
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2023, 13(3): 269–296, doi: 10.21655/ijsi.1673-7288.00300
©2023 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

GC-MCR: Directed Graph Constraint-guided
Concurrent Bug Detection Method

Shuochuan Li (李硕川)1, Zan Wang (王赞)1, Mingxu Ma (马明旭)1, Xiang Chen
(陈翔)2, Yingquan Zhao (赵英全)1, Haichi Wang (王海弛)1, Haoyu Wang (王昊宇)1

1 (College of Intelligence and Computing, Tianjin University, Tianjin 300350, China)
2 (School of Computer Science and Technology, Nantong University, Nantong 226019, China)
Corresponding author: Zan Wang, wangzan@tju.edu.cn

Abstract Constraint solving has been applied to many domains of program analysis and is
further used in concurrent program analysis. Concurrent programs have been widely used with
the rapid development of multi-core processors. However, concurrent bugs threaten the security
and reliability of concurrent programs, and thus it is of great importance to detect concurrent
bugs. The explosion of thread interleaving caused by the uncertainty of the execution of con-
current program threads brings some challenges to the detection of concurrent bugs. Existing
concurrent defect detection algorithms reduce the exploration cost in the state space of con-
current programs by reducing invalid thread interleaving. For example, the maximal causal
model algorithm transforms the state space exploration problem of concurrent programs into
a constraint solving problem. However, it will produce a large number of redundant and con-
flicting constraints during constraint construction, which greatly prolongs the time of constraint
solving, increases the number of constraint solver calls, and reduces the exploration efficiency
of concurrent program state space. Thus, this study proposes a directed graph constraint-guided
maximal causality reduction method, called GC-MCR. This method aims to improve the speed
of constraint solving and the efficiency of the state space exploration of concurrent programs
by filtering and reducing constraints using directed graphs. The experimental results show that
the GC-MCR method can effectively optimize the expression of constraints, so as to improve
the solving speed of the constraint solver and reduce the number of solver calls. Compared
with the existing J-MCR method, GC-MCR can significantly improve the detection efficiency
of concurrent program bugs without reducing the detection ability of concurrent bugs, and the
test time on 38 groups of concurrent test programs widely used by existing research methods
can be reduced by 34.01% on average.

Keywords concurrent program; maximal causality reduction; constraint solving; directed
graph; conflict constraint filtering

Citation Li SC, Wang Z, Ma MX, Chen X, Zhao YQ, Wang HC, Wang HY. GC-MCR: Directed graph
constraint-guided concurrent bug detection method, International Journal of Software and Informatics,
2023, 13(3): 269–296. http://www.ijsi.org/1673-7288/300.htm

This is the English version of the Chinese article“GC-MCR:有向图约束指导的并发缺陷检测方法. 软件学报,
2023, 34(8): 3485–3506. DOI: 10.13328/j.cnki.jos.006865”
Funding items: National Natural Science Foundation of China (61872263); Intelligent Manufacturing Special Fund
of Tianjin (20201180)
Received 2022-09-04; Revised 2022-10-13; Accepted 2022-12-14; IJSI published online 2023-09-27

http://www.ijsi.org/1673-7288/300.htm


270 International Journal of Software and Informatics, 2023, 13(3)

At present, constraint solving, as an important part of symbolic execution, has widely been
used in software verification and program analysis, with especially prominent contributions made
in analyzing concurrent programs. Featuring fast computing speed and high resource utilization,
concurrent programs are increasingly commonly used in the current hard-concurrency era with
a wide application of the multi-core architecture. From a micro point of view, thread scheduling
of concurrent programs (namely, whether each thread runs at a specific time) is determined by
the CPU rather than the users[1]. Therefore, under default program configurations, the execution
orders of threads are uncertain to some degree. This makes it difficult for developers to predict
program states, easily leaving concurrent bugs inside programs and thus probably causing serious
faults. For example, on the day when Facebook was listed in 2012, NASDAQ’s trading program
suffered from concurrent bugs (the program kept rerunning and entered an endless cycle due to
many order withdrawals, resulting in a data race). This caused a 20-minute failure of opening,
bringing a huge loss to Facebook. Therefore, in actual project development, it is necessary to
fully test concurrent programs so as to avoid possible adverse effects of concurrent bugs. It is of
great significance to study automatic bug detection for concurrent software. Relevant research
results help detect various concurrent bugs quickly and effectively to ensure the quality and
reliability of concurrent software.

In recent years, testing of concurrent programs has attracted wide attention in software
engineering, and relevant technology for concurrent bug detection has gradually become a
research hotspot. At present, many review papers related to concurrent bug detection have
been published in China and abroad. Existing research has deeply explored concurrent bug
detection from different angles and made rich achievements. On this basis, some mature
tools for concurrent bug detection have also been developed. Currently, common concurrent
bugs can be classified into four types: deadlock[4], data race[5], atomicity violation[6], and
order violation[7]. In order to detect these concurrent bugs, researchers proposed three kinds
of methods: dynamic analysis[8], static analysis[9], and dynamic-static combined analysis[10].
Specifically, the dynamic analysis aims to trigger program exceptions through the dynamic
execution of the tested programs, and the triggered exceptions are real. Static analysis is based
on relevant pattern rules to extract and compare bug patterns in code to detect bugs[11]. As the
main way of static analysis, symbolic execution explores the state space of programs by solving
symbolic program path constraints. Dynamic-static combined analysis fully uses the advantages
of both dynamic and static analysis. In other words, dynamic analysis can improve the reliability
of static analysis, while static analysis can reduce verification loads of dynamic analysis[2, 3].

The main challenge for testing and verification of concurrent programs is the thread inter-
leaving space explosion. It means that the number of possible threads interleaving increases
exponentially with the increase in the number of threads and execution time. This makes it
difficult to detect concurrent bugs. The key to solving thread interleaving space explosion is
to identify redundant thread interleaving[12]. In order to solve the above problem, researchers
proposed Partial Order Reduction (POR)[13–15]. This method reduces the size of the overall
state space by checking the independence of each state and the behavior of a program. First,
POR classifies all thread interleaving into different Mazurkiewicz traces[16], namely different
equivalence classes of thread interleaving. Then, POR selects one thread interleaving from
each Mazurkiewicz trace for exploration. Mazurkiewicz traces are based on happens-before
relations[17], and such relations depend on the release and acquisition of all locks, as well as on
conflicting write and read events. For this reason, POR has limitations in identifying interleaving
of redundant threads, and it indicates that most of the thread interleaving that only conform to
happens-before relations are redundant[18]. In view of this problem, Huang et al. proposed the
algorithm of Maximal Causality Reduction (MCR)[18]. In MCR, a new criterion is developed



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 271

based on Mazurkiewicz traces: maximal causality relation. Under this criterion, maximally
possible equivalent thread interleaving sets in Mazurkiewicz traces are divided according to
values of read and write events. MCR converts exploration of state space of concurrent pro-
grams into constraint solving and detects concurrent bugs stably and efficiently. However, the
extremely large state space of concurrent programs will result in extremely strict and complex
constraints imposed by MCR on events. Complex constraint construction will easily produce
many redundant or even conflicting constraints, leading to time-consuming constraint solving.
According to experimental statistics, the time spent on constraint solving by MCR accounts
for about 89.21% of the total running time of MCR. Or even, a lot of time is consumed in
solving conflicting constraints but without a solution. This significantly reduces the efficiency
of concurrent bug detection.

In view of the above problems, focusing on constraints in MCR, this study improves the
efficiency of concurrent bug detection by filtering conflicting constraints and reducing redundant
ones and finally designs a method, namely GC-MCR. GC-MCR first constructs a directed
graph according to the basic constraints of a program (namely, happens-before constraints, lock
mutex constraints, etc.). Then it parses and splits read-write constraints generated by MCR[18].
Specifically, the read-write constraints are used to construct a read-write constraint tree, and
the value of each node in this constraint tree is obtained according to the directed graph of
the basic constraint relationship of the program. This value indicates whether the subtree with
the current node as the root node conflicts with the basic constraints of the program. Finally,
whether to filter or reduce constraints can be determined according to the value of each node
in the read-write constraint tree. GC-MCR effectively reduces the time of single constraint
solving and even the number of calls of constraint solvers by filtering conflicting constraints and
reducing expressions of redundant constraints. Thus, it can ensure the capacity of concurrent
bug detection and improve relevant detection efficiency.

In this study, 38 concurrent programs widely used in the existing research are selected for
testing. Bugs contained in these concurrent programs include deadlock, data race, atomicity
violation, and order violation. From the test results, GC-MCR is clearly better than the existing
methods not only in the number of calls of constraint solvers and time of individual calls but also
in the efficiency of exploring state space of concurrent programs. Compared with J-MCR, in
the case of no loss in the total number of times of scheduling, namely, no loss in the capacity of
detecting concurrent bugs, GC-MCR can reduce the number of times of constraint solving and
total calling time by 34.01% on average. The main contributions of this study are summarized
as follows:

• A representation method of concurrent constraints is designed based on a directed graph.
In this method, potential unsolvable concurrent constraints are identified from the directed
graph to optimize redundant concurrent constraints, so as to improve the accuracy of
concurrent-constraint representation.

• A new concurrent-bug detection method called GC-MCR is proposed. GC-MCR con-
structs complete constraints of concurrent programs based on the directed-graph repre-
sentation method proposed in this study. Then, it filters and reduces such constraints
to effectively reduce the overhead of constraint solving and improve the efficiency of
exploring the state space of concurrent programs.

• GC-MCR (https://github.com/WingedVampires/GC-MCR) is implemented and open-
sourced and verified on 38 concurrent test programs. According to the test results,
compared with the existing research methods, GC-MCR can detect bugs in concurrent
programs faster, with an average improvement of 34.01% in performance.

https://github.com/WingedVampires/GC-MCR


272 International Journal of Software and Informatics, 2023, 13(3)

1 Background Knowledge
This study mainly aims to construct complete concurrent program constraints by directed-

graph representation and filter and reduce such constraints to decrease the overhead of constraint
solving and improve the efficiency of exploring the state space of concurrent programs. Theories
and methods related to the proposed method include the Maximal Causal Model (MCM) serving
as the basic model of GC-MCR, MCR[18] based on MCM, and the tool Z3[20] for constraint
construction and solving.

