
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2023, 13(3): 323–357, doi: 10.21655/ijsi.1673-7288.00303
©2023 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Coq Formalization of ZFC Set Theory for Teaching
Scenarios

Xinyi Wan (万新熠), Ke Xu (徐轲), Qinxiang Cao (曹钦翔)

(School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai
200240, China)
Corresponding author: Qinxiang Cao, caoqinxiang@sjtu.edu.cn

Abstract Discrete mathematics is a foundation course for computer-related majors, and
propositional logic, first-order logic, and the axiomatic set theory are important parts of this
course. Teaching practice shows that beginners find it difficult to accurately understand abstract
concepts, such as syntax, semantics, and reasoning system. In recent years, some scholars have
begun introducing interactive theorem provers into teaching to help students construct formal
proofs so that they can understand logic systems more thoroughly. However, directly employing
the existing theorem provers will increase students’ learning burden since these tools have a
high threshold for getting started with them. To address this problem, we develop a prover for
the Zermelo-Fraenkel set theory with the axiom of Choice (ZFC) in Coq for teaching scenarios.
Specifically, the first-order logical reasoning system and the axiomatic set theory ZFC are
formalized, and several automated proof tactics specific to reasoning rules are then developed.
Students can utilize these automated proof tactics to construct formal proofs of theorems in a
textbook-style concise proving environment. This tool has been introduced into the teaching
of the course of discrete mathematics for freshmen. Students with no prior theorem-proving
experience can quickly construct formal proofs of theorems including mathematical induction
and Peano arithmetic with this tool, which verifies the practical effectiveness of this tool.
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The formal proof of mathematical theorems has been developed and studied extensively
in recent years. Theorem proving tools, such as Coq[1], Isabelle[2], Mizar[3], and Lean[4]

have gradually matured. These tools pave the way for the formalization of the proof
construction for many mathematical theorems, including the famous four-color theorem[5],
Gödel’s incompleteness theorem[6], and Cauchy-Schwarz inequality. Gowers, a winner of
the Fields Medal, believed that computers would play a key role in theorem proving and would
change the study mode of theoretical mathematics in the future[7]. Hanna and Yan[8] pointed
out that theorem provers could not only help mathematicians carry out theoretical study but also
change the teaching method tailored to beginners of mathematical logic.
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Discrete mathematics has been offered by most colleges and universities as a basic
compulsory course in the undergraduate curriculum of computer-related majors in colleges
and universities in China. Propositional logic, first-order logic, and the axiomatic set theory are
important components of this course. Teaching practice reveals that undergraduates who are also
beginners in mathematical logic have difficulty in learning and clarifying abstract concepts, such
as grammar, semantics, and reasoning system. Moreover, students often fail to gain intuitive
understanding through specific examples when they learn to describe mathematical propositions
and mathematical proofs with first-order logic and the axiomatic set theory. The extension of
interactive theorem provers to teaching is expected to alleviate this problem. Computer-aided
automated checking can provide timely and accurate feedback on whether the propositions
written by students are grammatically correct and whether they follow the reasoning rules of the
logic system. In this way, it helps students construct a correct and strict proof and spare them
from waiting for feedback from the teaching assistant which may take weeks. The real-time
interaction feature of interactive theorem provers also allows students to dynamically see the
reasoning process, thereby helping deepen their understanding of the logic systems.

In recent years, increasing scholars around the world have begun incorporating theorem
provers into the courses of mathematical logic, especially courses in computer science majors, to
assist teaching. For example, researchers at Oxford University have developed Jape for teaching
predicate logic[9]. Cezary and Freek have developed the online teaching tool ProofWeb based
on Coq[10], and Avigad has applied Lean to the teaching of first-order logic and set theory
concepts[11]. However, most of the above efforts are based on the built-in logic of the theorem
provers, which leads to many shortcomings in teaching:

(1) Most theorem provers, such as Coq, adopt a “bottom-up” reverse proof mode, where
users continuously apply proof tactics to decompose the goal to be proven into a series of sub-
goals, and the proof is ultimately completed with all the sub-goals as premises. Nevertheless,
the commonly used proof modes also include forward reasoning, which means to derive new
conditions from premises and ultimately obtain the goal to be proven.

(2) Students shall reason according to the reasoning rules of the logic system they are
learning, instead of using the logic built into the theorem prover since it deviates from the
teaching goal.

(3) Directly using a theorem prover to construct proofs is more like learning a programming
language in the sense that students are required to spend a lot of extra time in familiarizing
themselves with the instructions to operate a specific theorem prover. This approach not only
increases learning costs but also renders the logic system easily overlooked.

(4) The proof code is usually excessively lengthy since theorem provers only provide basic
proof tactics. Consequently, the large workload restrains students from constructing formal
proofs of more complex theorems.

(5) The lack of a textbook-style concise symbol system is not conducive to students’
understanding of the logic systems.

Briefly, the threshold for getting started with theorem provers developed for assisting the
study of mathematical theories is high. Moreover, such theorem provers differ significantly from
the form of the logic systems found in textbooks. Simply introducing them directly into teaching
may increase learning costs and even confuse students as they are likely to mistake the logic
built into a theorem prover for the logic system they are learning.

Considering these problems, some scholars, rather than using theorem provers, have instead
developed simple proving tools tailored to teaching from scratch in programming languages.
Breitner[12] developed Incredible Proof Machine[12], with which students could construct proofs
by connecting the blocks representing propositions with those representing the reasoning rules
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of the first-order logic using the mouse in the visual interface. Lerner et al. proposed the
visual interface Polymorphic block[13], with which students could connect proposition blocks
with reasoning blocks in a way similar to jigsaw puzzle solving to complete the reasoning in a
natural deduction system. These tools can provide a more conveniently interactive and interesting
experience, but their development from scratch entails tremendous work. The existing interactive
theorem provers have already provided a robust user interface involving proof interface, proof
state, and error information. Developing teaching tools based on theorem provers can greatly
reduce development costs. For example, the teaching tool proposed in this study only comprises
2,300 lines of Coq code, making it a more practical option for teaching. Moreover, it can also
be adjusted for different teaching scenarios more conveniently.

The gap between formal proofs constructed in theorem provers as tools for assisting the
learning of logic and the proofs of the logic systems in textbooks should be reduced so that
students can focus on the logic system they are learning rather than the skills to use theorem
provers. A qualified teaching tool based on theorem proving concepts shall have the following
characteristics.

(1) The reasoning mode it supports is the same as that used in traditional logic textbooks.
(2) The same logic system as the one in the teaching content is used, and all operations

are based on the reasoning rules of the system to the effect that the logic built into the theorem
prover is exposed as little as possible. Furthermore, the logic terms and symbols in the textbooks
are used instead of the newly created variable names in the theorem prover.

(3) Only a few simple instructions are needed to complete the proofs, thereby reducing
the learning cost for students to use theorem provers. These proof instructions are highly
automated to reduce the amount of code and help students complete strict proofs of more
complex propositions.

To solve the above questions, we developed a prover with automated proof tactics in Coq for
the axiomatic set theory ZFC to assist the teaching of the first-order logic and the axiomatic set
theory. They formalized the axiomatic set theory ZFC based on the first-order logic in Coq using
the logic system “sequent calculus” and applied the “notation” mechanism to provide concise
symbols. We also developed several automated proof tactics to simplify the proof construction
process, including the automated proof tactic “FOL_Tauto” for propositional logic. This
tactic could transform a provable problem into a Boolean satisfiability problem in conjunctive
normal form and call the Davis-Putnam-Logemann-Loveland (DPLL) satisfiability solver we
implemented in Coq to automatically solve the problem. In this way, the fully automated
processing of logical connectives is achieved. Tactics are developed for the reasoning rules for
quantifiers, to support the simultaneous introduction and elimination of multi-level quantifiers;
the tactic “peqsub_tac” is developed for the equal sign replacement rule to automatically replace
the first-order logic terms in propositions. All the above tactics could automatically process
α-equivalence and share the same forward reasoning mode as that in the textbooks. A simple
and fast proving environment for set theory is constructed accoding to the above approach. It
not only hid many details of Coq but also enabled proofs to be more in the textbook style and
more automated. Students could construct proofs of the theorems in set theory more easily with
this tool than by directly using existing theorem provers. Figure 1 shows an example of proof
construction, and it suggests that the intersection of the two sets is bound to be a subset of one
of them.

This tool achieved satisfactory results when it is introduced into the practical teaching of
discrete mathematics. Students shall use the proposed prover to prove mathematical induction as
one of the course projects. The practice shows that freshmen who are also new to first-order logic
and the axiomatic set theory can complete the formal proof of the theorem after brief learning.
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Some outstanding students can use this tool to further construct a proof of Peano arithmetic
and prove the relevant properties of addition and multiplication after completing the learning of
discrete mathematics. The above application results reflect the simplicity and effectiveness of
the proposed tool.

Theorem intersect_subset1:
[[ ZF`∀u, ∀v, u∩v⊆u]].
Proof.
"pose proof" Intersection_iff.
universal instantiation H u v z.
assert [[ZF`z∈u∩v→z∈u]] by FOL_Tauto.
universal generalization H1 u v z.
The conclusion is already proven.
Qed.

(a) Proof code

1 subgoal
H : [[ ZF`∀x, ∀y, ∀z, z∈x∩y↔z∈x∧ z∈y]]
H0 : [[ ZF`z∈u∩v↔ z∈u∧z∈v]]
H1 : [[ ZF`z∈u∩v→ z∈u]]
H2 : [[ ZF`∀u, ∀v, ∀z, z∈u∩v→z∈u]]
______________________________________(1/1)
[[ ZF`∀u, ∀v, u∩v⊆u]]

(b) Proof state bar in Coq before the last step

Figure 1 Example of proving environment in prover for set theory ZFC

Section 1 of this paper outlines the research background, including the research status of
the interactive theorem prover Coq and logic teaching tools based on theorem provers. Section 2
describes the design framework of the prover for the set theory ZFC, and Section 3 presents the
formalization of the axiomatic set theory ZFC. Section 4 demonstrates the implementation of
automated proof tactics, and Section 5 shows the actual effectiveness of the proposed prover in
the teaching of discrete mathematics. The final part summarizes the whole paper.

1 Research Background
1.1 Research status of logic teaching tools based on theorem provers

The main problem with using theorem provers to assist teaching lies in the large gap between
theorem provers and the form of the logic systems found in textbooks, and how to narrow this gap
has become the main line of research. One approach attempts to gradually bring the code proof
of theorem provers closer to the proofs in textbooks in terms of the style of the proof. Böhne
et al.[14] provided a proof tactic for each reasoning rule in Coq. Specifically, students are required
to first complete the proof of a proposition in Coq and then write the corresponding first-order
logic proposition to be proven in this case in the form of comments before and after each line of
the proof code. Finally, they are required to sketch a textbook-style pen-and-paper proof that had
the same structure as that of the proof constructed in Coq. Such a proof shared the same reverse
reasoning mode with the one constructed in Coq. The practice indicated that students could
complete the proofs and understand the correspondence between the proof constructed in Coq
and the logic system. Avigad[11] used the logic built into Lean to teach first-order logic and set
theory and enabled students to understand proof code and pen-and-paper proof by comparison.
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Students could complete the proof as well after they systematically learned the usage of Lean.
Another approach is to directly develop theorem-proving tools that are more in the textbook style.
As early as the end of the 20th century, researchers at the University of Oxford developed Jape[9]

and thereby provided a decent visual interface that could display proofs in the form of trees or
boxes. Inspired by Jape, Kaliszyk et al. developed ProofWeb[10] based on Coq. It adopted a
natural deduction system similar to Gentzen and provided a lightweight online Graphical User
Interface (GUI). Students could also construct proofs from bottom to top by applying the tactics
corresponding to each reasoning rule.

