same discussions presented in [11, Chapter 10], as the
population size tends to infinity, the solution to the following
state equation approximates the population state x(t) with
arbitrary accuracy.

ẋi(t) = Vi(x(t), p(t))

:= λ
(∑n

j=1 xj(t)% [pi(t)− pj(t)]+
− xi(t)

∑n
j=1 % [pj(t)− pi(t)]+

)
(7)

Adopting the same naming convention as in [17], we refer
to (7) as Evolutionary Dynamics Model (EDM).

B. δ-Passivity Tools for Convergence Analysis

A focal research theme in population games is in estab-
lishing convergence of the population state x(t), governed
by (7), to the Nash equilibrium set NE(F) of an underlying

3Although the analysis we present in this paper can be extended to other
class of strategy revision protocols. However, for a concise presentation of
our main result, we adopt the Smith protocol.

4Such constant % exists since F is a continuous function and X is a
compact subset of Rn.



population game F . An earlier work [18] in economics
literature uses Lyapunov stability theorems to establish the
convergence for a class of EDMs in contractive population
games. Later, the work of [19] introduces the notion of δ-
passivity, originated from dynamical system theory [20], in
population games and provides general tools for studying
convergence properties of EDMs. Since then, there have been
refined definitions and applications of δ-passivity proposed
for convergence analysis in population games [17], [21],
[22]. Aside from δ-passivity tools relevant to our work, there
are other important works that present a different notion of
passivity as a tool to study convergence in multi-agent games
[23], [24].

We adopt the following definition of δ-passivity for (7)
from [17].

Definition 3: EDM (7) is δ-passive if there is a continu-
ously differentiable function S : X× Rn → R+ for which

S(x(t), p(t))− S(x(t0), p(t0)) ≤∫ t

t0

ẋT (τ)ṗ(τ) dτ, ∀t ≥ t0 ≥ 0 (8)

holds for every payoff vector trajectory p(t), t ≥ 0. We refer
to S as the δ-storage function.

According to [17], [19], EDM (7), which is constructed
using the Smith revision protocol (5), is δ-passive and its
δ-storage function is given by

S(x, p) =
λ

2

∑n
i=1

∑n
j=1 xi%[pj − pi]2+. (9)

We make the following two observations which are used
to establish the main result of the paper: for all i, j in
{1, · · · , n}, it holds that

λ−1S(x, p) ≥ 1

2
xi%[pj − pi]2+ ≥

1

2
x2i %[pj − pi]2+ ≥ 0

from which we conclude that

λ−1S(x, p)→ 0 =⇒ xi%[pj − pi]+ → 0. (10)

Also, by similar arguments used in the proof of Theorem 4.5
in [19], we can verify that

∇TxS(x, p)V(x, p) ≤ 0, ∀x ∈ X, p ∈ Rn. (11)

C. Analyzing the Effect of Time Delays in Strategy Revision

We consider that the agents’ strategy revision is subject
to time delays: (i) an agent revising its strategy is required
to spend a constant time period dji to conclude its strategy
revision from j to i, and (ii) during the strategy revision, the
agent cannot participate in the game. As a case in point,
in the task allocation applications, the robots that are in
transition to distant locations to take on newly assigned
tasks cannot carry out the tasks until they arrive at the new
locations. To model this, we interpret xi(t) as the portion of
the population that are engaged in the game with strategy
selection i at time t, which exclude the agents transitioning
to strategy i. Accordingly, the payoff vector p(t) = F(x(t))
depends only on the agents who are participating in the game.
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(a) Population state x(t)
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Fig. 1. Graphs depicting the trajectories of the (a) population state x(t) and
(b) population in transition y(t) derived by EDM (15) (dij = |i− j|, % =
1/4, λ = 1) in the RPS game (4) (a = 1, b = 2).
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Fig. 2. Graphs depicting the trajectories of the (a) population state x(t) and
(b) population in transition y(t) derived by EDM (15) (dij = |i− j|, % =
1/4, λ = 0.5) in the RPS game (4) (a = 1, b = 2).