1.1 MCM
MCM[5, 19] constructs the largest and reasonable causal model according to a given program

execution trace. It contains all the traces generated by all the concurrent programs that can
generate the original trace. In other words, if a concurrent program P can generate the original
trace, then all the traces generated by P are included in the MCM. Therefore, MCM can find
thread interleavings that have not yet been executed in the large state space. In MCM, an event
is an atomic operation performed by a thread on a concurrent object. Its attributes include
the thread that accesses a concurrent object (Thread), the type of operation executed on the
concurrent object (OP), the concurrent object accessed by the event (Target), and the operation
value executed on the concurrent object (Data). Two events s1 and s2 are said to be equal if and
only if all the attributes corresponding to them are equal. Types and corresponding descriptions
of events in MCM are shown below:

• begin(t): the first event in thread t;
• end(t): the last event in thread t;
• read(t, x, v): the value of x read by the thread t is v;
• write(t, x, v): the value that the thread t writes to the variable x is v;
• lock(t, l): the thread t acquires the lock l;
• unlock(t, l): the thread t releases the lock l;
• fork(t, t′): the thread t creates a new thread t′; and
• join(t, t′): the thread t is blocked until t′ ends its execution.
In MCM, an execution trace of a program can be abstracted as a sequence of events. It

is also stipulated that an execution trace needs to satisfy order consistency, namely, read-write
consistency, lock mutex, and happens-before principle. Specifically, read-write consistency
needs to ensure that the value of a read event (read) is that of the write event (write) preceding
the read event in the execution trace, being closest to the read event, and accessing the same
shared memory address as the read event. Lock mutex needs to ensure that there is always a
lock-acquisition event (acquire) of the same thread and the same lock variable preceding each
lock-release event (release) to match this release event, and that each acquire-release pair cannot
be interleaved with other lock pairs that access the same lock variable. The happens-before
principle needs to ensure that a program is executed according to the code order, that the write
operation of a volatile-modified variable happens before the read operation of the variable, and
that the unlocking operation of a lock happens before the locking operation of the same lock. In
addition, if operation A happens before operation B, and operation B happens before operation
C, then A should happen before C. All operations before calling B.start() in the thread A

happen before all operations in the thread B. The thread B.join() will execute the thread B first,
indicating that all operations in the thread B happen before those after the join operation in the
thread A.

In MCM, feasible(τ ) is the smallest set of all program-execution-generated order-consistent
traces that can produce the execution trace τ , and it is the final result of MCM. feasible(τ )
needs to satisfy prefix closedness and local determinism. Prefix closedness assumes that an



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 273

event is independent, indivisible, and generated sequentially based on program execution. Thus,
feasible(τ ) must be prefix-closed. Local determinism assumes that the execution of a concurrent
operation is determined by previous events in the same thread and can happen at any time after
them.

1.2 MCR
By constructing maximal causal models of concurrent programs, MCR transforms the

exploration of the state space of programs into constraint solving. Figure 1 illustrates this
algorithm. With the input of the program to be tested, MCR obtains the execution trace of
the program according to the specified thread interleaving through the model checker. The
scheduler in the model checker specifies a thread interleaving by controlling the scheduling of
threads. Then a new seed thread interleaving is generated and added to the state space of the
program under test through the maximal causality engine so that this interleaving can be reused
by the model checker, and a new seed interleaving can be obtained by running. For a thread
interleaving s, through MCM introduced earlier, a unique and largest feasible interleaving set
can be obtained, which is denoted as MaxCausal(s). The new seed interleaving generated by
each MCR running is a feasible interleaving in MaxCausal(s).

Figure 1 Execution process of MCR

During the running of a concurrent program, interleaved execution of different threads
will produce a series of thread interleavings. Each triggered thread interleaving will make the
program reach a specific state. Here, it is stipulated that when a new interleaving is generated
before the execution of a program, if the program enters a new state by reading a different
value from the same variable, then the algorithm needs to add this state to the state space of
the tested program. When the state space of the tested program is full, indicating that all the
seed interleavings have been explored with no new seed interleaving being generated, it can be
concluded that the state space of the tested program has completely been covered. Here, MCR
proposes a new constraint, namely Race. Specifically, it is assumed that COP(x, y) represents a
read-write pair of a global variable in different threads. Then for every existing global variable
of COP relationship in the program, each read eventR of such a variable needs to be constrained.
In other words, all read events happening before R should read the same value as before, and
R should read a completely different value. As a program may reach a different state every
time reading a new value, a state tree of the program can be obtained by constantly reading new
values during constraint solving of the program. This tree can cover all possible states in the
program.

Reasons for the large state space of a concurrent program can be divided into two aspects.
Firstly, combinations of threads are diverse, most of which are feasible, and the scheduling of
threads is uncertain. Secondly, many equivalent thread interleavings exist in the state space of a



274 International Journal of Software and Informatics, 2023, 13(3)

concurrent program. Except for different scheduling orders of threads, data read are the same,
and it means that these equivalent threads cannot make the program reach a new different state.
Many equivalent thread interleavings will prolong the execution of other algorithms. MCR will
also execute a tested program repeatedly and generate new seed interleaving by intervening in
thread scheduling, executing all schedules, and checking the feasibility of the current schedule.
However, this algorithm recognizes that the program has reached a new state only when it reads
a new value and then adds the current thread schedule to the state space of the current program,
so as to minimize the state space.

1.3 Construction and solving of constraints
In this study, constraints in MCR are divided into basic constraints of programs and read-

write constraints. Basic constraints of programs are an embodiment of constraints on happens-
before principles in the programs, including program order constraints, thread constraints, and
lock constraints. Read-write constraints are to restrict different threads to reading and writing
the same shared variables according to a specified read-write requirement. Specifically, the
read-write requirement is that only one read event R among the read events of all threads in a
program reads the new value, while read events that happen before R need to read old values.
As shown in the program in Figure 2, T1 and T2 are two threads. The basic constraints of
the program in this figure are as follows: x1 < x2, x3 < x4, x4 < x5, and x5 < x6, or
in other words, the program is executed according to the order of the code in the same thread.
Suppose that x in Line 4 should read the value 1. Then, the read-write constraints are as follows:
x3 < x1 and x1 < x4, indicating that assigning 1 to x needs to be executed before Line 4
and after assigning 0 to x in Line 3. Basic constraints and read-write constraints are in and
relations, namely, juxtaposition relations. Only scheduling sequences solved by both the two
kinds of constraints are executable.

T1 T2
1: x = 1 3: x = 0
2: y = 2 4: if (x > 0) {

5: y −−
6: x = 7

}
Figure 2 Example program for constraint construction

In this study, Z3[20] is used to solve constructed constraints. Z3 is an open-source constraint
solver developed by Microsoft, and it is a general solver used to solve deterministic problems of
first-order logic combinations. Given partial constraints, Z3 can find a set of solutions that satisfy
these conditions. Using Z3 for problem solving requires writing a Z3 script. The script contains
a specific command sequence, which will be parsed by the solver using a specific algorithm.
Finally, the solver will return the solution to the formula proposition and the assignment from
the theoretical solver of Z3. New constraints obtained by GC-MCR are solved by using Z3,
and then new scheduling sequences are obtained according to relevant solving results, so as to
explore the state space of concurrent programs.

2 GC-MCR
2.1 Research motivation

In order to fully explore the state space of a concurrent program, by analyzing existing exe-
cution traces, MCR[18] generates constraints that satisfy MCM and Race according to constraint
relations between different events and then solves them with a constraint solver. Finally, the
concurrent program is further explored according to solving results. Specifically, if a constraint



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 275

is solvable, program scheduling is controlled according to the solved thread interleaving; other-
wise, thread interleaving fails to happen, and the algorithm will skip over the current constraint
to solve other constraints. MCR can detect potential concurrent bugs in concurrent programs
through a small number of times of scheduling. However, from the existing research work[21]

and the reproduction and in-depth analysis of MCR in this work, MCR has coarse granularity
in constructing program constraints, producing many redundant or unsolvable constraints. This
results in an excessive number of times of constraint solving, consuming many additional com-
putational resources. If unsolvable constraints are filtered, or redundant ones are reduced before
solving, a lot of computational resources will be saved. Therefore, much solving overhead can
be saved by filtering unsolvable constraints or reducing redundant ones before solving, so as to
improve the efficiency of the detection of concurrent bugs. For this reason, this study carries out
test verification on three test programs with different state spaces: hashcode, numberaxis, and
dekker. The test results show that MCR solved constraints 32, 242, and 492 times in the above
test programs, respectively. However, according to further analysis of these constraints, 21, 67,
and 150 constraints respectively in these test programs can be filtered by constraint analysis
without the necessity of being solved with the constraint solver, and other constraints can be
reduced to varying degrees. Based on the above findings, by filtering and reducing the above
constraints, this study finally reduces program execution time by 51.78%, 28.29%, and 58.35%
respectively, with a significant improvement in efficiency of exploring state space of concurrent
programs. This study also carries out tests on other programs and ultimately draws the same
conclusion. In order to illustrate the basic principles of the proposed method, the study uses the
program dekker as an example for subsequent method introduction.

From the tests, some of the constraints generated by MCR have obvious conflicts, and
these conflicts can be handled in a simple and effective way. For example, Figures 3 and 4
illustrate one basic constraint of the program and two read-write constraints in one constraint
solving of dekker. Each assert statement is composed of the keyword assert and a sub-constraint.
Each sub-constraint is represented by a prefix expression. In the expression, the content in the
innermost set of parentheses is a constraint unit, and each constraint unit can be combined by
using and/or to form a sub-constraint. For example, in Figure 4(b), (or (> x1 x9) (< x3 x6)) is
a sub-constraint, where (> x1 x9) is a constraint unit, actually meaning that event x1 happens
after event x9. In Figure 3, (> x1 x2) is both a constraint unit and a sub-constraint. There is an
and-relation between assert statements, namely that the overall constraint is satisfied if and only
if each constraint is true.

(assert (> x1 x2)) (assert (< x5 x6)) (assert (< x7 x8))
(assert (> x3 x5)) (assert (> x6 x8)) (assert (< x4 x6))
(assert (> x3 x7)) (assert (< x6 x2)) (assert (> x9 x4))
(assert (< x4 x2)) (assert (> x3 x6))

Figure 3 Example of basic constraint of program

(assert (and (or (or (< x8 x7) (< x9 x4))(and (> x1 x8)
(> x3 x5)))(and (or (> x1 x4) (> x1 x6))(< x3 x6))))

(a) Conflicting constraint

(assert (or (> x1 x9) (< x3 x6))
(b) Redundant constraint

Figure 4 Example of read-write constraints

Conflicting constraints. x8 < x7, x4 > x9, and x3 < x6 in the read-write constraint
in Figure 4(a) conflict with x8 > x7, x9 > x4, and x3 > x6 in the basic constraint of the



276 International Journal of Software and Informatics, 2023, 13(3)

program in Figure 3, respectively, while other constraints are consistent with the basic constraint
of the program. By logical operation, the final result is false, indicating conflicts with the
basic constraint of the program. In other words, read-write constraints do not hold under the
condition of satisfying the basic constraint of the program. Thus, such read-write constraints
conflicting with the basic constraint of the program are defined as conflicting constraints. Con-
flicting constraints are unsolvable. The concurrent test program dekker contains 150 conflicting
constraints. Identifying and filtering these conflicts before calling the constraint solver can save
a lot of computational resources.