Most research on set theory in China focuses on the formalization of important theorems in
set theory, such as C. T. Yang’s theorem[15] and Tukey’s lemma[16]. At present, the application
of theorem proving in teaching has rarely been reported, and the related research available is
still in the stage of discussion and exploration. Li[17] discussed the feasibility of using Isabelle
to assist in the teaching of the course on mathematical logic offered to computer majors. Jiang
et al.[18] compared the scheduling of courses related to logic and verification at the Technical
University of Munich and that at universities in China. They called for more content related
to theorem proving in the teaching of theoretical and practical courses for computer majors in
China. To the best of our knowledge, this study takes the lead in applying interactive theorem
proving to classroom teaching for beginners of mathematical logic in China.

1.2 Interactive theorem prover Coq
Coq is an interactive theorem-proving tool with powerful expressiveness and excellent

scalability. As one of the mainstream proving assistants in the world, Coq has been widely
used in the formal verification of mathematical logic, algorithms, and highly reliable software.
The theoretical basis of Coq is the calculus of inductive constructions for providing users with
inductive types that are more expressive than the inductive types in most functional programming
languages. Users can define mathematical concepts, programming languages, and logic systems
for formalization and construct proofs of relevant properties and theorems in Coq. During the
proof construction, users start the proof construction with the instruction “Proof” and then apply
a series of proof tactics to interact with Coq. The proof tactics involve decomposing the goal
to be proven into several simpler sub-goals or directly proving the goal according to the current
proof state and the proved theorems and axioms. The type-checking algorithm of the proof
checker in Coq will mechanically check the types according to the nature of the calculus of
inductive constructions. After the proof is completed, users run the instruction “Qed” to exit the
proof. Table 1 lists some commonly used proof tactics in Coq and their purpose.

Coq allows users to combine existing proof tactics in to a new tactic in the language Ltac,
thereby simplifying the proof construction process and improving the automation level of the
proof. The automated proof tactics developed in this study are also implemented in the language
Ltac. Students did not need to learn the proof instruction language of Coq. Instead, they are
only required to use the seven automated proof tactics developed in this study. One of the proof
tactics related to the separation axiom is not detailed in this paper since it is not engaged in the
course project.

2 Design Framework of Prover for Axiomatic Set Theory
One thing should be clarified before introducing the implementation framework of the

theorem prover for ZFC. It is that this theorem prover is developed for specific teaching scenarios
of mathematical logic. The object of teaching is students who have mastered propositional logic,
and the focus of teaching at the current stage is the four reasoning rules for quantifiers in the
logic system “sequent calculus” and the relationship between the axiomatic set theory ZFC and
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Table 1 Commonly used proof tactics in Coq
Proof tactic Purpose

intros Introducing the conditions in the goal to be proven
destruct Discussing by categories according to constructors

induction Conducting structural induction according to constructors
apply Applying a hypothesis or proven theorem to the goal to be proven
eapply No need to specify variables during application and delaying the instantiation

of variables
pose proof Introducing a proven theorem into the condition

assert Declaring a new goal to be proven
assert. . . by. . . Declaring a new goal to be proven and resolving it directly by the tactic after

“by”
rewrite Rewriting according to the equation

congruence Automated proof tactic for equation rewriting
reflexivity Automatically comparing whether the two sides of the equal sign in the goal

to be proven are the same
tauto Automated proof tactic by intuitionistic logic

everyday mathematics. Therefore, we used the same logic system “sequent calculus” as the one
in textbooks when we formalized the axiomatic set theory ZFC. When developing the proof
tactics, we integrated all the proof constructions related to propositional logic into the tactic
“FOL_Tauto” completely automatically and provided a separate tactic for each inference rule
for quantifiers. Furthermore, we introduced the symbols of binary intersection ∩, binary union
∪, and singleton {} as function symbols in first-order logic. They also proposed the empty set ∅
as a constant symbol. The set theory ZFC in textbooks usually does not contain these symbols,
but the introduction of these symbols will not change the reliability of the entire reasoning
system. Specific proof of this statement is available in standard textbooks[19]. Although the
proposed theorem-proving tool is implemented in Coq, this study is designed to provide a
teaching-oriented theorem-proving tool rather than a verified prover. Therefore, the verification
of the correctness of the solvers and other modules involved is not repeated in this paper.

The proposed prover is designed into two parts, namely, the formalization of the axiomatic
set theory ZFC and the interactive theorem proving environment, and both parts are implemented
in Coq. The specific details of the design are presented in Figure 2.

Interactive theorem proving environmentFormalization of set theory ZFC

Variable name library

First-order logic 

Reasoning system

Symbol system

G
oa

l t
o 

be
 p

ro
ve

n

Automated proof tactics

Quantifier-oriented tactics

Tactic for equal sign replacement

Automated tactic “FOL_Tauto” for 

propositional logic

Generation of conjunctive norm form and satisfiability 
solving

Figure 2 Design framework of the prover for the set theory ZFC

Part 1 involves the formalization-oriented definition of the relevant concepts of the axiomatic
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set theory ZFC in Coq and the construction of a reliable reasoning system. This part can be
described from the following four aspects.

(1) Explicit variable name library StringName
Rather than using the variable name system built into Coq, we instead developed an explicit

variable name library called StringName specifically for the reasoning system based on the
existing string library called String in Coq. This library provides users with better control over
variable names in the sense that it allows users to define methods for introducing new variable
names and comparing variable names. The control is beneficial for subsequent substitutions,
α-equivalence, and other grammatical operations. Furthermore, starting the formalization of the
logic system from the string-based abstract syntax tree can also avoid exposing the logic built into
Coq in the proving environment. As shown in Figure 1(b), the proposed proving environment
only displays a series of conditions for provable propositions, and conditions such as x:String
will thus not be displayed. Moreover, users no longer need to call the proof tactic “intros” to
introduce conditions for each variable at the beginning of the proof, thereby maintaining a high
degree of consistency with textbook-style proofs.

(2) First-order logic proposition
Since the search object of the first-order logic is first-order logic propositions, propositions

and terms shall be formalized in Coq.
(3) Reasoning system for the set theory ZFC
The logic system “sequent calculus” in textbooks is adopted as the reasoning system, and

each step in the proof construction process is composed of multiple premises and one conclusion.
Since the reasoning system only involves grammatical structures, we only formalized provable
property “derivable” in this study, rather than formalizing the semantics of the system.

(4) Symbol system
The proof code of theorem provers is usually poorly readable and not easy for students to

understand. Nevertheless, the “notation” mechanism of Coq can effectively solve this problem.
For example, the formalization-oriented definition of material implication is PImpl P Q. If
Notation "P1→P2":=(PImpl P1 P2) is defined, it can be abbreviated as “P→Q” in subsequent
proofs.

Part 2 is the interactive theorem-proving environment, where the theorem to be proven
consists of the previously formalized propositions. Users decide how to apply reasoning rules
by the proposed automated proof tactics. The tactics developed in this study all adopted the same
forward reasoning mode as in textbooks. Every time a user successfully applies a tactic, the new
reasoning relationship generated by the reasoning rule will be added to the proving environment
according to the current conditions. When the conclusion can be obtained by propositional
logic reasoning on the existing premises, the user can call the tactic “The conclusion is already
proven” (alias of “FOL_Tauto” to complete the proof) to finally complete the proof of the
theorem. Users do not need any proof tactics built into Coq other than “pose proof”. The
specific implementation of automated proof tactics will be presented in Section 4.

3 Formalization of Set Theory ZFC
3.1 Explicit variable name library

We first implemented the naming system module NAME_SYSTEM_EXT by applying the
module mechanism in Coq. This module accepts the parameters shown in Table 2. These
parameters can be used to further define other functions of Coq and construct proofs of their
related properties.A function named list_new_name is defined for introducing new names
according to the name list, and the name next to the one with the largest name in the list is
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returned.

Definition list_new_name (xs: list t):=next_name (list_max xs).

In practical use, a naming system module of the type specified by the user can be obtained
by instantiating the various parameters in Table 2 only and proving that the instantiated types
and functions satisfy the properties in Table 2. Parameter t is instantiated into the type string in
the library String, and the lexicographical order of strings is adopted for parameters max and le.
Moreover, next_name is instantiated to adding the suffix “′” after the input string, and default
is instantiated to the string “x”. In this way, we obtained the string module StringName.
Proving that the above types satisfy the properties in Table 2 is not the key to this paper and is
thus not presented here.

Table 2 Parameters of module NAME_SYSTEM_EXT
Parameters and properties to be satisfied Description
t: Type Name type
max: t→t→t Functions that compare and return the larger name
next_name: t→t Returning the next name entered
le: t→t→Prop Binary relation of being smaller than or equal to
default: t Default name
eq_dec: ∀v1 v2: t,
{v1=v2}+{v1<>v2}

Names are comparable to the effect that they are either
identical or different

Transitive le The relation of being smaller than or equal to is
transitive

∀u v, le u v→u 6=next_name v The name next to any name is larger than itself
∀v1 v2, le v1 (max v1 v2) Correctness 1 of function max, larger than the first

parameter
∀v1 v2, le v2 (max v1 v2) Correctness 2 of function max, larger than the second

parameter
∀v1 v2, max v1 v2=max v2 v1 Commutative property of function max
∀v1 v2 v3, max v1 (max v2 v3)=max
(max v1 v2) v3

Associative property of function max

In subsequent development, library StringNamewould be referenced under different names
for different purposes. In the reasoning system, we let V:=StringName and used V.t as the type
of variable names in the proposition. In the DPLL solver, PV:=StringName is assumed, and
ident:=PV.t is used as the type of the propositional variables. Although they are both string
types in essence, different names are used to avoid confusion.

Furthermore, we assigned variable names built into Coq to commonly used strings, such as

Definition x:=EVAL "x"% string.
Definition x0:=EVAL (V.next_name x).

In this way, letters, such as x, instead of quoted strings would be directly displayed in the
proving environment, and the names next to x could also be displayed as x0,x1,x2,... in
sequence, as shown in Figure 1.

3.2 Formalization of propositions and their related properties
The basic research object of first-order logic is first-order logic terms. In the axiomatic set

theory ZFC, a term represents a set, and its inductive definition is as follows:

t ::= ∅ | x | {t} | t1 ∩ t2 | t1 ∪ t2 (1)

where ∅ is the empty set constant; x is a variable; {t} is a singleton; and ∩ and ∪ are binary
intersection and binary union, respectively. The keyword “Inductive” of Coq is used to obtain
the formalization-oriented definition term of the abovementioned terms as follows:
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1 Inductive term :=
2 | var (v:V.t) | empty_set | singleton (x:term) | union (x y: term) |

intersection (x y:term)

where constructor empty_set corresponds to the empty set constant; constructor var
corresponds to the variable represented by the string; singleton corresponds to a singleton;
and union and intersection correspond to binary union and binary intersection, respectively.
Afterward, the “notation” mechanism is used to obtain the following abbreviations, thereby
ensuring that the symbols in Coq are consistent with those in Eq. (1). The newly defined
propositional symbols are only valid within double brackets “[[]]” so that they would not
conflict with the ones built into Coq.

1 Notation "[[e]]" := e (at level0, e custom set at level99).
2 Notation "∅" := empty_set (in custom set at level5, no associativity).
3 Notation "x ∩ y" :=(intersection x y)(in custom set at level11, left

associativity).

The other abbreviations are attained in a similar manner.
The inductive definition of the proposition is as follows.

P ::=t1 = t2 | t1 ∈ t2 | > | ⊥ | ¬P | P1 ∧ P2 | P1 ∨ P2 | P1 → P2 | P1 ↔ P2 |

∀x, P | ∃x, P (2)

where t1 = t2 and t1 ∈ t2 are atomic propositions and represent the equal and belonging
relationships between two sets, respectively; > and ⊥ are true and false propositions,
respectively; the other constructors correspond to negation, conjunction, disjunction, material
implication, if and only if, universal quantifier, and existential quantifier, respectively. The
formalization-oriented definition prop of the proposition is as follows.

1 Inductive prop: Type :=
2 | PEq(t1 t2: term) | PRel(t1 t2: term) | PFalse | PTrue
3 | PNot(P: prop) | PAnd(P Q: prop) | POr(P Q: prop) | PImpl(P Q: prop) | PIff(P

Q: prop)
4 | PForall(x: V.t)(P: prop) | PExists(x: V.t)(P:prop).