Note that in this problem setting, the population state x(t)
may not sum up to 1, i.e.,

∑n
i=1 x(t) ≤ 1. For this reason,

we extend the definition of the population state space as

Xext =
{
z ∈ Rn+

∣∣ ∑n
i=1 zi ≤ 1

}
. (12)

Accordingly, we extend the domains of the payoff function
F : Xext → Rn, the vector field Vi : Xext×Rn → R, and the
δ-storage function S : Xext×Rn → R+. Also, we restate the
boundedness condition of the map DF in Assumption 1 as
maxz∈Xext ‖DF(z)‖2 ≤ BDF .

Denote by yji(t) the portion of the population that are in
transition for the strategy revision from j to i at time t. Given
a fixed strategy revision rate λ, the following state equation
describes how yji(t) changes over time.

ẏji(t) = λxj(t)% [pi(t)− pj(t)]+ , dji > t ≥ 0 (13a)

ẏji(t) = λ
(
xj(t)% [pi(t)− pj(t)]+

−xj(t−dji)% [pi(t−dji)−pj(t−dji)]+
)
, t ≥ dji (13b)

with yji(0) = 0. Note that in (13b), the first term
xj(t)%[pi(t)−pj(t)]+ denotes the rate at which the agents
decide to revise their strategy selection from j to i and
initiates transition from j to i at time t. Whereas the second
term xj(t−dji)% [pi(t−dji)−pj(t−dji)]+ describes the rate
at which the agents complete the transition and return back to
the game after spending the time period dji in the transition.

Let us define yi(t) =
∑n
j=1 yji(t) which denotes the

portion of the population transitioning to strategy i. Then,
xi(t)+yi(t) quantifies the portion of the population revising
their strategies to i including the agents in transition. Using
(7), we can describe the rate of change of xi(t) + yi(t) by
the following state equation.

ẋi(t) + ẏi(t) = Vi(x(t), p(t)), (14)



where the vector field Vi is defined in (7). Hence, from (13)
and (14), we can derive the state equation for xi(t) as

ẋi(t) = λ
(∑n

j=1 xj(t−dji)% [pi(t−dji)− pj(t−dji)]+
− xi(t)

∑n
j=1 % [pj(t)− pi(t)]+

)
, t ≥ dmax, (15)

where dmax = maxi,j∈{1,··· ,n} dji. Note that different from
EDM (7) in its original form, when the agents’ strategy
revision is subject to time delays, the revised model (15)
depends not only on the current information x(t), p(t) but
also on the past information x(t− dji), p(t− dji) about the
population game.

Figs. 1 and 2 depict the population state trajectories of
(15) in the RPS game, explained in Example 1, with two
different choices of the strategy revision rate (λ = 0.5, 1). We
observe that in both cases, the trajectories oscillate around
the Nash equilibrium, but with smaller λ, both the level of
the oscillation and the portion of the population in transition
decrease. Inspired by the observation, we investigate how the
strategy revision rate can be tuned to achieve the convergence
of the population state to the Nash equilibrium set.

We summarize the main problem of this paper as follows.

Problem 1: Design an algorithm to tune the strategy re-
vision rate λ of (15) and to achieve the convergence of the
population state x(t) to the Nash equilibrium set NE(F) of
an underlying contractive game F :

lim
t→∞

inf
z∈NE(F)

‖x(t)− z‖2 = 0. (16)

Note that according to Definition 2, since every Nash
equilibrium zNE in NE(F) belongs to X, (16) requires the
portion of the population in transition to vanish, i.e.,

limt→∞
∑n
i=1 yi(t) = 1− limt→∞

∑n
i=1 xi(t) = 0.

