
ar
X

iv
:0

90
5.

15
05

v1
  [

m
at

h.
L

O
] 

 1
0 

M
ay

 2
00

9

THE ADDITIVE GROUP OF THE RATIONALS DOES NOT

HAVE AN AUTOMATIC PRESENTATION

TODOR TSANKOV

Abstract. We prove that the additive group of the rationals does not have an
automatic presentation. The proof also applies to certain other abelian groups,
for example, torsion-free groups that are p-divisible for infinitely many primes
p, or groups of the form

L

p∈I Z(p∞), where I is an infinite set of primes.

1. Introduction

Consider the basic algorithm for adding two integers that we are taught in ele-
mentary school: write the two numbers in decimal, align them on the right, and add
them digit by digit (using an addition table), carrying only one bit of information
from one position to the next. What is remarkable about this procedure is that
we can add two very long integers, digit by digit, using only local information and
a bounded amount of memory. It becomes interesting to understand what other
mathematical structures admit an encoding such that one can perform the opera-
tions using a similarly simple algorithm. This idea is formalized by the notion of
an automatic (or FA-presentable) structure which is defined as follows.

Fix a finite alphabet Σ and denote by Σ∗ the set of all finite words formed by
letters of Σ. A language is a subset of Σ∗. A language is called regular if there exists
a finite automaton that recognizes it. The following definition was first considered
by Hodgson [5] and the basic theory of automatic structures was later developed
by Khoussainov and Nerode [7].

Definition 1. A countable, relational structure (M ;R1, . . . , Rk), where M is the
universe of the structure and R1, . . . , Rk are the relations, is called automatic if
there exists a regular language D ⊆ Σ∗ and a bijection g : D → M such that the
relations g−1(R1), . . . , g

−1(Rk) are also regular.

In order to make sense of what it means for g−1(Ri) to be regular, one has to
specify how to represent (Σ∗)n as a set of words in a finite alphabet. The standard
approach is to use padding: add a special symbol ⋄ to the alphabet and embed
(Σ∗)n into ((Σ ∪ {⋄})n)∗ by appending ⋄s at the end of the shorter words in the
n-tuple so that all words become of equal length. Everywhere below where we
mention regular subsets of (Σ∗)n, we are using this convention. For more details,
see any of the papers [6,7,9]. In Definition 1, one can relax the condition on g and
allow it to be only a surjection but then equality in M has to be regular. Also, one
can include in the definition structures with function symbols by considering the
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graphs of the functions as relations. This will be important for us because we will
be mostly concerned with algebraic structures.

Automatic structures are also attractive from another point of view: since the
class of regular languages is stable under Boolean operations and projections, one
readily sees that for any first order formula φ(x̄), the set {ā ∈ Dn : D |= φ(ā)} is
a regular language and, moreover, one can construct algorithmically an automaton
recognizing it starting from the formula φ and the automata for the basic relations.
In particular, the first order theories of automatic structures are decidable. One
can also extend the first order language by the additional quantifiers “there exist
infinitely many” and “there exist m modulo n” and keep this decidability property.
For all of this and some additional background, see Rubin’s thesis [14] or the recent
survey Khoussainov–Minnes [6].

The condition of admitting an automatic presentation turns out to be rather re-
strictive. If one allows rich algebraic structure in the language, then often the only
automatic structures are the trivial ones. For example, every automatic Boolean
algebra is either finite or a finite power of the algebra of finite and co-finite sub-
sets of N and all automatic integral domains (in the language of rings) are finite
(Khoussainov–Nies–Rubin–Stephan [9]; for more detailed information on automatic
rings, see also Nies–Thomas [12]).

Even if one considers simpler algebraic structures such as groups, the definition is
still too restrictive: Oliver and Thomas [13] observed, as a consequence of Gromov’s
theorem about finitely generated groups of polynomial growth and a theorem of
Romanovskĭı classifying the virtually polycyclic groups with decidable first order
theory, that a finitely generated group has an automatic presentation (in the sense of
Definition 1) iff it is virtually abelian. This was extended by Nies and Thomas [12]
who showed that every finitely generated subgroup of an automatically presentable
group is virtually abelian.