In Coq, the “notation” mechanism can also be used to provide the same notations as those
in Eq. (2).

Next, a method of replacing the free variables in a proposition would be provided. The
substitution task σ is defined as a list composed of ordered pairs of variable names and terms,
and the term by which each variable would be substituted is recorded. The result of substituting
proposition P with σ could be denoted as P [σ]:

∅[σ]::=∅ x[·]:: =x
x[x7→t;;. . .]::=t x[y 7→t;;σ′]::=x[σ′]
(t1∩t2)[σ]::=t1[σ]∩t2[σ]
>[σ]::=> (t1=t2)[σ]:: =t1[σ]=t2[σ]
(P1∧P2)[σ]::=P1[σ]∧P2[σ]
(∀x, P)[σ]: : =∀x, P[σ] if x/∈V(σ)
(∀x, P)[σ]: : =∀u, P[x7→u;σ] if x∈V(σ)
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When terms are replaced, the empty set constant remains unchanged before and after the
substitution. Variable x will be compared from the beginning with the terms in the replacement
target until the term t corresponding to x is found. Otherwise, it will not be replaced. The
sub-terms of the singleton and binary intersection will be replaced, separately. The proposition
is replaced similarly. The replacement of quantifiers deserves special attention. Whether the
variable bound by the quantifier appears in the substitution task needs to be checked. If the
answer is no, the replacement of sub-propositions should be continued. Otherwise, a new
variable u that is not present in the current environment needs to be introduced, and x in the
sub-proposition P should be replaced by u before x 7→u is added to the substitution task to avoid
conflicts. The key quantifier part of the formalization-oriented definition prop_sub is listed
below. Function sub_task_occur can be applied to determine the number of times a name
appears in the replacement target. Moreover, function new_var is responsible for introducing
new variable names, and its definition is based on function list_new_name from Section 3.1.

1 Fixpoint prop_sub (st: subst_task) (d: prop): prop :=
2 match d with
3 | [[ ∀x,P]] => match subst_task_occur x st with
4 | O => PForall x (prop_sub st P)
5 | _ => let x′ : = new_var P st in
6 PForall x′ (prop_sub (cons (x, var x′ ) st) P)
7 end
8 | . . .
9 end

Another important grammatical property of propositions is α-equivalence describing
the renaming of quantifier-bound variables, such as ∀x, x=x and ∀y, y=y. Propositions
characterized by α-equivalence have the same semantics. The definition of α-equivalence
is usually described as multiple renames of quantifier-bound variables, that is ∀x, P =α

∀y, P [x 7→ y]. Nevertheless, the replacement-based definition is not conducive to automation.
Therefore, we proposed an inductive definition that came with an environment and did not rely
on substitution.

An environment θ is a list of 3-tuples:

θ ::= [·] | (u, v, b); ; θ′ (3)

where u and v are variable names that record the correspondence between the variables bound
by quantifiers in two propositions and b is a Boolean value where true indicates that the
correspondence is currently valid while false indicates that the correspondence is invalid since
it has been overwritten by a new correspondence.

Environment θ records the path by which two propositions are checked from top to bottom
for quantifier correspondence. The environment-bearing α-equivalence of the first-order logic
terms is denoted as =θ , and some of its inductive definitions are presented as follows:

A∅∅ =θ ∅
ABind (u, v, true) ∈ θ

u =θ v
AFrees /∈ V (θ)

s =θ s
A∩

t1 =θ t2 t3 =θ t4
t1 ∩ t3 =θ t2 ∩ t4

Specifically, rule A∅ specifies that empty sets are only equivalent to themselves in any
environment θ. Rule ABind deals with bound variables, and u and v are equivalent if they have
valid correspondence in the environment. Rule AFree deals with free variables. If variable s

is not in the environment, it appears freely and can only be equivalent to itself. The binary
intersection determines whether the sub-terms are equivalent, and the rule also applies to the
case of singleton and binary union.
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The α-equivalence property of terms can then be used to obtain the environment-bearing
α-equivalence of the proposition. The following are some typical rules:

A∈
t1 =θ t2 t3 =θ t4
t1 ∈ t3 =θ t2 ∈ t4

A∀
P =(x,y,true);θ\(x,y) Q

∀x, P =θ ∀y,Q

A⊤> =θ > A∧
P1 =θ Q1 P2 =θ Q2

P1 ∧ P2 =θ Q1 ∧Q2

The rule corresponding to quantifiers is the only one that modifies the environment. During
the top-down checking, x in P corresponds to y in Q if ∀x, P and ∀y, Q are present. Therefore,
(x, y, true) needs to be recorded into the environment before the sub-propositions are checked,
The record with x on the left or y on the right in θ (equivalent to the term corresponding to the
outer quantifier) is no longer valid in the sub-proposition P and thus needs to be set to false.
The above processing is denoted as θ\(x, y).

When the outermost environment is empty, the definition of the original α-equivalence can
be naturally obtained as P =α Q := P =[·] Q. This process is decidable, and the process
of determining α-equivalence is formalized into a recursive function alpha_eq that returns
Boolean values for automated calculation in Coq.

1 Fixpoint alpha_eq(l:binder_list)(P Q:prop):bool:=
2 match P,Q with
3 | [[ t1∈t2]], [[ t3∈t4]] => term_alpha_eq l t1 t3 && term_alpha_eq l

t2 t4
4 | [[ P1∧P2]], [[ Q1∧Q2]] => alpha_eq l P1 Q1 && alpha_eq l P2 Q2
5 | [[ ∀x, P1]], [[ ∀y, Q1]] => alpha_eq ((x,y,true):: (update x y l)) P1 Q1
6 | . . .
7 | _,_ => false
8 end
9 Definition aeq(P Q:prop):bool:= alpha_eq nil P Q

3.3 Formalization of reasoning systems
The logic system “sequent calculus” is adopted to serve as the reasoning system. Each step in

the proof construction is a sequence of propositions φ1φ2 · · ·φn φ, with the first n propositions
as the premises, and the last proposition φ as the conclusion. The sequence is recorded as
φ1φ2 · · ·φn ` φ. Γ would be used to represent the sequence of propositions, and φ would be
utilized to represent a proposition hereinafter. Γφ represents a new sequence of propositions
obtained by adding proposition φ after the sequence of propositions Γ.. The reasoning rule
describes a step in the process of proof construction that accepts multiple conditions and obtains
a new sequence of formulas as its conclusion. The reasoning rules adopted in this study are all
from logic textbooks used in actual teaching[19]. Some of them are selectively listed as follows,
including the one related to logical connectives.

∧Intro
Γ ` P Γ ` Q

Γ ` P ∧Q
¬Contra

Γ¬P ` QΓ¬P ` ¬Q
Γ ` P

ModusΓ ` P Γ ` P → Q

Γ ` Q

Assu
ΓP ` P

Weaken∀φ,φ ∈ Γ → φ ∈ Γ′ Γ ` P

Γ′ ` P
αCongruence

P =α QΓ ` P

Γ ` Q

In the four reasoning rules for quantifiers, FV (φ) is the set constituted of all the freely
occurring variables in proposition φ:

∀Elim
Γ ` ∀x, P

Γ ` P [x 7→ t]
∃Intro

Γ ` P [x 7→ t]

Γ ` ∃x, P
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∀Intro
∀φ ∈ Γ, x /∈ FV (φ) Γ ` P

Γ ` ∀x, P ∃Elim
∀φ ∈ Γ, x /∈ FV (φ)x /∈ FV (Q) ΓP ` Q

Γ∃x, P ` Q

The reasoning rule related to the equal sign is expressed as follows.

=Refl ` t = t
=Subst ` t = t′ → P [x 7→ t] → P [x 7→ t′]

The theorems in the set theory ZFC are denoted as follows.

Empty` ∀x, x /∈ ∅
Extensionality` ∀xy, (∀z, z ∈ x ↔ z ∈ y) ↔ x = y

Infinity` ∃x,∅ ∈ x ∧ ∀y, (y ∈ x → y ∪ {y} ∈ x)

Separation x /∈ FV (P ) y /∈ FV (P )

` ∀x, ∃y, ∀z, z ∈ y ↔ z ∈ x ∧ P

In addition, the axioms of set-related symbols are expressed as follows.

Union` ∀xyz, z ∈ x ∪ y ↔ z ∈ x ∨ z ∈ y

Singleton` ∀xy, y ∈ {x} ↔ y = x

Intersection` ∀xyz, z ∈ x ∩ y ↔ z ∈ x ∧ z ∈ y

The sequences of formulas composed of premises and conclusions are formalized separately.
The conclusion proposition is of the type prop mentioned in the previous section, and the
premises are defined to be of the type context:=prop→Prop, namely, a set of propositions.
Then, empty premises without any propositions could be further defined and abbreviated as ZF ,
and the method of adding new propositions after the premises can be defined and abbreviated
as Γ;;φ.

1 Definition empty_context: context:=fun _=>False
2 Notation "‵ZF′":=empty_context (in custom set at level20)
3 Notation "Phi;;x":=(Union _ Phi (Singleton_x)) (in custom set at level31, left

associativity)

The keyword “Inductive” can be used to inductively define the above reasoning rules in a
formalization fashion to obtain provable relationship derivable of type context→ prop→
Prop. Moreover, “derivable Γ φ” formally represents that first-order logic proposition φ can
be derived from premise Γ according to the reasoning rules. Derivable is abbreviated as ` in
Coq.

Notation "Phi ` P":=(derivable Phi P) (in custom set at level41, no associativity)

Next, the formalization-oriented definition of derivable would be presented with rule ∀Intro,
the axiom of extensionality, and that of infinity.

(1) Rule ∀Intro can be denoted in the manner of formalization as follows.

1 | PAnd_intros: forall Phi P Q,
2 derivable Phi P→
3 derivable Phi Q→
4 derivable Phi [[P∧Q]]
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If one of the premises in Coq is that P and Q can be derived from the same premise Phi
during the proof construction, a claim can be further made that [[ P∧Q]] can be derived from
premise Phi as well.

(2) The axiom of extensionality can be expressed in the manner of formalization as follows.

| Extensionality: derivable empty_context[[∀x, ∀y, (∀z, z∈x↔z∈y)↔x = y]]

The formalization of the axiom of extensionality has the same form as that of the axioms in
textbooks. We directly took the proposition in the axiom as the conclusion, where variable names
such as x and y are strings defined in Section 3.1. Therefore, we no longer needed to introduce
the variables in Coq by calling “forall” during formalization. During proof construction, the
axiom of extensionality is introduced by tactic “pose proof Extensibility”, and the new condition
[[ ZF`∀x, ∀y, (∀z, z∈x↔z∈y) ↔x=y]] would be directly added into the proof state in Coq.
Afterward, the proof tactic for eliminating universal quantifiers can be applied to instantiate x
and y into practically needed terms for further proof.

(3) When the axiom of infinity is formalized, we expected that the proposition that the target
set is an inductive set could be simplified into the form of a predicate.

The proposition “is_inductive_def” with parameter t is defined as follows:

Definition is_inductive_def(t:term) :=[[(∅∈x∧∀y, (y∈x→y∪{y}∈x)) [x7→t]]]

This definition represents that the empty set is in set t and the successor of any element
in t is also in set t. The substitution operation x7→t is introduced to rename variable y bound
by the universal quantifier in the original proposition to another variable in the manner of
substitution when parameter t is variable y, thereby avoiding the incorrect proposition “∀ y,
y∈y→ y∪{y}∈ y”.

Subsequently, the “notation” mechanism is employed to abbreviate is_inductive_def t
as is_inductive t in propositions:

Notation "‵is_inductive′ t":= (is_inductive_def t)(in a customset at
level20, t1 at level15, no associativity).

The axiom of infinity can be expressed in the manner of formalization as follows:

| Infinity: derivable empty_context [[∃x, is_inductive x]]

When a proof is constructed, the tactic “pose proof Infinity” can be called to introduce the
condition [[ ZF`∃x, is_inductive x]].

