
LBS Research Online

A Aouad, R Levi and D Segev
Greedy-Like Algorithms for Dynamic Assortment Planning Under Multinomial Logit Preferences
Article

This version is available in the LBS Research Online repository: https://lbsresearch.london.edu/
id/eprint/1086/

Aouad, A, Levi, R and Segev, D

(2018)

Greedy-Like Algorithms for Dynamic Assortment Planning Under Multinomial Logit Preferences.

Operations Research, 66 (5). pp. 1321-1345. ISSN 0030-364X

DOI: https://doi.org/10.1287/opre.2018.1734

INFORMS (Institute for Operations Research and Management Sciences)
https://pubsonline.informs.org/doi/10.1287/opre.20...

Users may download and/or print one copy of any article(s) in LBS Research Online for purposes of
research and/or private study. Further distribution of the material, or use for any commercial gain, is
not permitted.

https://lbsresearch.london.edu/view/lbs_authors/3231248.html
https://lbsresearch.london.edu/id/eprint/1086/
https://lbsresearch.london.edu/id/eprint/1086/
https://lbsresearch.london.edu/view/lbs_authors/3231248.html
https://doi.org/10.1287/opre.2018.1734
https://pubsonline.informs.org/doi/10.1287/opre.2018.1734


Greedy-Like Algorithms for Dynamic Assortment Planning

Under Multinomial Logit Preferences

Ali Aouad∗ Retsef Levi† Danny Segev‡

Abstract

We study the joint assortment planning and inventory management problem, where

stock-out events elicit dynamic substitution effects, described by the Multinomial Logit

(MNL) choice model. Special cases of this setting have extensively been studied in recent

literature, notably the static assortment planning problem. Nevertheless, the general for-

mulation is not known to admit efficient algorithms with analytical performance guarantees

prior to this work, and most of its computational aspects are still wide open.

In this paper, we devise the first provably-good approximation algorithm for dynamic

assortment planning under the MNLmodel, attaining a constant-factor guarantee for a broad

class of demand distributions, that satisfy the increasing failure rate property. Our algorithm

relies on a combination of greedy procedures, where stocking decisions are restricted to

specific classes of products and the objective function takes modified forms. We demonstrate

that our approach substantially outperforms state-of-the-art heuristic methods in terms of

performance and speed, leading to an average revenue gain of 4% to 12% in computational

experiments. In the course of establishing our main result, we develop new algorithmic ideas

that may be of independent interest. These include weaker notions of submodularity and

monotonicity, shown sufficient to obtain constant-factor worst-case guarantees, despite using

noisy estimates of the objective function.

Keywords: Inventory management, multinomial logit, submodularity, stochastic modeling,

approximation algorithm.
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1 Introduction

In the last two decades, growing product differentiation in brick-and-mortar retailing, airlines,

and consumer-goods has motivated a paradigm shift in demand modeling from independent

demand models to choice-based models. The latter capture the substitution effects between

competing products in a given category by modeling customers as agents with random prefer-

ences. An important line of research in revenue management has focused on incorporating such

choice behavior into more realistic decision models for inventory management and assortment

planning. In particular, the static assortment optimization model takes the perspective of a re-

tailer who wishes to determine the best-possible collection of products to maximize her expected

revenue. In this setting, in order to model the customers’ purchase preferences, the Multinomial

Logit model (MNL) has gained widespread popularity among practitioners, since it can be es-

timated efficiently, even in data-scarce environments (Ford 1957, McFadden 1973), and it leads

to tractable assortment planning formulations (Talluri and Van Ryzin 2004, Rusmevichientong

et al. 2010, 2014).

However, this static modeling approach overlooks the inventory limitations faced by retailers

and the resulting mismatch between supply and demand under uncertainty. Due to product

proliferation, out-of-stock and over-stock situations are pervasive in retailing, leading to billions

of dollars of opportunity loss and reputation cost (IHL 2015), and consequently, retailers need to

manage their supply chain to ensure the availability of products to end customers. Thus, a more

general class of optimization models, known as dynamic assortment planning, was proposed in

the seminal work of Mahajan and van Ryzin (2001) to capture the customers’ dynamic substitu-

tion behavior elicited by such stock-out events. Here, the inventory decisions are constrained by

a joint capacity limitation across the assortment in the form of a cardinality constraint. Rather

than focusing on a single representative customer, the consumption process is modeled through

a random sequence of arriving customers, each having random preferences over the products

on stock upon arrival. In this setting, the initial assortment and inventory decisions made by

the retailer need to be robust (revenue-wise) to the stock-out events. From a computational

standpoint, in addition to the underlying choice model, the problem formulation now hinges on

describing the distribution of the number of customer arrivals, named the demand hereafter. A

more formal description of the optimization model depicted above is given in Section 1.2.

Such dynamic problems are computationally challenging and notoriously difficult to ana-

lyze (Mahajan and van Ryzin 2001, Honhon et al. 2010, Aouad et al. 2015), due to the complex

assortment dynamics induced by the stochastic nature of the customer arrivals and their respec-

tive random preferences. In fact, even the efficient evaluation of the expected revenue generated

by given assortment and inventory decisions is an open question for most choice models of in-

terest, including the MNL model. As a result, the vast majority of computational questions

regarding dynamic assortment planning are still wide open, and were previously treated by

heuristic methods or stylized models, as summarized in Section 1.3. Despite the centrality of

the Multinomial Logit choice model in revenue management applications, obtaining efficient

algorithms with analytical guarantees for MNL-based dynamic assortment planning models has

been a long-standing open question.
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1.1 Results and techniques

The main contribution of this paper is to devise the first provably-good approximation algorithm

for dynamic assortment planning under the Multinomial Logit choice model. Specifically, our

approach guarantees a constant-factor worst-case approximation for a broad class of demand

distributions (standing for the total number of arriving customers) commonly used in operations

management, that satisfy the increasing failure rate (IFR) property. Moreover, we show that this

algorithm has a superior empirical performance in comparison to existing heuristics on synthetic

instances. Against existing state-of-the-art methods, our algorithm leads to substantial gains

in the expected revenue, ranging from 4% to 12%, with better computational efficiency and

robustness. Our algorithmic approach relies on a combination of greedy procedures, where

stocking decisions are restricted to specific assortments, and the objective function takes a

modified form. Our theoretical analysis along with the experimental results provide evidence

that such restrictive policies could in fact be more effective than general-purpose methods, that

consider stocking decisions across all products. Along the way, we develop a number of novel

technical ideas that could very well contribute to studying additional combinatorial optimization

problems and to assortment planning methodologies in particular.

Restricted-submodular maximization. At the core of our analysis, we develop new con-

cepts of submodularity and monotonicity, called the restricted-submodular and restricted-non-

decreasing properties, that are weaker than their standard counterparts. Specifically, when

optimizing certain set functions under a cardinality constraint, the objective function could

generally violate the submodularity property, while still having a submodular-like behavior

within the feasible collection of sets, i.e., those satisfying the cardinality constraint. Thus,

in the restricted-submodular setting, the structural inequalities defining submodularity and

monotonicity are not required uniformly over all sets, and instead, we restrict attention to the

feasible region only. We show that the classic analysis of greedy algorithms extends to this

broader setting, and obtain a (0.318 − 󰂃)-approximation. Moreover, this worst-case guarantee

holds with high probability even when the greedy procedure is given access to noisy estimates

of the objective function at each step.

Algorithmic approach and performance guarantees. For ease of presentation, we de-

scribe our approach in an incremental way, where a simplified setting is first examined, prior to

addressing the most general case, thereby establishing the following worst-case guarantees.

• Core algorithm with evaluation oracle. As previously mentioned, in dynamic substitution

models, it is generally unknown how to efficiently compute the expected revenue gener-

ated by given initial inventory levels. To bypass this difficulty, we first operate under

the efficient oracle assumption, where we temporarily assume that the expected revenue

function can be efficiently evaluated with high probability by some (unspecified) oracle

procedure. Under this assumption, we devise in Section 3 a polynomial-time algorithm

with a constant-factor worst-case guarantee, for any demand distribution with increasing

failure rates. Specifically, for any error parameters 󰂃 ∈ (0, 1/4) and δ > 0, our randomized

algorithm attains a (0.139 − 󰂃)-approximation with probability at least 1 − δ. Moreover,
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our methods are amenable to tighter analysis under more restrictive settings, allowing us

to obtain an approximation guarantee of 0.179 − 󰂃 under the plausible assumption that

the number of inventory units (or capacity) exceeds the number of products, and 0.632−󰂃

when only products within an optimal static assortment can be stocked. The latter result

holds for general (non-IFR) demand distributions.

Technically speaking, for large enough capacity values, the algorithm concurrently runs

two greedy procedures: each restricts attention to a specific class of products, and the

inventory levels are chosen greedily over the residual set of products, using a modified

objective function. Our analysis relies in large part on the restricted-submodular and

restricted-non-decreasing properties mentioned earlier. Indeed, after we interpret one

residual problem in terms of optimizing a set function, we show that, while the latter gen-

erally violates the standard properties of submodularity and monotonicity, it still satisfies

their weaker (restricted) version. The proof is based on novel probabilistic coupling ideas,

allowing us to compare the dynamic substitution patterns driven by the MNL model. A

particularly interesting byproduct of our analysis is showing that a commonplace heuris-

tic, which stocks the optimal static assortment and scales inventory proportional to the

expected sales, has a provable performance guarantee with respect to a restricted class of

products.

• General approximation algorithm. In Appendix A, we bypass the efficient oracle assump-

tion, and derive a general constant-factor approximation for dynamic assortment planning

under the MNL choice model, with increasing failure rate demand distributions. For any

󰂃 ∈ (0, 1/4) and δ > 0, we devise a randomized polynomial-time algorithm attaining a

worst-case guarantee of 0.122 − 󰂃 with probability at least 1 − δ, which is improved to

0.151− 󰂃 when the capacity exceeds the number of products.

Empirical evaluation. While our theoretical worst-case guarantees might look unsatisfac-

tory for practical purposes, we present in Section 4 extensive computational experiments, show-

ing that the resulting algorithm largely outperforms existing heuristics in terms of performance

and speed. These experiments employ our algorithm on randomly-generated instances, concur-

rently to the following heuristics: (i) a local-search heuristic based on greedily exchanging units

between pairs of products, similar to Goyal et al. (2016); (ii) a gradient-descent approach based

on a continuous extension of the revenue function, similar in spirit to the work of Mahajan and

van Ryzin (2001); (iii) exact dynamic programming for two variants of the problem formulated

by Topaloglu (2013), based on a Poisson and a normal approximation of the demand process;

(iv) the deterministic relaxation heuristic proposed by Honhon et al. (2010), implemented using

a commercial integer programming solver; (v) a discrete-greedy algorithm, where in each step a

single unit is added to the product with the largest marginal expected revenue. Against these

benchmarks, our algorithm attains expected revenues that are better by a factor ranging be-

tween 4% and 12%, and simultaneously dominates all methods in 62% of the instances tested.

We also report that the proportional scaling heuristic, used as a subroutine in Section 3.3, is

outperformed by the overall algorithm on average by 5.5%. In addition, the running time of

our algorithm is significantly shorter than the above-mentioned heuristics, at the exception of
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the normal-based dynamic program.

1.2 Problem formulation

We are given n products, where each product i ∈ [n] is associated with a preference weight

wi and a per-unit selling price ri. In addition, there is a capacity bound of C on the total

number of units to be stocked. In the dynamic assortment planning problem, the retailer has

to jointly decide on an assortment, i.e., a subset of products to be offered, as well as on the

initial inventory levels of these products, which are not replenished later on. That is, a feasible

solution specifies the initial inventory levels of all products, represented by an integer-valued

vector U = (u1, . . . , un) that meets the capacity constraint,
󰁓n

i=1 ui ≤ C.

Stochastic MNL-based consumption process. We proceed by providing the additional

model ingredients that describe the process according to which customers arrive and purchase

products over time. A random number of customers M arrive sequentially, where the distribu-

tion of M is known to the decision-maker. Upon the arrival of a customer, suppose that S ⊆ [n]

is the subset of products that are currently available, due to being initially stocked, and not

depleted until now. Then, this customer either:

• Picks a random product out of S and purchases a single unit, where the probability for

choosing product i ∈ S is wi/(1 + w(S)). Here, w(S) stands for the total weight of the

products in S, i.e., w(S) =
󰁓

j∈S wj .

• Leaves without purchasing any product, which happens with probability 1/(1 + w(S)).

Objective function. When the sequence of customer arrivals ends, we use R(U) to denote

the revenue resulting from an initial inventory vector U . This revenue is clearly random, due to

the stochasticity in the number of customers and in their choice of products to purchase. The

objective is to compute a feasible inventory vector, so that the expected revenue is maximized,

max
(u1,...,un)∈Zn

+

󰀫
E [R(u1, . . . , un)] :

n󰁛

i=1

ui ≤ C

󰀬
.

The IFR assumption. As mentioned in Section 1.1, the distribution of the number of cus-

tomers M is assumed to have an increasing failure rate (IFR), meaning that the sequence

Pr [M = k] /Pr [M ≥ k] is non-decreasing over the integer domain. For definitions of stochastic

orders and stochastic monotonicity, we refer the reader to Shaked and Shanthikumar (1994).

It is worth mentioning that the IFR property is satisfied by many distributions considered in

operations management applications, including Normal, Exponential, Geometric, Poisson, and

Beta (for certain parameters).

Remark. Without an additional capacity constraint (i.e., when C = ∞), there is an infinite

supply of inventory for each product, in which case it is not difficult to verify that the problem

reduces to its static assortment planning formulation. Essentially, since there are no stock-out

events, we can offer the optimal static assortment to each arriving customer.
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1.3 Related literature

The MNL choice model. The Multinomial Logit (MNL) model is arguably the most

widespread approach for modeling choice among practitioners, as reflected by seminal stud-

ies in transportation (McFadden 1980, Ben-Akiva and Lerman 1985) and marketing (Guadagni

and Little 1983, Grover and Vriens 2006, Chandukala et al. 2008). This model, proposed

independently by Luce (1959) and Plackett (1975), is grounded in economic theory of util-

ity maximization, and describes the probabilistic choice outcomes of a representative agent

who maximizes his utility over different alternatives, through a noisy evaluation of the utility

they procure. The popularity of this model was notably driven by its simple estimation proce-

dures (McFadden 1973, Talluri and Van Ryzin 2004, Maystre and Grossglauser 2015), even with

limited data (Ford 1957, Negahban et al. 2012), as well as by its computational tractability in

decision-making problems. Indeed, the static assortment planning problem is well-understood

in the context of MNL choice preferences. For the uncapacitated variant, where any number

of products can be offered, Talluri and Van Ryzin (2004) showed that the optimal assortment

consists of the k-highest price products, for some k, and can therefore be computed efficiently.

Rusmevichientong et al. (2010) devised a polynomial-time algorithm for the capacitated vari-

ant, where an upper bound is imposed on the number of products offered. These results were

further advanced to handle more general settings (Rusmevichientong and Topaloglu 2012, Rus-

mevichientong et al. 2014), including a linear programming approach proposed by Davis et al.

(2013) and a local-ratio framework developed by Désir et al. (2015).

Challenges in dynamic assortment planning. Under multiple stochastic arrivals, the

problem we study becomes considerably more challenging than its static counterpart, due to

the additional ‘dynamic’ aspect. Indeed, the assortment is altered along the sequence of arrivals

due to stock-out events, as customers purchase the most preferred product available according to

a probabilistic choice model. Therefore, the substitution behavior of customers depends on each

sample-path realization, and a large number of samples is generally needed to obtain accurate

estimates of the expected revenue function. In addition, this function violates several well-

behaved properties. For instance, under a general model of choice, for a continuous relaxation

of the dynamic assortment problem, Mahajan and van Ryzin (2001) showed that the revenue

function is not even quasiconcave. Aouad et al. (2015) demonstrated through various counter-

examples that this function (in modified form) is not submodular, even for very simple choice

modeling approaches.