Redundant constraints. From further analysis, x3 < x6 in the read-write constraint
in Figure 4(b) conflicts with x3 > x6 in the basic constraint of the program, while x1 > x9

does not conflict with the basic constraint of the program. Moreover, the read-write constraint
in Figure 4(b) holds under the condition that the basic constraint of the program is satisfied.
Therefore, such read-write constraints not conflicting with basic constraints on the whole but
containing partial sub-constraints that conflict with basic constraints are defined as redundant
constraints. Redundant constraints can be reduced according to the basic constraints of programs.
The redundant constraint in Figure 4 can be reduced to (> x1 x9). For constraints after the
reduction, the constraint solver can solve them faster, saving the computational resources of the
program in constraint solving. Moreover, the time overhead of filtering and reducing constraints
is much less than that of solving original constraints with the solver.

Based on the above analysis, this study proposes a method called GC-MCR. At first,
constraints are divided into read-write constraints and basic constraints of programs. Then, the
basic constraints are constructed into directed graphs before the read-write constraints are built
into prefix trees. Finally, whether conflicting and redundant constraints exist in the read-write
constraints is judged according to the directed graphs. If there is a conflicting constraint, the
current constraint is filtered out. If there is a redundant constraint, the redundant constraint is
reduced and then the constraint solver is called again for solving, so as to improve the efficiency
of concurrent bug detection.

2.2 Description of the method
2.2.1 Overall framework: Introduction to input, output, and overall process

The input of GC-MCR is a concurrent test program, and its output is a concurrent bug
report of the program. First of all, the model checker executes the concurrent test program to
obtain an initial execution trace of the program. The maximal causality engine analyzes and
processes the execution trace to generate constraints that satisfy MCM and Race constraints.
Then, GC-MCR classifies the constraints into read-write constraints and basic constraints of the
program. The basic constraints of the program are analyzed and reconstructed into a directed
graph. Read-write constraints are analyzed, split, and reconstructed into a read-write constraint
tree. After that, the constraint filter calculates the value of each node in the read-write constraint
tree according to the directed graph and determines whether to skip over the current solving or
reduce the current constraint according to the value of the root node of the read-write constraint
tree. If constraint solving is carried out, the obtained thread interleaving will be stored in the
thread-interleaving set. Finally, by executing thread interleavings in this set successively, the
model checker acquires program execution traces and detects concurrent bugs in the program.
If a concurrent bug is detected, a bug report is output; otherwise, the above operations are
repeated. Figure 5 illustrates the specific workflow of GC-MCR.

2.2.2 Reconstruction of basic constraints based on directed graph
The constraints in Figure 3 are basic constraints of the program generated by GC-MCR,

and all the basic constraints satisfy the happens-before principle. According to the definition of



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 277

an order-consistent model, constraints in the program must follow the happens-before principle.
For this reason, there should be no constraints that violate the basic constraints of the program.
Figure 6 is a directed graph generated by this method, illustrating the sequential relationship of
various scheduling points in the program under the happens-before principle.

Figure 5 Flow chart of concurrent bug detection based on directed-graph constraints

x x

x

x

x

x

x x

x

Figure 6 Directed graph of basic constraints

Order inequalities in basic constraints of a program satisfy transitivity; however not all pairs
of scheduling points occur in such order relations. Therefore, it is difficult to conclude the order
relations of all scheduling points through size representation on the line of natural numbers. In
order to clearly show the order relations of scheduling points, the proposed method transforms
these order relations into directed graphs for representation. In terms of implementation, a
directed graph is built by using an adjacency list, and a new node class is defined, which
contains the scheduling point corresponding to the current node and the set of nodes pointing
directly to this scheduling point in the directed graph. In Figure 3, if the constraint x1 > x2

exists, the edge of x1 pointing to x2 is constructed in the directed graph. The process is repeated
until the directed graph is finally constructed. As shown in Algorithm 1, the relation between
each pair of scheduling points in the basic constraints of the program is first analyzed. Then,
the corresponding nodes are found in the graph. Finally, points-to relations between nodes
are stored in the adjacency list. Through the above steps, relations of basic constraints of the
program can be represented by a directed graph. On this basis, just by traversing the directed
graph, this study can obtain relations between thread scheduling points in the program, which
will be used for subsequent processing of read-write constraints.



278 International Journal of Software and Informatics, 2023, 13(3)

Algorithm 1. Reconstruction of basic constraints based on directed graph.
Input: Φbase: Basic constraints of program;
Output: G: Directed graph composed of adjacency list.
1. G← ∅;
2. for φi in Φbase do
3. option, target, next← analysisConstraint(φi);
4. targetNode, nextNode← findNode(target, next, G);
5. targetNode.largeNodes.add(nextNode);
6. end for
7. return G

2.2.3 Analysis and splitting of read-write constraints
The generation of read-write constraints is the core step of GC-MCR. This step ensures

that each read event R of all shared variables meets the two conditions: the read event R reads
a value that has not been read before, and all read events that happen before R read the same
values as before. This ensures that only one read event reads the new value, while the other read
events read the original values. For example, for a variable x, if a new value needs to be read,
the event of writing a new value to x should be arranged before the event of reading x. If the
original value needs to be read, the event of writing a new value to x should be arranged after
the read event. Therefore, GC-MCR can change the order of scheduling points by controlling
read and write events.

However, there are many restrictions and possible cases to make a new value read in a read
event, including both constraints to guarantee a new value written to x and those to keep values
of other read events unchanged. Thus, read-write constraints are quite complex. As shown in
Figure 4(a), the read-write constraint is an or-and combined constraint. Under the existing
methods, such read-write constraints and previously generated basic constraints are introduced
into the constraint solver for solving. After order relations of scheduling points are obtained,
they are parsed into new thread scheduling sequences for directed thread scheduling. Finally,
the whole state space of programs can be explored. However, the existing methods ignore the
relationship between read-write constraints and basic constraints of programs, with obviously
conflicting constraints and redundant ones being included. Conflicting constraints require no
calling of the constraint solver for solving, and redundant ones can be solved after reduction.
Filtering conflict constraints and reducing redundant ones can effectively lessen the time of
single solving and even the number of calls of the constraint solver, so as to obviously improve
the efficiency of concurrent-bug detection.

Therefore, GC-MCR parses read-write constraints. Figure 7 illustrates a prefix tree con-
structed according to the read-write constraint in Figure 4(a), where non-leaf nodes are the

x x x x x x x x x x x x

x x

Figure 7 Read-write constraint tree



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 279

logical operators and/or, and leaf ones are order relations of scheduling points. It is then used
to traverse the directed graph of basic constraints of the program for conflict analysis. Details
can be found in Algorithm 2. For example, suppose that, in one of the leaf nodes, there is
x3 > x9. Check whether there is x9 > x3 in Figure 6, or whether there is a path from x9

to x3 (Line 6). If so, set this leaf node to false, indicating a conflict in the subexpression. If
not, set this leaf node to true, indicating no conflict in the subexpression. This operation is
executed at each leaf node, replacing the results of all leaf nodes with true/false. Meanwhile,
each leaf node should also store the constraint expression of the current node (Lines 7–8), for
subsequent reduction of constraint expressions. After conflict analysis, the values of all the leaf
nodes should become true/false. In this case, the whole tree is an operation tree composed of
and/or and true/false. Finally, all the study needs to do is to operate with the operation tree. If
the result is false, the read-write constraint conflicts with basic constraints of the program, and
thus the study directly jumps over the calling of the constraint solver this time. Otherwise, the
current constraint is reduced. Constraints that are filtered out need no calling of the constraint
solver, and this part of the time is optimized by the filtering algorithm to improve the efficiency
of concurrent bug detection.

Algorithm 2. Analysis and splitting of read-write constraints.
Input: φrw : A read-write constraint of the program; G: a directed digraph of basic constraints of

the program;
Output: T : A read-write constraint tree represented by prefix expressions, in which each node

contains the Boolean value of the current node and the constraint from the leaf node to the
current node.

1. T ← ∅;
2. list← split(φrw);
3. for s in list do
4. if s ∈ {<,>} then
5. target, next← analysisConstraint(s);
6. isConflict← isConflictWithOrderMap(target, next, G);
7. expression← getConstraintExpression(s, target, next, isConflict);
8. T.add(Pair(isConflict, expression));
9. else
10. T.add(Pair(s, s));
11. end if
12. end for
13. return T ;

2.2.4 Reduction of constraint expressions

For the reduction of redundant constraints, GC-MCR will first reduce conflicting subex-
pressions and then call the constraint solver to solve the reduced constraint expressions and the
expressions of the basic constraints of the program.

In this study, each node of the read-write constraint tree contains not only the value indicating
whether a subtree with the current node as the root node satisfies the basic constraints of the
program but also the constraint expression of the subtree. The constraint expression in a leaf
node of the constraint-expression prefix tree is called a subexpression. First, values of leaf nodes
in which subexpressions conflict with the expressions of the basic constraints of the program are
set to false, while those of the other leaf nodes are set to true. As shown in Figure 8, the values
of leaf nodes of the prefix tree after assignment are true/false. In the figure, T represents true,
and F represents false. Then, the following five cases are considered based on the operator of a
parent node and the values of its two child nodes.



280 International Journal of Software and Informatics, 2023, 13(3)

x x x x x x x x x x x x

x x

Figure 8 Example of prefix-tree replacement

(1) The operator of a parent node is and, and values of both child nodes are true. As shown
in Figure 9(a), the value of the parent node is set to true, and the constraint expression
of the parent node is set to that of the two child nodes of an and-relation.

(2) The operator of a parent node is or, and values of both child nodes are true. As shown
in Figure 9(b), the value of the parent node is set to true, and the constraint expression
of the parent node is set to that of the two child nodes of an or-relation.

(3) The operator of a parent node is or, and values of both child nodes are false. As shown
in Figure 9(c), the value of the parent node is set to false, and the constraint expression
of the parent node is set to null.

(4) The operator of a parent node is and, and at least one of the two child nodes has the value
of false. As shown in Figure 9(d), the value of the parent node is set to false, and the
constraint expression of the parent node is set to null.

(5) The operator of a parent node is or, and only one of the two child nodes has the value
of true. As shown in Figure 9(e), the value of the parent node is set to true, and the
constraint expression of the parent node is set to that of the child node with the value of
true.

The above operation is repeated until only the root node exists in the read-write constraint
tree. Then, whether to call the constraint solver is judged according to the value of the root
node. If the value is false, it is not necessary to call the solver. Otherwise, the constraint solver
is used for solving based on the constraint expression of the root node, namely, the simplest
read-write constraint expression, together with the expressions of the basic constraints of the
program. In the present example, the value of the final root node is false. Thus, the study can
skip the constraint-solving step directly to execute subsequent operations of GC-MCR, so as to
detect concurrent bugs in the concurrent program.

3 Test Design and Result Analysis
3.1 Research questions

In order to verify the effectiveness of GC-MCR, this study designs three research questions
in terms of the number of times of constraint solving, running time of programs, and number of
times of program scheduling.

RQ1: Is GC-MCR effective in reducing the number of times of constraint solving and
computational resource consumption of the constraint solver?