4 Automated Proof Tactics
This section presents the automated proof tactics we provide for users. In the proving

environment, the proof tactics we developed and the strategy “pose proof” built into Coq will
be sufficient for users to construct proofs. Instead of modifying the goal to be proven, these
tactics only add new conditions to the proving environment and are thus in line with the forward
reasoning mode in textbooks. Table 3 lists all the proof tactics students need to construct proofs
and their purpose. Section 5.1 presents the specific application effects of those tactics, with a
detailed comparison among proofs constructed in Coq and the corresponding formal proofs in
textbooks.

4.1 Automated proof tactic “FOL_Tauto” for propositional logic
First-order logic is usually undecidable, which means that finding an effective algorithm

to decide whether a proposition can be derived from a group of propositions is impossible.
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Table 3 All proof tactics students need and their purpose
Tactic Purpose

assert. . . by FOL_Tauto Judging whether the derivation relationship claimed by
the user can be obtained by applying propositional logic
on the existing conditions

The conclusion is already proven. An alias for “FOL_Tauto” used to prove the last step
universal instantiation Applying rule ∀Elim for eliminating universal quantifiers

to instantiate multiple universal quantifiers before
specifying a conclusion

universal generalization Applying rule ∀Intro for introducing universal quantifiers
to introduce multiple universal quantifiers before
specifying a conclusion

existential instantiation Applying rule ∃Elim for existential quantifiers to introduce
multiple existential quantifiers before specifying premises

existential generalization Applying rule ∃Intro for introducing existential quantifiers
to introduce multiple existential quantifiers before
specifying a conclusion

peq_sub_tac Introducing a new equal sign substitution relationship
pose proof (built in Coq) Introducing a proven theorem

Nevertheless, first-order logic can be converted into decidable propositional logic by abstracting
first-order logic propositions containing quantifiers into propositional variables. Then, the
problem can be transformed into a satisfiability-solving problem by leveraging the equivalence
between the validity of a proposition and the unsatisfiability of its negative proposition. A
solver can then be used to automatically process logical connectives. Drawing on this idea, we
developed the automated proof tactic “FOL_Tauto” for propositional logic. This section will
explain the implementation of this tactic in detail. Remarkably, the validity of the solver has not
been verified although it is implemented in Coq.

(1) Preprocessing of propositional variables
Before solving, the atomic propositions and propositions containing quantifiers in the first-

order logic shall be abstracted into propositional variables. Moreover, they shall be abstracted
into the same propositional variable since propositions characterized by α-equivalence have
the same semantics. Specifically, we defined a simple key-value pair structure prop_table in
Coq to record the variable corresponding to a proposition. They then used a list to store pair
of propositions and corresponding ident (i.e., the type of the propositional variable, which
is already mentioned in Section 3.1). Comparisons would be performed from the start to
determine whether the input proposition and the current key are α-equivalent when function
prop_look_up is called for searching. The corresponding variable would be returned if the
answer is yes. Otherwise, None would be returned.

Then, we defined the type sprop of propositions of propositional logic.

1 Inductive sprop: Type :=
2 | SId (x: ident) | SFalse | STrue | SNot (P: sprop) | SAnd (P Q: sprop) | SOr

(P Q: sprop) | SImpl (P Q: sprop)

where constructor SId is the propositional variable of the atom, and the other constructors
correspond to true and false propositions and conventional logical connectives whose semantics
are the same as those of the connectives in the first-order logic proposition prop. For the
convenience of writing, sprop would be abbreviated into the same notations as those in Eq. (2).
Remarkably, it would be expanded into the conjunction of two material implications during the
conversion due to the absence of connective ↔ in sprop.

The recursive function sprop_gen for conversion from proposition prop of the first-order
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logic to proposition sprop_gen of propositional logic is easy to define. This function takes
three parameters, namely, proposition P to be converted, prop_table KV recording assigned
propositions and variables, and available propositional variable string s. In addition, it returns
three values, i.e., the conversion result P′ of P, the modified prop_table KV′, and the new
available propositional variable s′ . The definition of sprop_gen (abbreviated as sprop) is as
follows, with parameter s omitted in non-critical cases and similar operations in unlisted cases.

sprop(P, KV) : : = KV(P), KV if prop_look_up (P, KV)6=None
sprop(>, KV) : : = STrue, KV
sprop(t1∈t2, KV, s) : : = SId s, (t1∈t2 7→s;;KV), next_name(s)
sprop(∀x.P, KV, s) : : = SId s, (∀x, P 7→s;;KV), next_name(s)
sprop(P∧Q, KV, s) : : = let P′ , KV′, s′ : = sprop(P, KV, s) in

let Q′ , KV′′ , s′ ′ : = sprop(Q, KV′, s′ ) in
P′∧Q′, KV′′

If a propositional variable has already been assigned to the proposition equivalent to P in
KV, sprop_gen directly returns this propositional variable. Otherwise, classification should be
performed in categories according to the structure of the proposition to be converted. A true
proposition > will be directly converted to Strue accordingly, saving the need to modify KV and
s. Regarding atomic propositions or first-order logic propositions starting with quantifiers, the
current proposition will be abstracted into the propositional variable s, and this correspondence
will be recorded in KV. Then, the name next to s will be taken as a new available propositional
variable. The processing of binary logical connectives starts with the conversion of the left
sub-proposition. Then, the right sub-proposition will be converted based on the converted KV′

and available variable s′ . Finally, the corresponding logical connectives are used to connect the
respective conversion results of the two sub-propositions.

(2) Generation of conjunctive normal forms
Modern satisfiability solvers convert propositions into conjunctive normal form and then

solve them for higher efficiency. A conjunctive normal form can be seen as the conjunction
of a series of disjunctive clauses, and each disjunctive clause is the conjunction of a series of
propositional variables or their negative forms (called “literal”). The following formulas present
the formalization-oriented definitions of clause type clause and type CNF of conjunctive normal
forms. The disjunctive clauses are represented by a list of pairs constituted of Boolean values
and propositional variables. A Boolean value of true represents the propositional variable,
while that of false represents the negative form of the propositional variable. The CNF of
conjunctive normal forms is represented by a list of type clause of disjunctive clauses.

1 Definition clause:=list (bool∗ident).
2 Definition CNF:=list clause.

Any proposition can be converted into a logically equivalent conjunctive normal form
when new propositional variables are not introduced. However, such conversion will lead to an
exponential growth in the number of logical connectives. When new variables are introduced,
a conjunctive normal form with linear growth of logic connectives can be generated under the
condition of unchanged satisfiability rather than logical equivalence. The simplest method of
this kind is the Tseitin algorithm[20], which introduces a new variable for each sub-proposition.
In this study, we present cnf_gen (abbreviated as cnf), i.e., a method of generating the CNF
of conjunctive normal forms without introducing excessive new variables. This function adopts
a successor style and took three parameters, namely, the sprop-type proposition P to be
generated, available propositional variable s, and the generated conjunctive normal form φ.
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It returns two values; the new conjunctive normal form obtained by the conjunction of the
conversion result of P and φ and the new available propositional variable s′ . The second
parameter s is omitted in non-critical cases.

cnf(SIdx, s, φ):: =(x)∧φ, s
cnf(>, s, φ):: =φ, s
cnf(⊥, s, φ):: =(impossible)∧(¬impossible), s
cnf(P∧Q, s, φ):: =let φ′, s:=cnf(P, s, φ) in cnf(Q, s, φ′)
cnf(P∨Q, s, φ):: =let τ , φ′, s′ : =clause(P, s, nil, φ) in

let τ ′ , φ′′ , s′ ′ : =clause(Q, s′, τ , φ′) in τ∧φ′, s
cnf_gen(P→Q, s, φ) ::= let τ , φ′, s′ : =neg_clause(P, s, nil, φ) in

let τ ′ , φ′′ , s′ ′ : =clause(Q, s′, τ , φ′) in τ∧φ′′, s
cnf_gen(¬P)::=let τ , φ′, s′ : =neg_clause(P, next_name(s), s, ¬n∧φ) in τ∧φ′, s′

If the proposition P to be generated is a single propositional variable, the propositional
variable is directly treated as a complete disjunctive clause for its further conjunction with the
original φ. If the proposition is true, the conjunction of any proposition and the true proposition
is logically equivalent to the proposition itself, and the original conjunctive normal form is
retained. If it is a false proposition, its conjunction with φ is unsatisfiable. In this case,
an unsatisfiable conjunctive normal form is directly constructed as the generated result, and
impossible is the name of the propositional variable. In the case of P∧Q, it could be decomposed
into two sub-conjunctive normal forms. The CNF of P is generated before that of Q is obtained.
Then, the conjunctions of the two conjunctive normal forms withφ are obtained. In comparison,
disjunction, material implication, and negation are more complicated. In such cases, simple
recursion according to the structure of the proposition no longer worked. Instead, the clause
method shall be used to generate disjunctive clauses and then add them to the conjunctive normal
forms.

Function clause takes four parameters, namely, the sprop-type proposition P to be
generated, the available proposition variable s, the generated clause, and the generated
conjunctive normal form φ. It returns three values, namely, the disjunctive clause τ containing
the conversion result of P , the modified conjunctive normal form φ′, and the new available
propositional variable s′ . The definition of clause is given below, with parameter s omitted in
non-critical cases.

clause(SIdx, τ , φ):: =x∨τ , φ
clause(⊥, τ , φ):: =τ , φ
clause(>, τ , φ):: =(tauto∨¬tauto, φ)
clause(P∧Q, s, τ , φ):: =let τ ′ , φ′, s′ : =clause(P,next_name(s), ¬s, φ) in

let τ ′ ′ , φ′′ , s′ ′ : =clause(Q, s′, ¬s, τ ′∧φ′) in
s∨τ , τ ′′ ∧φ′′

clause(P∨Q, τ , φ):: =let τ ′ , φ′, s′ : =clause(P, s, τ , φ) in
let τ ′ ′ , φ′′ , s′ ′ : =clause(Q, s′, τ ′ , φ′) in τ ′ ′ , φ′′

clause(P→Q, τ , φ)::=let τ ′, φ′, s′ : =neg_clause(P, s, τ , φ) in
let τ ′ ′ , φ′′ , s′ ′ : =clause(Q, s′, τ ′ , φ′) in τ ′ ′ , φ′′

clause(¬P, τ , φ):: =neg_clause(P, τ , φ)

Propositional variables are directly added into existing disjunctive clauses in the manner
of disjunction. The disjunction of a false proposition and any disjunctive clause is equivalent
to the proposition itself, so it do not change the disjunctive clause. The disjunction of a true
proposition and any disjunctive clause is logically equivalent to the true proposition. Therefore,
a disjunctive clause that is satisfiable in any case is constructed to replace τ . For disjunctive
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proposition P∨Q, disjunctive clauses could be generated for the two sub-propositions separately.
Then, further disjunction could be performed to obtain a large clause. In contrast, material
implications can be converted into an equivalent form of ¬P∨Q, and all the other operations
are the same as those conducted in the case of disjunction, except for generating the negative
proposition (neg_clause) for P.

More complex is the case for the conjunction P∧Q. We would introduce a new proposition
variable s to represent P∧Q, similarly to the Tseitin algorithm. The basic idea is to add the
propositional variable s only into the previously generated disjunctive clause τ and to add the
clause of P and Q into the outer conjunctive normal form by direct conjunction. Finally, the
following CNF form is obtained:

(s∨τ )∧(¬s∨clause(P))∧(¬s∨clause(Q))∧φ

The above equation is equivalent to the following form:

(s∨τ )∧(s→clause(P))∧(s→clause(Q))∧φ

The structural induction of the first parameter of clause is performed, suggesting that the
above form is equally satisfiable as (( P∧Q)∨τ )∧φ.