However, for finitely generated groups, there is a convenient alternative. A dif-
ferent notion of an automatic group, in which the alphabet is a set of generators for
the group, each word represents the corresponding product of generators, and one
further requires that equality in the group and right multiplication by a generator
be verifiable by automata, was introduced by Cannon and Thurston in the 1980s
(see Epstein et al. [1] for the precise definition and more details) and has led to a
rich and interesting theory. In order to avoid confusion, we will adopt the termi-
nology from [12] and call a group with an automatic presentation in the sense of
Definition 1 FA-presentable.

In view of the remarks above, it seems that the natural class of groups for which
one wants to consider FA-presentability is the class of abelian groups and this is
where we will concentrate our attention from now on. There are already some
interesting known examples. Finite groups are of course FA-presentable and an
infinite direct sum of copies of Z/pZ is also FA-presentable. By using the idea of
“addition with carry,” one can construct presentations for Z and Z(p∞) = {x ∈
Q/Z : ∃k pkx = 0}. The class of FA-presentable groups is stable under finite sums
(so all finitely generated abelian groups are FA-presentable) and one can combine
a presentation of Z with a presentation of

⊕

p|n Z(p
∞) to construct a presentation

of Z[1/n] = {a/nk ∈ Q : a, k ∈ Z}. The class of FA-presentable abelian groups
is also stable under taking finite extensions and, more interestingly, under “auto-
matic amalgamation” (Nies–Semukhin [11]) which provides some further examples.
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Currently, there are fairly few known ways to show that an abelian group does
not admit an automatic presentation: the only abelian groups with a decidable
first order theory known to not be FA-presentable were the ones containing a free
abelian group of infinite rank [9]. In this paper, we describe some new restrictions
on possible automatic presentations of abelian groups. The following is our main
theorem which answers a question of Khoussainov (see, e.g., [8]).

Theorem 2. The following groups are not FA-presentable:

(i) (Q,+), or, more generally, any torsion-free abelian group that is p-divisible
for infinitely many primes p;

(ii) (Q/Z,+), or, more generally, any group of the form
⊕

p∈I Z(p
∞), where I

is an infinite set of primes.

Some partial results providing restrictions on possible automatic presentations
of Q and Q/Z had been proved by F. Stephan (see [10]).

The ideas for the proof of Theorem 2 are combinatorial. Our main tool is
Freiman’s structure theorem for sets with a small doubling constant.

The organization of the paper is as follows. In Section 2, we discuss some pre-
liminary notions and facts from additive combinatorics; in Section 3, we prove
Theorem 2 for the case of the rationals; and finally, in Section 4, we indicate how
to modify the proof in order to obtain the other instances of Theorem 2.

Below, N, Z, Q, and R will denote the sets of the natural numbers, the inte-
gers, the rationals, and the reals, respectively. If A is a finite set, |A| denotes its
cardinality.

Acknowledgements. I am grateful to B. Khoussainov for pointing out an
error in a preliminary draft of this paper, making many useful comments, and
suggesting some references.

2. Preliminaries from additive combinatorics

Our main reference for results in additive combinatorics is the book by Tao and
Vu [16].

Let Z be an abelian group. We will be interested in finite sets A ⊆ Z such that
their doubling A + A = {a1 + a2 : a1, a2 ∈ A} is small, i.e., |A + A| ≤ C|A| for
some constant C (such sets naturally arise from automatic presentations of Z as
we shall see shortly). Typical sets with this property are arithmetic progressions
and, more generally, multi-dimensional arithmetic progressions. By a remarkable
theorem of Freiman [2], these are essentially the only examples. In order to state
the theorem, we recall a few basic definitions. A generalized arithmetic progression

(or just a progression, for short) in an abelian group Z is a pair (P, φ), where P is
a finite subset of Z and φ is an affine map from a parallelepiped in Zd onto P , i.e.,

P = {v0 +

d
∑

i=1

aivi : 0 ≤ ai < Ni for i = 1, . . . , d},

where v0, v1, . . . , vd ∈ Z and N1, . . . , Nd ∈ N (and of course, φ(a1, . . . , ad) = v0 +
∑d

i=1 aivi). We will often suppress φ if it is clear from the context. The number
d is called the rank of the progression. Progressions of rank 1 are just ordinary
arithmetic progressions. A progression is called proper if φ is injective. Also, if

N = (N1, . . . , Nd), we will write [0, N) for the parallelepiped
∏d

i=1[0, Ni) in Zd (and

similarly for (−N,N), etc.). If we put v = (v1, . . . , vd) and a = (a1, . . . , ad) ∈ Zd,
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then we will write a · v for the sum
∑d

i=1 aivi ∈ Z. With this notation, we can
concisely write the progression P as v0 + [0, N) · v.