In this work, we focus on the case where the strategy
revision rate λ is homogeneous for all the transition between
strategies. Our analysis is rooted in the notion of δ-passivity
for the Smith EDM (7). As illustrated in [25], adopting
heterogeneous strategy revision rates would not ensure the
δ-passivity of (7) and hence our proposed solution may not
guarantee the convergence to the Nash equilibrium set. We
leave as a future plan to further investigate such heteroge-
neous rate case.

III. TUNING STRATEGY REVISION RATE

We describe an algorithm that iteratively updates λ and
in Section III-A, we explain how a sequence of the revision
rates generated by the algorithm ensures the convergence of
the population state to the Nash equilibrium set.

To explain the algorithm, we need the following lemma.
The proof is given in Appendix of [26].

Lemma 1: Given a fixed strategy revision rate λ, the states
x(t) and y(t) satisfy

‖ẋ(t)‖2 ≤ Nλ, ‖ẏ(t)‖2 ≤Mλ2, ∀t ≥ dmax, (17)

where dmax = maxi,j∈{1,··· ,n} dji and N,M are positive
constants.

The inequalities in (17) imply that as λ becomes smaller,
i.e., the agents are less frequently revising their strategies,
the rate of change of y(t) decreases faster than that of x(t).
Therefore, the implication of Lemma 1 is that λ can be
used as a dial to reduce the number of agents in transition
while allowing them to have flexibility in switching between
strategies.

In what follows, we discuss tuning of λ. Let us define
ȳ(t) = λ−2y(t), V̄(x(t), p(t)) = λ−1V(x(t), p(t)), and
S̄(x(t), p(t)) = λ−1S(x(t), p(t)). Using Lemma 1, we
derive the rate of change of S̄ along a solution to (15) as
follows.

d

dt
S̄ (x(t), p(t))

= λ
(
V̄T (x(t), p(t))DF(x(t))V̄(x(t), p(t))

+∇Tx S̄(x(t), p(t))V̄(x(t), p(t))

− λ ˙̄yT (t)
(
DFT (x(t))V̄(x(t), p(t))

+∇xS̄(x(t), p(t))
))

≤ λ
(
∇Tx S̄(x(t), p(t))V̄(x(t), p(t))

+ λM
(
BDF

∥∥V̄(x(t), p(t))
∥∥
2

+
∥∥∇xS̄(x(t), p(t))

∥∥
2

))
, (18)

where p(t) = F(x(t)) and we use (2), (14), and the fact that
∇pS(x, p) = V(x, p), derived in [27, Theorem III.3]. For
notational convenience, we adopt

f(x, p) = M
(
BDF

∥∥V̄(x, p)
∥∥
2

+
∥∥∇xS̄(x, p)

∥∥
2

)
. (19)

Note that f(x, p) does not depend on the revision rate λ.
Given an initial revision rate λ = λ0 at t = 0, the

following algorithm is used to tune λ at each discrete time
tk and to generate a sequence {λk}∞k=1.

Algorithm 1: Suppose the strategy revision rate was updated
to λk at time tk. At time instant t ≥ tk + 2dmax, where
dmax = maxi,j∈{1,··· ,n} dji, update the revision rate as

λ = −1

2

∇Tx S̄(x(t), p(t))V̄(x(t), p(t))

f(x(t), p(t))
(20)

if the following two conditions hold:
(C1) f(x(t), p(t)) > 0

(C2) ∇Tx S̄(x(t), p(t))V̄(x(t), p(t)) + λk
f(x(t),p(t))

1−δ ≥ 0

where δ is a constant satisfying 0 < δ < 1/2. Then, set
tk+1 = t and λk+1 = λ.

Note that according to ((C1) and ((C2), the update
rule (20) finds λ that minimizes the upper bound of
d
dt S̄(x(t), p(t)) given as in the last inequality of (18).

Remark 1 (Decreasing strategy revision rates): Note that
if we select λ according to (20), by ((C2), it satisfies

λ=−1

2

∇Tx S̄(x(t), p(t))V̄(x(t), p(t))

f(x(t), p(t))
≤ 1

2

λk
1− δ

<λk, (21)



where the last inequality holds since 0 < δ < 1/2. Therefore,
Algorithm 1 generates a decreasing sequence {λk}∞k=1 of the
revision rates satisfying limk→∞ λk = 0.