Existing methods. As a result, most of the work we are aware of in the context of dynamic

assortment planning develops heuristics based on continuous relaxations and probabilistic as-

sumptions (Smith and Agrawal 2000, Mahajan and van Ryzin 2001, Gaur and Honhon 2006,

Nagarajan and Rajagopalan 2008, Honhon et al. 2010, Honhon and Seshadri 2013). These

approaches either give rise to exponential-time algorithms, apply to more stylized models, or

converge to local optima, such as the gradient-descent method proposed by Mahajan and van

Ryzin (2001).

Similar to the present setting, Topaloglu (2013) studied a joint assortment and inventory
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management model with sequential customer arrivals, MNL preferences, and exogenous per-

unit costs rather than capacities. This model was shown to admit an efficient approximate

dynamic programming formulation, based on strong separability properties. However, this

setting has several restrictions: the dynamic substitution effects are overlooked and the demand

follows a Poisson process, while on the other hand, the retailer is allowed to utilize a mixed

assortment strategy. Goyal et al. (2016), Segev (2015), and Aouad et al. (2015) considered

dynamic assortment planning models, with a fully stochastic consumption process, for which

they devised polynomial-time algorithms with provable approximation guarantees. However,

the choice models considered in these papers have simple combinatorial structures, that impose

a very specific order by which products are consumed and depleted. This property is crucial

to the design of low-dimensional dynamic programs for revenue evaluation and optimization.

In contrast, the choice outcomes described by the MNL model do not impose any particular

(deterministic) pattern on stock-out events. Consequently, dynamic optimization in this context

appears to be significantly more challenging.

2 Preliminaries

In what follows, we establish a number of technical results that were briefly discussed in Sec-

tion 1.1. These are instrumental for our algorithmic approach and its analysis.

2.1 Extensions of submodular maximization

The crux of our algorithm resides in exploiting new notions of submodularity and monotonicity,

respectively termed as restricted submodularity and restricted monotonicity. Intuitively, these

properties require that the structural inequalities defining submodularity and monotonicity are

satisfied as long as the sets involved are within the feasible region, formed by a cardinality

constraint. Although weaker than the standard notions, we show that these properties are

sufficient for the design of constant worst-case approximations, even with noisy estimates of the

objective function.

Restricted submodularity and monotonicity. We begin by defining the notion of re-

stricted submodularity. A set function f : 2[n] → R is said to be restricted-s-submodular

for some integer s ∈ N if, for any subset S ⊆ [n] of cardinality at most s − 2 and elements

i ∕= j ∈ [n] \ S, we have

f (S ∪ {i, j})− f (S ∪ {j}) ≤ f (S ∪ {i})− f (S) .

By a similar extension of conventional definitions, we say that a set function f is restricted-s-

non-decreasing if f(S) ≤ f(T ) for any pair of subsets S ⊆ T of cardinality at most s. In what

follows, the parameter s is always equal to the capacity C, and therefore, we simply say that a

set function is restricted-submodular or restricted-non-decreasing.

The efficient oracle assumption. A particularly useful extension of the standard submodu-

lar maximization setting is to assume that the objective function f cannot be evaluated exactly
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in an efficient way, and instead, we are given access to a noisy estimation oracle. Formally, the

efficient oracle assumption states that, for any error parameter 󰂃 > 0 and for any confidence

level δ > 0, there exists an efficient procedure that, given any subset S ⊆ [n], computes a

random estimate f̃(S) of f(S) such that

Pr
󰁫
(1− 󰂃) · f(S) ≤ f̃(S) ≤ (1 + 󰂃) · f(S)

󰁬
≥ 1− δ .

The running time of this procedure is assumed to be polynomial in the input size, 1/󰂃, and 1/δ.

By leveraging classic techniques for approximately maximizing monotone submodular func-

tions (see, e.g., Nemhauser et al. (1978)), we derive a constant-factor approximation for non-

negative restricted-non-decreasing and restricted-submodular functions, as stated in the follow-

ing claim. To avoid deviating from our general theme, we present the proof in Appendix C.1.

Lemma 2.1. Under the efficient oracle assumption, for any 󰂃 ∈ (0, 1/4) and δ > 0, the problem

of maximizing a non-negative restricted-non-decreasing and restricted-submodular set function

under a cardinality constraint can be approximated within factor 0.318 − 󰂃, with probability at

least 1− δ. The running time of our algorithm is polynomial in the input size, n1/󰂃, and 1/δ.

2.2 Subadditivity of the expected revenue function

The next lemma, whose proof appears in Appendix C.2, asserts that the expected revenue

function in the MNL-based dynamic assortment model is subadditive.

Lemma 2.2 (Subbaditivity). For any inventory vectors U1 and U2, we have E[R(U1 + U2)] ≤
E[R(U1)] + E[R(U2)].

To better understand the implications of this claim, let U∗ be an optimal inventory vector.

For any subset of products S ⊆ [n], we use U∗
S to designate the projection of U∗ on S, i.e.,

U∗
S is the vector obtained from U∗ by setting the inventory levels of all products in [n] \ S to

zero. Now suppose that the collection of products [n] is partitioned into the subsets S1, . . . ,SK .

Consequently, since U∗ =
󰁓

k∈[K] U
∗
Sk
, and the expected revenue function is subadditive, it

follows that 󰁛

k∈[K]

E
󰀅
R(U∗

Sk
)
󰀆
≥ E[R(U∗)] . (1)

From an algorithmic perspective, this bound can be utilized by treating each subset Sk as a

separate subproblem for which a tailor-made algorithm is developed. Now, suppose we obtain

a γk-approximation for each subproblem, i.e., an inventory vector ŨSk
satisfying E[R(ŨSk

)] ≥
γk · E

󰁫
R(U∗

Sk
)
󰁬
. By picking the best solution (revenue-wise) out of the K resulting inventory

vectors, for any α1, . . . ,αK ≥ 1 with
󰁓

k∈[K] αk = 1, we obtain an expected revenue of

max
k∈[K]

E
󰁫
R(ŨSk

)
󰁬
≥

󰁛

k∈[K]

αk·E
󰁫
R(ŨSk

)
󰁬
≥

󰀕
min
k∈[K]

αkγk

󰀖
·
󰁛

k∈[K]

E
󰀅
R(U∗

Sk
)
󰀆
≥

󰀕
min
k∈[K]

αkγk

󰀖
·E [R(U∗)] ,

where the last inequality holds by (1). As a result, we have just obtained an approximation ratio

of mink∈[K] αkγk for the original problem, which can be optimized by picking the best convex

combination α1, . . . ,αK . This decomposition idea is exploited in Section 3 and in Appendix A.
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3 Core Algorithm with Evaluation Oracle

In this section, we devise an efficient algorithm with a constant-factor worst-case guarantee,

under IFR demand distributions. Since revenue evaluation is challenging by itself in the dynamic

setting, we temporarily operate under the efficient oracle assumption described in Section 2.1.

Specifically, we assume in the remainder of this section that, for any error parameter 󰂃 > 0 and

confidence level δ > 0, there is an efficient procedure to estimate the expected revenue E[R(U)]

of any inventory vector U up to a multiplicative factor of 1± 󰂃, with probability at least 1− δ.

In Appendix A, we explain how this assumption can be bypassed, losing a small constant

factor in optimality, while utilizing the conditional approach developed here as a subroutine.

The latter bears practical significance by itself, since simulation-based methods or surrogate

models are commonly used to go around the computational difficulties of evaluating certain

objective functions.

Theorem 3.1. Under the efficient oracle assumption, for any 󰂃 ∈ (0, 1/4) and δ > 0, the dy-

namic assortment planning problem under the Multinomial Logit choice model and IFR demand

distribution can be approximated within a factor of 0.139 − 󰂃 with probability at least 1 − δ, in

time polynomial in the input size, n1/󰂃, and 1/δ. When C ≥ n, this factor can be improved to

0.179− 󰂃.

3.1 Overview of the algorithm

Preliminary step: price threshold. We begin by computing OPTstatic, the optimal capac-

itated static revenue. There are several well-known polynomial-time algorithms (Megiddo 1979,

Rusmevichientong et al. 2010, Davis et al. 2013) to solve the capacitated static variant of the

problem, where there is only one customer arriving, still with an upper bound of C on the num-

ber of products to be stocked (rather than units). Hereafter, the corresponding optimal static

assortment (which generates an expected revenue of OPTstatic) is denoted by A∗. Subsequently,

we use OPTstatic as a price threshold to distinguish between expensive products, with price

greater or equal to OPTstatic, and cheap products, whose price is smaller than OPTstatic. We

let E and C designate the subsets of expensive and cheap products, respectively, thus forming a

partition of the products [n]. In the sequel, our algorithm constructs inventory vectors that are

exclusively composed of expensive products, whereas the optimal inventory vector could stock

both cheap and expensive products.

Decomposition approach. Next, we utilize the decomposition idea described in Section 2.2.

Specifically, we pick the most profitable among two candidate inventory vectors, denoted by UE

and UC . While both stocking only expensive products, these vectors are constructed to fulfill

different purposes: UE competes against the contributions of expensive products in the optimal

expected revenue, while UC competes against the revenue contributions of cheap products. By

‘compete’, we mean that UE is guaranteed to generate a constant fraction of the expected

revenue due to selling expensive products in the optimal solution, and an analogous property

holds for UC with respect to the cheap products. From this point on, we let U∗ be a fixed

optimal inventory vector, and recall that U∗
E designates the projection of U∗ on the set of
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expensive products E , i.e., the vector obtained from U∗ by setting the inventory levels of all

cheap products to zero. The vector U∗
C is defined in an analogous way. Our analysis relies on

comparing the expected revenue of UE and UC with that of U∗
E and U∗

C , respectively.

Competing against expensive products (Section 3.2). Since our analysis of the greedy

algorithm for restricted-non-decreasing and restricted-submodular functions (see Section 2.1)

results in an extra additive error that depends on 1/C, we distinguish between two cases in

order to construct UE . Specifically, when C ≥ 1/󰂃, the inventory levels of expensive products are

determined by a greedy approach, where at each step a single unit of the product that generates

the largest marginal increase in the expected revenue is picked until stocking C units. In this

case, the above-mentioned additive error affects the multiplicative factor we obtain by a factor

of only O(󰂃). In the opposite case, when C < 1/󰂃, we resort to enumeration over all O(n1/󰂃)

feasible inventory vectors. To analyze this approach, we prove that the restricted-non-decreasing

and restricted-submodular properties are satisfied by the revenue function (in modified form),

for the problem restricted to the collection of expensive products E . By executing the evaluation

oracle with the appropriate error and confidence parameters described in Lemma 2.1, it follows

that the inventory vector UE competes against the optimal expected revenue obtained from

expensive products. Specifically, with probability at least 1− δ,

E [R (UE)] ≥ (0.318− 󰂃) · E [R (U∗
E )] . (2)

When C ≥ n, we obtain an improved approximation ratio of (1− 󰂃) · (1− 1/e).

Competing against cheap products (Section 3.3). We compete against U∗
C by stocking

expensive products, rather than cheap products. Specifically, UC is computed through a greedy

procedure, where stocking decisions are restricted to the optimal static assortment A∗, and

the expected revenue function is replaced by a simplified objective function. This alternative

objective is formed by neglecting the revenue generated by stock-out substitution, namely,

assuming that customers do not substitute to less preferred options once their most preferred

product is depleted. The lower bound thus obtained can be interpreted as the objective function

of a multi-item newsvendor problem, that can be optimized greedily. By exploiting the IFR

property, we show that UC guarantees at least 1/4 of the optimal expected revenue due to cheap

products, i.e.,

E [R (UC)] ≥
1

4
· E[R (U∗

C )] . (3)

Concluding the proof of Theorem 3.1. Before providing additional details on the above-

mentioned algorithms and their respective performance, we argue that inequalities (2) and (3)

are sufficient to prove the worst-case guarantee stated in Theorem 3.1, using the decomposition

ideas of Section 2.2. Recall that, since the expected revenue function is subadditive, we have

E [R (U∗
E )] + E [R (U∗

C )] ≥ E [R (U∗)] . (4)

9



Now, for any α ∈ [0, 1], picking the better vector out of UE and UC guarantees, with probability

at least 1− δ, an expected revenue of

max {E [R (UE)] ,E [R (UC)]} ≥ α · E [R (UE)] + (1− α) · E [R (UC)]

≥ α · (0.318− 󰂃) · E [R (U∗
E )] +

1− α

4
· E [R (U∗

C )]

≥ (1− 4󰂃) ·
󰀕
0.318 · α · E [R (U∗

E )] +
1− α

4
· E [R (U∗

C )]

󰀖
,

where the second inequality is an immediate consequence of (2) and (3). Thus, by choosing

α = 0.25/0.568,

max {E [R (UE)] ,E [R (UC)]} ≥ (1− 4󰂃) · 0.318 · α · (E [R (U∗
E )] + E [R (U∗

C )])

≥ (1− 4󰂃) · 0.139 · E [R (U∗)] ,

where the last inequality follows from the upper bound (4). As previously mentioned, when

C ≥ n, the inventory vector UE actually satisfies E[R(UE)] ≥ (1 − 󰂃)(1 − 1/e) · E[R(U∗
E )]. By

plugging-in this inequality instead of (2), and by picking α = e/(5e−4), we derive an improved

constant-factor guarantee of 0.179− 󰂃.

3.2 Competing against expensive products

In this section, we consider the expensive-products problem, that is, a modified instance only com-

prised of products in E . We show that the restricted-submodular and restricted-non-decreasing

properties are satisfied by the expected revenue function (when reformulated appropriately),

although their standard counterparts do not hold in this context. The proof mainly relies on

probabilistic coupling ideas, that allow us to compare the consumption process under different

initial inventory level decisions. As a result, Lemma 2.1 entails the following theorem.

Theorem 3.2. Under the efficient oracle assumption, for any 󰂃 ∈ (0, 1/4) and δ > 0, the

expensive-products problem can be approximated within factor 0.318− 󰂃 with probability at least

1− δ. The running time of our algorithm is polynomial in the input size, n1/󰂃, and 1/δ.

Set decision formulation. In order to establish the desired submodularity-like properties,

the problem needs to be interpreted as the maximization of a set function under a cardinality

constraint. To this end, each product is duplicated into C copies, each representing a distinct

unit of that product. In the expensive-products problem, this transformation results in an

extended set of N = C · |E| distinct units. With this notation, the objective is to decide on a

subset of the extended collection of units S ⊆ [N ], as a substitute to the inventory vector U .

Once an initial offer set S ⊆ [N ] is chosen, each arriving customer purchases one unit of her

most preferred product available, according to the MNL choice model. Since units of the same

product are identical, the realizations of the revenue random variable are invariant to the precise

unit being purchased, which can thus be chosen arbitrarily (in the sequel, we often impose that

a specific unit is purchased, for purposes of analysis). Finally, we define the objective function

fY (S) to be the expected revenue when initially stocking the subset of units S, where Y stands

10



for the random number of arriving customers. Consequently, the original expensive-products

problem translates to maximizing fM (S) over all subsets S ⊆ [N ] of cardinality at most C.

Simplified notation. In what follows, we allow mixed notation between products and their

respective units. Specifically, wi and ri designate the preference weight and the selling price

of the product corresponding to unit i. Unless specified otherwise, when the subset of units

S ⊆ [N ] is fixed, the corresponding assortment of products is designated by A ⊆ E . We use the

shorthand notation A+i to denote the resulting assortment when a unit i ∈ [N ] is added to S,

and A+ij when two units i, j ∈ [N ] are added.

3.2.1 Probabilistic coupling

To establish the restricted-submodular and restricted-non-decreasing properties, we would have

to compare the expected revenue of different subsets. For example, we wish to prove that, for

any subset S ⊆ [N ] of cardinality at most C − 2, and any units i ∕= j ∈ [N ] \ S, we have

fM (S ∪ {i, j})− fM (S ∪ {j}) ≤ fM (S ∪ {i})− fM (S) .