Theorem (Freiman’s theorem). Let Z be a torsion-free abelian group and C > 0
be a constant. Then there exist constants K and d such that whenever a finite set

A ⊆ Z satisfies |A+A| ≤ C|A|, there exists a proper progression P of rank at most

d that contains A and |P |/|A| ≤ K.

The original proof of the theorem can be found in [2]; for a modern treatment due
to Ruzsa, see Ruzsa [15], Tao–Vu [16, Chapter 5], or the self-contained exposition
Green [3].

We will also need some basic notions and facts from the geometry of numbers.
Recall that a lattice in Rd is a discrete subgroup. The rank of a lattice is the
dimension of the subspace of Rd that it spans. A subset B ⊆ Rd is symmetric if
B = −B. We denote by vol the d-dimensional Lebesgue measure. The following
lemma goes back to Minkowski and follows for example from [16, Theorem 3.30];
in order to avoid introducing additional notation, we supply the easy proof.

Lemma 3. Let B ⊆ Rd be an open, symmetric, convex set and Γ < Rd be a lattice

of full rank. If vol(B) < (2d/d!) vol(Rd/Γ), then dim spanB ∩ Γ < d.

Proof. Suppose, towards contradiction, that B ∩ Γ contains d linearly independent
vectors v1, . . . , vd. By applying an invertible linear transformation of Rd (which
will scale both sides of the given inequality by the same factor), we can assume
that (v1, . . . , vd) is in fact the standard basis of Rd. In particular, after this trans-
formation, Γ will contain Zd and hence, vol(Rd/Γ) ≤ 1. On the other hand, B,
being convex and symmetric, will contain the polyhedron with vertices±v1, . . . ,±vd
which has volume 2d/d!. This contradicts the hypothesis. �

One last fact which we will need is that the intersection of a convex set with a
lattice can be efficiently contained in a progression of rank equal to the rank of the
lattice. More precisely, the following holds (see [16, Lemma 3.36]).

Lemma 4. Let B be a convex, symmetric, open set in Rd and let Γ < Rd be

a lattice of rank r. Then there exist a tuple w = (w1, . . . , wr) ∈ Γr of linearly

independent vectors in Rd and a tuple N = (N1, . . . , Nr) of positive integers such

that

(−N,N) · w ⊆ B ∩ Γ ⊆ (−r2rN, r2rN) · w.

3. Proof for the case of the rationals

Let Σ be a finite alphabet. If L ⊆ Σ∗, denote by L≤n the set of words in L of
length not greater than n. We will need the following two basic lemmas (for proofs,
see, for example, [9]). The first one is a general fact about the growth of regular
languages and the second is a version of the pumping lemma particularly suitable
for studying automatic structures.

Lemma 5. Let L ⊆ Σ∗ be a regular language. Then there exists a constant C such

that |L≤n+1| ≤ C|L≤n| for all n.

Lemma 6. Let L1, L2 be languages over a finite alphabet and R ⊆ L1 × L2 be

a regular relation such that the sections Rx = {y ∈ L2 : (x, y) ∈ R} are finite.

Then for all (x, y) ∈ R, len(y) ≤ len(x) + k, where k is the number of states of an

automaton recognizing R.
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Suppose now that (Z,+) is an FA-presentable abelian group and fix some au-
tomatic presentation of it; that is, fix a regular language D ⊆ Σ∗ and a bijection
g : D → Z such that the preimage under g of the graph of addition is recogniz-
able by an automaton with, say, r states. We will often identify Z and D via
g. For example, when we write A + B for some A,B ⊆ D, we mean the set
{g−1(g(a) + g(b)) : a ∈ A, b ∈ B}. By applying Lemma 6 to the graph of addition,
one immediately obtains that D≤n +D≤n ⊆ D≤n+r. Also, the graph of the homo-
morphism Mp : Z → Z defined by Mp(x) = px, where p is an integer, is regular.
Let h(p) be the minimal number of states of an automaton recognizing the graph
of Mp. (Using the fact that one can compute Mp(x) using no more than O(log p)

additions, one sees that h(p) = pO(1) but we will not need this.) If A ⊆ Z, denote
by p−1A the set M−1

p (A). If Mp has finite kernel (for example, if Z is torsion-free),

Lemma 6 implies that p−1D≤n ⊆ D≤n+h(p).
Let l0 = min{l ∈ N : 0 ∈ D≤l and |D≤l| ≥ 2} and put An = D≤l0+nr for

n = 0, 1, . . .. We summarize the properties of the sets An that we have established
so far (under the assumption that the homomorphismMp has a finite kernel). There
exist a constant C1 and a function h : N → N such that:

(i) 0 ∈ A0 and |A0| ≥ 2;
(ii) An +An ⊆ An+1;
(iii) |An+1| ≤ C1|An|;
(iv) p−1An ⊆ An+h(p).

The property (iii) follows from Lemma 5. In particular (ii) and (iii) imply that

(3.1) |An +An| ≤ C1|An| for all n.

Now we can formulate our main combinatorial result which, by the above obser-
vations, implies Theorem 2 for the case of the rationals.

Theorem 7. There does not exist a sequence {An}n∈N of finite subsets of Q that

satisfy the conditions (i)–(iv) above.

Proof. We will obtain a contradiction with Freiman’s theorem. To that end, we
will need a quantitative measure of how efficiently a given additive set is contained
in a progression. For a finite additive set A and a rank d, define

θ(A, d) = min{|P |/|A| : P ⊇ A and P is a proper progression of rank ≤ d}.

If there is no d-dimensional progression covering A (for example, if d = 0), put
θ(A, d) = ∞. One property of θ, obvious from the definition, is the following:

(3.2) B ⊆ A =⇒ θ(A, d) ≥
|B|

|A|
θ(B, d).

The next lemma quantitatively formalizes the observation that if we have a progres-
sion of integers all of whose elements are divisible by p for some large prime p and
add to it a single element not divisible by p, then in order to contain the resulting
set efficiently in a progression, we need to increase its rank. In order to state the
lemma in a slightly more general form that will be useful later, we introduce some
notation. If A is a subset of an abelian group, denote by 〈A〉 the group generated
by A.

Recall that if p is a prime, the p-adic norm ‖x‖p of x ∈ Q \ {0} is defined by

‖x‖p = pm ⇐⇒ x = p−ma/b, where a, b ∈ Z \ pZ and m ∈ Z,
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and ‖0‖p = 0. Note that the p-adic norm on Q has the following properties:

{‖x‖p : x ∈ Q} has no accumulation points other than 0 and ∀x lim
m→∞

‖pmx‖p = 0;

(3.3)

‖x‖p = ‖−x‖p and ‖x+ y‖p ≤ max{‖x‖p , ‖y‖p};(3.4)

∀a ∈ Z ‖ax‖p < ‖x‖p =⇒ p | a.(3.5)

For a set A ⊆ Q, let ‖A‖p = sup{‖a‖p : a ∈ A}. If V ≤ Q and 0 < ‖V ‖p < ∞, let

V(p) denote the subgroup {x ∈ V : ‖x‖p < ‖V ‖p}. Note that (3.3)–(3.5) imply the
following:

for all A ⊆ Q, ‖〈A〉‖p = ‖A‖p ;(3.6)

‖x‖p > ‖y‖p =⇒ ‖x+ y‖p = ‖x‖p ;(3.7)

0 < ‖V ‖p < ∞ =⇒ [V : V(p)] ≥ p.(3.8)

To see that (3.8) holds, note that if v ∈ V is such that ‖v‖p = ‖V ‖p (which exists

by (3.3)), then, by (3.5), the elements 0, v, 2v, . . . , (p−1)v of V are in distinct cosets
of the subgroup V(p).

Lemma 8. Let d ≥ 1 be an integer and p > d! be prime. Let Z be an abelian group

equipped with a norm ‖·‖p satisfying (3.3)–(3.5). Let A ⊆ Z be a finite set with at

least 2 elements, and z ∈ Z be such that ‖z‖p > ‖A‖p. Then

(3.9) θ(A ∪ {z}, d) ≥ min{
p1/d

4d
,
θ(A, d − 1)

dC0d3
},

where C0 is an absolute constant.

