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An Ensemble Learning Based Intrusion Detection Model for Industrial

IoT Security

Mouaad Mohy-Eddine, Azidine Guezzaz*, Said Benkirane, Mourade Azrour, and Yousef Farhaoui

Abstract: Industrial Internet of Things (lloT) represents the expansion of the Internet of Things (loT) in industrial
sectors. It is designed to implicate embedded technologies in manufacturing fields to enhance their operations.
However, lloT involves some security vulnerabilities that are more damaging than those of loT. Accordingly, Intrusion
Detection Systems (IDSs) have been developed to forestall inevitable harmful intrusions. IDSs survey the environment
to identify intrusions in real time. This study designs an intrusion detection model exploiting feature engineering and
machine learning for lloT security. We combine Isolation Forest (IF) with Pearson’s Correlation Coefficient (PCC) to
reduce computational cost and prediction time. IF is exploited to detect and remove outliers from datasets. We apply
PCC to choose the most appropriate features. PCC and IF are applied exchangeably (PCCIF and IFPCC). The
Random Forest (RF) classifier is implemented to enhance IDS performances. For evaluation, we use the Bot-loT
and NF-UNSW-NB15-v2 datasets. RF-PCCIF and RF-IFPCC show noteworthy results with 99.98% and 99.99%
Accuracy (ACC) and 6.18's and 6.25 s prediction time on Bot-loT, respectively. The two models also score 99.30%
and 99.18% ACC and 6.71s and 6.87 s prediction time on NF-UNSW-NB15-v2, respectively. Results prove that our

designed model has several advantages and higher performance than related models.

Key words: Industrial Internet of Things (1loT); isolation forest; Intrusion Detection Dystem (IDS); intrusion; Pearson’s
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1 Introduction

The Internet of Things (IoT) represents an extensive
scale network of integrated sensors and activators!!],
serving a pertinent objectivel?!, and does not require
human intervention arbitration*!. Its emergence in
numerous domains amplifies security questions!®.
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Hence, further effort is required to deal with the
newly created threats. Consequently, researchers
suggest conventional tools to support resolving
these issues!’™®!. In recent years, IoT technology
has undergone quick evolution. Subsequently, its
security is a mandatory task to warrant several
services, such as confidentiality, privacy, data, and
availability 1% 11,
protocols and data in IoT, implementing security
mechanisms is becoming challenging!'”!. Node quantity,
low memory capability, processing command, and
energy consumption have severely compromised
security techniques!>?!. The Industrial Internet of
Things (IIoT) denotes linking devices, activators, and
industrial systems to each. This technology gathers
and analyses data to improve the industrial sector
proficiency!'?!. IIoT is measured as an IoT advancement

Due to the heterogeneous utilized
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that aims to increase the computerization level via
incorporating cloud and edge computing!'*!. Similar to
IoT, IIoT security has gained much attention lately!'4.
IIoT security solutions aim to protect devices and
transmitted data by proposing emerging programs
and methods!"!. Industrial environments are mainly
concerned with preventing replay, Denial of Service
(DoS), Distributed DoS (DDoS), and Man-in-The-
Middle (MiTM) attacks!'>!. Therefore, Esfahani et al.[%]
presented a mutual authentication to prevent replay and
MiTM attacks. Yan et al.l'”! proposed a multilevel DDoS
mitigation framework to mitigate DDoS attacks in IIoT.

Moreover, an Intrusion Detection System (IDS) is
implemented to monitor a host or system and detect
normal intrusion instances!!8l. IDSs rely on rules,
signatures, states, or models to distinguish between
normal and intrusion behaviors!!®!. IDSs can be divided
into signature, anomaly, and hybrid detection methods,
which merge both to gain advantages!'”). IDSs are
essential in maintaining networks from alterations and
destructions?*2!1, Lately, Machine Learning (ML) has
become a necessity for building well-performing IDSs.
IDS methods have also captured zero-day attacks
by adopting ML techniques!?>?3!.  Furthermore, ML
methods have improved the Detection Rate (DR) and
Accuracy (ACC) of IDS.

We propose and validate a Network IDS (NIDS)
model for IIoT security. In our proposition, Isolation
Forest (IF)? is integrated to achieve outlier detection.
Pearson’s Correlation Coefficient (PCC) is also applied
to choose the most suitable features for dimensionality
reduction. Then, Random Forest (RF)?*! distinguishes
between normal packets and intrusions through binary
classification. The obtained results indicate that our
model is promising when it is compared with other
previous related propositions. Our model depends on the
Bot-IoT dataset, known for its imbalance, and on the NF-
UNSW-NB15-v2 dataset. The strengths of our model
appear in its capability to overtake the imbalance of the
Bot-IoT dataset, especially when we remove the outliers
and select the relevant features of the newly generated
dataset.

