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A MODIFICATION OF PARRY'S ANALYTIC IMPLICATION

J. MICHAEL DUNN

Parry [6] sets forth a system of sentential logic based upon the
contention that for A to analytically imply J3, every sentential variable that
occurs in B must also occur in A. Parry 's system is intended to be in step
with Kant's notion of analyticity, and succeeds insofar as Parry is able to
prove that A —» B is a theorem of his system only if the above mentioned
variable sharing criterion holds.

Parry 's system might be better called a system of analytic strict
implication since it is easily seen that every theorem of his system is a
theorem of the Lewis modal logic S4. In this paper* we present a
modification of Parry 's system, the principal feature of which is a
"demodalization" of Parry 's original system which still preserves Parry 's
variable sharing criterion. We then give algebraic completeness results
for this modified system, and show it decidable. These results parallel our
work in [3] on RM and in [4] on LC.

1. Let us begin by presenting Parry 's system for the sake of easy
reference. Parry takes as primitive the connectives of negation, conjunc-
tion, and analytic implication, in our symbols -, &, and —>, respectively.
Formation rules are as usual, and the connectives of analytic equivalence,
disjunction, and material implication, in symbols, <->, v, and ^>, respec-
tively, are introduced by definition in the usual manner. We take as axioms
all instances of the following schemata, omitting parentheses according to
the conventions of Church (as we do throughout the paper).

Al . A& B-* B8z A
A2. A-> A& A
A3. A-^ -- A
A4. -- A— A
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A5. A & (BvC) — (A & B)v(A & C)
A6. A v (B & -5) — A
A7. (A — JB) & (B -* C) — .A — C
A8. A -* B & C - * . A — C
A9. (A - JB) & (C — Z>) -> .A & C -> J5 & D
A10. (A- JB)&(C-D)-.AvC- JBvi)
All. (A- £)-> (A=) 5)
A12. (A<->J?) &/(A) - / ( £ )
A13. /(A) -* Λ-> A

In axioms A12 and A13, we understand /(A) to be any sentence in which A
occurs as a subsentence, and in A12 we understand f{B) to be the result of
replacing A in one or more occurrences by B in the given sentence /(A).

Parry [6] has a rule of substitution, which we dispense with by the
well-known means of axiom schemata. The only other rule that Parry has
is the rule of detachment for analytic implication, i.e., from A and A—> B
to infer B, but, as Anderson and Belnap [2] observe, the rule of adjunction,
from A and B to infer A & B, is obviously required. We hence take the rule
of adjunction as a primitive rule of Parry's system, thereby correcting
what we take to be a mere oversight on Parry's part.

Parry's system is still too weak for some of the purposes that we have
in mind, since the following sentence is not a theorem of Parry's system,
as we shall show in section 4.

A14. A& -B— -(A-» B)

The addition of A14 to Parry's list of axioms is equivalent to the addition of

Tl. (A — A) & (£ -> £) -> .A -> £ ->• .A -> B.

We sketch the derivation from A14 to Tl, leaving the converse derivation to
the reader. We take a lot of the obvious properties of conjunction and
disjunction for granted and list only the most relevant axioms used, as
shall be our practise throughout this paper.

1. (A — A) & (£-> B) — {Άy A) & (-Bv B) A l l .
2. (-AvA) & {-BvB) -* (-A & -B)v{-A & B) v (A & -£) v (A & B) A5.
3. (-A & -B) v (-A & B) v (A & -B) v (A & B) — .(-A & -B) v (-A & B) v

-(A-> 5)v(A& -B) A14.
4. (-A & -£) v (-A & £) v -(A — B) v (A & 5) — .A — 5 — Λ — B A13.
5. (A -> A) & ( 5 -> 5) — .A — 5 -* .A — 5 From 1-4, repeated uses of A7.

In what follows, we shall mean by the system of analytic strict
implication (ASI) Parry ' s system with axiom A14 added. By the system of
analytic implication (AI), we shall mean the system obtained from ASI by
demodalizing it by the addition of the following axiom.

A15. A -* .-A-+ A

It is well-known that when axiom A15 is added to the Lewis modal logic S4
the resulting system reduces to classical logic. That the same thing does
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not happen when A15 is added to ASI may be easily verified by referring to

the matrix that Parry [6] used to show that A -> B is a theorem of his

system only when every propositional variable that occurs in B also occurs

in A. This matrix not only satisfies the axioms A1-A13 of Parry's original

system as well as axiom A14 and the rules of detachment and adjunction,

but it also satisfies axiom A15.