Calling constraint solvers for constraint solving is more time-consuming than program
scheduling. For this reason, reducing the number of times of constraint solving to save compu-
tational resources of the constraint solver is of great significance for concurrent bug detection.
Failing to process constraints before solving, the existing method[18] solves many conflicting
constraints, which can be filtered out in advance, by the constraint solver. This increases the
number of times of constraint solving, thus reducing the efficiency of exploring the state space of
concurrent programs. Therefore, this study hopes to analyze whether GC-MCR can effectively



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 281

(a) The operator of a parent node is and, and values of both child nodes are true

(b) The operator of a parent node is or, and values of both child nodes are true

(c) The operator of a parent node is or, and values of both child nodes are false

(d) The operator of a parent node is and, and at least one of the two child nodes has
the value of false

(e) The operator of a parent node is or, and only one of the two child nodes has the
value of true

Figure 9 Example of prefix-tree simplification

reduce the number of times of calling the constraint solver and save computational resources of
the solver, compared with the existing methods.

RQ2: Can GC-MCR effectively reduce the time of concurrent bug detection and improve
the efficiency of exploring the state space of concurrent programs?

The time required by a program to detect concurrent bugs is an important index to evaluate
the efficiency of concurrent bug detection. Through the statistics of the number of times of
constraint solving and running time of the program, the study can also analyze the relationship
between the two, which means whether time consumption of concurrent-bug detection can be
reduced by reducing the number of times of constraint solving, as well as factors that affect
concurrent bug detection. Therefore, this study hopes to analyze from multiple angles whether



282 International Journal of Software and Informatics, 2023, 13(3)

GC-MCR can effectively reduce the time of concurrent-bug detection to improve the efficiency
of exploring the state space of concurrent programs, compared with the existing methods.

RQ3: Can GC-MCR guarantee the concurrent bug detection capacity of the existing
method?

The existing methods have obtained certain effects in concurrent bug detection, indicating
that they can accurately detect bugs in concurrent programs by the least number of times of
scheduling. The number of times of scheduling of concurrent programs is also a major index
to measure the capacity of concurrent bug detection. If compared with the existing method,
GC-MCR can detect the same bugs with the same or even smaller number of times of scheduling,
the capacity of concurrent bug detection does not decline. Therefore, this study hopes to verify
whether GC-MCR can have the same or even higher capacity of concurrent bug detection,
compared with the existing method.

3.2 Test configuration
Test objects. In this study, tests are carried out on 38 test programs with concurrent bugs,

which are collected from the concurrency dataset widely used in the existing research[18, 22, 23].
Table 1 lists the details of these classes. Specifically,

• The “ID” column represents the serial number of test programs;
• The “test program” column represents the name of the test program;
• The “number of lines of code” represents the number of lines of code in the test program

(counted by the tool Statistic);
• The “number of threads” column represents the number of threads in the test program;
• The “number of variables” column represents the number of variables defined in the

test program, including variables from their parent classes. It should be noted that the
statistics of variables do not distinguish between the access rights of these variables (for
example, public or private). This is because all instance variables are shared correctly;

• The “number of methods” column represents the number of public methods in the test
program, including those from parent classes; and

• The “concurrent bug types” column represents the type of the concurrent bug in the test
program.

In particular, in order to evaluate the effectiveness and scalability of GC-MCR, the study
further verifies this method on the real-world program Weblech. Weblech is a website download
tool, including a test driver that starts the server, executes client requests, and terminates
programs. Compared with other test programs, Weblech has more program events and a larger
state space for exploration.

Contrast method. The contrast method is the Java-based implementation of MCR,
converting the exploration of the state space of concurrent programs into constraint solving
to detect concurrent bugs. GC-MCR proposed in this study not only converts the exploration
of the state space of concurrent programs into constraint solving but also proposes a directed
graph-based representation method. With this representation method, GC-MCR constructs
complete constraints of concurrent programs and then filters and reduces them to decrease the
time overhead of constraint solving.

All the related tests in this study are carried out in a machine running Windows 10 Enterprise
Edition (64 bit) with a quadcore Intel® Core™ CPU i7-7500U @ 2.70 GHz 2.90 GHz and 8 GB
of memory. The timeout for each program execution is set to 90 minutes. In order to minimize
the influence of random factors, each test is repeated 10 times, and the average value is taken as
the final result.



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 283

Table 1 Description of GC-MCR test object set

ID Test program Number of
lines of code

Number
of threads

Number of
variables

Number
of methods

Concurrent
bug types

1 account 377 10 1 19 Atomicity
2 airline 182 5 4 15 DataRace
3 alarmclock 372 9 19 21 DataRace
4 allocation 347 2 2 14 Atomicity
5 array 104 2 20 2 DataRace
6 bakery 126 2 6 5 Atomicity
7 boundedbuffer 159 3 1 2 Deadlock
8 bubblesort 160 4 4 7 DataRace
9 checkfield 65 2 2 4 DataRace
10 clean 145 12 10 9 DataRace
11 consistency 59 3 2 2 Atomicity
12 counter 57 2 2 2 DataRace
13 critical 117 2 1 2 Atomicity
14 cyclic 72 4 1 3 DataRace
15 datarace 16 2 10 2 DataRace
16 deadlock 64 2 3 4 Deadlock
17 dekker 118 2 6 2 Atomicity
18 dirkaccount 167 2 7 10 Deadlock
19 fileappender 410 2 7 33 Atomicity
20 hashcode 2,461 2 1 3 Atomicity
21 lamport 160 2 9 2 Atomicity
22 mergesort 384 3 11 13 DataRace
23 numberaxis 1,637 2 43 110 Atomicity
24 peruserpooldatasource 682 2 35 65 DataRace
25 peterson 85 2 5 2 Atomicity
26 pingpong 294 5 9 13 DataRace
27 pool 243 2 4 2 DataRace
28 rax 95 2 2 2 Deadlock
29 readerswriters 608 3 12 18 DataRace
30 replicatedcasestudies 1,427 4 1 2 Deadlock
31 rvexample 75 2 3 2 DataRace
32 sharedobject 67 2 1 2 DataRace
33 sharedpooldatasource 516 2 30 51 Atomicity
34 simple 65 2 2 2 Atomicity
35 store 79 2 1 4 Atomicity
36 transfer 91 2 3 7 Deadlock
37 waitnotify 99 4 1 1 DataRace
38 Weblech 35K 3 49 90 DataRace

3.3 Result analysis
RQ1: Is GC-MCR effective in reducing the number of times of constraint solving and

computational resource consumption of the constraint solver?
In response to RQ1, this study systematically applies GC-MCR to each test program and

calculates the number of times of constraint solving and corresponding constraint-solving time
needed to detect the first concurrent bug, thus checking the difference between the two methods.
This study compares GC-MCR with J-MC. Test results are shown in Tables 2 and 3. In the
tables, the number of times of GC-MCR constraint solving and the number of times of J-MCR
constraint solving represent the number of times of constraint solving required to detect the first
concurrent bug in a test program by using GC-MCR and J-MCR, respectively. The reduced
number of times of constraint solving represents the number of times of constraint solving that
can be reduced under GC-MCR, compared with that under J-MCR. The percentage of reduced
constraint solving represents the percentage of the reduced number of times of constraint solving



284 International Journal of Software and Informatics, 2023, 13(3)

Table 2 Comparison of number of times of constraint solving between GC-MCR and J-MCR

ID Test program
Number of times

of GC-MCR
constraint solving

Number of times
of J-MCR

constraint solving

Reduced number
of times of

constraint solving

Percentage of
reduced constraint

solving (%)
1 account 12 12 – 0 – 0.00
2 airline 2,303 2,530 ↓ 227 ↑ 8.97
3 alarmclock 24,526 26,799 ↓ 2,273 ↑ 8.48
4 allocation 30 36 ↓ 6 ↑ 16.67
5 array 399 437 ↓ 38 ↑ 8.70
6 bakery 75 93 ↓ 18 ↑ 19.35
7 boundedbuffer 16 16 – 0 – 0.00
8 bubblesort 272 286 ↓ 14 ↑ 4.90
9 checkfield 4 14 ↓ 10 ↑ 71.43
10 clean 25 25 – 0 – 0.00
11 consistency 8 12 ↓ 4 ↑ 33.33
12 counter 66 67 ↓ 1 ↑ 1.49
13 critical 2 3 ↓ 1 ↑ 33.33
14 cyclic 100 100 – 0 – 0.00
15 datarace 5 15 ↓ 10 ↑ 66.67
16 deadlock 1 1 – 0 – 0.00
17 dekker 342 492 ↓ 150 ↑ 30.49
18 dirkaccount 425 456 ↓ 31 ↑ 6.80
19 fileappender 172 175 ↓ 3 ↑ 1.71
20 hashcode 11 32 ↓ 21 ↑ 65.63
21 lamport 372 515 ↓ 143 ↑ 27.77
22 mergesort 317 546 ↓ 229 ↑ 41.94
23 numberaxis 175 242 ↓ 67 ↑ 27.69
24 peruserpooldatasource 7 8 ↓ 1 ↑ 12.50
25 peterson 28 37 ↓ 9 ↑ 24.32
26 pingpong 28 28 – 0 – 0.00
27 pool 9 9 – 0 – 0.00
28 rax 31 31 – 0 – 0.00
29 readerswriters 1,324 1,339 ↓ 15 ↑ 1.12
30 replicatedcasestudies 104 104 – 0 – 0.00
31 rvexample 76 92 ↓ 16 ↑ 17.39
32 sharedobject 3 8 ↓ 5 ↑ 62.50
33 sharedpooldatasource 4 5 ↓ 1 ↑ 20.00
34 simple 12 18 ↓ 6 ↑ 33.33
35 store 23 28 ↓ 5 ↑ 17.86
36 transfer 2 2 – 0 – 0.00
37 waitnotify 1,159 1,456 ↓ 297 ↑ 20.40
38 Weblech 1,124 2,297 ↓ 1,173 ↑ 51.07

to the total number of times of constraint solving of J-MCR. GC-MCR constraint-solving time
and J-MCR constraint-solving time represent the total time taken by the constraint solver in
detecting the first concurrent bug of a test program with GC-MCR and J-MCR, respectively.
The reduced solving time represents the reduced time of a constraint solver in constraint solving
with GC-MCR, compared with the total time of the solver in constraint solving with J-MCR.
The percentage of reduced solving time represents the percentage of reduced solving time to
the total constraint-solving time of J-MCR. GC-MCR constraint-filtering time represents the
total time consumed in constraint filtering and reduction required by GC-MCR to detect the
first concurrent bug of a test program. The percentage of filtering-solving time represents the
percentage of GC-MCR constraint-filtering time to J-MCR constraint-solving time.

According to Tables 2 and 3, firstly, compared with J-MCR, GC-MCR has a smaller number
of times of constraint solving in most test programs. Using GC-MCR can reduce the number
of times of constraint solving by about 20% on average, with a maximal reduction of 71.43%.