The remainder of the paper is outlined below.
Section 2 provides background on IoT and IIoT, IDSs,
and ML. We also discuss related studies on IDSs,
mainly works incorporating ML technologies. Section
3 introduces our suggested IDS model that is based on
the RF classifier, dimensionality reduction, and feature
selection. Section 4 details the implementation steps of
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our newly designed solution and shows the effectiveness
of the proposed model through a discussion of the
obtained results. Section 5 concludes and suggests future
research topics.

2 Literature Survey

IoT adoption in the industrial sector has given birth to
the new technology IToT!!>-2%1. Hence, it can be defined
as an extensive network connecting many sensors and
actuators implemented in various fields, such as farming,
healthcare, automotive, and smart grid?’!. IIoT presents
different advantages to industrial fields to improve
their efficiencies by allowing them to connect physical
and virtual words. To connect to the Internet, IIoT
can adopt various protocols, such as Message Queue
Telemetry Transport and Long-Range Radio Wide Area
Network!!”!. TIoT architecture (Fig. 1) is similar to IoT
architecture!®®!, It comprises perception, networking,
application, and cloud layers. The first layer refers to
physical components!!®28!. The second layer contains
communication protocols that transport data to the third
layer, which merges, exploits, analyzes, and displays

19.281 " The fourth layer provides
19,28]

data to the end user!
scalability, storage, and comprehensive analytics!

Each IIoT layer is vulnerable to various threats and
attacks. The most known ones are MiTMI!'®, DoS,
DDoS!!"), spoofing, and jamming attacks!'*!>!. To deal
with these attacks, various developers have implemented
IDSs and other programs, such as access control,
authentication systems!'®!, and encryption techniques!®”’.
Specifically, IDSs can be fixed and operated in any
layer!"!. Typically, IDSs can be classified into three
categories: Signature IDS (SIDS), Anomaly IDS (AIDS),
and Hybrid IDS (HIDS). The first one (SIDS) can
capture packets that are transmitted via the network.
Once a packet is captured, it is compared to a database

N

Application layer

(®)
Networking layer

Perception layer

Fig.1 IIoT architecture.
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of recognized attacks!!22:3%-311 Even so, only known
attacks are detected with a low False Alarm Rate
(FAR) and high DR. In addition, the requirement to
frequently add new attacks to the database and the
increasing zero-day attacks have made SIDS ineffective
in various situations. The second one (AIDS) develops
in response to the limits of SIDS. Hence, it can deduce
the typical patterns and classify every irregular or
nonconformity as an intrusion*”!. The third category
(HIDS) is a combination of the first twol'®. Thus, it
increases DR for known attacks and decreases FAR for
unknown ones. Although other IDS types are discussed
in the literature, for instance, host-based IDSs and
Network IDSs (NIDSs)!'3:22! we mentioned two types
of IDS which we are going to define after. The host
IDS is made for insider intrusion detection inside the
host, and NIDS can capture and analyze all packets
transmitted via the network!!®:3!1, NIDS cannot control
high bandwidth and encrypted traffic!'®!. Conversely,
ML represents a subcategory of artificial intelligence,
which attempts to provide machines and computers
the ability to be further precise in predictions without
requiring specific programming!®?!. All ML algorithms
have two key phases: training and testing. In the
first phase, a model learns from the dataset the diverse
patterns that lead to specific results. However, in the
second phase, the model attempts to identify unidentified
instances. ML algorithms can be divided into supervised
and unsupervised learning!®}. Supervised classifiers
are based on the pre-labeled data for training the
model. Conventionally, different supervised classifiers
are implemented to design IDSs, such as Decision
Trees (DT)P4, k-nearest neighbors®>!, Naive Bayes
(NB)B3!, Support Vector Machine (SVM)30:371 RF[381,
and artificial neural network*”). On the contrary,
unsupervised learning uses unlabeled data in the training
phase. Typically, various unsupervised models are used
with IDSs, such as k-means®#2! DBSCAN[*3-441 and
IF*1. Nevertheless, RF> stands among the most
popular supervised learning and central classifiers. The
most significant characteristic of RF is its ability to
process categorical values. RF can achieve high results
in the classification case. It can combine multiple DTs
with a bagging classifier, as it can use the RF!*¢! method
to enhance obtained outcomes. In our classification case,
the RF constructs multiple DTs in the training phase,
and the RF result is the most selected feature by DTs.
Meanwhile, IF?* is an unsupervised learning tree
based anomaly detection algorithm. It is used to identify

anomalous data occurrences by checking how a given
point is distanced from the remainder of the dataset
instead of investigating the regular items. IF operates
effectively with large datasets, as it has a linear time
complexity with a small memory overhead. The purpose
of the procedure is to obtain an anomaly value for every
subgroup of the dataset, measuring the divergence of
the data in question. IF randomly chooses a point, and
a descriptor then evaluates whether it can isolate the
data. When the condition is reached, the algorithm stops.
Otherwise, a new point and a new descriptor are picked
randomly. The PCC algorithm determines the correlation
between two series of data. PCC is used to calculate the
correlation ratio between two variables. It outputs a
value between —1 and 1, in which zero refers to the
absence of correlation and (1, —1) indicates a strong
relationship.