Another theorem is derivable in AI which when added as an axiom to S4

gives classical logic, namely,

T3. A -* .A-> A-* A.

Indeed, A15 could be equivalently replaced with T3. This makes the

relation of AI to ASI somewhat like the relation of Anderson and Belnap's

system of R of Relevant Implication to their system E of Entailment since

the former is obtainable from the latter by the addition of T3 (though not

from the addition of A15). We content ourselves with a derivation of T3,

first deriving T2*. (We star this theorem, as well as all others whose

derivations hold in ASI.)

T2.* (A -> A)<r>-Av A

1. A-> A-> -AvA All.

2. -A-> .A-> A A13.

3. A— Λ-> A A13.

4. -AvA-.A->A From 2-3, by A10.

5. (A— A)^>-AvA From 1, 4, by adjunction.

We now derive T3.

1. A -> .-A-* A A15.

2. A — . A - A A13.

3. A -> (-A — A) & (A -> A) From 1-2, by A9.

4. (-A-* A) & (A— A) — .-AvA-^ A A10.

5. A -> .-A s/A -^ A From 3-4, by A7.

6. A-* .A -> A -> A From 5, by T2 and A12.

2. Parry's axiom A13 seems to be a nod in the direction of classical

implication. One can imagine motivating it as follows: "Since A —> A is

always true, then any sentence should analytically imply it as long as the

sentence contains every variable which occurs in A." But this motivation

would not require that A itself occurs as a subsentence of the sentence; it

would suffice that the variables which occur in A occur in the sentence. Let

us introduce the notation φ(A) to mean any sentence in which occur all of

the variables which occur in A. Then all instances of the following schema

are derivable in ASI (note in the proof the importance of A15, which as we

have noted above is independent from Parry's original formulation):

T4.* φ(A) -> .A— A

Proof: We employ a strategy used by Anderson and Belnap in [1] in

deriving the following lemma.
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Ll. Let pi, . . . , pn be the sentential variables occurring in A. Then if
tn = (Pi -• Pi) & . . . & (Pn -+ pn), tn-+ A-+ A is a theorem.

The proof of Ll is by induction on the length of A.
(i) If A = pl9 then tx = A -> A, and we have just an instance of B —> B,

which is derivable from A3 and A4 by A7.
(ii) If A = -B, then by inductive hypothesis, tn-+ .B —> 5 is a theorem.

But by T2, both B -> B and - 5 —> -J5 are provably equivalent to -BvB and
hence to each other. So by A12, tn —> .-J5 —> -5 is a theorem.

(iii) Suppose A = £& C. Let ίy be appropriate for 5 and tk for C. Then
by hypothesis, both tj -* .B —> B and 4 -» .C —> C are theorems. But then by
A9, tj &, tk -> .B &, C -> B &, C is a theorem. But ίn—> £y & 4 is then a
theorem by obvious properties of conjunction, and so is tn—> A —> A by A7.

(iv) Suppose A = B -* C. Let £y and tk be as in (iii). Then again both
tj -> .B-+ B and tk —* .C -* C are theorems. But then by A15, tj & tk-> .B -»
C -» .5 —> C is a theorem, and like in (ii), by A7, so is tn —> .A —> A, which
completes the lemma.

That T4 is a theorem of A SI now follows easily from the lemma. For
let pl9 . . . , pn be all the propositional variables occurring in A. Then φ(A)
may be looked at as f(pi), so as instances of A13 we have as theorems, for
all i ^ n φ(A) —* .pi —* Pi- Hence by repeated uses of A9, we have as a
theorem, φ(A) —> 4. But by the lemma, we have tn —> .A —»• A, so by A7, we
obtain T4 from these two.

We shall use T4 in showing an appropriate deduction theorem for
analytic implication for the system AI. But first we observe that the
standard deduction theorem for the horseshoe holds for the system AI
(indeed for the system ASI and for Parry ' s original formulation). This is
easily seen by modifying the proof of the deduction theorem for the
classical logic so as to take care of the case where the rule of adjunction
is used. All of the theorems of classical logic are available since Ander-
son and Belnap [2] show that Parry ' s original formulation contains the
classical propositional calculus. So using h for deducibility, we have for
Parry ' s original formulation (and hence for ASI and A I) the

Classical Deduction Theorem (CDT).* If Γ is a set of sentences, and Γ,
A\-B, then T\-A z> B.