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 285

Table 3 Comparison of constraint-solving time between GC-MCR and J-MCR

ID Test program

GC-MCR
constraint-

solving
time (ms)

J-MCR
constraint-

solving
time (ms)

Reduced
solving

time (ms)

Percentage
of reduced

solving
time (%)

GC-MCR
constraint-
filtering

time (ms)

Percentage
of filtering-

solving
time (%)

1 account 794 1,029 ↓ 235 ↑ 22.84 15 1.46
2 airline 304,448 360,345 ↓ 55,897 ↑ 15.51 246 0.07
3 alarmclock 3,658,195 3,880,957 ↓ 222,762 ↑ 5.74 3,206 0.08
4 allocation 2,278 2,646 ↓ 368 ↑ 13.91 60 2.27
5 array 56,899 98,283 ↓ 41,384 ↑ 42.11 272 0.28
6 bakery 8,860 21,655 ↓ 12,795 ↑ 59.09 95 0.44
7 boundedbuffer 1,011 1,373 ↓ 362 ↑ 26.37 38 2.77
8 bubblesort 48,876 62,142 ↓ 13,266 ↑ 21.35 443 0.71
9 checkfield 289 757 ↓ 468 ↑ 61.82 21 2.77
10 clean 7,236 11,049 ↓ 3,813 ↑ 34.51 64 0.58
11 consistency 544 896 ↓ 352 ↑ 39.29 29 3.24
12 counter 28,457 33,786 ↓ 5,329 ↑ 15.77 82 0.24
13 critical 172 232 ↓ 60 ↑ 25.86 12 5.17
14 cyclic 23,573 27,273 ↓ 3,700 ↑ 13.57 70 0.26
15 datarace 353 1,158 ↓ 805 ↑ 69.52 31 2.68
16 deadlock 93 117 ↓ 24 ↑ 20.51 7 5.98
17 dekker 77,291 154,573 ↓ 77,282 ↑ 50.00 70 0.05
18 dirkaccount 101,272 216,110 ↓ 114,838 ↑ 53.14 1,098 0.51
19 fileappender 21,218 29,786 ↓ 8,568 ↑ 28.77 220 0.74
20 hashcode 970 2,374 ↓ 1,404 ↑ 59.14 36 1.52
21 lamport 22,329 38,688 ↓ 16,359 ↑ 42.28 86 0.22
22 mergesort 245,428 347,597 ↓ 102,169 ↑ 29.39 11,404 3.28
23 numberaxis 188,382 265,010 ↓ 76,628 ↑ 28.92 3,593 1.36
24 peruserpooldatasource 1,040 3,644 ↓ 2,604 ↑ 71.46 17 0.47
25 peterson 10,905 17,111 ↓ 6,206 ↑ 36.27 34 0.20
26 pingpong 8,918 13,409 ↓ 4,491 ↑ 33.49 28 0.21
27 pool 514 622 ↓ 108 ↑ 17.36 14 2.25
28 rax 11,302 16,625 ↓ 5,323 ↑ 32.02 58 0.35
29 readerswriters 220,750 322,420 ↓ 101,670 ↑ 31.53 2,823 0.88
30 replicatedcasestudies 16,219 29,711 ↓ 13,492 ↑ 45.41 133 0.45
31 rvexample 4,512 7,548 ↓ 3,036 ↑ 40.22 30 0.40
32 sharedobject 224 562 ↓ 338 ↑ 60.14 15 2.67
33 sharedpooldatasource 477 1,244 ↓ 767 ↑ 61.66 19 1.53
34 simple 689 1,580 ↓ 891 ↑ 56.39 22 1.39
35 store 2,165 3,037 ↓ 872 ↑ 28.71 46 1.51
36 transfer 153 194 ↓ 41 ↑ 21.13 16 8.25
37 waitnotify 108,400 179,769 ↓ 71,369 ↑ 39.70 142 0.08
38 Weblech 207,126 406,561 ↓ 199,435 ↑ 49.05 497 0.12

Moreover, for test programs with fewer constraint solving under J-MCR, the proportions of the
reduced number of times of constraint solving after using GC-MCR are higher. Secondly, as
GC-MCR reduces not only the number of times of constraint solving of most test programs
but also the constraint expressions of a few test programs whose number of times of constraint
solving is not reduced, the constraint-solving time of GC-MCR is less than that of J-MCR.
Compared with J-MCR, GC-MCR can reduce computational resources for constraint solving
by about 37% on average, with a maximum reduction of 71.46%. Thirdly, the time required by
GC-MCR to filter and reduce constraints is much less than the constraint-solving time reduced
by using GC-MCR, maximally accounting for only 8% of J-MCR constraint-solving time. From
the above, the time overhead of constraint reduction and filtering based on directed graphs
is much less than that of solving conflicting constraints with the solver. Thus, filtering and
reducing constraint expressions in advance can effectively reduce the number of calls of the



286 International Journal of Software and Informatics, 2023, 13(3)

constraint solver to save the constraint-solving time of programs and computational resources
of the constraint solver.

Further analysis shows that test programs with a large number of times of constraint solving
under J-MCR can be divided into two types according to their characteristics: test programs
with many threads and those with relatively few threads but many read-write events to the same
variable in each thread. The former need a lot of constraint solving due to many threads and
thread interleavings. When using GC-MCR, it will judge whether read-write constraints conflict
after fixing the execution order of threads. Fixing the execution order of threads can help judge
conflicts more completely to filter out more constraints, thus yielding a better effect on the
concurrent bug detection of GC-MCR. As the latter have few threads but many read-write events
to the same variable, even if the execution order of threads is fixed, order combinations of many
read-write events still hold. For this reason, using GC-MCR may not necessarily filter out many
constraints, resulting in an unstable effect of constraint filtering. Further research can be carried
out to solve this problem.

RQ2: Can GC-MCR effectively reduce the time of concurrent bug detection and improve
the efficiency of exploring the state space of concurrent programs?

In response to RQ2, this study systematically applies GC-MCR to each test program and
counts the time taken to detect the first concurrent bug, so as to check the difference between the
two methods. This study compares GC-MCR with J-MCR. Test results are shown in Table 4.
In the table, the average execution time of GC-MCR and that of J-MCR represent the average
time required to detect the first concurrent bug in a test program by using GC-MCR and J-MCR,
respectively. The difference in program execution time represents the difference between the
execution time of a test program when using J-MCR and that of the test program when GC-MCR
is used. The percentage of performance improvement represents the percentage of difference in
program execution time to the average execution time of J-MCR.

From Table 4, firstly, compared with J-MCR, GC-MCR with constraint filtering and reduc-
tion can effectively reduce the time of concurrent bug detection. It can reduce the total calling
time by 34.01% on average, indicating that the overall performance of a program is improved by
34.01% on average. Secondly, Table 2 shows that the percentage of reduced constraint solving
is not proportional to that of performance improvement. Thirdly, for test programs with more
average execution time under J-MCR, namely, those with a larger number of times of constraint
solving when J-MCR is used, the use of GC-MCR for constraint filtering and reduction will
improve their performance. Fourthly, for test programs with no constraint being filtered, us-
ing GC-MCR to reduce their constraints can also reduce program execution time to improve
performance. In particular, in the real-world application Weblech, the conclusions obtained in
response to RQ1 and RQ2 are still valid. This further verifies the effectiveness of GC-MCR,
indicating that GC-MCR is able to detect concurrent bugs in concurrent programs with large
state space and is applicable to real-world application software.

The average execution time of GC-MCR consists of three parts: constraint filtering and
reducing time, constraint solving time, and program scheduling time. From further analysis,
according to Table 3, the time overhead of filtering and reducing constraints is much less than
that of solving conflicting constraints by the solver. Thus, once there are filterable or reducible
constraints, the time overhead of constraint solving can be reduced (constraint solving includes
constraint filtering and reduction). Then, based on the reduction in total time of concurrent
bug detection of GC-MCR, this study finds that the reduced time overhead of constraint solving
is much more than variations in the time overhead of program scheduling. This means that
the reduction in bug detection time mainly comes from the difference between the reduced
time overhead of constraint solving and the time overhead variation of filtering and program



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 287

Table 4 Comparison of average execution time between GC-MCR and J-MCR

ID Test program
Average

execution time
of GC-MCR (ms)

Average
execution time
of J-MCR (ms)

Difference
in program

execution time (ms)

Percentage
of performance

improvement (%)
1 account 929 1 170 ↓ 241 ↑ 20.60
2 airline 308,183 363,946 ↓ 55,763 ↑ 15.32
3 alarmclock 3,751,189 3,976,459 ↓ 225,270 ↑ 5.67
4 allocation 2,445 2,813 ↓ 368 ↑ 13.08
5 array 57,881 98,859 ↓ 40,978 ↑ 41.45
6 bakery 9,104 21,856 ↓ 12,752 ↑ 58.35
7 boundedbuffer 1,143 1,509 ↓ 366 ↑ 24.25
8 bubblesort 49,650 62,486 ↓ 12,836 ↑ 20.54
9 checkfield 400 811 ↓ 411 ↑ 50.68
10 clean 7,380 11,248 ↓ 3,868 ↑ 34.39
11 consistency 699 982 ↓ 283 ↑ 28.82
12 counter 28,581 33,977 ↓ 5,396 ↑ 15.88
13 critical 271 320 ↓ 49 ↑ 15.31
14 cyclic 23,361 27,442 ↓ 4,081 ↑ 14.87
15 datarace 595 1,641 ↓ 1,046 ↑ 63.74
16 deadlock 172 243 ↓ 71 ↑ 29.22
17 dekker 78,075 155,317 ↓ 77,242 ↑ 49.73
18 dirkaccount 102,830 218,181 ↓ 115,351 ↑ 52.87
19 fileappender 21,954 30,468 ↓ 8,514 ↑ 27.94
20 hashcode 1,233 2,557 ↓ 1,324 ↑ 51.78
21 lamport 22,791 39,056 ↓ 16,265 ↑ 41.65
22 mergesort 284,283 380,757 ↓ 96,474 ↑ 25.34
23 numberaxis 194,446 271,151 ↓ 76,705 ↑ 28.29
24 peruserpooldatasource 1,560 3,980 ↓ 2,420 ↑ 60.80
25 peterson 11,271 17,240 ↓ 5,969 ↑ 34.62
26 pingpong 9,048 13,640 ↓ 4,592 ↑ 33.67
27 pool 720 850 ↓ 130 ↑ 15.29
28 rax 11,426 16,830 ↓ 5,404 ↑ 32.11
29 readerswriters 224,668 327,420 ↓ 102,752 ↑ 31.38
30 replicatedcasestudies 16,667 30,071 ↓ 13,404 ↑ 44.57
31 rvexample 4,840 7,724 ↓ 2,884 ↑ 37.34
32 sharedobject 330 650 ↓ 320 ↑ 49.23
33 sharedpooldatasource 920 1,590 ↓ 670 ↑ 42.14
34 simple 821 1,669 ↓ 848 ↑ 50.81
35 store 2,310 3,129 ↓ 819 ↑ 26.17
36 transfer 270 330 ↓ 60 ↑ 18.18
37 waitnotify 110,780 182,196 ↓ 71,416 ↑ 39.20
38 weblech 9,296,869 17,532,083 ↓ 8,235,214 ↑ 46.97

scheduling. The reason for this result is that the time overhead of program constraint solving
is much more than that of program scheduling. GC-MCR only filters and reduces constraints,
without changing program scheduling, resulting in the same quantitative relationship between
variations of the two as before.