Proof. If θ(A∪{z}, d) = ∞, there is nothing to prove, so suppose that θ(A∪{z}, d) <
∞. Let

P = {v0 +
d

∑

i=1

aivi : 0 ≤ ai < Ni for i = 1, . . . , d},

where v0, . . . , vd ∈ Z, be a proper progression of rank d covering A∪ {z} such that
|P |/|A ∪ {z}| = θ(A ∪ {z}, d). We will first show that for some i ≥ 1, ‖vi‖p ≥

‖z‖p. Denote by V1 the group generated by v1, . . . , vd and suppose, towards a

contradiction, that ‖V1‖p < ‖z‖p. We have two cases: either ‖v0‖p < ‖z‖p or

‖v0‖p ≥ ‖z‖p > ‖V1‖p. In the first case, we obtain that, since P ⊆ v0 + V1,

‖P‖p ≤ ‖v0 + V1‖p < ‖z‖p which contradicts the fact that z ∈ P . In the second,

by (3.7), for every x ∈ v0 + V1, ‖x‖p = ‖v0‖p > ‖A‖p which contradicts the fact
that A ⊆ v0 + V1 and A is non-empty.

Now by reordering v1, . . . , vd, we can assume that there exists k ≥ 1 such that

‖v1‖p , . . . , ‖vk‖p ≥ ‖z‖p and ‖vk+1‖p , . . . , ‖vd‖p < ‖z‖p .

Put M = N1N2 · · ·Nk. We distinguish the following two cases which will corre-
spond to the two different quantities on the right-hand side of (3.9).

Case 1. M < p/k!. Note that this case is impossible if d = 1. Indeed, we
showed that ‖v1‖p > ‖A‖p and since A contains at least two elements, it is easy to

see, using (3.5), that if d = 1, the interval [0, N1) must contain two integers whose
difference is divisible by p and hence, M = N1 ≥ p+1 (for a similar argument, see
Case 2 below). Hence, we can assume that d ≥ 2.
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Write v for the vector (v1, . . . , vk) and N for (N1, . . . , Nk). Let f : Zk → Z be
the homomorphism f(x) = x · v. Put V = 〈v1, . . . , vk〉 = f(Zk). Let

Λ = {y ∈ Z : ‖y‖p < ‖z‖p}

and note that Λ is a subgroup of Z and A ⊆ Λ. Let also Γ be the lattice in Rk

given by

Γ = {x ∈ Zk : f(x) ∈ Λ}

and note that since by (3.3), for all large enough m, pmZk ≤ Γ, Γ has full rank. Let

B be the open, symmetric, convex box
∏k

i=1(−Ni, Ni) in Rk. We have vol(B) =
(2N1) · · · (2Nk) = 2kM and

vol(Rk/Γ) = vol(Rk/Zk)[Zk : Γ] ≥ p.

The last inequality follows from the fact that Γ is contained in the kernel of the
composition of the surjective homomorphisms

Zk f
−→ V → V/V(p)

and (3.8). Applying Lemma 3 and our hypothesis about M yields that Γ ∩ B is
contained in a sublattice of Γ of rank r < k. (For the moment, suppose that k > 1,
so that we can take r > 0. We will explain how to deal with the case k = 1
later.) By Lemma 4, there exist tuples N ′ = (N ′

1, . . . , N
′
r) of positive integers and

w = (w1, . . . , wr) ∈ Γr such that w1, . . . , wr are independent in Rk and

(−N ′, N ′) · w ⊆ Γ ∩B ⊆ (−r2rN ′, r2rN ′) · w.

From the first inclusion and the independence of w1, . . . , wr, we have

(3.10) |(−N ′, N ′)| = |(−N ′, N ′) · w| ≤ |B ∩ Γ| ≤ |B ∩ Zk| < 2kM.

Let P0 be the progression {
∑d

i=k+1 aivi : 0 ≤ ai < Ni} and note that P0 ⊆ Λ. Then
P = v0 + P0 + f([0, N)). Note that by the properness of P , |P | = |P0| · |[0, N)| =
M |P0|. Let a

0 = (a01, . . . , a
0
k) ∈ [0, N) be such that v0+a0 ·v ∈ Λ and put v′0 = a0 ·v

(since A ⊆ P ∩ Λ, such an a0 always exists). We have

P = v0 + P0 + f([0, N)) = v0 + P0 + v′0 + f([−a0, N − a0)).