The Neg_clause method could be employed to generate a clause for the negative
proposition of P, which has a form dual to clause. For example, ¬(P∧Q) and ¬P∨¬Q are
equivalent. Therefore, when the negative proposition of the conjunctive clause P∧Q is generated,
only separate conversion is needed before disjunction, and similar operations are applied in other
cases.

neg_clause(P∧Q, τ , φ)::=let τ ′, φ ′ , s′ : =neg_clause(P, s, τ , φ) in
let τ ′ ′ , φ ′ ′ , s′ ′ : =neg_clause(Q, s′, τ ′ , φ′) in
τ ′ ′ , φ′′

For example, proposition P→(Q∧R) is equivalent to ¬P∨(Q∧R). Therefore, a disjunctive
clause is generated for the negative proposition of P to obtain ¬P, i.e., the first part of the
disjunctive clause. Then, clause(Q∧R,¬P,nil) is calculated according to the definition of cnf.
Seen from the above discussion, a new variable s would then be introduced to replace Q∧R. The
conjunction of s and ¬P is obtained, and separate disjunctive clauses would be generated for Q
and R to finally obtain the following conjunctive normal form:

(¬P∨s)∧(¬s∨Q)∧(¬s∨R)

The satisfiability of this equation is the same as that of the original proposition. If the
original proposition is satisfiable when the true value of Q∧R is false, s could be set to false.
Otherwise, it could be set to true.

(3) DPLL solver
In this study, we implemented the DPLL satisfiability solver [21] in Coq. Compared with

the latest achievements in the field of satisfiability solving, the DPLL algorithm is not efficient.
However, the problem to be solved is usually not complex in the verification scenario in this
study. Moreover, the DPLL algorithm can be implemented recursively and is thus easier to
develop in the theorem prover Coq.

The function type of the DPLL algorithm is CNF→partial_asgn→nat→bool. The first
parameter is the conjunctive normal form to be solved and the second one is a partial assignment
denoted as partial_asgn:= list (ident ∗ bool). As the type of the list is composed of
ordered pairs of propositional variables and Boolean values, the second parameter records the
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assignment of the current part of propositional variables. The third parameter is recursion depth
recording the number of propositional variables that can still be selected. The DPLL solver
implemented in this study enables depth-based recursion, which can be divided into three steps,
namely, assignment derivation, normal form simplification, and variable selection. The solver
is defined as follows, where φ is the conjunctive normal form; J is the variable assignment; and
n is the recursion depth.

DPLL (φ, J, n)
if n=0 return T
else let J′:=UnitPro(J)
if J′ is conflict, return F
else let φ′:=filter(φ, J′)
then pick one new variable x
return DPLL(φ′, x7→T;;J′, n−1)| | DPLL(φ′, x 7→F;;J′, n−1)

Note worthily, T would be directly returned when the remaining recursion depth is 0. This
is because the solving goal is to check whether the negative proposition of the proposition to be
proven is unsatisfiable. Therefore, the solver shall ensure that it could correctly provide feedback
on unsatisfiability. When the proposition is excessively complex, the solving goes beyond the
recursion depth. In this case, returning T indicates that the solving operation has failed and that
whether the normal form is unsatisfiable cannot be determined.

The corresponding DPLL function in Coq is defined as follows.

1 Fixpoint DPLL_UP (P: CNF) (J:partial_asgn) (n:nat):bool:=
2 match n with
3 | O=>true
4 | S n′=>
5 match unit_pro P J with
6 | None=>false
7 | Some kJ=>match kJ with
8 | nil=>DPLL_filter P J n′
9 | _ =>DPLL_UP P (kJ++J) n′
10 end
11 end
12 end
13 with DPLL_filter (P:CNF) (J:partial_asgn) (n:nat):bool:=
14 match n with | O=>true | S n′=>
15 DPLL_pick (CNF_filter P J) J n′
16 end
17 with DPLL_pick (P:CNF) (J: partial_asgn) (n: nat): bool:=
18 match n with | O=>true | S n′=>
19 let x:=pick P in
20 DPLL_UP P ((x, true):: J) n′ | | DPLL_UP P ((x, false)::J) n′
21 end

The function DPLL_filter is called CNF_filter to simplify the conjunctive normal form
to be checked, and CNF_filter would delete all disjunctive clauses that had already been
satisfied according to assignment J. Among the remaining clauses, what is known is that the
clause could not be satisfied under the current assignment. Except for the “literal” corresponding
to the unassigned variable, the “literal” of the assigned variable is bound to be false. Since
the disjunction of any proposition and false is equivalent to the proposition itself, the “literal”
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of the assigned variable could further be deleted, and a conjunctive normal form completely
composed of unassigned variables could be obtained for the variable selection in the next step.
Variable selection is performed by function DPLL_pick, followed by recursion at the next level.
What is known is that the variables in conjunctive normal form P are all unassigned in this case.
Function pick simply selects the first propositional variable in the conjunctive normal form for
recursion.

Next, we would elaborate on the implementation of assignment derivation. Function
unit_pro takes the conjunctive normal form and partial assignment as inputs. None would
be returned if a conflict is observed during the assignment derivation. Otherwise, the newly
derived assignment list would be returned. The unit_pro in DPLL_UP would be repeatedly
called until conflicts are identified or new assignments could not be derived. Then, subsequent
simplification operations would be conducted. The basis of assignment derivation is derivation
for each clause. Function find_unit_pro_in_clause is defined to perform this operation,
and the type of the return value is UP_result.

Inductive UP_result := | Conflict | UP (x: ident) (b: bool) | Nothing.

The assignment of the last unassigned variable could be derived only when the “literal” of
all the other variables in the clause is false. Constructor UP is used to record this variable and
the corresponding derived assignment, while constructors Conflict and Nothing represent
conflicts and no new derivations, respectively. Find_unit_pro_in_clause makes decisions
successively in a forward fashion while carrying parameter cont, whose type is UP_result and
initial value is Conflict. Each “literal” in the clause would be searched for partial assignment
J. If the variable has already been assigned and its “literal” is true, the current clause has
been satisfied, and no new assignment could be derived. In this case, Nothing is returned. If
the value has already been assigned but its “literal” is false, further derivation is required. If
the current variable could not be found in J, it means that an unassigned argument has been
encountered. Then, parameter cont shall be checked. If the value of cont is Conflict, it
means that an unassigned variable had been encountered for the first time. Then, cont shall be
modified to an assignment that enabled the current “literal” to be satisfied before checking is
continued; If cont is already an assignment to a particular variable, it suggests that the variable
encountered is the second unassigned variable in the clause, and assignment derivation could
not be performed. In this case, Nothing is directly returned. When the checking reaches the
end of the clause, a statement could be made that the variables in the clause has all been assigned
if the value of the parameter cont is still Conflict and has not been modified. Moreover, all
“literal” is false, and the current clause is unsatisfiable. Otherwise, the current clause had
one and only one unassigned variable, and the newly derived assignment is recorded in cont.
The specific implementation of this function is as follow:

1 Fixpoint find_unit_pro_in_clause (c: clause) (J: partial_asgn) (cont:
UP_result): UP_result :=

2 match c with
3 | nil=>cont
4 | (op, x): : c′=>
5 match PV.look_up x J with
6 | None=>match cont with
7 | Conflict=>find_unit_pro_in_clause c′ J (UP x op)
8 | UP _ _=>Nothing
9 | _ =>Nothing
10 end
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11 | Some b =⇒if eqb op b then Nothing else find_unit_pro_in_clause c′ J
cont

12 end
13 end

Function unit_pro would perform the above operations on each clause. If a Conflict
occurred, it returns None. Otherwise, it would combine all the individual assignments derived
into a new assignment list. Note worthily, x7→Tmight be derived from one clause when x7→F is
derived from another clause. In this case, unit_pro would directly add the two assignments to
the newly derived assignment list, and conflict checking would be postponed to the next round
of unit_pro in DPLL_UP. Although different assignments could be made to the same variable
in the new assignment J, only the one at the top of J would be found when look_up is used
to search for x in the assignment. This would inevitably lead to the unsatisfiability of one of
the clauses from which two different assignments to x are derived in the previous round and
ultimately result in a Conflict.

(4) Implementation of proof tactic “FOL_Tauto”
The validity denoted as valid of first-order logic propositions is defined as follows on

the basis of the equivalence between the validity of a proposition and the unsatisfiability of its
negative proposition.

1 Definition valid (P: prop): bool:=
2 match sprop_gen (PNot P) nil "x" with
3 | (P′ , _, n)=>
4 match cnf_gen P′ n nil with
5 | (P′ ′ , _)=>negb (DPLL_UP P′′ nil 24)
6 end
7 end

For first-order logic proposition P, sprop_gen is called to generate proposition P′ of
propositional logic corresponding to ¬P. Then, cnf_gen is called to generate the conjunctive
normal form P′ ′ corresponding to P′ . Proposition P is claimed valid if the DPLL solver could
determine that the normal form is unsatisfiable within 24 levels of recursion.

In the proving environment, users has multiple premises in form [[ Γ`φ]] (i.e., derivable
Γ φ). Type der_judgement:=list prop ∗ prop is defined to record the propositions involved.
Moreover, list prop is used to record multiple propositions in the premise, and prop is the
conclusion proposition in the derivation. Users hope to automatically prove a new proposition
in form [[ Γ`φ]] on multiple existing conditions. Therefore, “FOL_Tauto” needs to handle
multiple derivations as conditions and one derivation as a conclusion. The type is denoted as
proof_goal.

Definition proof_goal: Type:=list der_judgement ∗ der_judgement

Proof_goal shall be converted into a single first-order logic proposition since Valid
deals with individual propositions. Pg2prop was defined to achieve this goal. For each
der_judgement, logical connective PImpl was used to connect the propositions in the
premise and the conclusion proposition and thereby obtain a single first-order logic proposition.
Furthermore, PImpl is reused to connect the first-order logic propositions converted from each
der_judgement in proof_goal, ultimately obtaining a single first-order logic proposition that
could finally be solved automatically.

1 Definition der2prop (d: der_judgement):prop:=
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2 fold_right PImpl (snd d) (fst d)
3 Definition pg2prop (pg: proof_goal):prop:=
4 fold_right (fun x y=>PImpl (der2prop x) y) (der2prop (snd pg)) (fst pg)

The reliability of the DPLL solver is guaranteed by the following property describing the
conversion from the DPLL solution results to the proving environment in Coq:

Axiom dpll_sound: forall pg : proof_goal, valid (pg2prop pg) = true→
denote_pg pg

where denote_pg decomposes proof_goal and converts it back to the condition derivable
in the proving environment in Coq. This theorem declares that if any proof_goal is converted
into a first-order logic proposition and then determined to be valid by the DPLL solver, the
conclusion required by the user could be obtained from the premises in the current proving
environment in Coq in the manner of proof construction. This property is declared directly
using Axiom.

The final implementation of automated proof tactic “FOL_Tauto” is as follows:

Ltac FOL_Tauto :=
first
[reify_pg; apply dpll_sound; reflexivity
| fail 1 "This is not an obvious tautology"].

Tactic reify_pg calculates proof_goal according to the current proving environment,
and dpll_sound is then applied to convert the goal to be proven into the determination of the
validity of the first-order logic proposition. Finally, tactic reflexivity is called to enable Coq
to automatically complete the DPLL solving.

Take the case of proving that an empty set is a subset of any set as an example: the proof
tactic “pose proof” is applied to the axiom of the empty set, which is then instantiated into y. In
this case, the proof status is as shown in Figure 3.

Theorem empty_set_subset:
[[ ZF`∀x, ∅⊆x]].
Proof.
"pose proof" Empty.
universal instantiation H y.

(a) Proof code

1 subgoal
H : [[ ZF`∀y, ¬y∈∅]]
H0 : [[ ZF`¬y∈∅]]
________________________________(1/1)
[[ ZF`∀x, ∅⊆x]].