RQ3: Can GC-MCR guarantee the concurrent bug detection capacity of the existing
method?

In response to RQ3, this study systematically applies GC-MCR to each test program and
collects the type of the first concurrent bug detected, so as to check the difference between the
two methods. Test results are shown in Table 5. In this table, the number of times of GC-MCR
scheduling and the number of times of J-MCR scheduling represent the number of times of
scheduling required to detect a concurrent bug in a test program by using GC-MCR and J-MCR,
respectively. GC-MCR concurrent bug and J-MCR concurrent bug represent concurrent bugs
in a test program detected by GC-MCR and J-MCR, respectively.



288 International Journal of Software and Informatics, 2023, 13(3)

Table 5 Comparison of number of times of effective scheduling between GC-MCR and J-MCR

ID Test program Number of times of scheduling Concurrent bug
GC-MCR J-MCR GC-MCR J-MCR

1 account 3 3 Atomicity Atomicity
2 airline 434 445 DataRace DataRace
3 alarmclock 888 915 DataRace DataRace
4 allocation 4 4 Atomicity Atomicity
5 array 22 22 DataRace DataRace
6 bakery 15 15 Atomicity Atomicity
7 boundedbuffer 1 1 Deadlock Deadlock
8 bubblesort 10 10 DataRace DataRace
9 checkfield 5 5 DataRace DataRace
10 clean 2 2 DataRace DataRace
11 consistency 4 4 Atomicity Atomicity
12 counter 2 2 DataRace DataRace
13 critical 2 2 Atomicity Atomicity
14 cyclic 8 8 DataRace DataRace
15 datarace 3 3 DataRace DataRace
16 deadlock 2 2 Deadlock Deadlock
17 dekker 145 145 Atomicity Atomicity
18 dirkaccount 2 2 Deadlock Deadlock
19 fileappender 3 3 Atomicity Atomicity
20 hashcode 5 5 Atomicity Atomicity
21 lamport 75 75 Atomicity Atomicity
22 mergesort 2 2 DataRace DataRace
23 numberaxis 17 17 Atomicity Atomicity
24 peruserpooldatasource 3 3 DataRace DataRace
25 peterson 5 5 Atomicity Atomicity
26 pingpong 4 4 DataRace DataRace
27 pool 2 2 DataRace DataRace
28 rax 2 2 Deadlock Deadlock
29 readerswriters 10 10 DataRace DataRace
30 replicatedcasestudies 1 1 Deadlock Deadlock
31 rvexample 21 21 DataRace DataRace
32 sharedobject 3 3 DataRace DataRace
33 sharedpooldatasource 1 1 Atomicity Atomicity
34 simple 6 6 Atomicity Atomicity
35 store 2 2 Atomicity Atomicity
36 transfer 2 2 Deadlock Deadlock
37 waitnotify 560 560 DataRace DataRace
38 Weblech 1,096 2,024 DataRace DataRace

According to Table 5, firstly, GC-MCR can correctly detect concurrent bugs in these test
programs, and concurrent bugs detected by GC-MCR and J-MCR are the same. Moreover,
both methods trigger concurrent bugs by the same thread scheduling in most test programs,
indicating that compared with J-MCR, GC-MCR has no loss of capacity to detect concurrent
bugs. In the case of small program state space, randomness affects the exploration of program
concurrent space slightly, showing that compared with J-MCR, GC-MCR can detect concurrent
bugs with the same number of program executions. Secondly, compared with J-MCR, GC-MCR
triggers concurrent bugs through less thread scheduling in the test programs airline, alarmclock,
and weblech. This shows that the influence of randomness on the exploration on the program
concurrent space increases with the increase in the size of program state space and that the
existing method has to explore redundant thread scheduling due to redundant constraints, thus
reducing detection efficiency. By contrast, GC-MCR can detect concurrent bugs through fewer
program executions than J-MCR, effectively filter conflicting constraints, and reduce redundant
ones. In other words, conflicting constraints filtered out by GC-MCR are invalid ones, and the



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 289

reduction of redundant constraints is equally effective and reasonable. Thus, after constraint
filtering and reduction, the completeness of the test framework is not reduced, and no thread
interleaving sequence is missed. This indicates that GC-MCR improves program performance
without missing any test thread sequence. GC-MCR can not only improve the efficiency of
concurrent bug detection but also ensure the completeness of the test framework.

Further analysis shows that GC-MCR uses directed graphs to filter and reduce constraints.
For constraint solving, GC-MCR chooses to either filter or reduce current constraints to obtain
equivalent constraint expressions, with no operation that modifies the results of constraint
solving. Thus, despite randomness in program execution, GC-MCR can still guarantee that its
scheduling schemes are at most those of J-MCR. GC-MCR ensures its completeness and can
guarantee the concurrent bug detection capacity of the existing method.

4 Discussion
This study proposes a method of directed graph-based representation of concurrent con-

straints. On this basis, it designs and implements a concurrent bug detection method, called
GC-MCR concerning constructed constraints. The existing methods build concurrent-program
constraints based on maximal causal models, but with no systematic research on the represen-
tation of concurrent programs. The directed graph-based representation method proposed in
this study optimizes the representation of concurrent program constraints structurally. With
the advantages of directed graph-based representation, unsolvable constraints can be identified
during construction, which reduces the overhead of constraint solving. Moreover, constructed
concurrent-program constraints can be reduced. For the same thread interleaving, GC-MCR can
build more accurate and reduced concurrent program constraints, thus improving the speed of
constraint solving. Therefore, under limited testing resources, the overhead of constraint solving
is reduced, and resources saved in constraint solving are used to explore the state space of
concurrent programs, resulting in an improvement in the efficiency of concurrent bug detection.
The test results also show that GC-MCR detects bugs in concurrent programs more quickly
than the existing methods. However, from the analysis of the test results, the improvement of
GC-MCR on detection efficiency is not stable, with the average execution time improving by
5% to 64%. In addition, advantages in the number of times of scheduling are not obvious. In
this chapter, a discussion will be carried out from three aspects: program state space, causal
models, and concurrent programs.

Performance improvement of GC-MCR is affected by the state space of concur-
rent programs. The state space of concurrent programs increases exponentially with the
increase in the number of both threads and read-write operations in such programs. Meanwhile,
with the growth of the state space of concurrent programs, the number of times of constraint
solving and program scheduling before the detection of concurrent bugs also increases. Ac-
cording to the percentage of improvement in the test results, due to the influence of the program
state space, the improvement of GC-MCR in the number of times of constraint solving and the
average time is not stable. Under the existing maximal causal model, more read-write operations
of a program result in more effective concurrent constraints constructed. As can be seen from
Table 2, the reduced number of times of constraint solving increases with the increase in the
program state space, while the increase in constraint percentage slows down due to the increase
in the space of effective concurrent constraints. In addition, compared with the existing method,
the constraint construction method based on directed graphs designed in this study needs to
re-represent and analyze constraints. Therefore, with the growth of the program state space, the
overhead of the directed graph-based representation also increases accordingly. As can be seen
from Table 4, due to the excessive time consumption of constraint solving, the overhead of the



290 International Journal of Software and Informatics, 2023, 13(3)

directed graph-based representation is still lower than that of constraint solving by the existing
method.

The number of times of scheduling is limited by maximal causal models. In this
study, the representation of concurrent programs based on directed graphs is proposed. On this
basis, a construction method of concurrent program constraints is put forward. Previous studies
have shown that maximal causal models can maximally reduce the exploration of redundant
state space of concurrent programs. Therefore, the core model for constraint construction in this
study is also based on a maximal causal model. Table 5 shows that GC-MCR has no obvious
advantage over the existing method in terms of effective scheduling sequences, mainly due to
the use of the same maximal causal model. The advantage of GC-MCR is that the method can
generate concurrent constraints conforming to maximal causal models more effectively, reduce
the overhead of constraint solving, and then detect concurrent bugs more quickly.

Relationship between evaluation data and concurrent test programs. In this study,
indexes used to evaluate the concurrent bug detection capacity of GC-MCR and J-MCR include
the number of times of constraint solving, average execution time, constraint-filtering time, and
number of times of scheduling. This study is based on maximal causal models, and the number
of times of constraint solving, constraint-filtering time, and number of times of scheduling are all
limited to the maximal causal model. Therefore, the three indexes are all related to the number
of threads in concurrent test programs and the number of read-write operations to variables
in different threads. The average execution time is not only related to the number of times of
constraint solving, constraint filtering time, and number of times of scheduling but also affected
by hardware configuration and execution speed. As both average execution time and number
of times of scheduling can directly and comprehensively evaluate concurrent bug detection of
methods, they are taken as the evaluation indexes in this study.

4.1 Analysis of factors affecting effectiveness
Factors that may affect the effectiveness of the test results in this study are mainly analyzed

as follows.
Analysis of internal effectiveness. In view of the complexity of implementing the

method proposed in this study, the internal factor that may affect the effectiveness of the test
results is the correctness of the code implementation of this method. In order to reduce the
influence of code implementation errors on the test results of this study, the related technologies
used in this study all employ mature third-party frameworks, such as ASM[24] and Z3[20].
Moreover, this study refers to code implementation of the existing research results, such as
MCR[18] and CovCon[25] and adopts the mode of peer review in coding, thus ensuring the
correctness of code implementation to the greatest extent.

Analysis of external effectiveness. Three main factors affect the generality of the test
results in this study. The first factor is the representativeness of the datasets used in this study.
In order to ensure the effectiveness of conclusions, this study employs 27 concurrent datasets
commonly used in the research on concurrent bug detection. Such datasets cover common types
of concurrent bugs. As the constraint solver Z3 this study relies on is a CPU-intensive tool,
the second factor is the consistency of the test platform. In order to reduce the influence of the
test platform on the test results, all the tests are carried out on the same platform and repeated
many times to eliminate the influence of possible randomness on the test results. The third
factor is the representativeness of the contrast method used in this study. This study chooses
to verify the effectiveness of GC-MCR in Java programs. In comparison, other concurrent test
methods, such as the active test methods based on saturated coverage, Maple[26] and IDAT[27],
as well as multiple concurrent test methods based on CBMC[28–30], are all proved effective in



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 291

C programs. SeqCheck[23] detects concurrent bugs in Java programs by modeling program
branch information and predicting the feasibility of event sequences. However, its source code
is not disclosed. Re-implementation of the above work in Java programs will be costly, and the
correctness of re-implemented programs cannot be guaranteed. Moreover, J-MCR has verified
its advancement and representativeness in the latest research work. Therefore, this study selects
J-MCR for comparison.