Remark 2 (Comment on the constraint t ≥ tk + 2dmax):
Under Algorithm 1, since λ switches over time, the
parameter λ becomes time-dependent and the state equation
(13) for yji(t) can be rewritten as

ẏji(t) = λ(t)xj(t)% [pi(t)− pj(t)]+
− λ(t−dji)xj(t−dji)% [pi(t−dji)−pj(t−dji)]+ (22)

for t ≥ dji, where λ(t) is the revision rate at time t defined
as λ(t) = λk if t ∈ [tk, tk+1). With the new representation
(22), the derivation of similar inequalities as in (17), which
are key in establishing our main result, would be technically
difficult. To circumvent such difficulty, we require the update
time t to satisfy t ≥ tk+2dmax so that λ(t) and λ(t−dji) in
(22) satisfy λ(t) = λ(t−dji) = λk for t ∈ [tk+2dmax, tk+1).

Remark 3 (Existence of t satisfying ((C1) and ((C2)):
There may be no time instant t ≥ tk+2dmax satisfying ((C1)
and ((C2) and no further update on λ, which we consider as
the termination of the algorithm. In what follows, we show
that the population state converges to the Nash equilibrium
set even if the algorithm terminates after a finite number of
λ-updates.

Case I: Suppose f(x(t), p(t)) = 0, ∀t ≥ tk + 2dmax.
Then, from (11) and (18), it holds that

d

dt
S̄ (x(t), p(t)) ≤ λk∇Tx S̄(x(t), p(t))V̄(x(t), p(t)) ≤ 0.

Noting that

∇Tx S̄(x(t), p(t))V̄(x(t), p(t)) = 0

⇐⇒ S̄(x(t), p(t)) = 0,

we conclude limt→∞ S̄(x(t), p(t)) = 0.
Case II: Suppose the following inequality holds:

∇Tx S̄(x(t), p(t))V̄(x(t), p(t)) + λk
f(x(t), p(t))

1− δ
< 0,

∀t ≥ tk + 2dmax. (23)

Then, from (11) and (18), it holds that

d

dt
S̄ (x(t), p(t)) ≤ δλk∇Tx S̄(x(t), p(t))V̄(x(t), p(t)) ≤ 0.

By the same argument as in (Case I), we have
limt→∞ S̄(x(t), p(t)) = 0.

For both (Case I) and (Case II), by (10), it holds that
limt→∞ xi(t)%[pj(t) − pi(t)]+ = 0, ∀i, j ∈ {1, · · · , n}.
Then, using Lemma 3 stated in Section III-A, we conclude
limt→∞ infz∈NE(F) ‖x(t)− z‖2 = 0.

A. Convergence Analysis

Recall that by Remark 3, even if Algorithm 1 terminates
after a finite number of λ-updates, the population state still
converges to the Nash equilibrium set. In this section, we
consider the case where Algorithm 1 generates an infinite
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Fig. 3. Graphs illustrating the trajectories of the (a) population state x(t)
and (b) population in transition y(t) derived by EDM (15) (dij = |i −
j|, % = 1/4) in the RPS game (4) (a = 1, b = 2).

sequence {λk}∞k=1 of strategy revision rates. The following
theorem states the main result.

Theorem 1: Let {λk}∞k=1 be a decreasing sequence of
strategy revision rates determined by Algorithm 1. The
population state converges to the Nash equilibrium set, i.e.,
it holds that

lim
t→∞

inf
z∈NE(F)

‖x(t)− z‖2 = 0. (24)

Using the following two lemmas, we prove the theorem
by showing that the δ-storage function S decreases at each
time instant tk of the λ-update (Lemma 2) which implies
that the population state converges to the Nash equilibrium
set NE(F) (Lemma 3). We provide the proofs of the theorem
and lemmas in Appendix of [26].

