Paper:
Machining of Inconel 718 with Lubricant-Coated Tool
Hiroshi Usuki*, Kazutake Uehara*, Masakazu Isaka**,
and Kazuyuki Kubota***
*Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan
**Yasu Plant R&D, Hitachi Tool Engineering, Ltd., 35-2 Mikami Yasu-shi, Shiga 520-2323, Japan
***Narita Plant R&D, Hitachi Tool Engineering, Ltd., 13-2 Shin-izumi, Narita-shi, Chiba 286-0825, Japan
- [1] M. Okada, A. Hosokawa, R. Tanaka, and T. Ueda, “Cutting Characteristics of Coated Carbide Tools in Hardmilling : – Influence of Coating Film and Base Material of Coated Carbide Tool –,” JSPE, Vol.75, No.8, pp. 979-983, 2009 (in Japanese).
- [2] T. Makiyama, K. Sekiya, K. Yamada, and Y. Yamane, “Development of a mist-sensor for MQL machining and effects of pattern of jetted oil mist on drill wear,” Journal of the Japan Society of Grinding Engineers, Vol.52, No.9, pp. 525-530, 2008.
- [3] H. Sasahara, M. Kawasaki, and M. Tsutsumi, “Helical Feed Milling with MQL for Boring of Aluminum Alloy,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.2, No.6, pp. 1030-1040, 2008.
- [4] H. Usuki, K. Sato, and S. Furuya, “High Speed Dry End Milling of Titanium Alloys with Coated Carbide Tool,” JSPE, Vol.71, No.4, pp. 491-495, 2005 (in Japanese).
- [5] D. G. Thakur, B. Ramamoorthy, and L. Vijayaraghavan, “Some Investigations on High Speed Dry Machining of Aerospace Material Inconel 718 Using Multicoated Carbide Inserts,” Materials and Manufacturing Processes, Vol.27, No.10, pp. 1066-1072, 2012.
- [6] Y. Su, N. He, L. Li, and X. L. Li, “An Experimental Investigation of Effects of Cooling/lubrication Conditions on Tool Wear in Highspeed End Milling of Ti-6Al-4V,” WEAR, Vol.261, Nos.7-8, pp. 760-766, 2006.
- [7] L. Ning, S. C. Veldhuis, and K. Yamamoto, “Investigation of Nanostructured PVD Coatings for Dry High-speed Machining,” Machining Science and Technology, Vol.11, No.1, pp. 45-59, 2007.
- [8] Y. S. Liao, H.M. Lin, and Y. C. Chen, “Feasibility Study of theMinimum Quantity Lubrication in High-speed End Milling of NAK80 Hardened Steel by Coated Carbide Tool,” International Journal of Machine Tools & Manufacture, Vol.47, No.11, pp. 1667-1676, 2007.
- [9] X. J. Cai, Z. Q. Liu, M. Chen, and Q. L. An, “An Experimental Investigation on Effects ofMinimum Quantity Lubrication Oil Supply Rate in High-speed End Milling of Ti-6Al-4V,” Proceedings of the Institution ofMechanical Engineers Part B – Journal of Engineering Manufacture, Vol.226, A11, pp. 1784-1792, 2012.
- [10] T. Ishikawa, F. Obata, and K. Inoue, “Wear Mechanism of TiSiNCoated Cutting Tools on High-Speed Cutting of Hardened Die Steel,” JSPE, Vol.75, No.12, pp. 1439-1443, 2009.
- [11] K. Kubota, “Development of TiBON coating with low friction resistance under high temperature,” FC Report 22, No.4 (Spring), pp. 90-93, 2004 (in Japanese).
- [12] M. Isaka, H. Usuki, S. Sakamoto, and K. Kubota, “Machining of Difficult-to-cut Materials with a Lubricant Coated Tool,” Key Engineering Materials, Vols.407-408, pp. 53-56, 2009.
- [13] M. Ishii and T. Kikkawa, “Solid Lubricant – Bron Nitride –,” Journal of Japan Society of Lubrication Engineers, Vol.19, No.10, pp. 702-704, 1974.
- [14] Q. Guo, K. Okada, and Y. Kimura, “Effect of BN on Lubricating Oil and Grease,” Seisan-kenkyu, Vol.46, No.4, pp. 242-245, 1994 (in Japanese).
- [15] H. Usuki, K. Sato, M. Moriya, K. Iwata, T. Sawada, K. Kubota, and N. Shima, “End Milling of Difficult-to-cut Materials by Atmosphere Control,” JSPE, Vol.71, No.9, pp. 1120-1124, 2005 (in Japanese).
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.