Analysis of effectiveness of conclusions. The main factor affecting the effectiveness
of conclusions is the reasonableness of the evaluation indexes used in the test analysis in this
study. In view of this, two commonly used indexes of evaluating the capacity of concurrent bug
detection in the existing research are adopted: time taken to detect the first concurrent bug and
the number of times of scheduling of a concurrent program at the time of the first concurrent bug
being detected. In addition, in order to measure whether GC-MCR can effectively reduce the
number of times of constraint solving, this study introduces the number of times of constraint
solving as an additional evaluation index to further ensure the effectiveness of the conclusions
of this study.

5 Related Work
5.1 Coverage metrics for concurrent programs

Coverage criteria of concurrent programs can be used to quantify the richness of test suites
(for example, whether a program has been tested fully) or provide practical guidance on test-
case generation (for example, as an objective function used in a program fuzzy engine). For
example, HaPSet[31] collects sorting constraints in a program and guides program testing by
analyzing constraints. CovCon[25] extracts method pairs of common executions by analyzing
recorded executions to generate test cases that may cover the uncovered method pairs. TSA[33]

aims to generate thread scheduling to cover uncovered coverage requirements, so as to achieve
high synchronous coverage of concurrent programs. ConSuite[32] statically analyzes a thread
interleaving set and checks program execution records to judge whether a specific thread inter-
leaving is covered and then uses a genetic algorithm to generate test cases that can cover more
thread interleavings. Considering calling context information, AutoConTest[33] calculates cover-
age requirements dynamically and iteratively, generates sequential tests according to sequential
coverage, and packages sequential tests into concurrent ones.

Yang et al.[35] proposed definition-use coverage based on full dual-path coverage. Krena
et al.[36] proposed a method to derive new coverage metrics for testing concurrent software based
on existing dynamic or static analysis methods, such as Eraser[37] and GoldiLocks[38]. These
studies have extended multiple existing coverage metrics of concurrent tests, such as ConcurPairs,
definition-use coverage, and synchronization pair coverage. MAP-Coverage[22] uses memory
access patterns to abstract test executions, measures which memory access patterns are covered,
and then generates test cases that can cover more memory access patterns. MAP-Coverage is
more abstract than thread interleaving coverage and is more relevant to bugs than method-pair
coverage.

5.2 Model checking and constraint solving
In the existing research on concurrent bug detection, model checking[39–41] is often used

to exhaustively explore the thread scheduling space to detect potential concurrent bugs in
programs. For example, CHESS[42] dynamically explores different thread scheduling of a target
program in a context-bounded manner. Shacham et al.[40] build test cases, based on a model
checker, for races reported by the lockset algorithm[9, 43, 44]. However, in the face of exponential
growth of program paths and scheduling space, model checking can hardly be extended to



292 International Journal of Software and Informatics, 2023, 13(3)

large-scale multithreaded programs. For this reason, Huang et al. proposed MCR[18], which
transformed the exploration of state space of concurrent programs into constraint solving, so as
to reduce the exploration of redundant state space of such programs and improve the efficiency
of concurrent bug detection. Similarly, combining constraint solving with verification-condition
generation, STORM[45] detected potential bugs in Windows device drivers by constructing
constraints between globally stored mappings of BoogiePL programs.

Constraint solving mainly depends on SMT or SAT solvers. At present, many efforts have
been made to improve the capacity of solvers[46–48], but the difficulty in constraint solving is still
an urgent problem to be solved. For this reason, Wang et al.[46] proposed accelerating constraint
solving by using decision-making abilities of neural networks based on deep reinforced learning.
Different from the above work, this study proposes a directed graph-based representation method
to build a directed graph of basic constraints in concurrent-program constraints. Then, according
to the directed graph, it filters and reduces concurrent program constraints to improve the speed
of constraint solving and reduce relevant computational resource consumption.

5.3 Bug detection of concurrent programs
Three problems are usually studied in bug detection of concurrent programs: how to

improve detection efficiency, how to improve detection effectiveness, and how to reduce false
detection. The classical methods for concurrent bug detection are happens-before analysis[49, 50]

and lockset algorithms[9, 43, 44], which are widely used to detect bugs in concurrent programs.
For example, RaceChecker[49] is a data-race checker that uses happens-before relations to reduce
infeasible races before reporting potential races to be verified. Eraser[36] proposed a lockset
algorithm to detect bugs in lock-based concurrent programs by monitoring each shared-memory
citation and locking behavior. Lockset’s improvements[9, 43, 44, 51] can reduce overhead and false
detection. Lockset and happens-before analysis can also be combined[38, 52–55]. However, due
to the limitations of static analysis, compared with dynamic concurrent bug detection methods,
lockset algorithms and happens-before analysis often lead to false detection.

False detection means that thread interleavings irrelevant to bugs are detected as errors.
Without executing programs, static detection techniques detect bugs by analyzing source code.
Therefore, checkers cannot correctly determine happens-before information, leading to false
detection. MCR[18] transforms the exploration of the state space of concurrent programs into
constraint solving and then controls program scheduling according to each solving result. Thus,
it can explore the state space of a whole program with the least number of program executions.
ConRacer[56] builds a calling graph by control-flow analysis, searches for alias objects by
context-sensitive alias analysis, and finally reduces false and missed detection by happens-
before analysis. Maple[26] proposed an active test method based on saturated coverage, and
Yue et al.[27] proposed a measure of test-case diversity for multithreaded programs based on
Maple. Alglave et al.[29] proposed a kind of integer differential logic coding, verifying deployed
concurrent system code with the help of bounded model checking. He et al.[28] proposed
an ordering consistency theory applied to multithreaded program verification in SC, realizing
incremental consistency checking, minimum conflict clause generation, and specialized theory
propagation. According to the Event Order Graph (EOG), Yin et al.[30] designed an EOG-based
algorithm for counterexample verification and optimized generation, and it was able to obtain
small but effective optimization constraints. On this basis, they proposed an abstraction and
refinement method for multithreaded C-program verification based on scheduling constraints.
SeqCheck[23] models program branches and predicts the feasibility of event sequences. It first
calculates an event set to determine the feasibility of a sequence, then constructs a graph to
re-sort events in the set, and finally calculates sequential closures in the graph.



Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 293

This study is different from the above work. It not only transforms the exploration of the
state space of concurrent programs into constraint solving but also puts forward a directed-graph-
based representation method to construct complete concurrent-program constraints. Then, by
constraint filtering and reduction, this study reduces the overhead of constraint solving and
improves the efficiency of exploring the state space of concurrent programs.

6 Summary and Prospect
This study constructs constraints based on directed graphs to accelerate constraint solving

of MCR. It processes constraints before calling the constraint solver, splitting and analyzing
read-write constraints. Then, conflicts are detected between these read-write constraints and
program basic constraints. Conflicting constraints are filtered, and redundant ones are reduced,
so as to reduce single-solving time or even the number of calls to the constraint solver and
consumption of relevant computational resources. In this way, the efficiency of exploring all
possible states in concurrent programs can be improved. In this study, GC-MCR is empirically
studied on 38 concurrent test programs. From the test results, under the condition of ensuring
the completeness of scheduling and concurrent-bug detection capacity of MCR, GC-MCR
reduces time consumption of single constraint solving and the number of calls to the constraint
solver, lowers the computational resource consumption of the constraint solver, and improves
the efficiency of exploring the state space of test programs. It is significantly better than the
existing methods.

In future research, it is necessary to add some feasibility relaxation, so as to relax specific
feasibility constraints of branch events by adding feasibility relaxation-related algorithms for
such events and further improve the efficiency of concurrent bug detection without affecting
accuracy.

References
[1] Jiang YY, Xu C, Ma XX, et al. Approaches to obtaining shared memory dependences for dy-

namic analysis of concurrent programs: A survey. Ruan Jian Xue Bao/Journal of Software, 2017,
28(4): 747–763 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5193.htm [doi:
10.13328/j.cnki.jos.005193]

[2] Bo LL, Jiang SJ, Zhang UM, Wang XY, Yu Q. Research progress on techniques for concurrency bug
detection. Computer Science, 2019, 46(5): 13–20 (in Chinese with English abstract).

[3] Su XH, Yu Z, Wang TT, Ma PJ. A survey on exposing, detecting and avoiding concurrency bugs.
Chinese Journal of Computers, 2015, 38(11): 2215–2233 (in Chinese with English abstract).

[4] Putchala MK, Bryant AR. Synchron-ITS: An interactive tutoring system to teach process synchro-
nization and shared memory concepts in an operating systems course. Proc. of the 2016 Int’l Conf. on
Collaboration Technologies and Systems (CTS 2016). 2016. 180–187.

[5] Huang J, Meredith PO, Rosu G. Maximal sound predictive race detection with control flow abstraction.
Proc. of the 2014 ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI 2014). 2014. 337–348.

[6] Park S, Vuduc RW, Harrold MJ. Falcon: Fault localization in concurrent programs. Proc. of the 32nd
ACM/IEEE Int’l Conf. on Software Engineering (ICSE 2010). 2010. 245–254.

[7] Lu GZ, Xu L, Yang YB, Xu BW. Predictive analysis for race detection in software-defined networks.
Science China Information Sciences, 2019, 62(6): 062101:1–062101:20.

[8] Cai Y, Lu Q. Dynamic testing for deadlocks via constraints. IEEE Trans. on Software Engineering,
2016, 42(9): 825–842.

[9] Engler DR, Ashcraft K. RacerX: Effective, static detection of race conditions and deadlocks. Proc. of
the 19th ACM Symp. on Operating Systems Principles (SOSP 2003). 2003. 237–252.

[10] Letko Z, Vojnar T, Krena B. AtomRace: Data race and atomicity violation detector and healer. Proc. of



294 International Journal of Software and Informatics, 2023, 13(3)

the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD
2008), Held in Conjunction with the ACM SIGSOFT Int’l Symp. on Software Testing and Analysis
(ISSTA 2008). 2008.

[11] Huang J, Zhang C, Dolby J. CLAP: Recording local executions to reproduce concurrency failures.
Proc. of the 2013 ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI 2013). 2013. 141–152.

[12] Lu S, Tucek J, Qin F, Zhou YY. AVIO: Detecting atomicity violations via access-interleaving invariants.
IEEE Micro, 2007, 27(1): 26–35.

[13] Clarke EM, Grumberg O, Minea M, Peled D. State space reduction using partial order techniques.
Int’l Journal on Software Tools for Technology Transfer, 1999, 2(3): 279–287.

[14] Flanagan C, Godefroid P. Dynamic partial-order reduction for model checking software. Proc. of the
32nd ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL 2005). 2005.
110–121.

[15] Godefroid P. Partial-order Methods for the Verification of Concurrent Systems—An Approach to the
State-explosion Problem. Springer, 1996.

[16] Mazurkiewicz A. Trace Theory. Petri Nets: Applications and Relationships to Other Models of
Concurrency. Berlin, Heidelberg, 1987. 278–324.