Using CDT, it is easy to establish the following as a theorem.

T5. A => .φ(A) — A

Proof: 1. A Assumption.

2. A -» .A -> A -> A T3.
3. A -> A -> A 1, 2 by detachment for —».
4. φ(A) -* A-> A T4.
5. φ(A) — A From 3, 4 by A7.

Hence T5 is a theorem by CDT.
We use the Classical Deduction Theorem together with T5 to prove for

AI the following.
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Analytic Deduction Theorem (ADT). // Γ is a set of sentences, Γ, A\-B,
and every variable which occurs in B also occurs in A, then ΓKA —> B.

Proof: Let Γ, A, and B be as in the hypothesis of the theorem. Then by
CDT, Γκ4 D B. But since every variable of B is a variable of A, we may
regard A as φ(A^> B), and so as an instance of T5 we have (A ̂  £) D
(A-> (A^) B)), and hence ΓVA -> (A D 5). But A — (A ̂  £)t-A -> 5 as we
see by the following deduction.

1. A-* (-AvB) Assumption.
2. A-> (-AvB) -> .A— A A13.
3. A—> A From 1-2, by detachment.
4. (A-» A) & (A-+ (-Av5)) From 1, 3, by adjunction.
5. A-> A& (-AvB) From 4, by A9.
6. A -> ((A & -A)v£) From 5, by A5.
7. A — 5 From 6, by A6.

So Γh-A — B.

The Analytic Deduction Theorem provides a kind of affirmative answer
to a question that Gόdel raised about Parry's original system in the
discussion following its presentation in [6], namely, can we interpret "A
analytically implies B" to mean that B is derivable from A and the logical
axioms and that the content of B is contained in the content of A. This adds
additional plausibility to axiom A14 and its alternative Tl, because both of
these can be established using the Analytic Deduction Theorem, and yet
they may be shown independent of Parry's original formulation as we shall
see in section 4.

3. We turn now to the business of a completeness proof. But first we must
establish some additional facts about the system AI from the syntactic side.

T6.* A^B z> ./(A)<->/(£)
Proof: 1. (A^B) & (/(A)^/(A)) -> ./(A)<->/(B) A12.

2.f(A)**f(A) ^ Λ^B^ .f{A)<r>f(B) All.
3./(A)^/(A) By A3 and A4.
4. A^>B ̂  .f(A)**f(B) From 2, 3, by A6.

We next see that the "normal form" theorems that follow all come
easily from the axioms and definitions of the connectives.

T7.* --A<^A
T8.* A&A^>A
T10.* A & B^>B & A
T12.* A & (B & C)^{A & B) & C
T14.* A & (JBvC)^(A & -B)v(A & C)
T16.* -(A & 5)o(-Av-ΰ)

T9.* AvA^A
Til.* Av£^£vA
T13.* Avf^vClofAv^vC
T15.* Av(B& C)*+(AvB) & (AvC)
T17.* -(Av5)o(-A & -B)

By means of T6-T17 it is possible to put every sentence of AI which
does not contain an —> into disjunctive normal form. If we allow no
repetition of conjuncts or disjuncts in the disjunctive normal form, then
there will be at most a finite number of these disjunctive normal forms
made up of a finite number of sentential variables. We list this fact as
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T18.* Let Wn be the set of all sentences which contain no —* and in which
occur only the sentential variables plt . . . , pn. Then there are sentences
Ai, . . . , Am e Wn such that for every sentence Be Wn, one of Ai<->J5, . . . ,
Afn^-^B is a theorem.

We next note as a theorem,

T19.* A & ( A ^ ) - > 5 .

The proof is immediate, mostly from axioms A6 and A5.
For our next result, we define a set Γ of sentences to be consistent if

for no sentence A is it the case that ΓhA & -A. A set of sentences M is
maximally consistent if M is consistent, and no consistent set of sentences
properly includes M.

T20.* Let T be a consistent set of sentences. Then Γ is included in a
maximally ccnisistent set of sentences.