Lemma 2: Given V = (V1, · · · ,Vn) and S as in (7) and
(9), respectively, define V̄ = λ−1V and S̄ = λ−1S. Let K
be a positive constant satisfying K > (1 − δ)−1f(x, p) for
all x in Xext and p = F(x), where δ and f(x, p) are defined
in Algorithm 1. There is a decreasing function ε : R+ → R+

satisfying

∇Tx S̄(x, p)V̄(x, p) + λK > 0 =⇒ S̄(x, p) < ε(λ) (25)

and limλ→0 ε(λ) = 0.
Lemma 3: The following statement is true.

lim
t→∞

xi(t)%[pj(t)− pi(t)]+ = 0, ∀i, j ∈ {1, · · · , n}

=⇒ lim
t→∞

inf
z∈NE(F)

‖x(t)− z‖2 = 0. (26)

IV. SIMULATIONS

Using Example 1, we illustrate our convergence result
(Theorem 1) through simulations. To this end, we adopt the
payoff function (4) with a = 1, b = 2 as follows.

F(x) =

−x2 + 2x3
2x1 − x3
−x1 + 2x2

 (27)

Note that F is contractive satisfying (2) and the upper bound
of DF can be computed as BDF ≈ 2.65.

We use Algorithm 1 to compute the sequence {λk}∞k=1

for EDM (15) with the initial revision rate λ0 = 1. Fig. 3
depicts the trajectories for both x(t) and y(t). Contrast
to the fixed revision rate cases illustrated in Figs. 1 and
2, through tuning the revision rate using Algorithm 1, we
observe that the population state x(t) converges to the Nash
equilibrium (1/3, 1/3, 1/3) of (27). Also the portion y(t)
of the population in transition vanishes as the revision rate
decreases.



V. CONCLUSIONS

We investigate a multi-agent decision problem in popula-
tion games where the strategy revision of the agents is subject
to time delays, which prevent the state of the population
from converging to the Nash equilibrium set. We propose an
algorithm that judiciously decreases the rate of the agents’
strategy revision and prove that by tuning the revision rate,
the population state converges to the Nash equilibrium set
when the underlying population game is contractive.

As future directions, we plan to improve the proposed
algorithm to attain faster convergence to the Nash equilib-
rium set. The current version of the algorithm is designed
to minimize the upper bound of the rate of change of the
δ-passive storage function; however this is mainly used to
establish the convergence result and would not guarantee
fast convergence. Also, validating the proposed approach in
engineering applications, where the population would consist
of a finite number of decision-making agents, will be another
direction we plan to explore.

APPENDIX

A. Proof of Lemma 1

Using (15), we can derive a bound on ẋi(t) as follows.

|ẋi(t)| ≤ λ
(∑n

j=1 xj(t− dji)% [pi(t− dji)− pj(t− dji)]+

+ xi(t)
∑n
j=1 % [pj(t)− pi(t)]+

)
≤ λ(n− 1 + xi(t)) ≤ nλ, (28)

where to establish the second inequality, we use (6) and the
fact that

xj(t− dji)% [pi(t− dji)− pj(t− dji)]+ ≤ 1, j 6= i,

xj(t− dji)% [pi(t− dji)− pj(t− dji)]+ = 0, j = i.

Using (28), we can establish Lipschitz continuity of x(t):
For any d ≥ 0, it holds that

|xj(t)− xj(t− d)| ≤ max
τ∈[t−d,t]

|ẋj(τ)| d ≤ ndλ (30)

and

‖x(t)− x(t− d)‖2 ≤ n
1.5dλ. (31)

Consequently, using (31), the revision protocol %[pi(t) −
pj(t)]+ satisfies∣∣∣% [pi(t)− pj(t)]+ − % [pi(t− dji)− pj(t− dji)]+