(b) Current proof state

Figure 3 Example of proof construction for related properties of empty sets

y∈∅ could be obtained according to condition H0, and a claim could then be made that any
proposition could be derived from y/∈∅. The definition of a subset supported the statement that
the elements in the empty set are all in set x. Then, “assert [[ ZF`y∈∅→y∈x]] by FOL_Tauto”
could be used to add a new condition H1 into the premises, and the proof state changes to the
one shown in Figure 4.
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1 subgoal
H : [[ ZF`∀y, ¬y∈∅]]
H0 : [[ ZF`¬y∈∅]]
H1 : [[ ZF`y∈∅→y∈x]]
_______________________(1/1)
[[ ZF`∀x, ∅⊆x]]

Figure 4 New proof state

This process could be decomposed into the following steps internally. The proof tactic
“assert [[ ZF`y∈∅→y∈x]]” first declared a new branch proof goal, and the proof state of the
current branch is as shown in Figure 5.

2 subgoals
______________________ (1/2)
valid (pg2prop ([
([ ·], [[ ∀y, ¬y∈∅]]);
([ ·], [[ ¬y∈∅]])
],
([ ·], [[ y∈∅→y∈x]])))=true

(a) Proof state of current branch after assert

2 subgoals
______________________ (1/2)
valid
[[( ∀y, ¬y∈∅) →
¬y∈∅→
y∈∅→
y∈x]] = true

(b) Proof state after reify_pg

Figure 5 Decomposition of proof steps of “FOL_Tauto”

“FOL_Tauto” would first execute the tactic “reify_pg”, and the conditions and conclusion
in Figure 5(a) would be converted into the form denote_pg in Figure 5(b) by instructions
such as “reverse” and “change”. The proof_goal corresponding to Figure 5(a) has already
been calculated. This proof objective consists of two parts. Part 1 is the list der_judgement
calculated from the premises H and H0; since the environments in both H and H0 are empty
environment ZF, Part 1 of each der_judgement is invariably an empty list of propositions
while Part 2 is the der_judgement corresponding to the conclusion declared by the user.

Afterward, dpll_sound is applied to change the proof condition to validity check after
proof_goal conversion: Coq could automatically calculate pg2Prop and convert proof_goal
into the first-order logic proposition given in Figure 6(b). Finally, valid would automatically
call proposition conversion, generation of conjunctive normal forms, DPLL-based solving, and
other steps to calculate that the proposition is truly valid, and the proof state in Figure 4 is
returned. In a user’s actual proving environment, all the above steps are hidden in the one-step
operation of the tactic “assert [[ZF`y∈∅→y∈x]] by FOL_Tauto”.

4.2 Automated proof tactic for quantifiers
Section 3.3 presented two reasoning rules for universal quantifiers and existential quantifiers,

respectively. We have defined four automated proof tactics for these four rules, respectively, and
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2 subgoals
H : [[ ZF`∀y, y∈∅]]
H0 : [[ ZF`y∈∅]]
______________________ (1/2)
[ZF`y∈∅→ y∈x]

(a) Proof state after dpll_sound is applied

2 subgoals
______________________ (1/2)
Denote_Pg[
([ ·], [∀y, ∀y∈∅]]);
([ ·], [µy∈∅]])
],
([ ·], [y∈∅→y∈x]])

(b) Proof state after pg2Prop is calculated

Figure 6 proof_goal conversion

the implementation of two of them is presented below.
(1) Tactic “universal generalization” for introducing universal quantifiers
In the proof construction for the statement that the empty set is a subset of any set in

Figure 4, condition [[ ZF`y∈∅→y∈x]] is obtained by “FOL_Tauto”. However, the goal to
be proven is [[ ZF`∀x, ∅∈x]], that is, [[ ZF`∀x∀y, y∈∅→y∈x]] (the subset symbol is also
abbreviated through “notation”), and condition H1 differed from the goal to be proven by two
levels of universal quantifiers. Rule PForall_intros for introducing quantifiers is represented
here.

∀Intro
∀φ ∈ Γ, x /∈ FV (φ) Γ ` P

Γ ` ∀x, P

The condition that the variable does not appear freely in all the propositions in the premise
should be met when a universal quantifier is to be added before the conclusion proposition.
We have developed proof tactic “universal_generalization_constr”, and this tactic takes two
parameters. One is the number, such as H1, of the premises calling for the addition of quantifiers
in the Coq environment, or more accurately, the proof goal of the condition (i.e., derivable Γ
φ). The other parameter is the variable name list xs used to implement the one-time introduction
of multiple universal quantifiers. The implementation of this tactic is as follows: when
the list to be introduced is empty, the introduction ends, and H is returned. Otherwise, the
derivation of whether condition H is derivable is checked, and rule PForall_intros is then
applied to construct a new proof condition. Specifically, tactic “check_free_occurrence” could
automatically determine whether variable x appeares freely in the premise Phi. Tactic “universal
generalization” calls “universal_generalization_constr”. if the call is successful, “position proof”
is applied to the new premise in the proving environment. Otherwise, an error message would
be displayed.

1 Ltac universal_generalization_constr H xs :=
2 match xs with
3 | nil => constr:(H)
4 | ?x: : ?xs0=>
5 match type of H with
6 | [[? Phi`?P]]=>let H0 := constr:(PForall_intros Phi x P



346 International Journal of Software and Informatics, 2023, 13(3)

7 ltac:(check_free_occurrence) H) in
8 universal_generalization_constr H0 xs0
9 end
10 end
11 Ltac universal_generalization H xs :=
12 first
13 [let H0 : = universal_generalization_constr H xs in pose proof H0
14 | fail 1"Universal generalization fails"]

In the proof construction displayed in Figure 4, a new condition H2 could be obtained by
running the tactic “universal generalization H1 x y”. Then, H2 is the goal to be proven, and
tactic “The conclusion is already proven” is called to end the proof.

1 subgoal
H : [[ ZF`∀y, ¬y∈∅]]
H0 : [[ ZF`¬ y∈∅]]
H1 : [[ ZF`y∈∅ →y∈x]]
H2 : [[ ZF`∀x, ∀y, y∈∅→y∈x]]
__________________(1/1)
[[ ZF`∀x, ∅⊆x]]

Figure 7 Running effect of universal generalization

(2) Tactic “existential generalization” for introducing existential quantifiers
Tactic “existential generalization” for automatically introducing existential quantifiers

differs from “universal generalization” in style. The rule PExists_intros for introducing
existential quantifiers is the following:

∃Intro
Γ ` P [x 7→ t]

Γ ` ∃x, P

∃x, P could be derived from the premise if the conclusion after the x in P is instantiated
could be derived from it. However, different from the case of universal quantifiers, users
could no longer just point out the first-order logic items they wanted to abstract. If premise
[[ ZF`∅=∅]] is present in the proving environment, the conclusion the user needed is likely to
be [[ ZF`∃x, x=∅]]. If the proposed tactic only allowed the user to specify the term ∅ to be
abstracted, conclusion [[ ZF`∃x, x=x]], which is inconsistent with the user’s expectations, would
be obtained. For this reason, the tactic “existential generalization” takes not only the number
of premises but also a proposition specified by the user. Users only need to directly write the
conclusions they want to obtain. The above tactic would automatically search the first-order
logic term abstracted by the user to apply the rules for introducing existential quantifiers.

Assuming that a condition H: [[ ZF;; x∪y=z`z=x∪y]] is present in the proving environment
and that the user executed the tactic “existential generalization H[[∃u, y=u]]”, a new condition
H0:[[ ZF;; x∪y=z`∃u, y=u]] could be directly added to the proving environment. This tactic
would automatically search for u corresponding to the original term x∪y and apply the rules for
introducing existential quantifiers. This tactic also allows users to introduce multiple existential
quantifiers in one go.

The implementation of the tactic “existential generalization” is as follows, with parameter
H being the number of the premise and P being the proposition declared by the user.

1 Ltac existential_generalization_tac H P:=
2 first [
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3 let H0:=fresh "H" in
4 match type of H with
5 | [[? Phi`?Q]]=>first [let ts:= generate_exists_term_tac
6 P Q in assert [[Phi`P]] as H0;
7 [apply (existential_generalization_tac_aux ts);
8 apply Alpha_congruence with Q; cbv; easy |] |
9 idtac "Cannot infer the terms to be quantified in" H;

fail]
10 end; | fail 1 "Existential generalization fail"]

Specifically, “generate_exists_term_tac” is called according to propositionP specified
by the user and the conclusion proposition Q in the premise to search for the first-order logic
term abstracted by the user. This tactic would compare P with Q to determine the list of
existential quantifier variables newly introduced by the user into Q. Then, it searched for
each variable x separately. If the variable in proposition Q is x whereas the one in the same
position in proposition P is a first-order logic term t, an assumption is made that the user
had abstracted t into a first-order logic term. Sub-terms are searched separately when logical
connectives appears. No conflicting results on both sides shall be ensured when results are
returned, and the corresponding term list ts is ultimately generated. Afterward, the export
rule “existential_generalization_tac_aux” is applied. This rule is a version involving
multiple substitutions of the reasoning rule for introducing quantifiers. After the proposition
abstracted by the user is instantiated again using ts, rule αCONGRUENCE is applied. The function
aeq in Section 3.2 is called to determine whether the instantiated proposition is equivalent to
the original proposition Q in the condition, thereby completing the introduction and proof of the
new condition.

(3) Quantifier elimination tactic
The tactic “universal instantiation” shares the same style with the tactic “universal

generalization”. If conditions similar to H: [[ Γ`∀x, ∀y, . . .]] are present in the environment, the
tactic “universal instantiation H t1 t2” could be executed to sequentially instantiate x, y, . . .

in the proposition into t1, t2, · · ·. A specific example is illustrated in Figure 2(b) as the
effectiveness from condition H to condition H0.

Tactic “existential instantiation” has the same style and idea as those of tactic “existential
generalization”. Users directly write new propositions to which they want to add the existential
quantifiers in the premises, and tactic “existential instantiation” would automatically search for
the corresponding proposition in the specified premise and apply rules ∃Elim and αCONGRUENCE to
generate a new condition.

4.3 Automated proof tactic for equal sign replacement
The following reasoning rule is available for the equal sign. If the first-order logic term

t is the same as t′ , P[x 7→t] implies P[x7→t′]. Nevertheless, directly applying this reasoning
rule is troublesome. Users usually have two propositions with the same terms and containing
one of them, and the terms in this proposition shall then be replaced by a new one instead of
a proposition before instantiation. For this reason, the tactic “peq_sub_tac” for replacing the
equal sign is developed for the purpose of generating and replacing proposition P .

=Subst ` t = t′ → P [x 7→ t] → P [x 7→ t′]

peq_sub_tac takes three parameters, namely, the equal terms t and t′ , as well as the
t-containing proposition P declared by the user. This tactic would introduce a new variable
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name v that does not appear in P. replace_prop_tac is applied to replace all terms t in Pwith
v to obtain proposition Q, and rule PEq_sub is used to construct a new proposition Q[v7→t′].
A new condition [[ ZF`t=t′→P→Q′]] is added into the proving environment, and Q′ is in the
form after Q [v 7→t′] is expanded, with the abbreviation of the predicate remaining unexpanded.
The implementation of tactic “peq_sub_tac” is as follows.

1 Ltac peq_sub_tac t t′ P:=
2 let H0:=fresh "H" in
3 let H1:=fresh "H" in
4 let v:=get_new_var P ShortNames.x [[∅]] ShortNames.x in
5 let Q:=replace_prop_tac v t P in
6 pose proof (PEq_sub Q v t t′) as H1;
7 let Q′ : =subst_aeq_constr_tac Q v t′in
8 assert [[ZF;; t=t′;; P`Q′]] as H0 by FOL_Tauto; clear H1

5 Application in Teaching
We introduced the prover we developed into the teaching of the course discrete mathematics

for freshmen and assigned the proof construction for mathematical induction with this prover as
a course project. Practice shows that students who choose this project can successfully construct
a formal proof of mathematical induction by drawing on the proof construction idea for this
theorem in textbooks. Some outstanding students have further formalized the Peano arithmetic
with this tool after the course ended.