Proof: The proof will be like that of Henkin [5], and indeed our whole
completeness proof will be reminiscent of Henkin's completeness proof for
classical logic. Let Γ be a consistent set. Let A1? A2, . . . be an enumera-
tion of all the sentences. Let Mo = Γ, and inductively, let Mw+1 = Mn u {Aw+1}
if this is a consistent set, and otherwise let 714+1 = Mn. Let M be the union
of all the Mn.

We first show that M is consistent. Suppose for some B, M\-B & -B.
Then there are sentences Bl9 . . . , Bne M such that Bl9 . . . , Bn\-B & -B.
But then by the construction of M, there would be some M, such that
Blf . . . , B n e Mi, and so Mi would be inconsistent. But M, is consistent by
construction, so M must be consistent after all.

We now show that M is maximally consistent. Suppose M c N and
MΦN, where N is consistent. Then there exists A, e N such that Ai^M.
Consider M, . M ^ u {Az } is consistent, since M^λ U {A/} c N, hence
Ai e Mi c M, contrary to hypothesis.

We next show that maximally consistent sets have some of the
properties expected of them.

T21.* If M is a maximally consistent set, then
(i) AeM iff M\-At for any sentence A,

(ii) exactly one of A and -A is in M, for any sentence A,
(iii) A v Be M iff Ae M or Be M, for any sentences A and B,
(iv) A & Be M iff Ae M and Be M, for any sentences A and B.

The proof of T21 proceeds in a straightforward manner, mimicking
Henkin's proof for classical logic.

4. We now turn to the completeness proof proper. Let us define a Parry
matrix 2tt to be a quintuple (D, U,~, A, =Φ) satisfying the following descrip-
tion: D and [/are disjoint isomorphic semi-lattices under the relations =%
and —u, respectively, and D is the set of designated elements and U is the
set of undesignated elements. For some isomorphism / of D onto U, ~ is
the union of / and the inverse of /. We consider D U U itself as a
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semi-lattice by defining for α, beDUU, a ~b iff either (i) α, beD and
a =% b, or (ii) a, b eU and a % 6, or (iii) aeU, beD and α =% 6 (note that Z)
and C7 are then sub-semi-lattices of D U U). The meet operation in this new
semi-lattice is then Λ. If a — 6, then α=#>6 = max(a, α), and iϊ a ^ b, then
a=Φb = a*aAbΛΈ. We point out that the original matrix found in Parry [6]
is that Parry matrix obtained by letting D and U be the two element Boolean
algebra.

It is now convenient to establish the independence of A14, which we do
through a matrix for which we are indebted to Professor Robert Meyer.
Let D be a semi-lattice with three elements 1,2, and 3, where 1 ^ 2 ^ 3.
Let U be a disjoint copy of D, having elements - 1 , -2, and -3. As in the
definition of a Parry matrix, set -i ^ ί, and define - and Λ accordingly.
Define a=Φb the same way as in a Parry matrix if the absolute value of a is
^ the absolute value of b, but otherwise let α=#>5 = - 1 . It is easily verified
that this matrix satisfies all the axioms and rules of AI except A14, which
is rejected when A is assigned the value +3 and B the value -2. The
sentence Tl is also rejected by this matrix, letting A be +3 and B be +2.

It is routinely verified that any Parry matrix satisfies the axioms of
AI, and it is easily seen that detachment and adjunction preserve designa-
tion. Hence we have

T22.* Strong Correctness Theorem. Let Γ be a set of sentences. Then
for any sentence A, if Γ K A , then every Parry matrix which simultaneously
satisfies Γ, also satisfies A.

We shall eventually prove for AI the Strong Completeness Theorem,
the converse of T22. We shall do so in a Henkin-style manner, first
showing

T23. Every consistent set is satisfied by some Parry matrix.

T23 will follow as an immediate consequence of T20 and the following
lemma.

L23. Every maximally consistent set is satisfied by some Parry matrix.

We now go about establishing the lemma by noting the following further
theorems of AI.

T24. A & B & (A -» B) -> .-A — -B

Proof By ADT, the following deduction suffices.
1. A Assumption.
2. B Assumption.

3. A —» B Assumption.
4. -A -* A Froml,byA15.
5. -A — B From 3, 4, by A7.
6. -A->A&J3 From 5, 4 by A9 and A2.
7. A &J5-»Av-ΰ Classical propositional calculus and ADT.