∣∣∣
≤ % |pi(t)− pj(t)− pi(t− dji) + pj(t− dji)|
≤ % |pi(t)− pi(t− dji)|+ % |pj(t)− pj(t− dji)|
≤ %

(
‖DFi‖2 + ‖DFj‖2

)
‖x(t)− x(t− dji)‖2

≤ 2%BDFn
1.5djiλ, (32)

where Fi is the i-th component of F = (F1, · · · ,Fn),
‖DFi‖2 = maxx∈Xext ‖DFi(x)‖2 ≤ BDF , and we use

|pi(t)− pi(t− dji)| = |Fi(x(t))−Fi(x(t− dji))|
≤ ‖DFi‖2 ‖x(t)− x(t− dji)‖2
≤ BDFn1.5djiλ. (33)

Therefore, using (30) and (32), we derive a bound on ẏ(t)
as follows.

|ẏi(t)|

≤ λ
n∑
j=1

∣∣∣xj(t)% [pi(t)− pj(t)]+

− xj(t− dji)% [pi(t− dji)− pj(t− dji)]+
∣∣∣

≤ λ
n∑
j=1

∣∣∣xj(t)% [pi(t)− pj(t)]+

− xj(t− dji)% [pi(t)− pj(t)]+
∣∣∣

+ λ

n∑
j=1

∣∣∣xj(t− dji)% [pi(t)− pj(t)]+

− xj(t− dij)% [pi(t− dji)− pj(t− dji)]+
∣∣∣

≤ λ
n∑
j=1

ndjiλ% [pi(t)− pj(t)]+ + λ
n∑
j=1

2%BDFn
1.5djiλ

≤ (1 + 2%BDFn
0.5)ndiλ

2 (34)

where di =
∑n
j=1 dji. Hence, from (28) and (34), we

conclude that

‖ẋ(t)‖2 ≤ Nλ, ‖ẏ(t)‖2 ≤Mλ2

where N = n1.5 and M = (1 + 2%BDFn
0.5)n

√∑n
i=1 d

2
i .

This completes the proof.

B. Proof of Lemma 2

We first show that there is K such that K > (1 −
δ)−1f(x, p) holds for all x in Xext and p = F(x), where
f(x, p) is defined in (19). Note that using (6), we have∣∣V̄i(x, p)∣∣ =

∣∣∣∑n
j=1 xj% [pi − pj ]+

− xi
∑n
j=1 % [pj − pi]+

∣∣∣ ≤ 1 (35)

and ∣∣∣∣ ∂S̄∂xk (x, p)

∣∣∣∣ =
1

2

n∑
j=1

%[pj − pk]2+ ≤
1

2%
. (36)

Therefore, using the definition of f(x, p) and (35), (36),
we can conclude

(1− δ)−1f(x, p)

= (1− δ)−1M
(
BDF

∥∥V̄(x, p)
∥∥
2

+
∥∥∇xS̄(x, p)

∥∥
2

)
≤ (1− δ)−1M

(
BDF +

1

2%

)
n0.5 < K (37)

if we choose K > (1− δ)−1M
(
BDF + 1

2%

)
n0.5.

To conclude the proof, we prove the contrapositive of (25):

S̄(x, p) ≥ ε(λ) =⇒ ∇Tx S̄(x, p)V̄(x, p) +Kλ ≤ 0 (38)

Suppose S̄(x, p) ≥ ε then according to (9), it holds that

max
1≤i,j≤n

%

2
xi[pj − pi]2+ ≥

ε

n2
. (39)



Otherwise S̄(x, p) < ε which is a contradiction. Let i∗, j∗

be indices for which the following holds.

max
1≤i,j≤n

%

2
xi[pj − pi]2+ =

%

2
xi∗ [pj∗ − pi∗ ]2+ (40)

from which we obtain
ε

n2
≤ max

1≤i,j≤n

%

2
xi[pj − pi]2+ =

%

2
xi∗ [pj∗ − pi∗ ]2+

≤ 1

2
[pj∗ − pi∗ ]+, (41)

where we use (6) to establish the last inequality. Therefore,
we have that

xi∗ [pj∗ − pi∗ ]2+ ≥
2ε

%n2
(42a)