To derive such inequalities, we implicitly need to compare the consumption process for the

initial subsets S, S ∪ {i}, S ∪ {j}, and S ∪ {i, j}. To this end, our coupling construction will

introduce useful relationships between the probabilistic outcomes generated by these subsets.

By design, in the construction below, units i and j correspond to two distinct products, both

not stocked in S. The construction remains identical even in other settings, where units i and

j are arbitrary.

Purchase random variables. We focus on the first arriving customer, and introduce several

random variables to describe her purchase decision, when facing each of the above-mentioned

subsets. Specifically, denoting the no-purchase option by product 0, with preference weight

w0 = 1 and selling price r0 = 0, we define:

• P as the product purchased when the offered set is S, i.e., within the initial assortment

A ∪ {0}.

• Pi as the product purchased when the offered set is S ∪ {i}, i.e., within the initial assort-

ment A+i ∪ {0}.

• Pj as the product purchased when the offered set is S ∪ {j}, i.e., within the initial assort-

ment A+j ∪ {0}.

• Pi,j as the product purchased when the offered set is S ∪ {i, j}, i.e., within the initial

assortment A+ij ∪ {0}.

Coupling construction. Rather than defining these random variables separately, in inde-

pendent probabilistic spaces, we artificially correlate their random outcomes for purposes of

analysis, while still preserving their MNL-based marginal probabilities. In other words, de-

noting by Y ∼ Z the equivalence in distribution between two random variables Y and Z, we

11
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1 + w(S) + wj
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1 + w(S) + wj
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1 + w(S) + wj

No purchase:
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/ 1 + w(S) + wj
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/ 1 + w(S) + wj
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/ 1
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/ 1

= 1

= 1= 1

/ 1 + w(S) + wj

S [ {j} S [ {i, j} S [ {i} S

XiXj Xi,j X

Figure 1: Markov chain representation of the coupling between the random variables Xj ,Xi,j ,Xi, and
X. Here, random purchase events (or states) are represented by nodes, and each arc corresponds to
a transition with positive probability. These transition probabilities are specified either exactly or in
proportions (e.g., if a node has two outgoing arcs, one with ∝ 3 and the other with ∝ 5, the transition
probabilities are 3/8 and 5/8, respectively).

construct a multivariate distribution for (Xj , Xi,j , Xi, X), where Xj ∼ Pj , Xi,j ∼ Pi,j , Xi ∼ Pi,

and X ∼ P . Our coupling approach relies on stipulating that the sequence Xj , Xi,j , Xi, X

forms a Markov chain, i.e., Xi|(Xi,j , Xj) = Xi|Xi,j and X|(Xi, Xi,j , Xj) = X|Xi, whose tran-

sition probabilities are specified below, through the conditional random variables Xj , Xi,j |Xj ,

Xi|Xi,j , and X|Xi.

To illustrate the upcoming definitions, we provide in Figure 1 a schematic representation of

the underlying transition graph, that can be used to derive useful probabilistic claims regarding

the purchase random variables. For example, there is a single incoming edge to each white node

of Xi,j , representing the purchase of a product α ∈ A. Given that this edge is horizontal, it

describes the same product option for the variableXj , and it follows that Pr [Xj = α|Xi,j = α] =

1.

• Defining Xj. Here, we simply use the marginal probabilities prescribed by the MNL choice

model for the purchases made by the first arriving customer under the initial assortment

12



A+j . That is, for any product α ∈ A+j ∪ {0},

Pr [Xj = α] =
wα

1 + w(A) + wj
.

• Defining Xi,j |Xj. The initial set S∪{i, j} contains one more purchase option than S∪{j},
namely product i. Intuitively, the event {Xi,j = i} is defined by ‘rescaling’ uniformly the

purchase probabilities of all other products in A+j ∪ {0}, which are captured by the

variable Xj . Formally, for any product α ∈ A+ij ∪ {0}, we define:

Pr [Xi,j = i|Xj = β] =
wi

1 + w(A) + wj + wi
for β ∈ A+j ∪ {0} , (5)

Pr [Xi,j = α|Xj = α] =
1 + w(A) + wj

1 + w(A) + wj + wi
if α ∕= i , (6)

Pr [Xi,j = α|Xj = β] = 0 if α ∕= i and β ∕= α . (7)

• Defining Xi|Xi,j. We relate the purchases made in the assortment A+i ∪ {0} with the

purchases made in A+ij∪{0}. In contrast to the previous case, we now need to ‘eliminate’

the purchase option relative to product j. This is done by ‘reallocating’ the probability

of the event {Xi,j = j} to the purchases of other products, proportionally to their MNL

weights. That is, for any product α ∈ A+i ∪ {0}, we define:

Pr [Xi = α|Xi,j = α] = 1 , (8)

Pr [Xi = α|Xi,j = j] =
wα

1 + w(A) + wi
(9)

Pr [Xi = α|Xi,j = β] = 0 for β ∕= α, j . (10)

• Defining X|Xi. Our construction is similar to the previous case, and for any product

α ∈ A ∪ {0}, we define:

Pr [X = α|Xi = α] = 1 , (11)

Pr [X = α|Xi = i] =
wα

1 + w(A)
. (12)

Pr [X = α|Xi = β] = 0 for β ∕= α, i . (13)

The next lemma, whose proof is given in Appendix C.3, states that this coupling method

indeed preserves the (marginal) MNL purchase probabilities for each initial offer set.

Claim 3.3. Xj ∼ Pj, Xi,j ∼ Pi,j, Xi ∼ Pi, and X ∼ P .

In addition, we establish several equivalence properties that will prove useful for the anal-

ysis, stating that the purchase random variables X, Xi, and Xj are invariant in distribution

when conditioned on appropriate events of Xi,j . The proof of the next lemma appears in

Appendix C.4.

Claim 3.4. (Xj |Xi,j = i) ∼ Xj, (Xi|Xi,j = j) ∼ Xi, (X|Xi,j = i) ∼ X, and (X|Xi,j = j) ∼ X.
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3.2.2 Proving restricted monotonicity

We prove that the revenue function fM is restricted-non-decreasing by an inductive argument.

To better understand which sufficient properties come into play, the proof is broken down

into two lemmas: we first examine the case of a single arriving customer, before extending our

arguments to any random variable M . It is worth mentioning that this property holds regardless

of how M is distributed, whether IFR or not.

Lemma 3.5. In the expensive-products setting, the static expected revenue function f1 is

restricted-non-decreasing.

Proof. It is easy to verify that the restricted-non-decreasing property is equivalent to having

f1(S ∪ {i}) ≥ f1(S) for any subset S of size at most C − 1 and any unit i. Observe that, if the

product corresponding to i is stocked by S, we clearly have f1(S ∪ {i}) = f1(S). When this

product is not stocked in S,

f1 (S ∪ {i})− f1 (S) =
riwi

1 + w(A) + wi
+

󰁛

k∈S
rkwk ·

󰀕
1

1 + w(A) + wi
− 1

1 + w(A)

󰀖

=
wi

1 + w(A) + wi
·
󰀣
ri −

󰁛

k∈S

rkwk

1 + w(A)

󰀤

=
wi

1 + w(A) + wi
· (ri − f1 (S)) . (14)

This proves the desired inequality, since ri ≥ OPTstatic ≥ f1(S), where the former inequality

follows from i being an expensive product, and the latter holds since the assortment A stocked

by S has fewer than C products (all expensive), implying that its static expected revenue is at

most OPTstatic, which stands for the maximum possible static revenue when we are allowed to

stock at most C products (expensive and cheap).

Lemma 3.6. For any instance of the dynamic assortment planning problem where the static

revenue function f1 is restricted-non-decreasing, the revenue function fM is restricted-non-

decreasing as well, for any demand random variable M .

Proof. The preliminary observation is that, by the formula of conditional expectation, it is

sufficient to prove the desired property for a deterministic value of M . Also, one can easily

verify that it is sufficient to prove fM (S1) ≤ fM (T1) for any two initial offer sets S1 ⊆ T1 ⊆ [N ]

with cardinality at most C, that differ by at most one unit, i.e., |T1 \ S1|≤ 1.

To this end, we leverage our coupling method for the purchase random variables, constructed

in Section 3.2.1, to derive a coupling of the consumption processes under the initial subsets S1

and T1. Let S1, . . . , SM and T1, . . . , TM be the (random) residual subsets of inventory units

facing customers 1, . . . ,M , when respectively stocking the initial subsets S1 and T1. We denote

by A1, . . . ,AM and B1, . . . ,BM the corresponding sequences of assortments.

We wish to define a coupling of these random variables such that Sk ⊆ Tk and |Tk \ Sk|≤ 1,

at each arrival k ∈ [M ]. This coupling is constructed inductively over the sequence of arrivals,

by refining at each step our probabilistic space with respect to the next arriving customer. Since
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the desired properties are clearly satisfied for the base case k = 1 by definition of S1 and T1,

suppose the inductive hypothesis holds until the k-th arrival. If Sk = Tk, it is easy to see that

the inductive property propagates to the next arrivals, since the purchases made in the two

consumption processes are identical. Otherwise, let i be the (single) unit contained in Tk \ Sk.

For the next arriving customer, we distinguish between two cases:

• Product i is contained in Ak. As a result, the k-th arriving customer is facing the same

assortment under both offer sets Sk and Tk, i.e., Ak = Bk. Here, the purchase random

variable X (with S = Sk) defines a trivial coupling of the purchases made by the first

arriving customer in both cases, in the sense that the purchases are identical and described

by the outcomes of X with respect to Ak. Consequently, the random residual sets facing

the next arriving customer satisfy Sk+1 ⊆ Tk+1, since Sk ⊆ Tk and the same unit of

product X can be purchased in both cases by the k-th arriving customer. In addition, we

have |Tk+1 \ Sk+1|= |Tk \ Sk|≤ 1.

• Product i is not contained in Ak. In this case, taking S = Sk and A = Ak, we use the

coupling of X and Xi as a joint distribution for the purchases made by the first arriving

customer under the sets Sk and Tk, respectively. By definition of X|Xi, observe that if

the customer faced with Tk purchases a product in A ∪ {0}, i.e., Xi ∈ A ∪ {0}, then the

customer faced with Sk purchases the same product, i.e., X = Xi (in Figure 1, there is

a single horizontal edge going into each white node of X, describing the same purchase

option in X and Xi). Indeed, our coupling entails that Pr[X = Xi|Xi ∈ A ∪ {0}] = 1

due to equation (11). As a result, since the k-th customer purchases the same unit in

both cases, the inductive hypothesis implies that Sk+1 ⊆ Tk+1. On the other hand,

the event {Xi = i} means that the customer faced with Tk purchases the last unit of

product i, and thus, conditional to this event, the remaining set of units is necessarily

Tk+1 = Tk\{i} = Sk, which clearly leads to Sk+1 ⊆ Tk+1. In both cases, we have preserved

the invariant |Tk+1 \ Sk+1|≤ 1.

We have just obtained a coupling of the consumption processes such that Sk ⊆ Tk and

|Tk \ Sk|≤ 1 for every k ∈ [M ]. By exploiting this inclusion property between subsets of units,

we now prove that fM (S1) ≤ fM (T1). To this end, a natural transformation of the expected

revenue function is

fM (S1) =

M󰁛

k=1

E [f1(Sk)] , (15)

where the overall expected revenue breaks down into the sum of expected revenues generated by

customers 1, . . . ,M , faced by the random residual sets of units S1, . . . , SM , respectively. Using

a similar transformation for T1, we have

fM (T1)− fM (S1) =

M󰁛

k=1

E [f1(Tk)− f1(Sk)] .

Therefore, since f1 is assumed to be restricted-non-decreasing, and Sk ⊆ Tk, the latter expression

is non-negative, meaning that the restricted-non-decreasing property extends to fM .
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3.2.3 Proving restricted submodularity

We now show that the transformed revenue function fM is also restricted-submodular, regardless

of how M is distributed, by exploiting the coupling method described in Section 3.2.1. We first

examine the static case, before extending the desired property to any demand random variable.

Lemma 3.7. For any instance of the dynamic assortment planning problem where the static

expected revenue function f1 is restricted-non-decreasing, this function is restricted-submodular.

Proof. Let S ⊆ [N ] be a set with |S|≤ C − 2, A is the assortment stocked by S and let i ∕= j

be two units in [N ]\S. In order to prove that f1(S ∪{i, j})− f1(S ∪{j}) ≤ f1(S ∪{i})− f1(S),

we distinguish between four cases:

1. Product i is contained in A. Adding unit i to any subset of units containing S leaves us

with the same assortment A, meaning that f1(S ∪ {i, j}) − f1(S ∪ {j}) = f1(S ∪ {i}) −
f1(S) = 0.

2. Product j is contained in A, product i is not. In this case, adding unit j to any subset

containing S leaves us with the same assortment, thus f1(S ∪ {i, j}) − f1(S ∪ {i}) =

f1(S ∪ {j})− f1(S).

3. Units i and j are of the same product, not contained in A. Here, we observe that f1(S ∪
{i, j})−f1(S∪{j}) = 0 while f1(S∪{i})−f1(S) ≥ 0 since f1 is restricted-non-decreasing.

4. Products i and j are different, and both not contained in A. By calculations similar to

those leading to equation (14), we get

f1 (S ∪ {i, j})− f1 (S ∪ {j}) =
wi

1 + w(A) + wi + wj
· (ri − f1 (S ∪ {j}))

≤ wi

1 + w(A) + wi
· (ri − f1 (S))

= f1 (S ∪ {i})− f1 (S) ,

where the inequality above holds since f1 is restricted-non-decreasing, thus f1(S ∪ {j}) ≥
f1(S).

Lemma 3.8. For any instance of the dynamic assortment planning problem where the static

expected revenue function f1 is restricted-non-decreasing, the revenue function fM is restricted-

submodular as well, for any demand random variable M .

Proof. By the formula of conditional expectations, we restrict attention to deterministic values

of M without loss of generality, and prove the claim by induction on M . Since the case M = 1

corresponds to Lemma 3.7, suppose that restricted submodularity has been established for

M − 1 arrivals. We show that, for any subset S ⊆ [N ] of cardinality at most C − 2, and units

i ∕= j ∈ [N ] \ S,

fM (S ∪ {i, j})− fM (S ∪ {j}) ≤ fM (S ∪ {i})− fM (S) . (16)
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The proof consists of the same case analysis made for the proof of Lemma 3.7. In what follows,

we only discuss the most difficult case, where products i and j are different and not contained

in the assortment A stocked by S. The additional cases have nearly-identical proofs and are

not presented here to avoid redundancy.

A particularly instructive observation is that, for any subset of units T ⊆ [N ], the expected

revenue function decomposes into the contribution due to the purchase made by the first arriv-

ing customer, and that associated with the residual subset of units and the remaining customers

arrivals. Formally, letting RM (T ) denote the random revenue obtained after M arriving cus-

tomer facing an initial subset T , and using Y to designate the product purchased by the first

arriving customer, we have

fM (T ) = E [RM (T )] = E [rY ] + E [RM−1 (T \ {Y })] . (17)

In what follows, for ease of notation, we denote S+i = S ∪ {i}, S+j = S ∪ {j}, and S+ij =

S ∪ {i, j}. In order to derive inequality (16), we make use of the revenue decomposition (17)

under different initial subsets S, S+i, S+j , and S+ij , along with their corresponding purchase

random variables X, Xi, Xj , and Xi,j .

By conditioning the revenue random variable with respect to Xi,j , we leverage our coupling

method of Section 3.2.1 to explicitly compare the random purchases made by the first arriving

customer under different initial subsets, and establish the next claim. Finally, the desired

inequality (16) comes at an immediate consequence of this claim, combined with the formula of

conditional expectations.

Claim 3.9. E[RM (S+ij)−RM (S+j)|Xi,j = α] ≤ E[RM (S+i)−RM (S)|Xi,j = α]

Proof of Claim 3.9. We present here the case where α ∈ A ∪ {0}, the other cases being

treated through similar arguments in Appendix C.5. We begin by observing that, conditional

on the event {Xi,j = α} where α ∈ A ∪ {0}, we necessarily have Xj = Xi,j = Xi = X = α.