Note that v0 + v′0 + P0 ⊆ Λ. Hence,

A ⊆ P ∩ Λ = v0 + v′0 + P0 + f([−a0, N − a0)) ∩ Λ

= v0 + v′0 + P0 + f([−a0, N − a0) ∩ Γ)

⊆ v0 + v′0 + P0 + f(B ∩ Γ)

⊆ v0 + v′0 + P0 + f((−r2rN ′, r2rN ′) · w)

⊆ v0 + v′0 + P0 + (−r2rN ′, r2rN ′) · f(w),(3.11)

where f(w) = ((f(w1), . . . , f(wr)). Denote by Q the progression (3.11). We have
that A ⊆ Q, rankQ = rankP0 + r = d− k + r < d, and by (3.10),

|Q| ≤ |P0| · |(−r2rN ′, r2rN ′)|

< |P0|2
rr2r

2

|(−N ′, N ′)|

< |P0|2
rr2r

2

2kM < 4kk2k
2

|P |.

(3.12)
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Now note that if we had k = 1 in the beginning, then B ∩ Γ = {0}, so if we take
Q = v0 + v′0 + P0, we will again have A ⊆ Q, rankQ < d, and the estimate (3.12)
will still hold.

Of course, the progression Q need not be proper. However, properness can be
achieved at the price of increasing its size. Applying [16, Theorem 3.40] yields that
we can include Q in a proper progression Q′ of equal or lesser rank and size at most

dC
′

0
d3

|Q| for some absolute constant C′
0. This allows us to conclude that in this

case,

θ(A ∪ {z}, d) =
|P |

|A ∪ {z}|
≥

|Q|

2|A|4kk2k2

≥
|Q′|

2|A|dC
′

0
d3

4kk2k2

≥
θ(A, d− 1)

dC0d3

for an appropriately chosen C0.
Case 2. M ≥ p/k!. Then for some i ≤ k, Ni ≥ (p/k!)1/k ≥ (p/d!)1/d. Without

loss of generality, we can assume that N1 ≥ (p/d!)1/d. Now fix some (a2, . . . , ad) ∈
Zd−1 and consider the following condition on a1:

(3.13) a1v1 + v0 +

d
∑

i=2

aivi ∈ Λ.

Let a′1, a
′′
1 ∈ Z be two values of a1 satisfying (3.13). Since ‖v1‖p > ‖Λ‖p, by (3.5),

we obtain that p | a′1 − a′′2 . Hence the proportion of the numbers a1 in the interval
[0, N1) for which (3.13) holds is not greater than ⌈N1/p⌉/N1 ≤ max{1/N1, 2/(p+
1)}. Therefore, by properness,

|P ∩ Λ|/|P | ≤ max{(p/d!)−1/d, 2/(p+ 1)} ≤ (p/(2d!))−1/d.

Hence in this case,

θ(A ∪ {z}, d) =
|P |

|A ∪ {z}|
≥

|P |

2|A|
≥

|P |

2|P ∩ Λ|
≥

(p/(2d!))1/d

2
≥

p1/d

4d
. �

Now we can proceed with the proof of the theorem. Suppose, towards a con-
tradiction, that a sequence of subsets {An} of Q satisfying (i)–(iv) does exist. Let
C = max{C0, C1}, where C0 is the constant from Lemma 8 and C1 is the constant
from (iii). By (3.1) and Freiman’s theorem, there exist constants K and d such that
θ(An, d) ≤ K for all n. Pick inductively a sequence of primes pd < pd−1 < · · · < p0
satisfying the conditions

(3.14) pd > C(4dK)d and pi−1 > piC
h(pi)ddCd4

for i = d, d− 1, . . . , 1.

Define inductively the sequence of integers n0 < n1 < · · · < nd by

n0 = 0 and ni = min{n : ‖An‖pi
>

∥

∥Ani−1

∥

∥

pi

} for i = 1, . . . , d.

Note that by the properties of the family {An}, ni ≤ ni−1 + h(pi) (indeed, if the
norm

∥

∥Ani−1

∥

∥

pi

is achieved for z ∈ Ani−1
, then

∥

∥p−1
i z

∥

∥

pi

> ‖z‖pi
=

∥

∥Ani−1

∥

∥

pi

and

p−1
i z ∈ Ani−1+h(pi)). Hence,

(3.15) |Ani−1| ≤ Ch(pi)+1|Ani−1
|.
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We will prove by induction on i that

(3.16) θ(Ani
, i) > C−1p

1/d
i /(4d) for all i = 0, . . . , d.