[pj∗ − pi∗ ]+ ≥
2ε

n2
. (42b)

Also we can derive

∇Tx S̄(x, p)V̄(x, p)

=

n∑
i=1

n∑
j=1

(
xj% [pi−pj ]+−xi% [pj−pi]+

)%
2

n∑
k=1

[pk−pi]2+

=
%2

2

n∑
i=1

n∑
j=1

(
xj [pi−pj ]+

n∑
k=1

(
[pk−pi]2+−[pk−pj ]2+

) )
≤ %2

2

(
xj [pi − pj ]+

(
[pk − pi]2+ − [pk − pj ]2+

) )
(43)

for any i, j, k ∈ {1, · · · , n}. If we choose i = k = j∗, j = i∗,
using (42), we can derive

∇Tx S̄(x, p)V̄(x, p) ≤ −%
2

2
xi∗ [pj∗ − pi∗ ]+ [pj∗ − pi∗ ]

2
+

≤ −2ε2%

n4
(44)

Let us assign ε(λ) =
√

n4Kλ
2% , then we can conclude

∇Tx S̄(x, p)V̄(x, p) +Kλ ≤ 0

and also we can verify that ε(λ)→ 0 as λ→ 0.

C. Proof of Lemma 3
Suppose yji(0) = 0, ∀i, j ∈ {1, · · · , n}, i.e., there is no

agent in transition for the strategy revision at the beginning
of the game. Let t2 be the time instant that Algorithm 1
updates the revision rate for the second time. For t ≥ t2, a
solution yji(t) to (22) satisfies

yji(t)

=

∫ t

0

(
λ(τ)xj(τ)% [pi(τ)− pj(τ)]+

−λ(τ−dji)xj(τ−dji)% [pi(τ−dji)−pj(τ−dji)]+
)
dτ

=

∫ t

t−dji
λ(τ)xj(τ)% [pi(τ)− pj(τ)]+ dτ

−
∫ 0

−dji
λ(τ)xj(τ)% [pi(τ)− pj(τ)]+ dτ

≤ λ1
∫ t

t−dji
xj(τ)% [pi(τ)− pj(τ)]+ dτ, (45)

where we use the facts that∫ 0

−dji
λ(τ)xj(τ)% [pi(τ)− pj(τ)]+ dτ ≥ 0,

λ(τ) = λk if τ ∈ [tk, tk+1) with tk+1 ≥ tk + 2dmax, and
{λk}∞k=1 is a decreasing sequence.

Suppose

lim
t→∞

xi(t)%[pj(t)− pi(t)]+ = 0, ∀i, j ∈ {1, · · · , n} (46)

holds as in the statement of the lemma. Then, from (45), we
have that

lim
t→∞

yji(t) = 0, ∀i, j ∈ {1, · · · , n}. (47)

To complete the proof, using (46) and (47), we establish
limt→∞ infz∈NE(F) ‖x(t) − z‖2 = 0. By contradiction,
suppose that there is a converging sequence {x(tk)}∞k=1 for
which its limit point x∗ is not contained in NE(F). By (46)
and (47), it holds that

∑n
i=1 x

∗
i = 1 and

x∗i > 0 =⇒ Fi(x∗) = max
1≤j≤n

Fj(x∗), ∀i ∈ {1, · · · , n}.

Hence, for any z in X, we have that

(x∗ − z)T F(x∗) = max
1≤j≤n

Fj(x∗)− zTF(x∗) ≥ 0.

According to Definition 2, we conclude that x∗ is the Nash
equilibrium, which is a contradiction. This completes the
proof.