Indeed, in the transition graph of the Markov chain (Figure 1), observe that there is a single

horizontal path going through each white node of Xi,j , that describes the same purchase option

across all variables. Formally, by equation (8), observe that Pr [Xi = α|Xi,j = α] = 1, while

equation (11) implies that Pr [X = α|Xi = α] = 1. Finally, Pr [Xj = α|Xi,j = α] = 1 follows

from Bayes rule, using equation (6) along with the marginal distributions of Xj and Xi,j , which

are described by the MNL model (see Claim 3.3). Thus, we obtain:

E
󰀅
RM

󰀃
S+ij

󰀄
−RM

󰀃
S+j

󰀄󰀏󰀏Xi,j = α
󰀆

= E
󰁫
r(Xi,j |Xi,j=α) +RM−1

󰀃
S+ij \ {α}

󰀄󰁬
− E

󰁫
r(Xj |Xi,j=α) +RM−1

󰀃
S+j \ {α}

󰀄󰁬

= E
󰀅
RM−1

󰀃
S+ij \ {α}

󰀄
−RM−1

󰀃
S+j \ {α}

󰀄󰀆

≤ E
󰀅
RM−1

󰀃
S+i \ {α}

󰀄
−RM−1 (S \ {α})

󰀆

= E
󰀅
RM

󰀃
S+i

󰀄
−RM (S)

󰀏󰀏Xi,j = α
󰀆
, (18)

where the first equality proceeds from equation (17), the second equality holds since the terms

r(Xi,j |Xi,j=α) = r(Xj |Xi,j=α) = rα cancel out, the next inequality is due to the inductive hy-
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pothesis (16), and the last equality is analogous to the first two equalities (in reverse order).

3.2.4 Improved performance guarantees for special settings

A close examination of the statements of Lemmas 3.6, 3.7, and 3.8 reveals that, for any in-

teger s ∈ [N ], the static expected revenue function f1 being restricted-s-non-decreasing is a

sufficient condition for fM to be both restricted-s-non-decreasing and restricted-s-submodular.

Hence, when f1 is non-decreasing in the standard sense, it follows that the function fM is

non-decreasing and submodular. In such cases, the standard analysis of the greedy algorithm

for monotone submodular maximization (Nemhauser et al. 1978), with appropriately-chosen

error and confidence parameters for the evaluation oracle, provides an improved performance

guarantee of (1− 󰂃) · (1− 1/e).

It is worth mentioning that the expensive-products problem naturally satisfies this condition

when C ≥ n. Indeed, by Lemma 3.5, we know that f1 is restricted-n-non-decreasing. Now,

consider a transformation that maps each set S ⊆ [N ] to the subset S̃ ⊆ S obtained by keeping

the lowest-index unit of each product stocked by S. Clearly, this transformation preserves

the static expected revenue, i.e., f1(S) = f1(S̃), while ensuring that S̃ has at most n units.

Consequently, for any subsets S ⊆ T ⊆ [N ], we infer that f1(S) = f1(S̃) ≤ f1(T̃ ) = f1(T ) since

f1 is restricted-n-non-decreasing and S̃ ⊆ T̃ .

This condition is also satisfied when the assortment of products has been chosen in advance

by solving the static assortment planning problem under the MNL model, and it remains to set

their inventory levels. It is easy to verify that f1 is non-decreasing when the entire collection of

products forms an optimal static assortment.

3.3 Competing against cheap products

In this section, we construct an inventory vector UC that guarantees a constant fraction of

the expected revenue of U∗
C , which stands for the projection of the optimal inventory U∗ on the

cheap products. We begin by presenting the algorithm before stating the performance guarantee

obtained.

3.3.1 Algorithm

Step 1: Computing an optimal static assortment. As explained in Section 3.1, we begin

by optimally solving the static assortment planning problem, subject to a capacity constraint of

C on the number of products offered (Megiddo 1979, Rusmevichientong et al. 2010, Davis et al.

2013). Recall that the corresponding optimal static assortment, that generates an expected

revenue of OPTstatic, is denoted by A∗. We now highlight a basic property of optimal static

assortments, claiming that only expensive products are being stocked.

Claim 3.10. A∗ ⊆ E.
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This property follows from existing work on the static capacitated assortment planning

problem under the MNL model (see Proposition 1 of Talluri and Van Ryzin (2004) and endnote 2

of Rusmevichientong et al. (2010)). For completeness, we provide a short proof in Appendix C.6.

Step 2: Deriving a newsvendor-like lower bound. To derive a lower bound, we will

neglect the revenue generated by stockout-based substitution, and consider a setting where

customers purchase their most preferred product until it stocks out. Specifically, suppose that

U is an initial inventory vector stocking only units in the assortment A∗. Then, for any product

i ∈ A∗, the probability that an arriving customer purchases that product is at least ψi =

wi/(1 + w(A∗)), regardless of the inventory levels of the other products, as long as product

i has not stocked out. Indeed, as the inventory vector is depleted due to previously-arriving

customers, this can only increase the probability of each remaining product to be consumed by

the next customer. To better understand the latter claim, consider two assortments Ã ⊆ A.

The probability that an arriving customer purchases a unit of product i ∈ A, when faced with

assortment A, is wi/(1+w(A)). By inclusion, this quantity is smaller or equal to wi/(1+w(Ã)),

namely the probability of picking i among the assortment Ã.

Consequently, the number of units purchased from i if this product had an unlimited number

of units is stochastically larger than the binomial random variable Yi ∼ B(M,ψi). However,

since product i has only ui units, we will actually be considering the truncated random variable

Ȳi(ui) = min{Yi, ui}. Therefore, we obtain the following lower bound:

E [R (U)] ≥
󰁛

i∈A∗

ri · E
󰀅
Ȳi(ui)

󰀆
. (19)

This lower bound can be interpreted as the objective function of a multi-item newsvendor

problem, where the demand is separable across the products of A∗. In what follows, this

function is denoted by L(U) =
󰁓

i∈A∗ ri · E
󰀅
Ȳi(ui)

󰀆
.

Step 3: Computing UC by greedily optimizing the lower bound. Finally, the inventory

vector UC , used to compete against cheap products, is constructed by solving the multi-item

newsvendor instance defined above. That is, we compute U that maximizes L(U), subject to
󰁓

i∈A∗ ui ≤ C. This optimization problem can be solved exactly by a standard greedy procedure

(see Muckstadt and Sapra (2010, Chap. 5)). Namely, starting from an empty inventory vector,

units are added iteratively until reaching the capacity C, by picking at each step the unit

with largest marginal contribution to the objective function. Therefore, in contrast to the

original expected revenue, for any inventory vector U the lower bound L(U) can be computed

in polynomial time.

3.3.2 Performance guarantee

The remainder of this section is devoted to proving the next theorem, showing that UC competes

against the expected revenue of cheap products U∗
C .

Theorem 3.11. E[R(UC)] ≥ (1/4) · E[R(U∗
C )].
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Our analysis proceeds by comparing an upper bound on E[R(U∗
C )] with a lower bound on

E[R(UC)], using the IFR property. It bears some resemblance to the analysis of Aouad et al.

(2015, Thm. 1), combined with additional structural properties of the MNL choice model.

Upper bound on the expected revenue of U∗
C . The important observation is that, when

initially stocking at most C units of cheap products, each arriving customer will generate an

expected revenue of at most OPTstatic. As a result, the expected revenue of U∗
C is upper bounded

by E[M ]·OPTstatic. In addition, since all cheap products have by definition selling prices smaller

than OPTstatic, another upper bound on the expected revenue of U∗
C is C ·OPTstatic. Therefore,

E [R (U∗
C )] ≤ OPTstatic ·min {C,E [M ]} . (20)

Lower bound on the expected revenue of UC. To define our lower bound, we begin by

introducing an inventory vector U∝, where the inventory levels are scaled proportionally to their

revenue contribution toward OPTstatic. Ideally, for each product i ∈ A∗, the inventory level of

i represents a fraction of riψi/OPTstatic of the total capacity C (recalling that ψi = wi/(1 +

w(A∗))). Hence, we would have liked to define the vector Ũ , where ũi = (riψi/OPTstatic) · C.

However, this quantity may not be integral, and is therefore rounded up to the nearest integer,

creating the vector U∝. That is, u∝i = ⌈ũi⌉ for every product i ∈ A∗, and u∝i = 0 otherwise.

Due to our rounding procedure, the overall number of units stocked by U∝ exceeds the capacity

C by a factor of at most 2 since

󰁛

i∈A∗

u∝i =
󰁛

i∈A∗

⌈ũi⌉ ≤
󰁛

i∈A∗

ũi + |A∗|≤ C

OPTstatic
·
󰁛

i∈A∗

riψi + |A∗|≤ 2C . (21)

Since the newsvendor-like objective function L has diminishing marginals (Muckstadt and Sapra

2010, Chap. 5), we infer that L(U∝) ≤ 2 · L(UC) by observing that UC is an optimal inventory

vector for L with C units, while U∝ has at most 2C units. Therefore, by the lower bound (19),

E [R (UC)] ≥ L (UC) ≥
L (U∝)

2
. (22)

Comparing the upper bound (20) with the lower bound (22). In the next claim, we

leverage the structure of U∝ as well as the IFR property to obtain a lower bound on the marginal

contribution of each product in A∗ toward L(U∝). The proof is given in Appendix C.7

Claim 3.12. For every product i ∈ A∗, E[Ȳi(u∝i )] ≥ (1/2) ·min{u∝i ,E[Yi]}.

By plugging Claim 3.12 into the lower bound stated in (22), we conclude that

E [R (UC)] ≥ 1

4
·
󰁛

i∈A∗

ri ·min {u∝i ,E [Yi]}

≥ 1

4
·
󰁛

i∈A∗

ri ·min {ũi,E [M ] · ψi}

=
1

4
·
󰁛

i∈A∗

riũi ·min

󰀝
1,

E [M ] ·OPTstatic

C · ri

󰀞
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≥ OPTstatic ·min {C,E [M ]}
4C

·
󰁛

i∈A∗

ũi

≥ E [R (U∗
C )]

4C
·
󰁛

i∈A∗

ũi

=
E [R (U∗

C )]

4
.

Here, the second inequality holds since u∝i = ⌈ũi⌉, the next equality follows from the definition

of ũi, the third inequality holds since all products in A∗ are expensive by Claim 3.10, meaning

that ri ≥ OPTstatic, the fourth inequality is derived from the upper bound in (20), and the last

equality holds since
󰁓

i∈A∗ ũi = C.

4 Computational Experiments

In this section, we show that our algorithmic approach has a superior empirical performance in

comparison to existing heuristics on randomly-generated instances. In particular, substantial

gains in the expected revenue are demonstrated against these heuristics, with better computa-

tional efficiency and robustness.

4.1 Generative models

Products and MNL parameters. Our simulations make use of n = 20 products and a

capacity bound of C, taking values in {10, 25, 50, 100}. Instances of the MNL model are con-

structed by considering two alternative settings, with different levels of heterogeneity in revenues

and preferences.

• Setting A: The preference weights wi are i.i.d. samples of a uniform distribution over

the interval [0, 1]. The per-unit selling prices ri are i.i.d. random samples of a standard

log-normal random variable (with µ = 0 and σ = 1).

• Setting B: Here, we create instances having a greater dispersion of weights and prices.

Specifically, the weights are generated through i.i.d. samples of a standard log-normal

distribution, rescaled by a factor of 1/2 to remain on average equivalent to setting A. The

per-unit selling prices ri are now sampled from a log-normal distribution with µ = 0 and

σ = 2.

The demand. The random number of arriving customers M is generated through two fam-

ilies of distributions with finite support 0, . . . , 100 = M̄ : a truncated Poisson distribution

and randomly generated nonparametric distributions. The former uses a random variable

P ∼ Poisson(0.35 · M̄), such that M = min{P, M̄}. The latter nonparametric distributions

are constructed as follows. To enforce the IFR property, we generate a decreasing sequence of

M̄ failure rates, each of at most 5%. To this end, we first draw M̄ i.i.d. samples of the uniform

distribution over the interval [0, 0.04], which are next sorted by increasing values, to obtain a se-

quence z1 ≤ · · · ≤ zM̄ . This sequence is used to specify the failure rate Pr[M = k|M ≥ k] = zk+1

for every k ∈ [0, M̄ − 1], and in addition, Pr[M = M̄ |M ≥ M̄ ] = 1.
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4.2 Tested heuristics

The performance of our algorithm is compared against five different heuristics, whose specifics

are discussed in Appendix D: (i) a local search heuristic similar to that of Goyal et al. (2016);

(ii) a gradient-descent approach based on a continuous extension of the revenue function, sim-

ilar in spirit to the work of Mahajan and van Ryzin (2001); (iii) the dynamic programming

formulations devised by Topaloglu (2013) for variants of our problem; (iv) the deterministic

relaxation heuristic proposed by Honhon et al. (2010); and (v) a discrete-greedy heuristic. The

latter forms a natural benchmark since our approach relies primarily on greedy decisions, with

the main difference of stocking products within a restricted set, possibly with modified objective

functions. In addition, we report the revenue performance of the subroutine used in Section 3.3

to compete against cheap products, that scales the inventory levels proportional to the expected

sales within an optimal static assortment.

4.3 Additional technical details

We implemented our algorithm, as well as the above-mentioned heuristics, using the Python

programming language. The experiments described in this section were conducted on a standard

laptop with 2.5GHz Intel Core i5 processor and 8GB of RAM.

The number of tested instances for each combination of parameters is 20. We impose a

time limit of 2000 seconds (per instance) for every algorithm. When this limit is reached before

termination, we use an identical rounding procedure on the current solution. Specifically, letting

U be the best inventory vector found after 2000 seconds, U is linearly scaled and rounded down

to the nearest integral vector: U ′
i = ⌊ Ui

󰀂U󰀂1 · C⌋. Finally, units are greedily added to U ′ until an

inventory vector of exactly C units is obtained.

To approximately evaluate the expected revenue function, each call to the random oracle

results in 500 samples. Although the number of samples needed to derive our theoretical guar-

antee in Lemma A.3 could be significantly larger, we observed in preliminary experiments that

a greater number of samples has negligible impact on the performance of the algorithms consid-

ered. Moreover, the gradient-descent approach and discrete-greedy algorithm become rapidly

impractical for the instances tested when the number of samples is increased.

Relative performance. For each instance tested, obtaining an estimate of the optimal ex-

pected revenue through brute-force enumeration is computationally prohibitive. Furthermore,

we are not aware of any good empirical upper bound on the optimal expected revenue. For exam-

ple, using a sample average approximation method, the resulting problem can be formulated as

an integer program. However, using a state-of-the-art commercial solver (Gurobi Optimization

2015), this IP incurred running times greater than 1 hour, even for the simplest instances with

n = M̄ = 20, C = 10, and 500 samples. The latter approach can be made more tractable using

a relaxation, where a custom solution is computed for each sample-path realization through a

separate IP. However, this approach produces low quality approximations.

For these reasons, we do not estimate the exact optimality gap attained by each algorithm.

Instead, the algorithms are compared on a relative basis where, for each instance, the benchmark

is set as the expected revenue of the most profitable inventory vector obtained through all
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algorithms considered. Then, the relative performance of each algorithm is defined as the ratio

between its expected revenue and that of the benchmark. For example, if our algorithm attains

for a particular instance an expected revenue of 1, while all tested heuristics generate an expected

revenue of 0.9, the relative performance is 100% for our algorithm, and 90% for the others.

4.4 Results

Practical performance. As shown in Table 1, our algorithm exhibits moderate to signif-

icant performance gains in comparison to the heuristics under consideration, except for two

configurations (out of 16) with capacity C = 10, where the local search shows slightly better

revenue performance. Specifically, the average performance gains of our algorithm range from

−0.7% to 39.6%. Overall, the expected revenues are increased by an average factor of 5.5%

in comparison to the proportional scaling heuristic (a subroutine of our algorithm to compete

against cheap products), 4.8% in comparison to the Poisson-based dynamic program, 4.4% in

comparison to the normal approximation-based dynamic program, 10.1% in comparison to the

deterministic relaxation, 12.7% against the local search algorithm, 9.3% in comparison to gra-

dient descent, and 6.1% in comparison to discrete-greedy. In addition, our algorithm is robust,

as it outperforms all heuristics for 62% of the instances tested.