Many related works have been proposed in the
literature. Hence, Zhang et al.*”! proposed an IDS
pretraining Wasserstein generative adversarial NIDS.
They used LightGBM to double train the proposed
model for detecting intrusions in IIoT networks and
Wasserstein’s generative adversarial network with
gradient penalty. After testing the model, important
results were obtained, that is, 99% F1-score and 100%
accuracy when using the NSL-KDD dataset and 90% F1-
score and 96% accuracy after using the CIC-IDS2018
dataset. Kasongo!!”! designed IDS on the basis of
RF, Linear Regression (LR), NB, DT, Extra Trees
(ET), and extreme gradient boosting. They also used
a Genetic Algorithm (GA) to select features and RF on
the fitness function of the GA. For model validation,
the UNSW-NB15 dataset was used. Hence, the model
attained 87.61% accuracy and 0.98 on the Area Under
the Curve (AUC). Furthermore, Raghuvanshi et al.[*®!
employed three algorithms (SVM, RF, and LR) to
propose an IDS for smart farming. To validate their
model, Raghuvanshi et al.*® relied on the NSL-KDD
dataset. The proposed models resulted in 98%, 85%,
and 78% ACC to SVM, RF, and LR, respectively.
Subsequently, Guezzaz et al.l*”! designed an IDS model
on the basis of DT and improved data quality on
NSL-KDD and CIC-IDS2017 datasets. They compared
the obtained results to related models using the same
datasets. They proved that the suggested model had
99.42% and 98.8% ACC with NSL-KDD and CIC-
IDS2017 datasets, respectively. Alhowaide et al.l>"]
proposed an IDS for IoT, which is based on an ensemble
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learning model, and used the model selection method.
They relied on NSL-KDD, UNSW-NB15, BoTNetloT,
and Bot-IoT datasets to evaluate the model. Therefore,
the model achieved 99%, 95%, 100%, and 99% F1-
scores and 100%, 98%, 100%, and 100% Receiver
Operating Characteristic (ROC)-AUC scores when using
NSL-KDD, UNSW-NB15, BoTNetloT, and BoT-IoT
datasets, respectively. Later, Javeed et al.!! proposed
Deep Learning (DL) Software-Defined Networking
(SDN) -enabled smart framework dealing with IIoT area
attacks. The Cu-LSTMGRU + Cu-BLSTM hybrid model
was used to detect threats effectively. Hence, 99.45%
ACC, 99.34% precision, 98.49% recall, and 99.47% F1-
score were obtained. Afterward, Ge et al.’?! designed
an IDS model for IoT by implementing DL. They
developed a binary classifier (bFNN) and multiclass
classifier (mFNN) to detect normal instances and other
attack types. To evaluate their proposition, the BoT-IoT
dataset was loaded. Hereafter, they obtained 99.99%
ACC for mFNN and high ACC with few misclassified
packets for bFNN. In Ref. [53], Malik et al. designed
an NIDS for IoT traffic systems. They applied a Deep
Belief Network (DBN) to perform the intrusion detection
task.

Furthermore, they evaluated the DBN algorithm on
a sample of the TON-IOT-Weather dataset and used a
small number of epochs due to the limited computational
power. Their model scored 86.33% ACC, 78% precision,
90% recall, and 84% F1-score. Alanazi and Aljuhani>*
designed an anomaly-based IDS that can reduce the risk
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of cyberattacks targeting IoT networks. The authors
implemented the ensemble learning method in the
detection phase and feature selection techniques for
feature selection. The experimental outcomes on an
online dataset were 99.984% ACC, 99.982% precision,
99.984% recall, and 99.983% F1-score. In Ref. [55],
Lee et al. proposed a Multiclass classification based
Intrusion Detection Model (M-IDM) in e-health IoT. The
proposed model exploits data from healthcare sensors,
such as electrocardiograms and thermometers. In this
case, a conventional neural network classifies the traffic
into multiple classes. M-IDM obtained 96.5%-96.7%
AUC, 89%-93.7% F1-score, 91.1%—-94.7% precision,
and 84.4%-94.6% recall for 1x10%, 5x10*, and 1x10°
instances. Maseer et al.l’® developed a hybrid DL IDS
for IoT using a weighted DBN. The model integrates a
Gaussian-Bernoulli restricted Boltzmann machine and
a weighted deep neural network. They chose the CIC-
IDS2017 dataset for evaluating the model. Hence, the
obtained results were 99.38% and 99.99% ACC for web
and bot attacks. Table 1 presents a summary of different
models found in the literature.

3 Methodology

In this section, the implemented framework is described.
Our proposition is based on the RF model and uses
feature selection approaches to reduce time consumption.
Hyperparameter tuning and performance measures are
used to achieve the best performing settings for the
proposed approach. Afterward, the newly created dataset

Table 1 A summary table of different models.