5.1 Course project: Formal proof of mathematical induction
Although the set theory ZFC has been widely accepted as a foundation of mathematics,

we prefer that students know the connection between ZFC and everyday mathematics. In this
aspect, mathematical induction, as a well-known method of proof construction for students, is
a fair research object. Although students usually acquiesce in the correctness of this method,
mathematical induction is a provable theorem in the framework of the axiomatic set theory
ZFC. For this reason, we assigned the proof construction for mathematical induction with the
proposed prover as one of the two optional additional course projects, and students could choose
either this project or the other optional task.

(1) Project design
We have provided a tutorial document for the above project. This v file to be used

in the prover Coq includes 300 lines of annotated explanations, demonstrating the syntax of
propositions and logic systems, the definition of predicate symbols such as subset relationship,
the basic operations of Coq (key usage and special symbol input), and the functions of five
automated proof tactics (FOL_Tauto and tactics for quantifiers since this project does not
require the use of the tactic “peq_sub_tac” for equal sign replacement). Furthermore, the
proof construction in a total of 30 lines of proof code for four simple theorems is provided
in the document to familiarize students with how to construct proofs in the proposed proving
environment. We have also provided a supporting 15 min demonstration video for this tutorial.
With the video and the tutorial document in hand, students are generally well-prepared to
construct proofs in this environment, and no additional class hours are provided for teaching the
usage of Coq.

For the proof construction for mathematical induction that students shall complete, we have
defined the predicates is_inductive and is_natural_number, which indicated that a set is
an inductive set and a set is a natural number set, respectively.
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Definition is_inductive_def(t:term):=[[(∅∈x∧∀y, (y∈x→y∪{y}∈x)) [x7→t]]].
Definition is_natural_number_def(t:term):=[[(is_inductivex∧∀w,

(is_inductive w)→x⊆w)[x7→t]]].

Then, we presented the goal to be proven so that students could gradually construct formal
proofs of theorems such as mathematical induction. Students are required to use the proposed
proof tactics and tactic “pose proof” to prove the following goals one after the other.

• The sets that are subsets of each other are equal.

Theorem subset_subset_equal: [[ZF`∀x, ∀y,x ⊆y→ y⊆x→x=y]].

• A set of natural numbers is unique.

Theorem Nat_unique: [[ZF;;is_natural_number x;;is_natural_number y`x=y]].

• The basic step of mathematical induction is as follows: if N is a set of natural numbers
and the natural number 0 is in set X, 0 is also in X∩N.

Theorem Nat_inductive_base_step:
[[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`∅∈X∩N]].

• The inductive step of mathematical induction is as follows: If 0 and S(n) of an arbitrary
natural number n are both in set X, X∩N is an inductive set.

Theorem Nat_intersection_ inductive:
[[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`is_inductive

(X∩N)]].

• Mathematical induction: If 0 is in set X, and S(n) for an arbitrary natural number n is
also in set X, this arbitrary natural number n is in set X.

Theorem mathmetical_induction:
[[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`∀n, n∈N→n∈X]].

Students can also add and prove theorems in intermediate steps themselves as needed by
the proof.

(2) Teaching effectiveness
Among the 15 students who chose to participate in the additional course projects, 8 chose

the project of constructing a formal proof of mathematical induction, demonstrating their interest
in using theorem provers to complete formal proofs. These eight students completed the proof,
and statistics showed that they used an average of 88 lines of code to prove the above goal.
In particular, two students completed the proof in 65 and 66 lines of code, respectively. The
proof drafted by the teacher and the teaching assistant divided the proof process into multiple
sub-goals and took a total of 67 lines. The remaining six students all took around 100 lines of
code. The reason for their high number of lines of code is that they have divided the proof that
can be done in one step by the automated proof tactic “FOL_Tauto” in the proof process into
several more basic proofs close to the reasoning rule for each logical connective and complete
each proof by applying “FOL_Tauto”, respectively. Consequently, some students failed to solve
the problem during the proof because the recursion depth of the DPLL exceeded the preset
value, which could be further attributed to the excessive conditions in the proof environment.
After discussing with the teaching assistant, they disassembled the proof into more sub-goals
and finally completed the formal proof of mathematical induction.
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To sum up, students who have never been exposed to interactive theorem proving can
quickly familiarize themselves with the method of constructing formal proofs of mathematical
theorems using interactive theorem provers in the proving environment developed in this study.
All students can successfully construct a strict formal proof of mathematical induction with the
help of the Coq-based interactive theorem prover, and some students are able to reach a high
level of application, which is difficult in the traditional teaching mode. The introduction of
interactive theorem provers into teaching can help students understand the logic system and the
axiomatic set theory ZFC more thoroughly. Overall, we have met the teaching objectives and
demonstrated the availability and usability of the proposed tool.

(3) Proof instances
This section presents the proof construction in Coq of the basic step of mathematical

induction and compares it with the proof of logic in textbooks to intuitively reflect the
effectiveness of the proposed theorem proving tool. One step in the proof construction in
Coq is likely to correspond to multiple steps in the proof construction in textbooks. For this
reason, the corresponding steps share the same line numbers for the convenience of comparison.

The basic step denoted as Nat_inductive_base_step is defined as follows: if N is a set
of natural numbers and the natural number 0 is in set X, 0 is also in X∩N.

1 Lemma Nat_inductive_base_step:
2 [[ ZF;; is_natural_number N;;∅∈ X;;∀n, n∈N→n∈X→n∪{n}∈X`∅∈X∩N]].
3 Proof.
4 pose proof Intersection_iff.
5 universal instantiation H X N [[∅]].
6 The conclusion is already proven.
7 Qed.

The formal proof in textbooks corresponding to this basic step is as follows.

4 ZF`∀x, ∀y, ∀z, z∈x∩y↔z∈x∧z∈y (binary intersection rule)
5 ZF`∀y, ∀z, z∈X∩y↔z∈X∧z∈y (apply ∀Elim to instantiate x into X)
5 ZF`∀z, z∈X∩N↔z∈X∧z∈N (apply ∀Elimt to instantiate y into N)
5 ZF`∅∈X∩N↔∅∈X∧∅∈N (apply ∀Elim to instantiate z into ∅)
6 ZF`∅∈X∧∅∈N→∅∈X∩N (elimination rule ↔)
6 ZF;; is_natural_number N;;∅∈X;;∀n,n∈N→n∈X→n∪{n}∈X`∅∈X∧∅∈N→∅∈X∩N

(rule Weaken)
6 ZF;; is_natural_number N`∅∈N (definition of is_natural_number and conjunction and

elimination rule)
6 ZF;; is_natural_number N;;∅∈X;;∀n, n∈ N→n∈X→n∪{n}∈X`∅∈N (rule Weaken)
6 ZF;;∅∈X`∅∈X (rule Assu)
6 ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`∅∈X (rule Weaken)
6 ZF;; is_natural_number N;;∅∈X;;∀n, n∈ N→n∈X→n∪{n}∈X`∅∈X∧∅∈N (rule for

conjunction and introduction)
6 ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`∅∈X∩N (rule Modus

Ponens and lemma is proven)

If the reasoning rules are applied one by one strictly according to the textbooks, the proof
construction for this lemma takes more than ten steps. In contrast, it can be done by the proof
tactic we developed in Coq in only three lines. Specifically, the tactic “universal instantiation” in
line four used the reasoning rule ∀Elim three times in one step and instantiated three quantifiers.
Moreover, the tactic “The conclusion is already proved” (FOL_Tauto) combines the reasoning
rules for multiple logical connectives. The final conclusion is directly proven, with no rules for
quantifiers involved. On the premise of strict formalization, students can construct proofs more
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conveniently with the tool we developed in Coq than by constructing pen-and-paper proofs. In
addition, Coq can check the correctness of the proofs constructed by students in realtime.

Furthermore, each step in the proof construction in textbooks is a derivation relationship,
which is exactly what the proof state bar in Coq displays when the proposed tool is used to
construct proofs (Figure 1(b)). The proof state bar records the conclusions the student has
currently proven. The proof code of Coq input by students determines how to select appropriate
conditions and apply the reasoning rules. The status of the proof state bar is equivalent to the
explanation of the reasoning rules in parentheses in the textbook-style proof above. The proposed
approach is thus consistent with the idea of the proofs in textbooks and equally intuitive as those
proofs.

The proof construction for the inductive step Nat_intersection_inductive is presented
below, including the Coq code and proof state. The proof state can also be seen as the step in the
proof construction in textbooks. Before proving Nat_intersection_inductive, we proved
two lemmas first.

The successors of the elements in X∩N are all in X.

1 Lemma Nat_inductive_inductive_step_X:
2 [[ ZF;; is_natural_number N;;∅∈X;;∀ n, n∈N→n∈X→n∪{n}∈X;;y∈X∩N`y∪{y}∈X]].
3 Proof.
4 pose proof Intersection_iff.
5 universal instantiation H X N y.
6 assert [[ZF;; ∀n, n∈N→n∈X→n∪{n}∈X`∀n, n∈N→n∈X→n∪{n}∈X]] by

FOL_Tauto.
7 universal instantiation H1 y.
8 The conclusion is already proven.
9 Qed.

The corresponding proof state is as follows, with the line numbers corresponding to those
of the previous Coq code. In addition, the condition numbers, such as H and H0, displayed in
Coq have also been added for easy comparison with the tactics in Coq.

4 H: [[ ZF`∀x, ∀y, ∀z, z∈x∩y↔z∈x∧z∈y]] (binary intersection rule)
5 H0:[[ ZF`y∈X∩N↔y∈X∧y∈N]] (universal instantiation instantiates x, y,

and z in H separately)
6 H1:[[ ZF;; ∀n, n∈N→n∈X→n∪{n}∈X`ZF;;∀n, n∈N→n∈X→n∪{n}∈X]] (rule Assu)
7 H2:[[ ZF;; ∀n, n∈N→n∈X→n∪{n}∈X`y∈N→y∈X→y∪{y}∈X]] (instantiate H1 into y)
8 [[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X;;y∈X∩N`y∪{y}∈X]]

(apply “FOL_Tauto” to construct a proof according to H0 H2)

The lemma that the successors of the elements in X∩N are all in N can be proven in a similar
manner, and the inductive step Nat_intersection_inductive can be further obtained. The
final proof construction for mathematical induction is presented as follows.

1 Theorem mathmetical_induction:
2 [[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`∀n,

n∈N→n∈X]].
3 Proof.
4 pose proof Nat_intersection_inductive.
5 assert ([[ZF;; is_natural_number N`|−−∀w, is_inductive w→N⊆w]]) by

FOL_Tauto.
6 universal instantiation H0 [[X∩N]].
7 assert ([[ZF;; is_natural_number N;;is_inductive X∩N`N⊆X∩N]]) by
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FOL_Tauto.
8 universal instantiation H2 n.
9 pose proof Intersection_iff.
10 universal instantiation H4 X N n.
11 assert ([[is_natural_number N;;∅∈X;;∀n,

n∈N→n∈X→n∪{n}∈X`n∈N→n∈X]]) by FOL_Tauto.
12 universal generalization H6 n.
13 The conclusion is already proven.
14 Qed.

The corresponding proof states are as follows.

4 H: [[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`is_inductive
X∩N]] (the inductive step Nat_intersection_inductive already proven by “pose
proof”)

5 H0:[[ ZF;; is_natural_number N`∀w, is_inductive w→N⊆w]] (definition of
is_inductive and conjunction and elimination)

6 H1:[[ ZF;; is_natural_number N`is_inductive X∩N→N⊆X∩N]] (instantiation
of w in H0 into X∩N by universal instantiation)

7 H2:[[ ZF;; is_natural_number N;;is_inductive X∩N`N⊆X∩N]] (property of material
implication→)

8 H3:[[ ZF;; is_natural_number N;;is_inductive X∩N`n∈N→n∈X∩N]] (definition of
subsets)

9 H4:[[ ZF`∀x, ∀y, ∀z, z∈x∩y↔z∈x∧z∈y]] ((binary intersection rule pose proof)
10 H5:[[ ZF`n∈X∩N↔n∈X∧n∈N]] ((separate instantiation of x, y, and z in H4 by universal

instantiation)
11 H6:[[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`n∈N→n∈X]]

(obtained by “FOL_Tauto” according to H H3 H5)
12 H7:[[ ZF;; is_natural_number N;;∅∈X;;∀n, n∈N→n∈X→n∪{n}∈X`∀n, n∈N→n∈X]]

(introduction of quantifier n before the conclusion of H6 by universal generalization
and mathematical induction is proven)

5.2 Formalization of Peano arithmetic
Some outstanding students further used the proposed tool to formalize addition and

multiplication in Peano arithmetic after completing the course of discrete mathematics, which
reflected the effectiveness of this tool. Some important definitions and theorems are listed below.

