Nothing Special   »   [go: up one dir, main page]

single-au.php

IJAT Vol.5 No.3 pp. 439-444
doi: 10.20965/ijat.2011.p0439
(2011)

Paper:

Residual Stress Model for Speed-Stroke Grinding of Hardened Steel with CBN Grinding Wheels

Michael Duscha, Fritz Klocke, and Hagen Wegner

Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, 19 Steinbachstraße, Aachen 52074, Germany

Received:
February 1, 2011
Accepted:
March 6, 2011
Published:
May 5, 2011
Keywords:
speed-stroke grinding, residual stress, process modelling, CBN grinding wheel
Abstract
To be competitive, production industry demands efficient, high-quality finishing processes – requirements speed-stroke grinding promises to meet. This paper presents a preliminary residual stress model for speedstroke grinding based on superposition of mechanical and thermal analyses as verified using analogical processes. Comparison showed that results for a residual stress model and grinding experiments correlated well. This model enables robust process control achieving compressive residual stress, itself an important surface integrity feature.
Cite this article as:
M. Duscha, F. Klocke, and H. Wegner, “Residual Stress Model for Speed-Stroke Grinding of Hardened Steel with CBN Grinding Wheels,” Int. J. Automation Technol., Vol.5 No.3, pp. 439-444, 2011.
Data files:
References
  1. [1] P. Oppelt, M. Fischbacher, and C. Zeppenfeld, “Process Relations and Machine Requirements on Speed Stroke Grinding of turbine Materials,” Fortschritt-Berichte VDI Reihe 2 Fertigungstechnik, Proc. of the 1st European Conf. on Grinding. VDI Verlag Duesseldorf, pp. 1-1-1-17, 2003.
  2. [2] C. Zeppenfeld, “Schnellhubschleifen von γ-Titanaluminiden (Speed Stroke Grinding of γ -Titanium Aluminides),” PhD-Thesis, RWTH Aachen University, 2005.
  3. [3] Z. Nachmani, “Randzonenbeeinflussung beim Schnellhubschleifen (Surface Layer Influence during Speed Stroke Grinding),” PhDThesis RWTH Aachen University, 2008.
  4. [4] E. Brinksmeier, “Prozeß- und Werkstückqualität in der Feinbearbeitung (Process and Workpiece Quality in Fine Machining),” Postdoctoral lecture qualification, University of Hannover, 1991.
  5. [5] E. Brinksmeier and T. Brockhoff, “Utilization of Grinding Heat as a New Heat Treatment Process,” Annals of the CIRP, Vol.1, No.45, pp. 283-286, 1996.
  6. [6] T. Brockhoff, “Schleifprozesse zur Martensitischen Randschichthärtung von Stählen (Grinding Processes as Martensitic Surface Layer Hardening of Steels),” PhD-Thesis, Bremen University, 1999.
  7. [7] W. König, K. Steffens, and H. Lauer-Schmaltz, “Spanbildungstheorie für das Schleifen (Theory of Chip Formation for Grinding),” Industrieanzeiger, No.64, 1978.
  8. [8] W. Lortz, “Schleifscheibentopographie und Spanbildungsmechanismen beim Schleifen (Grinding Wheel Topography and Mechanism of Chip Formation During Grinding),” PhD Thesis, RWTH Aachen University, 1975.
  9. [9] J. Leopold, “Modellierung der Spanbildung: Experiment (Modelling of Chip Formation: Experiments),” Research report, Technische Hochschule Karl-Marx-Stadt, 1980.
  10. [10] G. Kassen, “Beschreibung der elementaren Kinematik des Schleifvorganges (Description of Elemantary the Kinematics of Grinding),” PhD-Thesis, RWTH Aachen University, 1969.
  11. [11] H. K. Tönshoff, J. Peters, I. Inasaki, and T. Paul, “Modelling and Simulation of Grinding Processes,” Annals of the CIRP, Vol.41, No.2, pp. 677-688, 1992.
  12. [12] G. Werner, “Kinematik und Mechanik des Schleifprozesses (Kinematic and Mechanic of the Grinding Process),” PhD-Thesis, RWTH Aachen University, 1971.
  13. [13] M. Duscha, H. Wegner, and F. Klocke, “Erfassung und Charakterisierung der Schleifscheibentopographie für die Anwendungsgerechte Prozessauslegung (Characterisation of the GrindingWheel Topography for an Industrial Prozess Design),” Diamond Business, Vol.7, No.29, pp. 28-33, 2009.
  14. [14] S. Malkin, “Grinding Technology: Theory and Application of Machining with Abrasives,” Chichester, Ellis Horwood, 1989.
  15. [15] F. Klocke, “Manufacturing Processes 2,” Berlin, Heidelberg, Springer-Verlag Berlin Heidelberg, 2009.
  16. [16] K. Sato, “An Analytical Study on Grinding Temperature,” Technology Reports of Tohoku University, Vol.21, No.2, Japan, 1957.
  17. [17] M. Dederichs, “Untersuchung der Wärmebeeinflussung des Werkstückes beim Flachschleifen (Investigation of the Thermal Influence on the Workpiece during Surface Grinding),” PhD-Thesis, RWTH Aachen, 1972.
  18. [18] W. B. Rowe, J. A. Pettit, A. Boyle, and J. L. Moruzzi, “Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold,” Annals of the CIRP, No.37, pp. 327-330, 1988.
  19. [19] D. J. Stephenson and T. Jin, “Physical Basics in Grinding,” Proc. of the 1st European Conf. on Grinding, VDI Verlag Duesseldorf, pp. 13-1-13-21, 2003.
  20. [20] S. Malkin and C. Guo, “Thermal Analysis of Grinding,” Annals of the CIRP, Vol.56, No.2, pp. 760-782, 2007.
  21. [21] S. Mader, “Festwalzen von Fan- und Verdichterschaufeln (Deep Rolling of Fan and Compressor Blades),” PhD-Thesis, RWTH Aachen University, 2005.
  22. [22] H. K. Tönshoff, “Abgrenzung der Thermischen und Mechanischen Wirkmechanismen bei der Bildung weißer Schichten (Seperation of Thermal and Mechanical Mechanism for the Formation ofWhite Layers),” DFG TO 156/144, 2003.
  23. [23] J. Rendler and I. Vigness, “Hole-Drilling Strain-Gage Method of Measuring Residual Stresses,” Experimental Mechanics, Vol.6, No.12, pp. 577-586, 1966.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Nov. 19, 2024