Table 1: Average revenue performance of the different algorithms tested.
Parameters Relative revenue performance (%)

M Setting n C ALG PROP P-
DP

N-
DP

DET LS GD DG

Poisson

A
20 10 98.5 88.6 96.9 94.4 92.5 99.3 80.8 98.5
20 25 99.7 98.3 98.2 96.6 80.2 91.4 93.4 98.1
20 50 99.8 98.6 95.3 98.6 90.7 89.1 97.6 96.5
20 100 99.8 97.7 96.9 97.1 85.8 85 96.9 92.1

B
20 10 98 91.7 96.6 96.1 94.1 98.5 88.1 97.9
20 25 99.3 97.9 94.9 96.3 91.2 91.4 95.7 93.1
20 50 99.7 98.3 95.7 97.5 93.2 90.5 97.8 92.3
20 100 99.7 97.8 96.6 97.9 86.4 89.7 96.6 88

Nonparametric

A
20 10 98.8 75.2 94.8 90.8 89.4 98.3 78.2 98
20 25 98.7 90.4 88.1 92.5 91.9 86 83.7 98.4
20 50 99.8 98.3 83.4 91.9 93.1 76.6 92 93.1
20 100 99.9 97 95.1 94 88.6 60.3 88.5 83.6

B
20 10 98.2 82 91.9 90.4 93.7 97.8 80.8 97.6
20 25 99 94.9 97.7 92.3 91.7 84.7 88.5 94
20 50 99.5 95 92.3 94.2 78.8 74.1 90.1 84.3
20 100 98.9 96.5 94.9 95 83.4 70.3 88.7 83.1

Here, ALG designates our algorithm, PROP is the subroutine of our algorithm to compete
against cheap products, P-DP is the dynamic program under a Poisson process, N-DP is the
dynamic program under a normal approximation, DET is the deterministic relaxation, LS cor-
responds to the local search heuristic, GD designates the gradient-descent approach, and DG is
the discrete-greedy algorithm.

Although discrete-greedy is closest in spirit to our algorithm, particularly for expensive prod-

ucts, the relative performance gap between the two approaches is significant. The improvements
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observed on the computational front can be explained in that the discrete-greedy algorithm is

given access at each iteration to a larger space of incremental actions (augmenting the inventory

level of any product) in comparison to how our greedy procedures operate (augmenting inven-

tory levels within restrictive assortments). On the revenue performance front, our results are

somewhat surprising, as one could expect that a more constrained decision space would limit

the flexibility in constructing the stocking policy. However, the numerical results reported here

provide empirical evidence that the structural restrictions we impose on the stocking policy are

in fact beneficial, not only for purposes of analysis, but also in practical settings.

It is worth noting that, as the price and weight variabilities increase from setting A to set-

ting B, the relative performance of the discrete-greedy and the Poisson-based dynamic program

is negatively affected. On the other hand, our algorithm along with the deterministic relax-

ation, the normal approximation, and the local search algorithm have better robustness in the

face of heterogeneity. Intuitively, in such settings, it is expected that near-optimal inventory

vectors are concentrated over fewer products. Thus, it is not surprising that the deterministic

relaxation and normal approximation turn out to be more accurate, as further corroborated by

Table 2 below.

Random stock-outs vs. other models. Our experiments demonstrate the benefits of using

a realistic modeling approach, that captures the stochastic nature of stock-out events, even

though the resulting model is not solved optimally. The proportional scaling heuristic, based

on the optimal static assortment (and used as a subroutine to compete against cheap products),

has a rather satisfactory performance, which is not entirely surprising in light of the guarantees

established in Section 3.3. However, its average revenue loss can be as large as 23.6%, thus

supporting the value of jointly studying the assortment and inventory dynamics. As shown in

Table 2, the model proposed by Topaloglu (2013) tends to be less accurate for larger capacity

values as well as for larger prices and weight variabilities. These trends are more pronounced

for the Poisson-based dynamic program, while the normal-based algorithm tends to be more

robust. This observation suggests that the flexibility to vary the assortment over time provides

greater value to the retailer in such regimes. Interestingly, the accuracy of the deterministic

relaxation tends to vary in the opposite direction, as a function of the different parameters.

Indeed, the quality of the approximation and the optimality gap often improve as we scale-up

the different parameters. One possible intuitive explanation is that fluid approximation models

become more relevant asymptotically, as well as more tractable.

Running time. As shown in Table 3, the proposed algorithm emerges as the fastest algorithm

tested in our implementation. As mentioned earlier, the relative efficiency of our algorithm is

mainly due to the restrictive greedy rules, which limit the actions examined prior to each

incremental decision, in comparison to the local search and discrete-greedy heuristics. Observe

however that the running times of the gradient-descent algorithm and the dynamic programs

largely depend on the parameters chosen in our implementation (the step size and discretization

parameter, respectively).

The gradient-descent algorithm is particularly inefficient from a computational perspective,

presumably due to the likely existence of local minima, where the algorithm progresses at a
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Table 2: Average absolute approximation errors and optimality gap of the mixed integer pro-
gram (Poisson model).

Setting n C P-DP N-DP DET GAP

A
20 10 3% 14% 10% 63%
20 25 7% 28% 4% 34%
20 50 28% 32% 1% 9%
20 100 231% 145% 5% 24%

B
20 10 6% 20% 8% 20%
20 25 12% 42% 2% 9%
20 50 79% 52% 3% 12%
20 100 427% 219% 14% 14%

Here, GAP refers to the MIP optimality gap for the deterministic relaxation algorithm after
termination (either reaching the time limit of 2000 seconds, or an optimality gap of at most
0.5%). The additional entries correspond to the average absolute errors, when comparing the
optimal objective value of the models DP-P, N-DP, and DET to the actual expected revenue
generated under our stochastic dynamic substitution model. For example, if the Poisson-based
dynamic program, whose objective function is denoted by objP (·), returns the inventory vector

UP , its error is measured as | E[R(UP )]
objP (UP ) − 1|.

Table 3: Average running time of the algorithms tested.
Parameters Average running time (sec.)∗

Model Setting n C ALG P-
DP

N-
DP

DET LS GD DG

Poisson

A
20 10 26 1174 465 2000 232 175 70
20 25 95 1702 859 2000 719 775 218
20 50 155 2000 1408 1625 509 1632 465
20 100 381 2000 2000 1984 562 2000 971

B
20 10 13 977 434 1601 110 451 67
20 25 49 2000 881 1121 209 1170 219
20 50 101 2000 1531 609 288 1603 457
20 100 259 2000 2000 1331 422 2000 958

Nonparametric

A
20 10 44 985 445 2000 353 134 96
20 25 131 2000 736 2000 481 1181 315
20 50 292 2000 1319 1421 858 2000 781
20 100 691 2000 1919 1365 493 2000 1647

B
20 10 27 1865 309 2000 151 573 105
20 25 44 985 445 2000 353 134 96
20 50 171 2000 1112 1677 317 2000 732
20 100 478 2000 2000 1504 465 2000 2000

∗Recall that every algorithm is being run with a time limit of 2000 seconds.
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slower rate towards the final solution. Furthermore, due to its parameter dependency (step size

and stopping criterion), the gradient-descent algorithm poses several implementation challenges.

Even though we used here the best parameter values found by trial and error, it is still possible

that fine-tuned parameters for each configuration could improve the performance in terms of

optimality gaps and running times. Interestingly, as mentioned above, the optimality gap of the

deterministic MIP shrinks when we increase the capacity or the price and weights variability,

possibly since the combinatorial aspects are likely to be mitigated in an asymptotic regime,

where the LP relaxation becomes tighter.

5 Concluding Remarks

Applications of restricted properties. To derive our main result, the analysis in Sec-

tion 3.2 unravels hidden submodularity-like properties satisfied by the expected revenue func-

tion, and utilizes new notions of monotonicity and submodularity. One interesting direction for

future research is to investigate whether these weaker properties could be used for closely related

models in dynamic assortment planning, such as the Markov chain choice model (Blanchet et al.

2016, Désir et al. 2015, Feldman and Topaloglu 2017), which generalizes MNL, or a mixture of

Multinomial Logits (Bront et al. 2009, Méndez-Dı́az et al. 2014, Rusmevichientong et al. 2014,

Feldman and Topaloglu 2015) with fixed number of customer types.

Approximation guarantee without IFR. It would be interesting to determine whether a

constant-factor approximation for the MNL-based dynamic assortment planning problem can

be obtained under general (non-IFR) demand distributions. Here, we mention in passing that

the methods developed in this paper allow us to obtain an O(log n)-approximation in this

general setting, using an appropriate decomposition of the underlying set of products, combined

with greedy procedures. The specifics of the resulting algorithm and its analysis are given in

Appendix B.

Open questions. A natural direction for future research is that of obtaining improved ap-

proximation guarantees, which seems particularly challenging through the techniques developed

in this paper, specifically due to the optimality loss incurred by subadditivity-based bounds.

Another important theoretical question is to establish hardness of approximation results for dy-

namic substitution models. In fact, it might be NP-hard to evaluate (even approximately) the

expected revenue function at a given inventory vector. That being said, due to the stochastic

nature of this problem, any complexity results along these lines would be very interesting to

obtain. Along these lines, yet another fundamental direction to consider is that of obtaining

reasonable upper bounds on the optimum value. Such bounds will be valuable in measuring the

practical performance of future algorithms in this context.

Finally, given their greedy nature and scalability, the algorithms we present are applicable

in a broad range of settings. These include, for instance, product-specific per-unit costs, general

knapsack constraints for storage or display, matroid/extendibility constraints on the assortment

offered, etc. For such settings (and combinations thereof), the only requirement is being able

to efficiently solve the corresponding static formulation. However, in its current form, our
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worst-case analysis holds under a cardinality constraint, similar to previous analytical work

on approximation algorithms for dynamic assortment planning (Goyal et al. 2016, Segev 2015,

Aouad et al. 2015). An interesting open question is that of devising provably-good algorithms

for more general constraint structures, which seem to require further technical developments.

A General Constant-Factor Approximation

The approximation algorithm proposed in Section 3 relies on the efficient oracle assumption

in order to compute the expected revenue generated by any given inventory vector. However,

for the Multinomial Logit choice model, whether or not the expected revenue function can be

evaluated in polynomial time (even approximately) is still an open question. We work around

this difficulty by decomposing the set of products beforehand, and arguing that the terms

requiring more effort from an optimization standpoint admit a sampling-based evaluation oracle,

compatible with the algorithm developed in Section 3. Consequently, we establish the following

theorem.

Theorem A.1. For any 󰂃 ∈ (0, 1/4) and δ > 0, the dynamic assortment planning problem

under the Multinomial Logit choice model with IFR demand distribution can be approximated

within a factor of 0.122− 󰂃, with probability at least 1− δ. The running time of our algorithm

is polynomial in the input size, n1/󰂃, and 1/δ. When C ≥ n, this factor can be improved to

0.151− 󰂃.

High-level overview of the algorithm. To work around the estimation obstacle, we make

use of the decomposition idea explained in Section 2.2. Somewhat informally, sampling pro-

cedures fail to estimate the expected revenue accurately when there are very low probability

purchase events, that require an exponential number of samples to be observed. Such rare

events are possible when there is large variability between the preference weights of different

products. Thus motivated, as a preliminary step, we partition the set of products into two

classes, light and heavy, based on their respective MNL preference weights.

As a result, our decomposition generates two subproblems: one instance exclusively formed

by heavy products, and another instance comprised of light products. Using an appropriate

estimator, we show that the expected revenue in the heavy products instance can be efficiently

approximated through sampling. Consequently, the methods developed in Section 3 provide a

polynomial-time randomized algorithm, with a constant-factor worst-case guarantee. On the

other hand, we show that a relatively simple approximation scheme can be derived for the light

products instance.

Partition of products. To formalize this approach, the collection of products [n] is decom-

posed into two sets:

• The set L of light products, consisting of those with wi ∈ (0, 󰂃/n].

• The set H of heavy products, with wi ∈ (󰂃/n,∞).
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Product elimination. We further restrict attention to a smaller subset of heavy products,

by eliminating in advance certain products whose revenue contribution toward E[R(U∗)] is

negligible. Specifically, let imax be the heavy product that maximizes the quantity riwi/(1+wi)

over all products i ∈ H stocked by U∗
H. From an algorithmic perspective, imax can be guessed

by considering |H| options, and we can now define the residual collection of heavy products

H̃ = {i ∈ H :
󰂃2rimax
2n2C

≤ ri ≤ 2n2C·rimax
󰂃3

}.

Upper bound on the optimal expected revenue. We now argue that the classes of

products L and H̃ are sufficient to compete against U∗. Recall that U∗
L denotes the projection

of the optimal inventory vector U∗ on light products, i.e., the vector obtained from U∗ by

setting the inventory levels of [n] \L to zero. The vector U∗
H̃ is defined in an analogous way. By

exploiting the subadditive nature of the expected revenue function (see Lemma 2.2), we derive

an upper bound on E[R(U∗)] in the next lemma, whose proof is given in Appendix C.8.

Lemma A.2. E[R(U∗
L)] + E[R(U∗

H̃)] ≥ (1− 2󰂃) · E[R(U∗)].

A.1 Efficient oracle for heavy products

Here, we show that the subproblem restricted to the heavy products H̃ admits an efficient oracle.

That is, for any error parameter 󰂃 > 0 and confidence level δ > 0, we devise a procedure to

evaluate the expected revenue within a multiplicative factor of 1±󰂃, running in time polynomial

in the input size, 1/󰂃, and 1/δ.

For this purpose, suppose we are given an inventory vector U that stocks at most C units

of products in H̃, and wish to estimate E[R(U)]. Our evaluation procedure samples L =

⌈64C6n10/(󰂃12δ)⌉ independent realizations R1, . . . , RL of the random variable R(U) conditional

on M ≥ 1. These conditional realizations are obtained by sampling from a modified instance,

where the number of arrivals M is replaced by M |M ≥ 1. Next, the expected revenue E[R(U)]

is estimated by the unbiased estimator

R̃ = Pr [M ≥ 1] · 1
L

·
L󰁛

ℓ=1

Rℓ . (23)

Lemma A.3. The estimator R̃ provides an efficient oracle for the expected revenue function,

i.e.,

Pr

󰀥󰀏󰀏󰀏󰀏󰀏
R̃

E [R (U)]
− 1

󰀏󰀏󰀏󰀏󰀏 ≥ 󰂃

󰀦
≤ δ .

Proof. The proof relies on bounding the variance of the conditional revenue relative to its

expected value, before applying Chebyshev’s inequality. Since U stocks at most C units, the

random variable R(U)|M ≥ 1 is upper bounded by C · ri1 for any realization, where i1 ∈ H̃ is

the most expensive product stocked by U . Also, letting i2 be the maximal preference weight

product stocked by U , an immediate lower bound on the expectation of this random variable is

given by

E [R (U)|M ≥ 1] ≥ ri2wi2

1 + |H̃|·wi2

≥ 󰂃ri2
2n

, (24)
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where the first inequality accounts for the expected revenue due to the first arriving customer,

who purchases a unit of product i2 with probability at least wi2/(1 + |H̃|·wi2), given that i2

the has maximal preference weight among all products stocked by U , and the second inequality

holds since wi2 ≥ 󰂃/n. Note that, since E[R(U)|M ≥ 1] = E[R(U)]/Pr[M ≥ 1], we have:

Pr
󰁫󰀏󰀏󰀏R̃− E [R (U)]

󰀏󰀏󰀏 ≥ 󰂃 · E [R (U)]
󰁬
= Pr

󰀥󰀏󰀏󰀏󰀏󰀏
1

L
·

L󰁛

ℓ=1

Rℓ − E [R (U)|M ≥ 1]

󰀏󰀏󰀏󰀏󰀏 ≥ 󰂃 · E [R (U)|M ≥ 1]

󰀦
.