Reference Year Dataset Model ACC (%)
NSL-KDD 100
[47] 2021 LightGBM and WGAN-GP
CIC-IDS2018 96
[19] 2021 UNSW-NB15 RF, LR, NB, DT, ET, and XGB 87.61
[48] 2022 NSL-KDD SVM, REF, and linear regression 98, 85, and 78
NSL-KDD 42
[49] 2021 S DT it
CICIDS2017 98.80
NSL-KDD
UNSW-NB15
[50] 2021 MSM -
BoTNetloT
BoT-IoT
[51] 2022 N-BaloT DL model 99.450
FNN -
[52] 2021 BoT-IoT b
mFNN 99.990
[53] 2022 TON-IOT-Weather DBN 86.330
[54] 2022 Real-time dataset Ensemble learning 99.984
[55] 2021 Real healthcare traffic M-IDM -
[56] 2021 CIC-IDS2017 Hybrid DL model 99.380
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is utilized for training the RF classifier.
3.1 Proposed scheme

In general, IDS mechanisms comprise various modules,
such as area data source, preprocessing, decision
core, and response modules'?>3%. In this study, the
implemented model is illustrated in Fig. 2. The main
module of our proposed model is the preprocessing part.
Hence, we take advantage of the PCC algorithm to select
the most relevant features and use IF to detect outliers
on the dataset.

We implement PCC as a feature reduction method
to support model convergence, reduce computation cost
and training time, and improve model performance!®>!,
without any relevant data being lost. Furthermore, IF
is used for detecting outliers on the Bot-IoT dataset
to enhance the power of our model. Hereafter, the
elimination of detected outliers significantly improves
the model performance.

3.2 Solution description

As illustrated in Fig. 2, our suggested model comprises
four phases: preprocessing, data quality, classifier
training, and classification. We convert columns with
string values to numerical ones in the preprocessing
phase to improve the classifier speed. To deal with
large values dominating the results, we use the Z-score
normalization, which is the procedure of standardizing
dataset values. Hence, the standard deviation is one,
and the mean of all the data is 0. The formula used to

calculate new values is detailed in Eq. (1).
A

. (1)
where x represents the original value, u refers to the
data mean, and o is the standard data deviation.

We adjust the model'®! to have the best settings using
various hyperparameters. The execution of the model
training phase on a prepared dataset shows the best
performances. Formerly to decrease large numbers of
datasets, we utilize PCC to look for less interrelated
features and the strong correlation between features and
the target value. PCC calculates the linear correlation

calculated value =
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between every two features and obtains a value between
—1 and 1. According to Formula (2), we retain the
features that produce in a PCC in the range [0.5, —0.5]
between each other or result in a PCC in the range [1,
0.5] and [-0.5, —1]. The usage of PCC steps has a
positive effect on the implementation of a well-organized
classifier aimed at detecting intrusion.

O—feature:>PCCfeature € {([0-5 s _0‘5] (feature, feature))v
(([17 05] Vv [_0'5’ _1])(feature, target))} (2

Our models are trained this way. RF is trained on the
original datasets (called RF). We apply the IF outlier
detector only on the datasets, then on RF (RF-IF).We
performed RF after applying the PCC only (RF-PCC).
RF trains on the generated data after IF, taking the PCC’s
output as input (RF-PCCIF). We perform PCC on the
IF’s output data (RF-IFPCC). We use 10-fold cross-
validation as recommended in Ref. [37] to validate our
proposed model. The 10-fold cross-validation randomly
divides the dataset into ten fragments with identical sizes.
Hence, 90% are served for model training, whereas 10%
are used in the test phase. This process is iterated ten
times to build an effective classifier that has the best
performance and can detect new intrusions.

In the last part of our model, the purpose of the
classifier is to give each instance the target value.
Accordingly, the obtained model permits the detection of
normal and abnormal instances. Thus, the RF algorithm
is used to accomplish this job.

4 Experimental Study

For testing the proposed model’s performance, we use
the measures specified in Sections 4.2 and 4.3.

4.1 Dataset

In previously published works, we discover that several
public datasets were used to evaluate ML-based IDSs!??],
In our case, Bot-IoT® and NF-UNSW-NB15-v2!61]
datasets are loaded for training and validating the
planned model. Details about the used datasets are given

in the following subsections.

Outlier detector

. SN IF

Feature reduction

{e]|(e]|le]

PCC

RO
rt AP

Training pat

. bl
- Data transformation

Feature reduction

pata |— Preprocessing | | !
S —
source » module
module Dataset |
¢ .

| and normalization
- >y

N~ N PCC

Decision
core
module

enerated
data

Outlier detector

(el|(e]| o]

IF

Test part

Fig. 2 Our proposed model architecture.