D. Proof of Theorem 1
Note that by ((C2) of Algorithm 1, at each update time

tk+1, it holds that

∇Tx S̄(x(tk+1), p(tk+1))V̄(x(tk+1), p(tk+1)) + λkK

> ∇Tx S̄(x(tk+1), p(tk+1))V̄(x(tk+1), p(tk+1))

+ λkf(x(tk+1), p(tk+1)) ≥ 0,

where K is a constant satisfying K > (1 − δ)−1f(x, p) ≥
f(x, p) as in the statement of Lemma 2. Invoking Lemma 2,
there is a decreasing function ε : R+ → R+ satisfying
S̄(x(tk+1), p(tk+1)) < ε(λk). In what follows, we show that
there is a function ε̄ : R+ → R+ satisfying

S̄(x(t), p(t)) < ε̄(λk), ∀t ∈ [tk+1, tk+2) (48)

for every positive integer k and limk→∞ ε̄(λk) = 0.
For t ∈ [tk+1, tk+1 + 2dmax), it holds that

S̄(x(t), p(t))− S̄(x(tk+1), p(tk+1))

≤ max
x∈Xext

∥∥∇xS̄(x, p)|p=F(x)

∥∥
2
‖x(t)− x(tk+1)‖2

+BDF max
x∈Xext

∥∥∇pS̄(x, p)|p=F(x)

∥∥
2
‖x(t)− x(tk+1)‖2

≤ 2dmaxL max
τ∈[tk+1,tk+1+2dmax)

‖ẋ(τ)‖2 , (49)

where L is a constant satisfying5

L = max
x∈Xext

∥∥∇xS̄(x, p)|p=F(x)

∥∥
2

+BDF max
x∈Xext

∥∥∇pS̄(x, p)|p=F(x)

∥∥
2
.

5Note that such constant L exists since S is continuously differentiable,
F is continuous, and Xext is compact.



Note that when the revision rate is repeatedly updated by
Algorithm 1, λ becomes a time-dependent parameter and
the state equation (13) for yji(t) can be rewritten as in (22).
Hence, using (14) and (22), it holds that for t ∈ [tk+1, tk+2),

|ẋi(t)|
≤
∑n
j=1 λ(t−dji)xj(t−dji)% [pi(t−dji)−pj(t−dji)]+
+
∑n
j=1 λ(t)xi(t)% [pj(t)− pi(t)]+

≤
∑n
j=1
j 6=i

λ(t− dji) + λk

≤ nλk, (50)

where we use (6), and the facts that {λk}∞k=1 is a decreasing
sequence and tk+1 ≥ tk + 2dmax. Consequently, from (49)
and (50), we can derive

S̄(x(t), p(t)) ≤ S̄(x(tk+1), p(tk+1)) + 2dmaxLn
1.5λk,

∀t ∈ [tk+1, tk+1 + 2dmax). (51)

On the other hand, for t ∈ [tk+1 + 2dmax, tk+2), at least
one of ((C1) and ((C2) of Algorithm 1 is violated and using
(11) and (18), we can derive

d

dt
S̄(x(t), p(t)) ≤ λk+1

(
∇Tx S̄(x(t), p(t))V̄(x(t), p(t))

+ λk+1f(x(t), p(t))
)
≤ 0. (52)

Hence, the function S̄(x(t), p(t)) does not increase over
[tk+1 + 2dmax, tk+2). Therefore, we conclude that for all
t ∈ [tk+1, tk+2),

S̄(x(t), p(t)) ≤ S̄(x(tk+1), p(tk+1)) + 2dmaxLn
1.5λk

< ε(λk) + 2dmaxLn
1.5λk = ε̄(λk). (53)

Since limk→∞ λk = 0, it holds that limk→∞ ε̄(λk) =
0 and we have that limt→∞ S̄(x(t), p(t)) = 0. By
(10), it holds that limt→∞ xi(t)%[pj(t) − pi(t)]+ =
0, ∀i, j ∈ {1, · · · , n}, and using Lemma 3, we conclude
that limt→∞ infz∈NE(F) ‖x(t) − z‖2 = 0. This completes
the proof.
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