Hence, by Chebyshev’s inequality,

Pr
󰁫󰀏󰀏󰀏R̃− E [R (U)]

󰀏󰀏󰀏 ≥ 󰂃 · E [R (U)]
󰁬
≤ var((1/L) ·

󰁓L
ℓ=1Rℓ)

󰂃2 · (E [R (U)|M ≥ 1])2
≤ 4C2n2

󰂃2L
·
r2i1
r2i2

≤ δ ,

where the second inequality follows from (24), along with the upper bound of C2 · r2i1 on the

second moment of each sample Rℓ, and the last inequality holds since L = ⌈64C6n10/(󰂃12δ)⌉
while ri1/ri2 ≤ 4C2n4/󰂃5, by definition of H̃.

A.2 Approximation scheme for light products

The approach for handling light products L relies on identifying a newsvendor-like lower bound,

in the spirit of Section 3.3. The important observation is that, when we are restricted to stocking

only light products, each arriving customer faces a random assortment S ⊆ L with total weight

w(S) ≤ |S|·󰂃/n ≤ 󰂃. Thus, as long as product i ∈ L is available, it is purchased by an arriving

customer with probability at least wi/(1+󰂃) ≥ (1−󰂃) ·wi, regardless of what the other available

products are. Hence, at least intuitively, at the cost of losing a negligible factor in optimality,

one could view the contribution of each product to the expected revenue as if it depends only

on the initial number of units stocked.

Algorithm. To turn this intuition into a concrete argument, suppose that U is an inventory

vector that stocks only light products. Then, the number of units purchased from each product

i ∈ L is stochastically larger than the random variable Ȳi(ui) = min{Yi, ui}, where Yi ∼
B(M, (1− 󰂃) · wi). Therefore,

E [R(U)] ≥
󰁛

i∈L
ri · E

󰀅
Ȳi(ui)

󰀆
. (25)

Our algorithm optimizes the latter newsvendor-like lower bound, by computing an optimal

solution to the following problem:

max
U

󰀫
󰁛

i∈L
ri · E

󰀅
Ȳi(ui)

󰀆
:
󰁛

i∈L
ui ≤ C

󰀬
. (26)

As explained in Section 3.3, an optimal solution to this problem can be computed efficiently

by means of a greedy procedure. Note that the expectation E[Ȳi(ui)] can be computed in

polynomial time with respect to C and the maximum value of M , using a simple dynamic

program.
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The next lemma shows that the inventory vector UL, obtained by solving problem (26),

guarantees a (1− 󰂃)-approximation with respect to the inventory vector U∗
L.

Lemma A.4. E [R(UL)] ≥ (1− 󰂃) · E [R(U∗
L)].

Proof. First, observe that the lower bound (25) can be complemented by an upper bound on

the expected revenue of U∗
L. Specifically, letting Y ∗

i ∼ B(M,wi) and Ȳ ∗
i = min{Y ∗

i , u
∗
i }, we

have

E [R(U∗
L)] ≤

󰁛

i∈L
ri · E

󰀅
Ȳ ∗
i

󰀆
. (27)

Based on inequalities (25) and (27), since UL is an optimal solution to problem (26), it remains

to show that the objective value of U∗
L with respect to the latter problem is at least (1 − 󰂃) ·

󰁓
i∈L ri · E[Ȳ ∗

i ]. This follows by observing that E[Ȳi(u∗i )] ≥ (1 − 󰂃) · E[Ȳ ∗
i ] for any product

i ∈ L, where the latter inequality is an immediate consequence of the next claim (proven in

Appendix C.9), specialized for θ = 1− 󰂃.

Claim A.5. Let M be a non-negative integer-valued random variable, and suppose that X ∼
B(M,α) and Y ∼ B(M, θα), where α ∈ [0, 1] and θ ∈ [0, 1]. For some integer C, let X̄ =

min{X,C} and Ȳ = min{Y,C}. Then, E[Ȳ ] ≥ θ · E[X̄].

A.3 Conclusion

To summarize, our algorithm computes two approximate inventory vectors, corresponding to

the weight classes L and H̃, and eventually picks the one with maximal expected revenue.

• Heavy products. We employ the algorithm described in Section 3, for the subproblem re-

stricted to the heavy products H̃. This algorithm relies on the efficient oracle assumption,

and therefore, we utilize the efficient sampling-based procedure described in Appendix A.1,

running in time polynomial in the input size, n1/󰂃, and 1/δ. By Theorem 3.1, the random

vector UH̃ returned by this algorithm satisfies E[R(UH̃)] ≥ (0.139 − 󰂃) · E[R(U∗
H̃)], with

probability at least 1− δ.

• Light products. The vector UL, returned by the algorithm described in Section A.2, is

a (1 − 󰂃)-approximation with respect to the expected revenue of U∗
L, i.e., E[R(UL] ≥

(1 − 󰂃) · E[R(U∗
L]. In addition, this guarantee applies to a lower bound, that can be

efficiently computed through dynamic programming.

Establishing Theorem A.1. Since we pick the best vector out of UL and UH̃, with proba-

bility at least 1− δ, for any α ∈ [0, 1] we obtain an expected revenue of at least

max
󰀋
E [R(UL)] ,E

󰀅
R(UH̃)

󰀆󰀌

≥ α · E [R(UL)] + (1− α) · E
󰀅
R(UH̃)

󰀆

≥ (1− 8󰂃) ·
󰀓
α · E [R(U∗

L)] + 0.139 · (1− α)E
󰁫
R(U∗

H̃)
󰁬󰀔

.
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By choosing α = 0.139/1.139 ≈ 0.122, we have

max
󰀋
E [R(UL)] ,E

󰀅
R(UH̃)

󰀆󰀌

≥ 0.122 · (1− 8󰂃) ·
󰀓
E [R(U∗

L)] + E
󰁫
R(U∗

H̃)
󰁬󰀔

≥ (0.122− 2󰂃) · E [R(U∗)] ,

where the last inequality is due to Lemma A.2. In the special case where C ≥ n, an improved

guarantee of 0.151− 󰂃 is derived by plugging the refined approximation ratio of 0.179− 󰂃 given

by Theorem 3.1 for the heavy products vector UH̃.

B O(log n)-approximation for non-IFR demand distributions

In what follows, recall that U∗ is an optimal inventory vector, and for any subset of products

S ⊆ [n] we use U∗
S to denote the projection of U∗ on S.

Step 1: Decomposition. Similar to the algorithm described in Appendix A, we begin by

partitioning the set of products into the weight classes L andH, by specifically choosing 󰂃 = 1/4.

Since our approximation algorithm for light products (Section A.2) does not rely on the IFR

property, the resulting inventory vector UL still attains a performance guarantee of 3/4 with

respect to U∗
L.

Now, let imax ∈ H be the most expensive heavy product. From an algorithmic perspective,

this product can be guessed by considering |H| options. With this definition at hand, we

construct the subset of productsH+ ⊆ H whose selling price is at least rimax/(8n), and designate

by H− the remaining heavy products.

Step 2: Competing against cheap heavy products. Let UH− be the inventory vector

that stocks C units of product imax. In the next claim, whose proof is deferred to the end of

this section, we argue that UH− is at least as good revenue-wise as U∗
H− .

Claim B.1. E [R(UH−)] ≥ E
󰀅
R(U∗

H−)
󰀆
.

Step 3: Competing against expensive heavy products. We further decompose H+ into

K = ⌈log(8n)⌉ nearly-uniform price classes H+
1 , . . . ,H

+
K , where H+

k = {i ∈ H+ :
rimax

2k
<

ri ≤ rimax

2k−1 }. Next, for every k ∈ [K], our algorithm computes an inventory vector UH+
k

that

compete against U∗
H+

k

. To this end, consider the subproblem where only products in H+
k can

be stocked, and let fk be the corresponding expected revenue set function, that specifies the

expected revenue associated with subsets of the extended collection of units H+
k × [C] (see

Section 3.2). By rounding up the selling prices of products in H+
k to rimax/2

k−1, the resulting

expected revenue set function f̃k clearly satisfies, for any subset of units S,

1

2
· f̃k (S) ≤ fk(S) ≤ f̃k (S) . (28)

On the other hand, it is easy to verify that, when all selling prices are equal, the static expected

revenue function associated with an instance of the MNL model is non-decreasing, implying in
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particular that f̃k
1 is non-decreasing. As a result, the problem of maximizing f̃k(S) over subsets

S of at most C units falls within the special setting discussed in Section 3.2.4. Therefore,

the standard greedy algorithm, combined with the sampling-based oracle of Appendix A (with

appropriate error and confidence parameters), computes an inventory vector UH+
k

such that,

with probability at least 1− δ/K,

E
󰁫
R

󰀓
UH+

k

󰀔󰁬
≥

󰀕
1

2
·
󰀕
1− 1

e

󰀖
− 󰂃

󰀖
· E

󰁫
R

󰀓
U∗
H+

k

󰀔󰁬
, (29)

where the latter performance guarantee follows from the approximation ratio of Section 3.2.4

combined with (28).

Step 4: Picking the most profitable inventory vector. Finally, the algorithm selects

the most profitable inventory vector out of UL, UH− , UH+
1
, . . . , UH+

K
. Since the corresponding

expected revenues are unknown, these vectors are compared using the randomized oracle (for

UH− , UH+
1
, . . . , UH+

K
), and the previously-mentioned lower bound for UL. Given the subadditiv-

ity of the expected revenue function (see Lemma 2.2), since L,H−,H+
1 , . . . ,H

+
K form a partition

of [n], it follows that

E [R (U∗
L)] + E [R (U∗

H−)] +
󰁛

k∈[K]

E
󰁫
R

󰀓
U∗
H+

k

󰀔󰁬
≥ E [R (U∗)] .

Therefore, by the union bound, with probability at least 1− δ we obtain that

max
󰁱
E [R (UL)] ,E [R (UH−)] ,E

󰁫
R

󰀓
UH+

1

󰀔󰁬
, . . . ,E

󰁫
R

󰀓
UH+

K

󰀔󰁬󰁲

≥ (1/2) · (1− 1/e)− 󰂃

K + 2
·

󰀳

󰁃E [R (U∗
L)] + E [R (U∗

H−)] +
󰁛

k∈[K]

E
󰁫
R

󰀓
U∗
H+

k

󰀔󰁬
󰀴

󰁄

≥ 1

4(K + 2)
· E [R (U∗)]

= Ω

󰀕
1

log n

󰀖
· E [R (U∗)] .

where the first inequality holds due to the performance guarantees stated in Lemma A.4,

Claim B.1, and inequality (29).

Proof of Claim B.1.. Since the selling price of every product in H− is at most rimax/(8n), an

upper bound on the expected revenue of U∗
H− is given by

E [R (U∗
H−)] ≤

rimax

8n
· E [min{M,C}] .

On the other hand, when initially stocking the inventory vector UH− , until product imax stocks

out, each arriving customer purchases a unit of imax with probability wimax/(1 + wimax) ≥
󰂃/(2n) = 1/(8n), where the latter inequality holds since wimax ≥ 󰂃/n, given that imax is a heavy

product. Consequently, letting Y ∼ B(M, 1/(8n)), we have

E [R (UH−)] ≥ rimax · E [min{Y,C}] ≥ rimax

8n
· E [min{M,C}] ≥ E [R (U∗

H−)] .
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where the second inequality follows from Claim A.5 specialized with θ = 1/(8n).

C Additional Proofs

C.1 Proof of Lemma 2.1

Algorithm. For a small cardinality value, i.e., C < 1/󰂃, one could simply enumerate over all

O(n1/󰂃) possible subsets, and pick the one with largest estimated objective value, according to

an (󰂃/2, δ/n1/󰂃)-oracle. It is not difficult to verify that, by the union bound, this enumerative

procedure returns a 1− 󰂃-approximate solution with probability at least 1− δ. For large cardi-

nality values (C ≥ 1/󰂃), the algorithm is a standard greedy procedure. Starting with the empty

set S0 = ∅, we add in each step the element that generates the largest increase in the objective

function, among all unpicked elements. At each step, we call the random (󰂃/(2C), δ/(nC))-

oracle to evaluate the objective value associated with each unpicked element. Let S0, S1, . . . , SC

be the sequence of subsets corresponding to the different steps in the algorithm, and let S∗ be

a fixed optimal subset. We assume without loss of generality that |S∗|= C, as f is restricted-

non-decreasing.

Analysis. Since the greedy algorithm makes at most nC calls to the randomized oracle, by the

union bound the relative error associated with all estimates returned by the (󰂃/(2C), δ/(nC))-

oracle is upper bounded by 󰂃/(2C) with probability at least 1 − δ. From this point on, we

establish the desired approximation guarantee under this condition. Below, for any subsets S

and T , we use fS(T ) to denote the marginal variation in f when S is augmented by T , i.e.,

fS(T ) = f(S ∪ {T})− f(S).

Claim C.1. Let S and T be disjoint subsets, with |S|+|T |≤ C and T ∕= ∅. Then, for every

0 ≤ k ≤ |T |, there exists Tk ⊆ T with |Tk|= k and fS(Tk) ≥ (k/|T |) · fS(T ).

Proof. The proof follows by an inductive argument over k. The base case k = 0 is clearly

satisfied by T0 = ∅. For the general case, by the induction hypothesis, there exists Tk ⊆ T with

|Tk|= k and fS(Tk) ≥ (k/|T |) · fS(T ). Letting T \ Tk = {e1, . . . , e|T |−k}, we have

fS∪Tk
(T \ Tk) =

|T |−k−1󰁛

j=0

fS∪Tk∪{e1,...,ej} (ej+1) ≤
|T |−k−1󰁛

j=0

fS∪Tk
(ej+1) ,

where the latter inequality holds since f is restricted-submodular, by observing that |S ∪ Tk ∪
{e1, . . . , e|T |−k−1}|= |S|+|T |−1 ≤ C − 1. Consequently, there exists 1 ≤ j ≤ |T |−k such that

fS∪Tk
(ej) ≥ fS∪Tk

(T \ Tk)/(|T |−k). As a result, by defining Tk+1 = Tk ∪ {ej}, we obtain

fS (Tk+1) = fS (Tk) + fS∪Tk
(ej)

≥ fS (Tk) +
1

|T |−k
· fS∪Tk

(T \ Tk)

=

󰀕
1− 1

|T |−k

󰀖
· fS (Tk) +

1

|T |−k
· fS(T )

≥
󰀕

k

|T | ·
󰀕
1− 1

|T |−k

󰀖
+

1

|T |−k

󰀖
· fS(T )
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=
k + 1

|T | · fS(T ) ,

where the second equality holds since fS∪Tk
(T \Tk) = fS(T )−fS(Tk), and the second inequality

proceeds from the inductive hypothesis.

It immediately follows from Claim C.1 that, for every 0 ≤ k ≤ C, there exists a subset

S∗
C−k ⊆ S∗ such that |S∗

C−k|= C − k, and

f∅
󰀃
S∗
C−k

󰀄
≥ C − k

C
· f∅ (S∗) . (30)

We can now analyze the sequence of subsets S0, . . . , SC produced by our (random) greedy

procedure, where we use ek+1 to denote the unique element of Sk+1\Sk, for every 0 ≤ k ≤ C−1.

To establish lower bounds on fSk
(ek+1) for every 0 ≤ k ≤ C − 1, we make the following case

disjunction:

• Case A: S∗
C−k \Sk ∕= ∅. Observe that Sk and S∗

C−k \Sk are disjoint, and |Sk|+|S∗
C−k \Sk|≤

C. By Claim C.1, since S∗
C−k \ Sk ∕= ∅ by the case hypothesis, it follows that there exists

an element e ∈ S∗
C−k \ Sk such that

fSk
(e) ≥ 1

|S∗
C−k \ Sk|

· fSk

󰀃
S∗
C−k \ Sk

󰀄

≥ 1

C − k
·
󰀃
f∅

󰀃
Sk ∪ S∗

C−k

󰀄
− f∅ (Sk)

󰀄

≥ 1

C − k
·
󰀃
f∅

󰀃
S∗
C−k

󰀄
− f∅ (Sk)

󰀄

≥ 1

C
· f∅ (S∗)− 1

C − k
· f∅ (Sk) , (31)

where the third inequality holds since f is restricted-non-decreasing and |Sk ∪ S∗
C−k|≤ C,

while the last inequality proceeds from (30).