278

4.1.1 Bot-IoT dataset

Bot-IoT"! is the most popular used dataset, mainly in
research works related to IoT. This dataset is the fruit of
Koroniotis et al.’s work. Koroniotis et al.>®! used a test
bed to create Bot-IoT data in the Research Cyber Range
Lab of UNSW Canberra. The database covers regular
and attack examples with attack instance subgroups,
such as DoS, DDoS, and service scanning. Hence,
the overall saved packets are 73370443 instances
subdivided into 9543 normal traffic and 73 360900
attacks (Table 2). The generated dataset is available in
various formats, such as CSV and Pcap files. In addition,
certain files are disjointed according to classes. Table 2
presents the details about the used dataset, whereas
Table 3 illustrates the 13 Bot-IoT features selected by
PCC, the applied PCC on IF, and 15 by the applied
output of IF on PCC.

4.1.2 NF-UNSW-NB15-v2 dataset

Initially, in 2015, the Research Cyber Range Lab of
UNSW Canberra released the UNSW-NB15 dataset.
Sarhan et al.l%!! believed that the dataset suffers some
limitations, such as dimensional overload and challenges
in evaluating an ML model’s generalization performance
across several NIDS datasets using a specific or
suggested feature set. Thus, they extracted a NetFlow
version of the UNSW-NBI15 called NF-UNSW-NB15.
Two versions are available; the first version is made
up of eight basic NetFlow features, whereas the second

Table 2  Details about Bot-IoT.

noril;r;]ililzrtgces Number of attacks Total
9543 73360 900 73370443
Table 3 List of the selected features from Bot-IoT.
Method PCC PCCIF IFPCC
stime stime stime
flgs_.number  flgs_number flgs_number
saddr saddr saddr
daddr daddr sport
pkts pkts pkts
state_number  state_number dport
Selected el el bytes
feature dur dur sum
stddev stddev min
min min spkts
rate rate dpkts
srate srate sbytes
drate drate TnBPSrcIP
- - TnP_PDstIP

TnP_Per_Dport
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version is composed of 43 extended NetFlow features. In
this study, we exploit the NF-UNSW-NB15-v2 dataset,
which contains 1 623 118 instances in total, out of which

1550712 are normal instances and 72 406 are attacks.

The dataset details are presented in Table 4.

Table 5 illustrates the NF-UNSW-NB15-v2 features
selected by PCC, the applied PCC on IF, and the applied
output of IF on PCC.

4.2 Experiment evaluation

Experimental studies are executed on our personal
computer, which has the following characteristics: an
Intel (R) Core (TM) i5-6200U CPU@2.30 GHz and
12 GB DDR3 on RAM. The installed operating system
is Windows 10 Pro x64-bit. The implementation of our
proposed model and feature engineering is accomplished
under Python v3.9.6.

4.3 Performance metrics

The performance of the proposed model is described
with the usage of usual metrics, such as accuracy,
precision, recall, F1-score, AUC, and False Positive Rate
(FPR).
e Accuracy refers to the ratio of the truly classified
data over all instances of the dataset. It is computed
according to Eq. (3).
TP + TN 3)
TP + TN + FP + FN (
e Precision is the data that are truly detected as
attacks divided by the sum of normal instances and
attacks detected as attacks.

Accuracy = x 100%

Precision = x 100%

T
—_— 4)
TP + FP

e Recall (True Positive Rate (TPR)) represents True
Positives (TPs) divided by the total of TPs and false
positives.

Recall = x 100%

T
—_— (5)
TP + FN

e Fl-score denotes the harmonic mean of the two
previous metrics: recall and precision.

Precision x Recall

Fl-score = 2 x x 100%

6
Precision 4 Recall ©)
e False Positive Rate (FPR) mentions the ratio of

wrongly classified attacks over actual normal instances.

FPR = ———— x 100% 7
TN + FP
Table 4 Statistics of the NF-UNSW-NB15-v2.
Number of normal instances  Number of attacks Total
1550712 72406 1623118
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Table 5 List of selected features from NF-UNSW-NB15-v2.

IFPCC

Method PCC PCCIF
ipv4_src_addr ipv4_src_addr
14 _src_port 14 _src_port
ipv4_dst_addr ipv4_dst_addr
14_dst_port 14_dst_port
protocol protocol
17_proto 17_proto
in_bytes in_bytes
out_bytes out_bytes

duration_out
min_ttl
longest_flow_pkt
shortest_flow_pkt
src_to_dst_second_bytes

Selected feature

dst_to_src_second_bytes
src_to_dst_avg_throughput
dst_to_src_avg_throughput
num_pkts_128_to_256_bytes
num_pkts_256_to_512_bytes
tcp-win_max_out
icmp_type
dns_query_type
dns_ttl_answer
ftp_command_ret_code
dns_query_id