First, addition is defined: regarding any natural number n, 3-tuple (0, n, n) is in set X;
regarding any 3-tuple (n, d, e) in X, 3-tuple (S(n), d, S(e)) is also in set X. The predicate
“in_rel 3 x y z d” represents that 3-tuple (x, y, z) is in d.

Definition is_legal_plus_def(t1 t2:term):prop:=
[[(( ∀n, n∈N→in_rel3∅n n x)∧(∀n,∀d,∀e, n∈N∧d∈N ∧e∈N→( in_rel3 n d e
x→in_rel3 n∪{n} d e∪{e} x))) [x7→t1; N7→t2]]]

• Set X defines that the addition relationship on the natural number N is represented by the
predicate “is_plus X N”, and set X is defined as the one of the minimum satisfaction
“is_legal_plus”.

Definition is_plus_def(t1 t2:term):=
[[( is_legal_plus x N∧(∀y, is_legal_plus y N→x⊆y))[x7→t1 ; N7→t2]]]

Subsequently, the definition of multiplication can be presented.
For any natural number n, 3-tuple (n, 0, 0) is in set f, and for any 3-tuple (x, y, z) in set f,

3-tuple (x, S(y), a) is in set f can be derived if (z, x, a) is in additional relationship e.
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Definition is_legal_mult_def(t1 t2 t3:term):prop:=
[[(( ∀n, n∈N→in_rel3 n∅∅f)∧(∀x, ∀y, ∀z, ∀a,
x∈N∧y∈N∧z∈N∧a∈N→in_rel3 x y z f→(in_rel3 z x a e→in_rel3 x y∪{y}
a f ))) [ f 7→t1; e7→t2; N7→t3]]]

• Set X defines the multiplication relationship on the natural number N based on the
additional relationship e and represents it by the predicate “is_mult X e N”. Set X
is defined as the one of the minimum satisfaction “is_legal_mult”.

Definition is_mult_def(t1 t2 t3:term):=
[[( is_legal_mult x e N∧(∀y, is_legal_mult y e N→x⊆y))[x7→t1; e 7→t2;
N7→t3]]]

The above definitions can be used to further present the proof construction for several
Peano postulates, which have already been proven by mathematical induction.

• The natural number 0 is not a successor of any number.

Lemma not_empty: [[ZF`∀n, ¬n∪{n}=∅]]

• If the successors of two natural numbers are equal, the two natural numbers are equal, and
the same is true in the opposite direction according to the rule for equal sign replacement.

Lemma Sn_inversion: [[ZF`∀x,∀y,x∪{x}=y∪{y}→x=y]]

Afterward, the relevant properties of addition are proven.
• An addition set is unique.

Lemma plus_unique: [[ZF;;is_natural_number N`∀x,∀y,is_plus x
N\wedgeis_plus y N→x=y]]

• For any two natural numbers, a natural number that is their sum is bound to be present.

Lemma in_plus_exists:
[[ ZF;; is_natural_number N;;is_plus e N`∀x,∀y, x∈N∧y∈N→∃z,z∈N∧
in_rel3 x y z e]]

The functionality, commutative property, and associative property of addition require
separate proof construction for their basic steps and inductive steps. The mathematical induction
proven in the previous section is then applied to construct the proofs. Here, only the proof
construction for the functionality of addition is presented as an example.

• The basic step of the functionality of addition is as follows: if 0+x=y, x=y.

Lemma plus_func_zero:
[[ ZF;; is_natural_number N;;is_plus e N`∀x, ∀y, x∈N∧y∈N∧in_rel3 ∅x y
e→x = y]]

• The inductive step of the functionality of addition is expressed below: if z=a can
be derived from x+y=z and x+y=a, then z′=a′ can be derived from S(x)+y=z′ and
S(x)+y=a′

Lemma plus_func_induction:
[[ ZF;; is_natural_number N;;is_plus e N`∀x,
x∈N∧(∀y,∀z,∀a,y∈N∧z∈N∧a∈N ∧in_rel3 x y z e∧in_rel3 x y a e→z =
a)→x∪{x}∈N∧(∀y, ∀z, ∀a,y∈N∧z∈N∧a∈N∧in_rel3 x∪{x} y z e∧in_rel3
x∪{x} y a e→z=a)]
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• The functionality of addition can be expressed as follows: the sum of any two natural
numbers is unique.

Lemma plus_func:
[[ ZF;; is_natural_number N;;is_plus e N `∀x,∀y, ∀z, ∀a,
x∈N∧y∈N∧z∈N∧a∈N∧in_rel3 x y z e∧in_rel3 x y a e→z=a]]

• The commutative property of addition is as follows: if x+y=z, then y+x=z.

Lemma plus_comm:
[[ ZF;; is_natural_number N;;is_plus e N`∀x, ∀y, ∀z,
x\inN∧y∈N∧z∈N∧a∈N∧in_rel3 x y z e→in_rel3 y x z e]]

• The associative property of addition can be expressed as follows: if x+y=a and y+z=b,
then a+z=c if and only if x+b=c, that is, x+(y+z)=(x+y)+z.

Lemma plus_assoc:
[[ ZF;; is_natural_number N;;is_plus e N`

∀x, ∀y, ∀z, ∀a, ∀b, ∀c, x∈N∧y∈N∧z∈N∧a∈N∧b∈N∧c∈N∧in_rel3 x y a
e∧in_rel3 y z b e→(in_rel3 a z c e↔in_rel3 x b c e)]]

Finally, proof construction for the related properties of multiplication is provided.
• Multiplication sets are unique.

Lemma mult_unique:
[[ ZF;; is_natural_number N;;is_plus e N`∀x, ∀y, is_mult x e N∧is_mult
y e N→x=y]]

• For any two natural numbers, their product is bound to be present.

Lemma in_mult_exists:
[[ ZF;; is_natural_number N;;is_plus e N;;is_mult f e N`∀x, ∀y,
x∈N∧y∈N→∃z, z∈N∧in_rel3 x y z f]]

• The functionality of multiplication can be expressed as follows: The product of any two
natural numbers is unique.

Lemma mult_func:
[[ ZF;; is_natural_number N;;is_plus e N;;is_mult f e N`∀x, ∀y, ∀z, ∀a,
x∈N∧y∈N∧z∈N∧a∈N∧in_rel3 x y z f∧in_rel3 x y a f→z=a]]

• The commutative property of multiplication is expressed as follows: if x×y=z, then
y×x=z.

Lemma mult_comm:
[[ ZF;; is_natural_number N;;is_plus e N;;is_mult f e N`∀x, ∀y, ∀z,
x∈N∧y∈N∧z∈N∧in_rel3 x y z f→in_rel3 y x z f]]

• The associative property of multiplication is expressed as follows: if x×y=a and y×z=b,
then a × z=c if and only if x×b=c, i.e., (x×y)×z=x×(y)×z).

Lemma mult_assoc:
[[ ZF;; is_natural_number N;;is_plus e N;;is_mult f e N`∀x, ∀y, ∀z, ∀a, ∀
b, ∀c, x∈N∧y∈N∧z∈N∧a∈N∧b∈N∧c∈N∧in_rel3 x y a f∧in_rel3 y z b
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f→(in_rel3 a z c f↔in_rel3 x b c f)]]

• The distributive property of multiplication can be expressed as follows: a+b=c, i.e.,
x×y+x\times z=x×(y+z) if x×y=a, x×z=b, x×d=c, and y+z=d.

Lemma mult_dist:
[[ ZF;; is_natural_number N;;is_plus e N;;is_mult f e N`∀x, ∀y,∀z, ∀a, ∀b, ∀
c, ∀d, x∈N∧y∈N∧z∈N∧a∈N∧b∈N∧c∈N∧d∈N∧in_rel3 y z d e∧in_rel3 x y
a f∧in_rel3 x z b f∧in_rel3 x d c f→in_rel3 a b c e]]

6 Comparison with Previous Research
For students, the theorem proving tool developed in this study is closed. They do not

need to learn anything that is most fundamental in Coq but unrelated to the teaching content
of the course, such as inductive types, even if they have completed the proof construction for
mathematical induction with the tool we developed in Coq. In this sense, the present study
is quite different from the previous ones. Avigad used Lean to teach naive set theory and the
axiomatic set theory in logic courses for undergraduate students. The logic built into Lean
is directly used in the course to formalize the relevant concepts of set theory. This method
did not require much development work, and the interaction in Lean is also friendly. Students
could successfully construct proofs of the theorems in set theory as well after they familiarized
themselves with how to use Lean. However, the author needed to allocate dedicated class hours
to teach the usage of Lean as part of the course content. Furthermore, the proofs constructed
in Lean appeared to be slightly lengthy due to the lack of improved proof tactics. For this
reason, the author only required students to construct proofs for simple examples with Lean.
His approach is applicable to teaching scenarios where the related concepts of set theory are not
directly presented in the framework of first-order logic as directly constructing formal proofs in
the framework of the first-order logic would be overcomplicated. The author expected that more
automated procedures can be provided in Lean to facilitate students to construct more proofs
more easily in the future. In this study, Ltac in Coq is employed to develop more convenient
proof tactics, and traditional logic symbols are provided through “notation”. Students can
preliminarily grasp the automated proof tactics we developed from the 15 min tutorial video
and then quickly complete the proof construction for important theorems, such as mathematical
induction. Since the cost of learning to use this tool is low, Coq does not need to be taught as
course content.

As far as we know, attempts to introduce interactive theorem provers into the teaching of
set theory have rarely been reported in China.

7 Summary
Interactive theorem provers can help students learn mathematical logic better by giving them

fast and accurate support. To solve the problem that the existing theorem provers have a high
threshold for getting started with them and differ greatly from textbooks, we developed a prover
for the axiomatic set theory in Coq and provided students with a proving environment similar
to the one in textbooks. Starting from the abstract syntax tree of logic formula, we formalized
the reasoning system of the axiomatic set theory ZFC. We also provided several automated
proof tactics for the reasoning system, including the automated proof tactic “FOL_Tauto” for
propositional logic that involved the generation of disjunctive normal form and calls the DPLL
satisfiability solver implemented in Coq. The other automated proof strategies developed are
the proof tactics for quantifiers that supported the introduction and elimination of multi-level
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quantifiers, as well as the simpler proof strategy for equal sign replacement. Compared with
directly using existing theorem provers, the closed proving environment we provided hid the
logic built into the native theorem prover and is thus close to the textbook style. In this way,
it allowed students to focus on the logic they are learning. The automated proof tactics also
alleviated the unnecessary burden of learning the usage of theorem provers, making it easy to
understand and use. In actual teaching, the proof strategies we provided will suffice for students
to prove mathematical induction and complex theorems such as Peano arithmetic, reflecting the
accessibility and effectiveness of the proposed tool. Note worthily, this tool is developed for
particular teaching scenarios, and it may need to be adjusted according to actual situations to
satisfy different teaching needs.

Interactive theorem provers are also applicable to other teaching scenarios in addition to
that of mathematical logic. At present, Coq and Lean are the most used interactive theorem
provers in teaching. Lean provides better support for formal mathematics. For instance, Thoma
and Iannone[22] used Lean to teach number theory. In contrast, Coq is more applicable for
formalizing computer-related theories. Pierce et al. wrote the famous Software Foundations[23],
covering concepts such as program logic and program semantics, and it has been widely applied
in courses of program language theories. However, the use of interactive theorem provers in
mathematics courses still focuses on the teaching of mathematical logic, and the application of
such provers remains to be further investigated.
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