• Case B: S∗
C−k \ Sk = ∅. In this case, S∗

C−k ⊆ Sk, and therefore

f∅ (Sk) ≥ f∅
󰀃
S∗
C−k

󰀄
≥ C − k

C
· f∅ (S∗) , (32)

where the first inequality holds since f is restricted-non-decreasing, and the last inequality

follows from (30).

Concluding the analysis. Let µ ∈ [0, 1] be a parameter that will be optimized later on, and

let L = ⌊(1−µ) ·C⌋. When f (SC) ≥ µ ·f (S∗), our algorithm attains a µ-approximation. When

f (SC) < µ · f (S∗), for every k ≤ (1− µ) · C we necessarily have S∗
C−k \ Sk ∕= ∅, or otherwise

f∅ (SC) ≥ f∅ (Sk) ≥
C − k

C
· f∅ (S∗) ≥ µ · f∅ (S∗) ,

where the first inequality is due to f being restricted-non-decreasing, and the second inequality

follows from (32); since f(∅) ≥ 0, the latter observation would imply that f(SC) ≥ µ · f(S∗).
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As a result, in this setting we have

f∅ (SC) ≥ f∅ (SL)

=

L−1󰁛

k=0

fSk
(ek+1)

≥
L−1󰁛

k=0

󰀕
1

C
· f∅ (S∗)− 1

C − k
· f∅ (Sk)−

󰂃

C
· f (S∗)

󰀖

≥ L

C
· f∅ (S∗)− µ · f∅ (S∗) ·

L−1󰁛

k=0

1

C − k
− 󰂃 · f (S∗)

=

󰀕
L

C
− µ · (HC −HC−L)

󰀖
· f∅ (S∗)− 󰂃 · f (S∗) ,

where Hm =
󰁓m

k=1
1
k is the m-th harmonic number. Here, the first inequality holds since f is

restricted-non-decreasing. The second inequality follows from (31), given that all estimates of

the evaluation oracle are accurate up to a relative error of 󰂃/(2C). The next inequality holds

since f(Sk) < µ · f(S∗) by hypothesis and since f(∅) ≥ 0.

Claim C.2. L/C − µ · (HC −HC−L) ≥ 1− µ− µ lnµ−O(󰂃).

Proof. Since |Hn − lnn|= γ +O(1/n), where γ is the EulerMascheroni constant, we have

L

C
− µ · (HC −HC−L) ≥ L

C
− µ · ln C

C − L
− µ ·O

󰀕
1

C − L

󰀖

=
⌊(1− µ) · C⌋

C
+ µ · ln

󰀕
1− ⌊(1− µ) · C⌋

C

󰀖
− µ ·O

󰀕
1

C − ⌊(1− µ) · C⌋

󰀖

≥ 1− µ− 1

C
+ µ lnµ−O

󰀕
1

C

󰀖

= 1− µ+ µ lnµ−O (󰂃) ,

where the first equality is obtained by substituting L = ⌊(1−µ) ·C⌋, and the last equality holds

since C ≥ 1/󰂃.

Using the above claim, it follows that f∅(SC) ≥ (1−µ−µ lnµ−O(󰂃)) ·f∅(S∗)−󰂃 ·f(S∗), and

since f(∅) ≥ 0, we have f(SC) ≥ (1−µ−µ lnµ−O(󰂃)) ·f(S∗). Therefore, our algorithm attains

an overall approximation ratio of min{µ, 1−µ−µ lnµ}−O(󰂃). The latter constant is optimized

by picking µ∗ ≈ 0.318, in which case we obtain a performance guarantee of 0.318−O(󰂃).

C.2 Proof of Lemma 2.2

To show that the expected revenue function is subadditive, it is sufficient to prove that, in a

given inventory vector, the deletion of any unit can only increase the probability of every other

unit to be purchased. Indeed, if U = U1 + U2, starting from U , we can iteratively delete units

to obtain U1 or U2 while increasing the consumption probabilities of all remaining units at each

step. This immediately implies that the expected revenue generated by remaining units may

only increase as well. Finally, by combining the units of U1 and U2, the total expected revenue

should be at least as large as that of U .
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To formalize the above statement, for any unit v stocked by some inventory vector, we use

Cv to denote the event “unit v is consumed”. With this definition, it remains to establish the

following claim.

Claim C.3. Let U be some inventory vector, and let U− be a vector obtained by deleting a single

unit from U . Then, for any remaining unit v stocked by U−, we have Pr [Cv|U−] ≥ Pr [Cv|U ].

Let x be the product of which one unit was deleted in order to obtain U− from U . There

are three cases:

1. The unit v belongs to product x.

2. The unit v does not belong to product x, and no additional units of x are stocked (i.e.,

Ux = 1 and U−
x = 0).

3. The unit v does not belong to product x, and at least one additional unit of x is stocked

(i.e., Ux ≥ 2 and U−
x = Ux − 1).

In what follows, we prove the claim for case 2, noting that the remaining cases can be proven

in a nearly-identical way. Moreover, by the formula of conditional expectations, it is sufficient to

establish the claim for a deterministic demand variable M . For any event E, we use PrM [E|U ]

to denote the probability of E with M arriving customers and the initial inventory vector U .

Finally, to simplify the notation, we make use of product 0 to designate the no-purchase option,

with preference weight w0 = 0.

The proof is by induction on
󰁓n

i=1 ui+M . The base case, corresponding to
󰁓n

i=1 ui+M = 1,

implies that M = 0. Hence, PrM [Cv|U ] = PrM [Cv|U−] = 0.

In the general case, consider the random product X picked by the first arriving customer,

including the no-purchase option 0. Then,

PrM [Cv|U ] = PrM [X = 0|U ] · PrM [Cv|X = 0, U ]󰁿 󰁾󰁽 󰂀
(I)

+ PrM [X = x|U ] · PrM [Cv|X = x, U ]

+
󰁛

i∈S(U)\{x}
PrM [X = i|U ] · PrM [Cv|X = i, U ]󰁿 󰁾󰁽 󰂀

(II)

≤ PrM [X = 0|U ] · PrM
󰀅
Cv|X = 0, U−󰀆

+ PrM [X = x|U ] · PrM [Cv|X = x, U ]

+
󰁛

i∈S(U)\{x}
PrM [X = i|U ] · PrM

󰀅
Cv|X = i, U−󰀆 . (33)

Here, we use S(U) to denote the set of products stocked by the vector U , i.e., S(U) = {i ∈ [n] :

ui > 0}. The inequality above hold since by the induction hypothesis,

(I) = PrM [Cv|X = 0, U ] = PrM−1 [Cv|U ] ≤ PrM−1

󰀅
Cv|U−󰀆 = PrM

󰀅
Cv|X = 0, U−󰀆 .

In addition, if v is the first available unit of product i to be purchased,

(II) = PrM [Cv|X = i, U ] = 1 = PrM
󰀅
Cv|X = i, U−󰀆 ,
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and otherwise,

(II) = PrM [Cv|X = i, U ] = PrM−1 [Cv|U−i] ≤ PrM−1

󰀅
Cv|U−

−i

󰀆
= PrM

󰀅
Cv|X = i, U−󰀆 ,

where U−i and U−
−i stand for the residual inventory vectors after a unit of product i is consumed

in U and U−, respectively. On the other hand,

PrM
󰀅
Cv|U−󰀆 = PrM

󰀅
X = 0|U−󰀆 · PrM

󰀅
Cv|X = 0, U−󰀆

+
󰁛

i∈S(U−)

PrM
󰀅
X = i|U−󰀆 · PrM

󰀅
Cv|X = i, U−󰀆 . (34)

To conclude the proof, note that since S(U) = S(U−)⊎{x}, by equation (33) and (34), we have

PrM
󰀅
Cv|U−󰀆− PrM [Cv|U ]

≥
󰀃
PrM

󰀅
X = 0|U−󰀆− PrM [X = 0|U ]

󰀄
· PrM

󰀅
Cv|X = 0, U−󰀆

+
󰁛

i∈S(U−)

󰀃
PrM

󰀅
X = i|U−󰀆− PrM [X = i|U ]

󰀄
· PrM

󰀅
Cv|X = i, U−󰀆

− PrM [X = x|U ] · PrM [Cv|X = x, U ]

≥ PrM−1

󰀅
Cv|U−󰀆 ·

󰀣
󰁛

i∈S(U−)∪{0}

PrM
󰀅
X = i|U−󰀆−

󰁛

i∈S(U)∪{0}
PrM [X = i|U ]

󰀤

= 0 ,

where the first inequality holds since PrM [X = 0|U−] ≥ PrM [X = 0|U ] and PrM [X = i|U−] ≥
PrM [X = i|U ] by the choice probabilities of the MNL model, combined with the fact

that PrM [Cv|X = 0, U−] = PrM−1 [Cv|U−] and PrM [Cv|X = x, U ] = PrM−1 [Cv|U−], while

PrM [Cv|X = i, U−] = PrM−1

󰀅
Cv|U−

−i

󰀆
≥ PrM−1 [Cv|U−] due to the inductive hypothesis. The

last equality proceeds from observing that the two sums of probabilities are both equal to 1.

C.3 Proof of Claim 3.3

By construction, the marginal purchase probabilities of the random variable Xj coincide with

the MNL probabilities given by Pj . It remains to show that this property propagates to the

random variablesXi,j , Xi, andX through the chain of conditional distributionsXi,j |Xj , Xi|Xi,j ,

and X|Xi. To avoid redundancy, we only present the proof for the variable Xi,j ; those of Xi

and X are based on similar ideas.

Recall that Pi,j is the product purchased by the first arriving customer in the assortment

stocked by S ∪ {i, j}. Thus, we need to show that Pr[Xi,j = α] = wα/(1 +w(A) +wi +wj) for

any product α ∈ A+ij ∪ {0}. For any product α ∈ A+j ∪ {0}, we have

Pr [Xi,j = α] =
󰁛

β∈A+j∪{0}

Pr [Xj = β] · Pr [Xi,j = α|Xj = β]

= Pr [Xj = α] · Pr [Xi,j = α|Xj = α]

=
wα

1 + w(A) + wj
· 1 + w(A) + wj

1 + w(A) + wj + wi
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=
wα

1 + w(A) + wj + wi

where the second equality proceeds from equation (7), that guarantees Pr[Xi,j = α|Xj = β] = 0

for α ∕= i and β ∕= α, and the next equality holds since the distribution of Xj is given by the

MNL model with respect to products A+j ∪ {0}, combined with equation (6). In addition,

Pr [Xi,j = i] =
󰁛

β∈A+j∪{0}

Pr [Xj = β] · Pr [Xi,j = i|Xj = β]

=
wi

1 + w(A) + wj + wi
·

󰁛

β∈A+j∪{0}

Pr [Xj = β]

=
wi

1 + w(A) + wj + wi

where the second equality is due to our definition of Xi,j |Xj (equation (5)).

C.4 Proof of Claim 3.4

To see why (Xj |Xi,j = i) ∼ Xj , observe that the event {Xi,j = i} is independent of the outcomes

of Xj as stated by equation (5). Similarly, given equation (9) along with the equivalence Xi ∼ Pi

shown in Claim 3.3, we infer that (Xi|Xi,j = j) ∼ Xi.

To establish the next equivalence, (X|Xi,j = i) ∼ X, observe that

X ∼ (X|Xi = i) ∼ (X|Xi = Xi,j = i) ∼ (X|Xi,j = i) ,

where the first equivalence holds since the distributions of X and X|Xi = i are both prescribed

by the MNL model with respect to A (see equation (12) and Claim 3.3), and the second

equivalence proceeds from the Markov property satisfied by the coupling (X|Xi, Xi,j) ∼ (X|Xi).

Finally, the last equivalence follows from observing that the event {Xi,j = i} is contained in

{Xi = i} due equation (8).

Finally, to show the equivalence (X|Xi,j = j) ∼ X, we have

Pr [X = α|Xi,j = j] =
󰁛

β∈A+i∪{0}

Pr [Xi = β|Xi,j = j] · Pr [X = α|Xi = β, Xi,j = j]

=
󰁛

β∈A+i∪{0}

Pr [Xi = β] · Pr [X = α|Xi = β]

= Pr [X = α] ,

where the second equality is due to the equivalence (Xi|Xi,j = j) ∼ Xi and the Markov property.

C.5 Proof of Claim 3.9 (continued)

We begin by establishing a technical claim, useful for the upcoming analysis, whose proof is

deferred to the end of this section.

Claim C.4. For any subset S ⊆ [N ] of cardinality at most C − 1 and any unit i ∈ [N ],

fM−1 (S ∪ {i})− fM−1 (S) ≤ fM (S ∪ {i})− fM (S) .
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We proceed with the remaining two cases: Xi,j = α where α ∈ {i, j}.

Conditional on the event {Xi,j = i}. When Xi,j = i, our coupling method entails that

Xi = i as well due to equation (8). As a result,

E
󰀅
RM

󰀃
S+ij

󰀄
−RM

󰀃
S+i

󰀄󰀏󰀏Xi,j = i
󰀆

= E
󰀅
RM−1

󰀃
S+j

󰀄
−RM−1 (S)

󰀆

≤ E
󰀅
RM

󰀃
S+j

󰀄
−RM (S)

󰀆

= E
󰀅
RM

󰀃
S+j

󰀄
−RM (S)

󰀏󰀏Xi,j = i
󰀆
,

where the first equality follows from the decomposition (17) by observing that the terms

r(Xi,j |Xi,j=i) = r(Xi|Xi,j=i) = ri cancel out, and the next inequality holds due to Claim C.4.

The last equality holds since Xj |Xi,j = i and X|Xi,j = i have the same distribution as Xj and

X, respectively, as shown in Claim 3.4. Now, by reordering the terms in the above inequality,

E
󰀅
RM

󰀃
S+ij

󰀄
−RM

󰀃
S+j

󰀄
|Xi,j = i

󰀆
≤ E

󰀅
RM

󰀃
S+i

󰀄
−RM (S) |Xi,j = i

󰀆
. (35)

Conditional on the event {Xi,j = j}. In this case, our coupling method entails that Xj = j

as well. Indeed, using Bayes rule, equation (6) along with the marginal distributions of Xj and

Xi,j (see Claim 3.3), imply that Pr [Xj = j|Xi,j = j] = 1. Therefore,

E
󰀅
RM

󰀃
S+ij

󰀄
−RM

󰀃
S+j

󰀄󰀏󰀏Xi,j = j
󰀆

= E
󰀅
RM−1

󰀃
S+i

󰀄
−RM−1 (S)

󰀆

≤ E
󰀅
RM

󰀃
S+i

󰀄
−RM (S)

󰀆

= E
󰀅
RM

󰀃
S+i

󰀄
−RM (S)

󰀏󰀏Xi,j = j
󰀆
, (36)

where the first equality is a consequence of (17) by observing that the terms r(Xi,j |Xi,j=j) =

r(Xj |Xi,j=j) = rj cancel out, the next inequality follows from Claim C.4, and the last equality

holds since Xi|Xi,j = j and X|Xi,j = j have the same distribution as Xi and X, respectively,

by Claim 3.4.

Proof of Claim C.4. To establish the desired claim, recall that the random residual subsets

of units at the k-th arrival, obtained in the proof of Lemma 3.6, respectively denoted by Sk and

Tk when initially stocking S1 and T1 with S1 ⊆ T1 and |T1 \ S1|≤ 1, satisfy Sk ⊆ Tk for every

realization. In addition, using a transformation similar to that of equation (15), with S1 = S

and T1 = S ∪ {i}, we have

(fM (S ∪ {i})− fM (S))− (fM−1 (S ∪ {i})− fM−1 (S)) = E [f1 (TM )− f1 (SM )] ≥ 0 .