duration_out
min_ttl
longest_flow_pkt
shortest_flow_pkt
src_to_dst_second_bytes
dst_to_src_second_bytes
src_to_dst_avg_throughput
dst_to_src_avg_throughput
num_pkts_128_to_256_bytes
num_pkts_256_to_512_bytes
tcp-win_max_out
icmp_type
dns_query_type
dns_ttl_answer
ftp_command_ret_code
dns_query_id

ipv4_src_addr
14 _src_port
ipv4_dst_addr
14_dst_port
17_proto
in_bytes
flow_duration_milliseconds
min_ip_pkt_len
max__ip_pkt_len
src_to_dst_second_bytes
dst_to_src_second_bytes
src_to_dst_avg_throughput
dst_to_src_avg_throughput
num_pkts_up_to_128 _bytes
num_pkts_128_to_256_bytes
num_pkts_256_to_512_bytes
num_pkts_512_to_1024_bytes
num_pkts_1024_to_1514_bytes
tcp-win_max_out
icmp_type
dns_query_id
dns_query_type
dns_ttl_answer
ftp_command_ret_code

e AUC is the classifier ability point to distinguish
among classes.

1
AUC = / TPR(FPR(¢))d FPR(7) (8)
0

4.4 Result discussion

4.4.1 Bot-IoT dataset result discussion

Table 6 shows the used metrics to evaluate our proposed
model. Figure 3 compares the model outcomes on
the basis of these metrics. As displayed in Fig. 3, we
determine that the five classifiers on the Bot-IoT dataset
have similar ACC and precision results, with 99.99%

for RF, RF-IF, and RF-IFPCC and 99.98% for RF-PCC

and RF-PCCIF. A 100% recall and 99.99% F1-score are
observed for all. The classifiers display considerable
differences in ROC scores with 71.28% RF, 89.86% REF-
IF, 59.9% RF-PCC, 60.78% RF-PCCIF, and as the best
performer, RF-IFPCC scores 92.48%.

As detailed above, the usage of IF and PCC can
reduce time costs considerably without affecting the
model performance. Accordingly, and as shown in Fig. 4,
the projected models score 717.51 s, 344.20's, 484.40 s,
217.64s, and 210.73s on RF, RF-IF, RF-PCC, RF-
PCCIF, and RF-IFPCC, respectively. They score 8.93 s,
7.17s, 10.14s, 6.18s, and 6.25s on prediction time
on RF, RF-IF, RF-PCC, RF-PCCIF, and RF-IFPCC,

Table 6 A summary table of performances metrics on Bot-IoT and NF-UNSW-NB15-v2 datasets.

Dataset Model ACC (%) Precision (%) Recall (%) Fl-score (%) ROC score (%) Training time (s) Prediction time (s)

RF 99.99 99.99 100.00 99.99 71.28 717.51 8.93

RF-IF 99.99 99.99 100.00 99.99 89.86 344.20 7.17
Bot-IoT RF-PCC 99.98 99.98 100.00 99.99 59.90 484.40 10.14
RF-PCCIF  99.98 99.98 100.00 99.99 60.78 217.64 6.18

RF-IFPCC  99.99 99.99 100.00 99.99 92.48 210.73 6.25

RF 99.17 82.96 99.75 90.58 99.45 251.57 5.97

NF-UNSW- RF-IF 99.18 82.97 99.78 90.60 99.47 189.50 7.58
NB15-v2 RF-PCC 99.27 84.60 99.91 91.62 99.58 173.53 5.20
RF-PCCIF  99.30 85.18 99.87 91.94 99.58 145.24 6.71

RF-IFPCC  99.18 83.20 99.61 90.67 99.39 146.44 6.87
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Fig. 3 Summary of performance metrics on the Bot-IoT
dataset.

respectively.

Figure 4 illustrates the training and prediction time
consumed by our models on Bot-IoT.

The RF confusion matrix and its ROC curve are
illustrated in Fig. 5. The RF model can predict intrusions
with 100% TP. However, the RF classifier does not
function well in predicting True Negatives (TNs) (43%)
and False Negatives (FNs) (57%). Furthermore, the
ROC curve demonstrates the aptitude of a classifier to
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® Training time (X10s) ® Prediction time (s)
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RF RF-IF RF-PCC RF-PCCIF RF-IFPCC

Fig. 4 Training time and prediction time consumed by our
models on Bot-IoT.

differentiate between normal and attack instances. The
curve is obtained by plotting the TPR against the FPR.
The RF ROC curve displays the high distinguishing
capability of the RF model.

Figure 6 displays the confusion matrix of the RF-
IF model and its ROC curve. As displayed, the RF-IF
classifier can predict significant results, with 80% TN
and only 20% FP. In addition, it retains the identical
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Fig. 5 Confusion matrix and ROC curve of RF on the Bot-IoT dataset.
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Fig. 6 Confusion matrix and ROC curve of RF-IF on the Bot-IoT dataset.
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result as the RF model when we see TP with 100%.
Hence, the RF-IF’s ROC curve shows the model’s ability
to distinguish among classes.