Applied for i = d, (3.16) will yield a contradiction with the choice of pd. The case
i = 0 follows trivially from the definition of θ. Suppose now that i ≥ 1 and (3.16)
holds for i − 1 in order to prove it for i. By the induction hypothesis, (3.15), and
(3.2),

(3.17) θ(Ani−1, i− 1) ≥ C−h(pi)+1θ(Ani−1
, i− 1) > C−h(pi)p

1/d
i−1/(4d).

By the choice of ni, there exists z ∈ Ani
such that ‖z‖pi

> ‖Ani−1‖pi
. Apply

Lemma 8 to the set Ani−1 ∪ {z} and the prime pi to obtain

θ(Ani
, i) > C−1θ(Ani−1 ∪ {z}, i)

≥ C−1 min{p
1/d
i /(4d), θ(Ani−1, i− 1)/dCd3

}.

The choice of pi−1 and (3.17) allow us to conclude that p
1/d
i /(4d) ≤ θ(Ani−1, i −

1)/dCd3

which completes the induction and the proof. �

Remark 9. Note that Freiman’s theorem gives another way to see that a torsion-
free abelian group of infinite rank is not FA-presentable (originally proved in [9]).
Indeed, if one considers the sets D≤n as above, by applying Freiman’s theorem, one
obtains that there is a constant d such that each D≤n is contained in a progression
of rank d. Since the group generated by a progression of rank d has rank at most
d+1, this leads to a contradiction. In fact, for this argument, instead of Freiman’s
theorem, one can use the much simpler Freiman lemma [16, Lemma 5.13].

4. Other groups

4.1. The torsion-free case. The proof above can be used to show that certain
other torsion-free abelian groups also do not have an automatic presentation. Recall
that an abelian group Z is called p-divisible if all of its elements are divisible by p,
i.e., for all x ∈ Z, there exists y ∈ Z such that py = x. It is easy to extend the proof
in Section 3 to cover all torsion-free groups that are p-divisible for infinitely many
p. Let Z be such a group. If Z has infinite rank, then Z is not FA-presentable by
[9] (cf. Remark 9 above). Otherwise, Z can be embedded as a subgroup of Qk for
some finite k. For x = (x1, . . . , xk) ∈ Qk, define its p-adic norm by

‖x‖p = max{‖x1‖p , . . . , ‖xk‖p}.

It is easy to check that this norm satisfies (3.3)–(3.5), hence Lemma 8 applies. In
order to complete the rest of the proof of Theorem 7, one just has to choose the
primes p1, . . . , pd in (3.14) so that Z is pi-divisible for each i. That can be done
because, by assumption, there are infinitely many such primes. This completes the
proof of Theorem 2 (i).

4.2. The torsion case. One has to be slightly more careful in the torsion case but
the proof in Section 3 still goes through for some torsion groups. Let I be some
infinite set of primes and put TI =

⊕

p∈I Z(p
∞). (In the special case when I is the

set of all primes, TI = Q/Z.) For p ∈ I, one can define the p-adic norm for x ∈ TI

by

‖x‖p = ordπp(x),
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where πp : TI → Z(p∞) is the natural projection and ord z denotes the order of
z (with the special agreement that ord 0 = 0). This is not really a norm (in the
sense that {x ∈ TI : ‖x‖p = 0} is a non-trivial subgroup of TI) but it still satisfies

(3.3)–(3.5) which is all we need for Lemma 8 to hold.
Freiman’s theorem is also available for arbitrary abelian groups (Green–Ruzsa [4];

see also [16, Theorem 5.44]). The only difference is that now in the conclusion of
the theorem, one obtains coset progressions instead of ordinary progressions. A
coset progression in an abelian group Z is a subset of the form H+P , where H is a
finite subgroup of Z, P is a proper progression as defined previously, and the sum
is direct, i.e., every element of H + P can be represented in a unique fashion as a
sum h+ p, where h ∈ H and p ∈ P . Since every finite subgroup of TI is cyclic and
every finite cyclic group is a one-dimensional progression, every coset progression
of rank d in TI can be written as a proper progression of rank d+ 1.

The conditions (i)–(iv) for the sets An are still satisfied because the homomor-
phisms Mp : TI → TI , x 7→ px have finite kernels for all primes p . Also, one has to
ensure that the primes p1, . . . , pd in (3.14) are in the set I which can be achieved
because I is infinite. The rest of the proof goes through unchanged.
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