To understand the latter inequality, note that since SM ⊆ TM for every realization, and since

these subsets have cardinality at most C, we have E[f1(TM ) − f1(SM )] ≥ 0 due to f1 being

restricted-non-decreasing.
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C.6 Proof of Claim 3.10

Suppose on the contrary that there exists a product i ∈ A∗ with a selling price of ri <

OPTstatic = E[R1(A∗)], where R1(A) stands for the random revenue generated by a single

customer, when the set of stocked products is A. By calculations identical to those leading to

equation (14),

E [R1(A∗)] =
wi

1 + w(A∗)
· ri +

󰀕
1− wi

1 + w(A∗)

󰀖
· E [R1 (A∗ \ {i})] .

In other words, E[R1(A∗)] can be written as a convex combination of ri and E[R1(A∗ \ {i})].
Since ri < E[R1(A∗)], it follows that E[R1(A∗ \{i})] > E[R1(A∗)], contradicting the optimality

of A∗.

C.7 Proof of Claim 3.12

The proof relies on the following technical claims regarding IFR distributions.

Lemma C.5 (Goyal et al. (2016)). Let M be a non-negative integer-valued IFR random variable.

For any α ∈ [0, 1], the random variable X ∼ B(M,α) also follows an IFR distribution.

Lemma C.6 (Aouad et al. (2015)). Let X be a non-negative IFR random variable, and for

some constant C let X̄ = min{X,C}. Suppose that E[X̄] ≤ δC for δ ∈ [0, 1]. Then, E[X̄] ≥
(1− δ) · E[X].

We argue that E[Ȳi(u∝i )] ≥ E[Yi]/2 whenever E[Ȳi(u∝i )] ≤ u∝i /2. For this purpose, based on

Lemma C.5, since the number of customers M is assumed to be IFR distributed, we know that

Yi ∼ B(M,ψi) follows an IFR distribution as well. As a result, by specializing Lemma C.6 with

δ = 1/2 and C = u∝i , which is equivalent to assuming that E[Ȳi(u∝i )] ≤ u∝i /2, we infer that

E[Ȳi(u∝i )] ≥ E[Yi]/2. Therefore,

E
󰀅
Ȳi (u

∝
i )

󰀆
≥ 1

2
·min {u∝i ,E [Yi]} .

C.8 Proof of Lemma A.2

Let H− be the set of heavy products whose selling price is less than 󰂃2rimax/(2n
2C), and H+

those with a selling price greater than 2n2C · rimax/󰂃
3. Following the approach of Section 2.2,

since the expected revenue function is subadditive (see Lemma 2.2), we have

E [R (U∗
L)] +E [R (U∗

H−)] +E
󰁫
R

󰀓
U∗
H̃

󰀔󰁬
+E [R (U∗

H+)] ≥ E [R (U∗
L)] +E [R (U∗

H)] ≥ E [R (U∗)] .

(37)

First, we observe that the contribution of any product i ∈ H− toward the expected revenue

of U∗
H− is at most

Pr [M ≥ 1] · C · ri ≤ Pr [M ≥ 1] · 󰂃
2rimax

2n2
≤ 󰂃

n
· Pr [M ≥ 1] · rimaxwimax

1 + wimax

≤ 󰂃

n
· E[R(U∗)] ,

where the first inequality holds by definition of H−, and the second inequality holds since imax

is a heavy product. The last inequality is obtained by observing that the optimal expected
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revenue E[R(U∗)] is lower bounded by the corresponding quantity with respect to the inventory

vector that stocks a single unit of product imax and nothing more, which is at least Pr[M ≥
1] · rimaxwimax/(1 + wimax). Consequently, by summing over all products i ∈ H−, we infer that

E [R (U∗
H−)] ≤ 󰂃 · E [R (U∗)] .

Hence, whenH+ = ∅, by inequality (37), it follows that E[R(U∗
L)]+E[R(U∗

H̃)] ≥ (1−󰂃)·E[R(U∗)].

In the opposite case, when H+ ∕= ∅, consider some product i ∈ H+. As before, the optimal

expected revenue E[R(U∗)] is lower bounded by the expected revenue when stocking a single

unit of product i, thus we obtain

E [R (U∗)] ≥ Pr [M ≥ 1] · riwi

1 + wi

≥ Pr [M ≥ 1] · nC
󰂃2

· rimax

≥ Pr [M ≥ 1] · nC · ri1
󰂃2

· wi1

1 + wi1

· 1 + wimax

wimax

≥ Pr [M ≥ 1] · C · ri1
2󰂃

≥ 1

2󰂃
· E [R (U∗

H)] , (38)

where i1 is the most expensive product stocked by U∗
H. Here, the second inequality holds since

ri ≥ 2n2C · rimax/󰂃
3 and wi ≥ 󰂃/n, the third inequality follows by definition of imax given that

rimaxwimax/(1 + wimax) ≥ ri1wi1/(1 + wi1), the fourth inequality holds since wi1 ≥ 󰂃/n, and the

last inequality is due to the fact that ri1 is the most expensive product on stock in U∗
H. By

combining inequality (37) with (38), we conclude that E[R(U∗
L)] ≥ (1− 2󰂃) · E[R(U∗)].

C.9 Proof of Claim A.5

We first observe that using the formula of conditional expectation (relative to the value of M),

we can restrict attention to a deterministic M . The desired inequality is proven inductively

over C. For C = 0, we clearly have E[Ȳ ] = E[X̄] = 0.

For C ≥ 1, by the induction hypothesis, X̄ ′ = min{X,C−1} and Ȳ ′ = min{Y,C−1} satisfy

E[Ȳ ′] ≥ θ · E[X̄ ′], and we wish to prove an analogous inequality between the expectations of

X̄ = min{X,C} and Ȳ = min{Y,C}. Each of the Binomial variables X and Y can be viewed

as the terminating value of a Binomial process, counting the number of successes among M

independent Bernoulli trials, with respective parameters α and θα. We begin by defining the

stopping time τX that corresponds to the first trial in which the Binomial process underlying

the variable X, denoted by X1, . . . XM , attains the value C − 1. If there are fewer than C − 1

successes among the M trials, then τX = M . Next, observe that the expected value of X

decomposes as follows:

E
󰀅
X̄
󰀆

= E [min{X,C − 1}+ I [X > C − 1]]

= E [min {X,C − 1}] + Pr [X > C − 1]
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= E [min {X,C − 1}] +
M󰁛

τ=0

Pr [τX = τ ] · Pr [X −Xτ ≥ 1|τX = τ ]

= E [min {X,C − 1}] +
M󰁛

τ=0

Pr [τX = τ ] · Pr [X −Xτ ≥ 1]

= E [min {X,C − 1}] +
M󰁛

τ=0

Pr [τX = τ ] ·
󰀓
1− (1− α)M−τ

󰀔
. (39)

The fourth equality follows from the independence of the Bernoulli trials, and the last equality

holds since X−Xτ ∼ B(M − τ,α). In an analogous way, τY is defined as the first trial in which

the Binomial process underlying the variable Y attains the value C − 1, with τY = M when

Y < C − 1. Based on the sequence of equations leading to (39),

E
󰀅
Ȳ
󰀆
= E [min {Y,C − 1}] +

M󰁛

τ=0

Pr [τY = τ ] ·
󰀓
1− (1− θα)M−τ

󰀔
. (40)

By the induction hypothesis, we already know that E[min {Y,C − 1}] ≥ θ · E[min {X,C − 1}].
Thus, given (39) and (40) it remains to show that

M󰁛

τ=0

Pr [τY = τ ] ·
󰀓
1− (1− θα)M−τ

󰀔
≥ θ ·

M󰁛

τ=0

Pr [τX = τ ] ·
󰀓
1− (1− α)M−τ

󰀔
. (41)

Note that since the function ϕk : x 󰀁→ 1 − (1 − x)k is concave over the interval [0, 1] for any

k ∈ N, we infer that ϕk(θα) ≥ θ · ϕk(α) + (1− θ) · ϕk(0) = θ · ϕk(α), and therefore

1− (1− θα)M−τ ≥ θ ·
󰀓
1− (1− α)M−τ

󰀔
.

Hence, by observing that the right-hand side of the latter inequality is non-decreasing in τ , it

is sufficient to prove that τX is stochastically smaller than τY to derive the desired inequal-

ity (41). This property is easily derived by observing that the success parameter of the process

X1, . . . , XM is lower-bounded by that of Y1, . . . , YM .

D Tested Heuristics

Local search. The algorithm iteratively improves the objective value, where in each step a

single unit is transferred from one product to the other, until reaching a local minimum. Starting

with an initial inventory vector, we iteratively implement the best swap between products, i.e.,

one that generates the largest incremental increase in the expected revenue, evaluated through

our sampling-based oracle. Specifically, letting U (k) denote the inventory vector obtained at

the beginning of step k, a swap is represented by an ordered pair of products (i, j), where the

current inventory level u
(k)
i of product i is strictly positive. The inventory vector U

(k)
i→j resulting

from this swap is derived from U (k) through decreasing u
(k)
i by one unit and augmenting u

(k)
j by

one unit. With this definition, we either proceed to step k + 1 with the inventory vector U
(k)
i→j

that maximizes E[R(U
(k)
i→j)] over all swaps (i, j), or terminate the algorithm when none of these
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swaps improves the expected revenue by a factor greater than 1%. To alleviate the risk of ‘bad

starts’, the vector U (1) is defined by initially stocking C units of the product that maximizes

riwi, similar to Goyal et al. (2016).

Gradient-descent approach. We consider a suitable adaptation of the stochastic gradient-

descent algorithm of Mahajan and van Ryzin (2001) to the MNL-based dynamic assortment

planning problem. In contrast to the latter paper, here the revenue function is defined only

for integer-valued inventory vectors. Hence, similar to the approach of Goyal et al. (2016), we

utilize a continuous relaxation of the revenue function, defined through the Lovász extension

of a discrete function. Letting f : Zn → R denote the expected revenue function, its Lovász

extension f̂ : Rn → R is defined as

f̂(U) = f(⌊U⌋) +
n󰁛

i=1

󰀃
uπ(i) − uπ(i−1)

󰀄
·
󰀥
f

󰀣
⌊U⌋+

i󰁛

k=1

eπ(k)

󰀤
− f

󰀣
⌊U⌋+

i−1󰁛

k=1

eπ(k)

󰀤󰀦
,

where the permutation π sorts products by the increasing fractional part of their inventory,

namely, uπ(1) − ⌊uπ(1)⌋ ≤ · · · ≤ uπ(n) − ⌊uπ(n)⌋. The Lovász extension is piecewise linear,

and its gradient can be approximately computed using the sampling-based oracle given in Ap-

pendix A.1.

Starting with the initial solution U (0) = 0, and letting U (k) denote the solution obtained at

the end of step k, each iteration consists of computing U (k+1) = max{0, U (k)+󰂃∇f(U (k))}, where
󰂃 is the step size. When the latter vector does not lie in the feasible region {U ∈ Rn : 󰀂U󰀂1 ≤ C},
it is projected onto the boundary by linear rescaling. Through trial and error, we picked a

step size of 󰂃k = max{0.05 · C, C−󰀂Uk󰀂1
2 }. The algorithm terminates when U (k+1) hits the

boundary (i.e., 󰀂U (k+1)󰀂1 = C) and the objective value does not improve by a factor greater

than 0.5%. Since the gradient-descent algorithm is particularly slow, we force termination after

250 iterations. Finally, it remains to ‘round’ the resulting inventory vector to an integral one.

Suppose that U (k+1) is the inventory vector obtained following the gradient-descent algorithm;

then ⌊U (k+1)⌋ is augmented greedily, by stocking at each step a unit of the product with maximal

marginal expected revenue, until reaching C units.

Dynamic programming. With some similarities to our setting, Topaloglu (2013) studied

a joint assortment and inventory problem, where the demand is formed by a Poisson arrival

process. However, the problem considered is incomparable to our setting, since his formula-

tion does not take into account stock-out substitution effects. Instead of being governed by

stock-outs, the assortment dynamics is at the discretion of the retailer, who can vary the of-

fered assortment over time to better balance stocking constraints. Still, the algorithm devised

by Topaloglu (2013) is a reasonable alternative to our approach, especially since the optimal

policy in his model was proven to have a compact structure, being a mixture over at most n

assortments under a Poisson demand process and a single assortment under a suitable normal

approximation.
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In the above-mentioned model, the problem formulation is given by:

max
U,y

󰁛

i∈[n]

󰀣
ri · E

󰀥
min

󰀫
Ui,Poisson

󰀣
E [M ] ·

󰁛

S:i∈S
y(S) · wi

1 + w(S)

󰀤󰀬󰀦
− c · Ui

󰀤

s.t.
󰁛

S⊆[n]

y(S) = 1

Here, U is the offered inventory vector, and for each possible assortment S ⊆ [n] there is a

corresponding decision variable y(S) that describes its probability to be offered. In addition,

the parameter c stands for the per-unit cost of any product. This parameter can be thought of

as the Lagrangian multiplier associated with the cardinality constraint; in our setting, it can be

determined through a bisection search. Now, since the objective function above is separable with

respect to the products, one can cast this problem in dynamic programming terms. Specifically,

we introduce the change of variable αi =
󰁓

S:i∈S y(S) · wi
1+w(S) , where αi is the consumption

rate of product i, and incorporate simple compatibility constraints between different products:

α0 +
󰁓

i∈[n] αi = 1 and αi ≤ wi
w0

· α0. At each step of the recursion, corresponding to some

product i ∈ [n], we approximately guess the consumption rate αi, which immediately implies

an optimal stocking level Ui to balance between marginal revenue and cost. We also implement

the simplified recursion developed by Topaloglu (2013) under a normal approximation of the

demand process. For a detailed description of these algorithms, we refer the reader to Sections 5

and 7 of his paper.

Deterministic relaxation. An additional approach that deals with stock-out substitution

is the continuous-time deterministic relaxation developed by Honhon et al. (2010) and later

on studied by Honhon and Seshadri (2013). Here, the stochastic nature of the choice process

is overlooked. Given the initial inventory vector U and its corresponding assortment S, one

assumes that each product i ∈ S is consumed at a constant rate of αi = wi/(1 + w(S)),

until one of the products in S is depleted. Specifically, the first stock-out occurs at time

mini∈S(Ui/αi). Similarly, at the beginning of each subsequent epoch, the consumption rates

are updated to reflect the changes of assortment, and the current epoch terminates at the next

stock-out event. In this setting, the total consumption of products is indeed deterministic with

respect to the initial stocking decisions. To optimize the latter, Honhon et al. (2010) devised

a dynamic programming approach that exploits the special structure of epochs and runs in

time O(8n). Due to the exponential dependency on the number of products, this approach

is not applicable in our experimental setting, with n = 20 products. Instead, we cast the

resulting deterministic model as a mixed integer program and use a state-of-the-art commercial

solver (Gurobi Optimization 2015). To obtain faster convergence, the solver is given access

to a warm-start solution, using the same initial inventory vector as the local search heuristic

described earlier. In most cases, the solver indeed returns close-to-optimal solutions (to the

relaxation) within the allotted time limit of 2000 seconds. This benchmark is informative from

a modeling perspective, since it sheds light on the relative merits of using a deterministic demand

process rather than the actual stochastic one.
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Discrete-greedy. The discrete-greedy algorithm starts with zero inventory levels for all prod-

ucts, and iteratively augments the current inventory vector by a single unit of the product that

incurs the largest increase in the expected revenue, until reaching C units. The expected revenue

is evaluated using our sampling-based procedure. It is worth mentioning that this approach is

the closest in spirit to the way our algorithm operates on heavy-expensive products, where a

restricted-non-decreasing and restricted-submodular set function is approximately maximized

through a greedy procedure (see Section 3.2).
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