8. -A-^Av-B From 6, 7 by A7.
9. -A — -B From 8 by A5 and A6.
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T25.* -A«->-£ D .A^>B

Proof. 1. -A^>-B^ .--A++--B T6.

2. - A o - β D .A^>B

Two applications of A12, using --A^>A and --B<->B.

T26. -A& £& (A-* £)-» .A-» - 5

Proof: By ADT and the following deduction:

1. -A & B Assumption.

2. A —* B Assumption.

3. A*+A & B From 2, by A8 and A9.

4. -A v -B From 1, by classical propositional calculus.

5. A & B -* -A v -5 From 4, by A15.

6. A -» (-A v -JB) From 3 and 6, by A12.

7. A -+ -B From 6 by A5 and A6.

T27.* A — £ 13 .A — B -* 4̂ -* A

Proo/: 1. A - B - .A — A A13.

2. A - £ D .A -* 5 — .A— A

From 1, by classical propositional calculus.

T28.* A->B^.A->A->Λ->B

Proof: By CDT and the following deduction:

1. A —» B Assumption.

2. A<->A & B From 1, by A8 and A9.

3. A — A & B -* .A — 5 A8.

4. A -> A — .A — B From 2 and 3, by A12.

T29.* A - BZ) .(A — £)<^(-AvA)

Proof: By adjunction from T27 and T28, using CDT, and then using T2 and

A12.

T30. -(A -> B) D .A & -A & 5 & - 5 — .A - 5

Proof: By CDT and ADT, using the fact that in classical propositional

calculus a contradiction implies anything.

T31. -(A — 5) D .A — £ -» A & -A & 5 & -B

Proof: By CDT and ADT, as in T30.

T32. -(A — B) D .(A — 5)<->(A & -A & B & -B)

Proof: From T30 and T31, using CDT.

We new prove L23. Let Mbe a maximally consistent set of sentences

of AI, and let W be the set of all sentences of AI. Then define W/M as

follows. Let \A\ be the set of wffs B such that A+->BeM. By obvious

theorems of AI, this partitions W into equivalence classes. Let DM =

{\A\: AeM}, and let UM = {\A\: A#M}. Define operations on the \A\ SO

that \A\ = I-A I, | A | Λ | 5 | = l A & s l , and | A | = H J 3 | = |A -» J5|. Define
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\A\^\E\ iff A-*BeM. Then let W/M = (DM, UM, ~, Λ, =Φ). I claim
that

W/M is a Parry matrix satisfying M.

Proof: The replacement theorem T6 ensures that the operations are well
defined (single-valued). Obvious theorems regarding & and —» ensure that Λ
is a semi-lattice operation under ^. For the next remarks, keep in mind
that M is closed under deducibility (T21, i). Adjunction guarantees that DM
is closed under Λ, and so is a semi-lattice in its own right. Also UM is
closed under Λ, for if \A |, \B\ e UM, then A,BfίM. But then by T21,
(ii) -A, -Be M. But then it is impossible for A & Be M, since A 8z B -> A
is a theorem of AI, and so A e M, contradicting T21, (ii). So A & BfίM, i.e.,
I A| Λ I JBI € Γ/M SO both DM, and C/̂  are semi-lattices, and their disjointness
follows also from T21, (ii).

We can construct an isomorphism / from DM onto UM, letting/(|A|) =
|A|. For lAl, \B\eDM, \A\ * \B\ implies / ( | A | ) *f(\B\), by T24. / i s
onto by T21, (ii), and / is one-one by T25. Further — is defined as on a
Parry matrix by virtue of T26. And finally =Φ>is defined as on a Parry
matrix by virtue of T28 and T32.

Obviously w/M satisfies M under the natural valuation, vM, such that
vM(A) = \A\. SO we have L23 and hence T23. We next use T23 to establish

T33. Strong Completeness Theorem. Let T be a set of sentences. Then for
every sentence A, if every Parry matrix which simultaneously satisfies Γ
also satisfies A, then ΓhA.

Proof: Still mimicking Henkin, we prove the contrapositive by supposing
that A is not deducible from Γ, and showing that then Γ u {-A} must be
consistent. For suppose to the contrary that Γ, -A\~B & -B. Then by CDT,
Γi—A D B & -B. But since AI contains the classical propositional calculus,
ΓhA, contrary to hypothesis. But since Γ u {-A} is consistent, then by T23
there must be a Parry matrix which satisfies it, i.e., a Parry matrix which
satisfies Γ, but rejects A, which completes the proof.