Similarly, Fig. 7 shows the confusion matrix of the
RF-PCC model and its ROC curve. This confusion
matrix demonstrates that the model misclassifies normal
instances. Nevertheless, it works in the case of the
prediction of attack instances with 100% TP. In addition,
the ROC curve displays high performance in forecasting

attacks.

Figure 8 illustrates the confusion matrix of the RF-
PCCIF model and its ROC curve. One can observe that
the model does not efficiently predict normal instances
with 78% in FN. Nevertheless, it shows significant
importance in the prediction of attack instances. The
ROC curve confirms the considerable performance of
predicting attacks.

Figure 9 shows the confusion matrix of the RF-IFPCC
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Fig. 7 Confusion matrix and ROC curve of RF-PCC on the Bot-IoT dataset.

100

80 £
Normal 20 z
2
— 60 °
£ =
u o
[T
s 40 o
L
(=]
b 0 )
Atack 20 ,:'L-‘E

0

Normal Atack
Predicted label
(@)
100

80 £
Mormal 22 o
B
- 60 =
- Z
v o
[T
] 40 o
B
B
Atack 0 =}
20 &

0

Normal Attack
Predicted label

(a)

—
=

dn o o

TFue positive rate (positive label: 1)
o
a

—— Random forest classifier (AUC = 1.00)

0 02 04 06 08 10
False positive rate {positive label: 1)

(b)

(=]

Fig. 8 Confusion matrix and ROC curve of RF-PCCIF on the Bot-IoT dataset.
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model and its ROC curve. We observe that the model
performs well in predicting normal instances, with
85% in TN. Moreover, it presents great predictions on
attack instances. The ROC curve confirms the significant
performances of this model in distinguishing normal and
attack instances, unlike previous models.

4.4.2 NF-UNSW-NB15-v2 dataset result discussion

Table 6 presents the used metrics to evaluate our
proposed model. Figure 10 illustrates the metrics applied
to evaluate our models and compare the results. By
observing Table 6 and Fig. 10, the five classifiers on
the NF-UNSW-NB15-v2 dataset have significant results
on ACC with 99.17%, 99.18%, 99.27%, 99.30%, and
99.18% for RF, RFIF, RF-PCC, RF-PCCIF, and RF-
IFPCC, respectively. On precision, the models score
82.96%, 82.97%, 84.6%, 85.18%, and 83.2% for RF, RF-
IF, RF-PCC, RF-PCCIF, and RF-IFPCC, respectively.
On recall, 99.75%, 99.78%, 99.91%, 99.87%, and

= ACC = Precision = Recall F1-score
ROC score
100
R75
[0)
)]
©
=
®
3 50
o
o)
o
25
0
RF RF-IF RF-PCC RF-PCCIF RF-IFPCC

Fig. 10 Summary of performance metrics on the NF-
UNSW-NB15-v2 dataset.
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99.61% are provided for RF, RF-IF, RF-PCC, RF-PCCIF,
and RF-IFPCC, respectively.

On F1-score, 90.58%, 90.6%, 91.62%, 91.94%, and
90.67% are given for RF, RF-IF, RF-PCC, RF-PCCIF,
and RF-IFPCC, respectively. The classifiers almost have
the same ROC score with 99.45% RF, 99.47% REF-IF,
99.58% RF-PCC, 99.58% RF-PCCIF, and 99.39% RF-
IFPCC.

As displayed in Table 6 and Fig. 11, the models
score 235.17 s, 189.50s, 173.53 s, 145.24 s, and 146.44 s
on RF, RF-IF, RF-PCC, RF-PCCIF, and RF-IFPCC,
respectively. They score 5.67s, 7.58s, 5.20s, 6.71s,
and 6.87 s on prediction time for RF, RF-IF, RF-PCC,
RF-PCCIF, and RF-IFPCC, respectively.

Figure 12 illustrates the confusion matrix of the RF
model and its ROC curve on the NF-UNSW-NB15-v2
dataset. It shows that the intrusion prediction rate of the
RF model is 99.75% TP. On TN, the RF classifier scores
99.15%, with only 0.85% FN. ROC curve presents the

® Training time (x10s) ® Prediction time (S)
30

Time (s)

RF RF-IF RF-PCC RF-PCCIF RF-IFPCC

Fig. 11 Training time and prediction time consumed by our
models on the NF-UNSW-NB15-v2 dataset.
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Fig. 12 Confusion matrix and ROC curve of RF on the NF-UNSW-NB15-v2 dataset.
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capacity of a classifier to distinguish between normal
and attack instances. We can obtain the curve by plotting
the TPR against the FPR. The RF ROC curve shows the
high distinguish capacity of the RF model.