[17] Lamport L. Time, clocks, and the ordering of events in a distributed system. Communications of the
ACM, 1978, 21(7): 558–565.

[18] Huang J. Stateless model checking concurrent programs with maximal causality reduction. Proc. of
the 36th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI 2015).
2015. 165–174.

[19] Serbanuta TF, Chen F, Rosu G. Maximal causal models for sequentially consistent systems. Proc. of
the 3rd Int’l Conf. on Runtime Verification (RV 2012). Revised Selected Papers, 2012. 136–150.

[20] de Moura LM, Bjørner N. Z3: An efficient SMT solver. Proc. of the 14th Int’l Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2008), Held as Part of the Joint
European Conf. on Theory and Practice of Software (ETAPS 2008). 2008. 337–340.

[21] Zhao YQ, Wang Z, Liu S, Sun J, Chen JJ, Chen X. Achieving high MAP-coverage through pattern
constraint reduction. IEEE Trans. on Software Engineering, 2022. [doi: 10.1109/TSE.2022.3144480]

[22] Wang Z, Zhao YQ, Liu S, Sun J, Chen X, Lin HR. MAP-coverage: A novel coverage criterion for testing
thread-safe classes. Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE
2019). 2019. 722–734.

[23] Cai Y, Yun H, Wang JQ, Qiao L, Palsberg J. Sound and efficient concurrency bug prediction. Proc. of
the 29th ACM Joint European Software Engineering Conf. and Symp. on the Foundations of Software
Engineering (ESEC/FSE 2021). 2021. 255–267.

[24] ASM bytecode analysis framework. http://asm.ow2.org/.

[25] Choudhary A, Lu S, Pradel M. Efficient detection of thread safety violations via coverage-guided
generation of concurrent tests. Proc. of the 39th Int’l Conf. on Software Engineering (ICSE 2017).
2017. 266–277.

[26] Yu J, Narayanasamy S, Pereira C, Pokam G. Maple: A coverage-driven testing tool for multithreaded
programs. Proc. of the ACM Int’l Conf. on Object Oriented Programming Systems Languages and
Applications (OOPSLA 2012). 2012. 485–502.

[27] Yue H, Wu P, Chen T-Y, Lv Y. Input-driven active testing of multi-threaded programs. Proc. of the
2015 Asia-Pacific Software Engineering Conf. (APSEC). 2015. 246–253.

[28] He F, Sun ZH, Fan HY. Satisfiability modulo ordering consistency theory for multi-threaded program
verification. Proc. of the 42nd ACM SIGPLAN Int’l Conf. on Programming Language Design and
Implementation (PLDI 2021). 2021. 1264–1279. [doi: 10.1145/3453483.3454108]

[29] Alglave J, Kroening D, Tautschnig M. Partial orders for efficient bounded model checking of concurrent
software. Proc. of the 25th Int’l Conf. on Computer Aided Verification (CAV 2013). 2013. 141–157.

[30] Yin L, Dong W, Liu WW, Wang J. On scheduling constraint abstraction for multi-threaded program
verification. IEEE Trans. on Software Engineering, 2020, 46(5): 549–565.

10.1109/TSE.2022.3144480
http://asm.ow2.org/
10.1145/3453483.3454108


Li SC, et al. GC-MCR: Directed graph constraint-guided concurrent bug detection method 295

[31] Wang C, Said M, Gupta A. Coverage guided systematic concurrency testing. Proc. of the 33rd Int’l
Conf. on Software Engineering (ICSE 2011). 2011. 221–230.

[32] Hong S, Ahn J, Park S, Kim M, Harrold MJ. Testing concurrent programs to achieve high synchro-
nization coverage. Proc. of the Int’l Symp. on Software Testing and Analysis (ISSTA 2012). 2012.
210–220.

[33] Steenbuck S, Fraser G. Generating unit tests for concurrent classes. Proc. of the 6th IEEE Int’l Conf.
on Software Testing, Verification and Validation (ICST 2013). 2013. 144–153. [doi: 10.1109/ICST.
2013.33]

[34] Terragni V, Cheung S-C. Coverage-driven test code generation for concurrent classes. Proc. of the 38th
Int’l Conf. on Software Engineering (ICSE 2016). 2016. 1121–1132. [doi: 10.1145/2884781.2884876]

[35] Yang CD, Souter AL, Pollock LL. All-du-path coverage for parallel programs. Proc. of the ACM
SIGSOFT Int’l Symp. on Software Testing and Analysis (ISSTA’98). 1998. 153–162.

[36] Krena B, Letko Z, Vojnar T. Coverage metrics for saturation-based and search-based testing of con-
current software. Proc. of the 2nd Int’l Conf. on Runtime Verification (RV 2011). LNCS 7186, 2012.
177–192.

[37] Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T. Eraser: A dynamic data race detector for
multithreaded programs. ACM Trans. on Computer Systems, 1997, 15(4): 391–411.

[38] Choi JD, Lee K, Loginov A, O’Callahan R, Sarkar V, Sridharan M. Efficient and precise datarace
detection for multithreaded object-oriented programs. Proc. of the 2002 ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI 2002). 2002. 258–269. [doi: 10.1145/
512529.512560]

[39] Musuvathi M, Qadeer S, Ball T, Basler G. Finding and reproducing heisenbugs in concurrent programs.
Proc. of the 8th USENIX Symp. on Operating Systems Design and Implementation (OSDI 2008). 2008.
267–280.

[40] Shacham O, Sagiv M, Schuster A. Scaling model checking of dataraces using dynamic information.
Journal of Parallel and Distributed Computing, 2007, 67(5): 536–550.

[41] Khurshid S, Pasareanu CS, Visser W. Test input generation with Java PathFinder: Then and now
(invited talk abstract). Proc. of the 27th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis
(ISSTA 2018). 2018. 1–2.

[42] Musuvathi M, Qadeer S. Iterative context bounding for systematic testing of multithreaded programs.
Proc. of the ACM SIGPLAN 2007 Conf. on Programming Language Design and Implementation
(PLDI 2007). 2007. 446-455.

[43] Nishiyama H. Detecting data races using dynamic escape analysis based on read barrier. Proc. of the
3rd Virtual Machine Research and Technology Symp. 2004. 127–138.

[44] Elmas T, Qadeer S, Tasiran S. Precise race detection and efficient model checking using locksets.
Technical Report, MSR-TR-2005-118, Microsoft Research Microsoft Corporation, 2005.

[45] Lahiri SK, Qadeer S, Rakamaric Z. Static and precise detection of concurrency errors in systems code
using SMT solvers. Proc. of the 21st Int’l Conf. on Computer Aided Verification (CAV 2009). 2009.
509–524.

[46] Wang F, Rompf T. From gameplay to symbolic reasoning: Learning SAT solver heuristics in the style
of Alpha (Go) zero. arXiv:1802.05340v1, 2018.

[47] Bello I, Pham H, Le QV, Norouzi M, Bengio S. Neural combinatorial optimization with reinforcement
learning. Proc. of the 5th Int’l Conf. on Learning Representations (ICLR 2017). 2017.

[48] Xu L, Hoos H, Leyton-Brown K. Predicting satisfiability at the phase transition. Proc. of the 26th
AAAI Conf. on Artificial Intelligence. 2012.

[49] Lu K, Wu Z, Wang XP, Chen C, Zhou X. RaceChecker: Efficient identification of harmful data races.
Proc. of the 23rd Euromicro Int’l Conf. on Parallel, Distributed, and Network-based Processing (PDP
2015). 2015. 78–85.

[50] Perkovic D, Keleher PJ. Online data-race detection via coherency guarantees. Proc. of the 2nd USENIX
Symp. on Operating Systems Design and Implementation (OSDI 1996). 1996. 47–57.

[51] von Praun C, Gross TR. Object race detection. Proc. of the 2001 ACM SIGPLAN Conf. on Object-

10.1109/ICST.2013.33
10.1109/ICST.2013.33
10.1145/2884781.2884876
10.1145/512529.512560
10.1145/512529.512560


296 International Journal of Software and Informatics, 2023, 13(3)

oriented Programming Systems, Languages and Applications (OOPSLA 2001). 2001. 70–82.

[52] Yu Y, Rodeheffer T, Chen W. RaceTrack: Efficient detection of data race conditions via adaptive
tracking. Proc. of the 20th ACM Symp. on Operating Systems Principles (SOSP 2005). 2005. 221–
234.

[53] von Praun C, Gross TR. Static conflict analysis for multi-threaded object-oriented programs. Proc.
of the ACM SIGPLAN 2003 Conf. on Programming Language Design and Implementation (PLDI
2003). 2003. 115–128.

[54] Elmas T, Qadeer S, Tasiran S. Goldilocks: A race and transaction-aware Java runtime. Proc. of the
ACM SIGPLAN 2007 Conf. on Programming Language Design and Implementation (PLDI 2007).
2007. 245–255.

[55] Pozniansky E, Schuster A. MultiRace: Efficient on-the-fly data race detection in multithreaded C++
programs. Concurrency and Computation Practice and Experience, 2007, 19(3): 327–340.

[56] Zhang Y, Liu H, Qiao L. Context-sensitive data race detection for concurrent programs. IEEE Access,
2021, 9: 20861–20867.

Shuochuan Li, master’s degree
candidate. His research interests
include concurrent bug detection
and system software analysis.

Yingquan Zhao, Ph.D. candi-
date. His research interests in-
clude compiler testing, JVM test-
ing, and concurrency testing.

Zan Wang, Ph.D., associate
professor. His research interests
inlude software testing and ma-
chine learning.

Haichi Wang, Ph.D. candidate.
His research interest is system
software analysis.

Mingxu Ma, bachelor. His
research interest is concurrency
testing.

Haoyu Wang, master’s degree
candidate. His research interests
include concurrent bug detection
and compiler testing.

Xiang Chen, Ph.D., associate
professor, master’s supervisor.
His research interests include in-
telligent software engineering,
software warehouse mining, and
software testing and mainte-
nance.


	1 Background Knowledge
	1.1 MCM
	1.2 MCR
	1.3 Construction and solving of constraints

	2 GC-MCR
	2.1 Research motivation
	2.2 Description of the method
	2.2.1 Overall framework: Introduction to input, output, and overall process
	2.2.2 Reconstruction of basic constraints based on directed graph
	2.2.3 Analysis and splitting of read-write constraints
	2.2.4 Reduction of constraint expressions


	3 Test Design and Result Analysis
	3.1 Research questions
	3.2 Test configuration
	3.3 Result analysis

	4 Discussion
	4.1 Analysis of factors affecting effectiveness

	5 Related Work
	5.1 Coverage metrics for concurrent programs
	5.2 Model checking and constraint solving
	5.3 Bug detection of concurrent programs

	6 Summary and Prospect
	Shuochuan Li
	Yingquan Zhao
	Zan Wang
	Haichi Wang
	Mingxu Ma
	Haoyu Wang
	Xiang Chen