5. We now draw morals concerning the decidability of AI from our work
above. Putting T22 and T33 together, we have

T34. Let T be a set of sentences. Then for any sentence A, Y\-A iff every
Parry matrix which satisfies Γ also satisfies A.

The trouble for decidability is that the matrix W/M constructed in the
proof of T33 may well be infinite. But suppose only the sentential variables
Pi, . . '. , Pn occur in A and in the wffs of Γ. Let Wnbe the set of all wffs
containing only the variables pl9 . . . , pn, and consider a formulation of AI
with only these n variables. Let us call this AIW. It is obvious that A is
deducible from Γ in AI iff A is deducible from Γ in AIW (replace any
variable occurring in a deduction in AI which is not one oi plf . . . , pn

uniformly by say pj. A matrix Wn/M for Aln can be constructed analogously
to W/M, and it obviously will be finite by virtue of T18. The reason is that
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the definition of =#> for Wn/M ultimately reduces =Φ to the operations
Λ and ~. Indeed, a recursive bound may be set upon the m occurring in T18,
namely

m ^ 2*2n = a

So we have from the proof of T34, via the above remarks,

T35. For any wff A, A is a theorem of AI iff A is valid in every Parry
matrix of at most a elements.

This gives us

T36. AI is decίdable.

6. We now make some remarks which have both algebraic and informal
interest. It is well-known that every semi-lattice is isomorphic to a
semi-lattice of sets. It is usual, of course, to take the semi-lattice
operation as intersection, but one can dually take it as union. This gives us
a way of representing every Parry matrix in a way which is both
algebraically and logically satisfying. Given a Parry matrix (D, U,—, Λ,=Φ),
let S be a semi-lattice of sets, taking union as the semi-lattice operation,
which is isomorphic to D. Then consider the direct product of S with the
two-element Boolean algebra 2, Sx 2. The elements of Sx 2 are the pairs
{X, a), where Xe S and a is 0 or 1, and S x 2 is a semi-lattice where for two
pairs, (X, a) ^ < Y, b) iff Y Q X and a ^ b in 2. Indeed, S x 2 is isomorphic
to the original Parry matrix regarded as a semi-lattice. We can in fact
represent the original Parry matrix entirely by S x 2. Let Dr be the set of
pairs (X, 1) and U' be the set of pairs (X, 0), where XeS. Define {X, a) =
(X, ~ά), where a is the Boolean complement of a in 2, and define (X, a)=Φ
(F,δ> = ( l U 7, 1), if (X, a) ^ <Y, δ), and otherwise let it be (X U Y, 0>. The
result is easily seen to be isomorphic to the original Parry matrix.

We can put a natural intuitive interpretation upon the above piece of
algebra, as was called to our attention by Professor Meyer. Suppose we
regard a proposition as having two important features, a content and a truth
value. We might then choose to regard a proposition as a pair {X, a), where
Xis a set of objects that the proposition mentions, and a is the truth value
of the proposition. This latter we can regard in the usual way as an
element of 2, letting 1 stand for true and 0 stand for false. It would then be
natural to say that a proposition {X, a) analytically implies a proposition
( Y, b) iff the content of the second proposition is included in the content of
the first, and furthermore the first proposition is not true while the second
is false. But this is just (x, a) ^ <Y, b).

To complete the story we suppose that combining propositions by
logical connectives gives us a proposition that has exactly the total content
of the propositions being combined, and that the truth value of the resultant
proposition is computed in a classical sort of way. Thus a conjunction has
as its content the union of the contents of its conjuncts, and is true iff both
conjuncts are true. Similarly, a disjunction has as its content the union of
the contents of its disjuncts, but is true iff at least one of its disjuncts is
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true. A negation has as its content the content of the original unnegated
proposition, and is true iff the original proposition is false. An analytic
implication is slightly more complicated than these "truth functions/' for
the contents of its antecedent and consequent can affect the truth value of
the implication. Thus an analytic implication has as its content the union of
the contents of its antecedent and consequent, and is true iff its antecedent
analytically implies its consequent. This interpretation thus gives a
complete and correct semantics for the system AI which is in accord with
Parry's motivations.
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