Figure 13 presents the confusion matrix of the RF-IF
model and its ROC curve on the NF-UNSW-NB15-v2
dataset. RF-IF exhibits performance close to the RF
model with 99.16% TN and 0.84% FN. Moreover, it
shows a similar result as the RF model regarding TP
with 99.79%. Similar to the RF ROC curve, the RF-IF
ROC curve shows the same distinguishing capability.

Figure 14 presents the confusion matrix of the RF-
PCC model and its ROC curve on the NF-UNSW-
NB15-v2 dataset. The confusion matrix shows that
the model misclassifies 0.75% of the normal instances.
Nevertheless, it performs well in predicting attack
instances with 99.92% TP. Moreover, the ROC curve
accurately predicts attacks and normal instances.

100
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Figure 15 depicts the confusion matrix of the RF-
PCCIF model and its ROC curve on the NF-UNSW-
NB15-v2 dataset. The confusion matrix presents that
the model correctly classifies 99.28% of the normal
instances. Furthermore, it performs well in predicting
attack instances with 99.88% TP. The ROC curve shows
that this model performs well in distinguishing normal
from attack instances.

Figure 16 illustrates the confusion matrix of the RF-
IFPCC model and its ROC curve on the NF-UNSW-
NB15-v2 dataset. Examining the confusion matrix, we
deduce that the model can classify 99.17% of the
normal instances well. The model performs well in
predicting attack instances with 99.62%. The ROC
curve demonstrates that the model has an excellent
performance in predicting instances correctly.

On the overall performance, the RF-IFPCC classifier
generates the most effective results on the Bot-IoT
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Fig. 13 Confusion matrix and ROC curve of RF-IF on the NF-UNSW-NB15-v2 dataset.
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Fig. 14 Confusion matrix and ROC curve of RF-PCC on the NF-UNSW-NB15-v2 dataset.



284

100

(5]
=

Normal

[x]
=

Tue label

=
=

Attack

Ralio of TR, FP, TN, and FN (%)

]
=

| Lp
Normal Attack

Predicted label
(@)

Fig. 15

100

Tue label

40

Attack

Ratio of TP, FP, TN, and FM (%)

20

Normal

Atack
Predicted label

(a)

Big Data Mining and Analytics, September 2023, 6(3): 273-287

10

081

06}

Tue positive rate (positive label: 1)

ot — Random forest classifier (AUC = 1.00

0 02 04 06 08 10
False positive rate (positive label: 1)

(b)

-

Confusion matrix and ROC curve of RF-PCCIF on the NF-UNSW-NB15-v2 dataset.

e
o

S o (=]

o
(¥

Tue positive rate (positive label: 1)

0 —— Random forest classifier (AUC = 1.00)
0 02 04 06 08 10
False positive rate (positive label: 1)

(b}

Fig. 16 Confusion matrix and ROC curve of RF-IFPCC on the NF-UNSW-NB15-v2 dataset.

dataset. Our model goes from detecting only 43%
of normal attacks to correctly detecting over 85% of
them, proving that our model overtakes the infamous
imbalance of the Bot-IoT dataset without influencing
its ability to detect severe intrusions. Meanwhile, RF-
IFPCC and RF-PCCIF scores are approximately the
same, outperforming the other methods on the NF-
UNSW-NB15-v2 dataset. As presented in Table 6,
the models exhibit better performances than those in

previous research that used the same datasets.

Our models are evaluated on Bot-IoT and NF-UNSW-
NB15-v2 datasets and are improved through feature
selection and dimensionality reduction methods. Thus,
convenient results are shown compared with other
approaches in the literature, as presented in Table 7.

5 Conclusion

The proven efficiency of IDS has made it an essential

Table 7 Performance comparison between our model and previous works on Bot-IoT and NF-USNW-NB15 datasets.

Dataset Paper Year Model Feature selection ACC (%) F1-score (%)
Nimbalkar and Kshirsagar'®! 2021 Information gain and gain ratio - 99.99 -
Abushwereb et al.[®3] 2022 Chi-square - 50.90, 99.50, 99.70 -
Bot-IoT 4

Saba et al.[64! 2022 CNN - 92.85 -

Our approach 2022 RF IF + PCC 99.99 99.99

NF-UNSW- Sarhan et al.[®!] 2022 ET - 99.73 97.00

NBI15-v2 Our approach 2022 RF PCC +IF 99.30 91.94
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tool, among others, to mitigate [IoT vulnerabilities. In
this study, we implement an IDS for IIoT networks using
the RF model for classification, PCC to select relevant
features, and IF as an outlier detector. We use PCC
and IF separately and exchangeably. IF takes the output
of PCC as input and vice versa. Our model shows a
great result in overtaking the imbalance of the Bot-IoT
dataset, which can be seen in the confusion matrix of the
RF-IFPCC model. On the NF-UNSW-NB15-v2 dataset,
the results are close to one another with outstanding
performances. We intend in our future work to exploit
other datasets, such as the TON-IoT dataset containing
IoT and IIoT data, to have a global view and create and
validate an effective IDS for improving network security
in general.
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