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We study the necessity of predictive information in a class of queueing admission control problems, where

a system manager is allowed to divert incoming jobs up to a fixed rate, in order to minimize the queueing

delay experienced by the admitted jobs.

Spencer et al. (2014) show that the system’s delay performance can be significantly improved by having

access to future information in the form of a lookahead window, during which the times of future arrivals and

services are revealed. They prove that, while delay under an optimal online policy diverges to infinity in the

heavy-traffic regime, it can stay bounded by making use of future information. However, the diversion polices

of Spencer et al. (2014) require the length of the lookahead window to grow to infinity at a non-trivial rate

in the heavy-traffic regime, and it remained open whether substantial performance improvement could still

be achieved with less future information.

We resolve this question to a large extent by establishing an asymptotically tight lower bound on how

much future information is necessary to achieve superior performance, which matches the upper bound of

Spencer et al. (2014) up to a constant multiplicative factor. Our result hence demonstrates that the system’s

heavy-traffic delay performance is highly sensitive to the amount of future information available. Our proof

is based on analyzing certain excursion probabilities of the input sample paths, and exploiting a connection

between a policy’s diversion decisions and subsequent server idling, which may be of independent interest

for related dynamic resource allocation problems.

Key words : admission control, queueing, algorithm, future information, predictive model, heavy-traffic

asymptotics

1. Introduction

Recently, there have been substantial interests in developing forecasting systems and predictive

models across various application domains, which enable a system manager to obtain (partial)

information of future inputs, and thus allow for more efficient decision making or resource alloca-

tion. Examples of these systems include advanced ordering in supply chains (Fisher and Raman

(1996)), appointment booking for elective surgeries (Kim and Horowitz (2002)), and mechanisms

for predicting future hospital visits (Wargon et al. (2009), Sun et al. (2009)). Because acquiring

accurate predictions can often involve additional infrastructural investments and operational com-

plexities, it is a natural question to ask how useful such predictive information can be, in terms of
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its ability in improving system performance beyond what can be achieved by the more conventional

way of online decision making, which does not take predictive information into account.

In a recent paper, Spencer et al. (2014) initiated an investigation along this direction in a class

of queueing admission control problems, illustrated in Figure 1. An overloaded queue with service

rate 1−p receives incoming jobs at rate λ∈ (1−p,1), and the system manager is allowed to divert

incoming jobs up to a rate of p, with the objective of minimizing the time-average queueing delay

among the admitted jobs. The system manager has access to a lookahead window of length Wλ,

within which the realizations of future arrivals and service availability are revealed. The online

version of the problem, with Wλ = 0, is a classical queueing model that has been studied in various

contexts related to congestion control (Yechiali (1971), Stidham (1985)).

Figure 1 An illustration of the queueing admission control problem.

A main message of Spencer et al. (2014) is that one can drastically reduce queueing delay with

a sufficient amount of future information. In particular, there exists ch > 0, such that if the length

of the lookahead window satisfies

Wλ ≥ ch ln
1

1−λ
, (1)

then there exists a sequence of diversion policies, so that the resultant delay will stay bounded in

the heavy-traffic regime of λ→ 1. In sharp contrast, when no future information is available, the

delay under an optimal online policy will diverge to infinity, as λ→ 1.

However, the requirement on the length of the lookahead window, as in Eq. (1), means that the

superior delay performance achieved by Spencer et al. (2014) comes at the expense of a non-trivial

amount of predictive power. Therefore, it remains to determine whether one could use much less

future information and still achieve a significant performance improvement over an optimal online

policy. This question is of practical importance, because a larger amount of future information

often requires more sophisticated predictive models and computational infrastructures, which can

be costly, if not impossible, to build and operate.

The main contribution of the present paper is to provide a negative answer to above question,

by showing that there exists a positive constant, cl, such that if Wλ scales slower than cl ln
1

1−λ
as
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λ→ 1, then the resulting delay performance can be no better than that of an optimal online policy

by more than a constant factor. As a by-product of our result, an interesting “conservation law” is

established, which suggests that delay and future information are, in some sense, “exchangeable”

quantities (see discussions in Section 2.1).

Despite having identical modeling assumptions, our proof techniques are quite different from

those employed by Spencer et al. (2014). The core of our arguments hinges upon a relationship

between diversions and future idling of the server, evaluated over certain subset of input sample

paths. This relationship is then used in conjunction with the excursion probabilities of a transition

random walk to demonstrate that the system manager must maintain a relatively large queue

length, when the amount of future information is limited. We believe that this line of arguments

is fairly robust to changes in modeling assumptions, and can be generalized, in other dynamic

resource allocation problems, to proving lower bounds for the amount of information necessary in

achieving desirable performance.

1.1. Organization

The remainder of the paper is organized as follows. In Section 2, we state our main result, Theorem

1, and contrast it with the prior results of Spencer et al. (2014). In the same section, we discuss

several implications of the theorem (Section 2.1), as well as connections of our work to the literature

(Section 2.2). Section 3 describes the modeling assumptions in more details, and introduces the

necessary mathematical formalism. The proof of Theorem 1 is given in Section 4, with an outline

of the proof ideas provided at the beginning of the section. We conclude the paper in Section 5

and examine potential directions for future research.

2. Main Result

Review of Prior Results. We begin by informally reviewing the system model in Spencer et al.

(2014), which will be described in detail in Section 3. The admission control problem runs in

continuous time, and is characterized by three parameters: λ, p, and Wλ. An illustration of the

system model is given in Figure 1.

1. Jobs arrives to the system at the rate of λ, where λ ∈ (0,1). There is a single server which

processes jobs at the rate of 1− p, where p is a fixed constant in (0,1). It is assumed that the

system is operating in the overload regime, with λ> 1− p.

2. Upon each job’s arrival, the system manager decides whether the job is to be admitted or

diverted. If admitted, the job queues up in an (infinite) buffer until it is processed by the

server, and if diverted, it leaves the system immediately. The goal of the system manager is

to choose a diversion policy that minimizes the time-average queue length induced by the
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admitted jobs, subject to the constraint that the infinite-horizon time-average rate of diversion

does not exceed p.

We will be primarily interested in the heavy-traffic regime of λ→ 1, where the post-diversion

arrival rate approaches the server capacity of 1−p, assuming that the system manager diverts

at the maximum allowable rate of p. Note that by Little’s Law, the time-average queue length

is equal to the time-average queueing delay multiplied by the post-diversion arrival rate of

λ− p. In the limit of λ→ 1, the two quantities will differ only by a multiplicative constant

of 1− p. Therefore, from this point on, we will focus on the time-average queue length as the

performance metric, with the understanding that an analogous statement will hold for delay

as well.

3. The system manager has access to information about the future, which takes the form of

a lookahead window of length Wλ: at time t, the times of arrivals and service availability

within the interval [t, t+Wλ] are revealed to the system manager1. The case of Wλ =0 will be

referred to the online problem, since the system manager does not have access to any future

information.

Denote by Q(π,λ,Wλ) the time-average queue length under the diversion policy π, given arrival

rate λ and a lookahead window of length Wλ. Let Q∗(λ,Wλ) be the time-average queue length

under an optimal diversion policy (assuming such optimal policies exist), with

Q∗(λ,Wλ) =min
π

Q(π,λ,Wλ), (2)

It is shown in Spencer et al. (2014) that a finite amount of lookahead into the future is sufficient to

yield significant delay improvement over an online policy. In particular, fixing p∈ (0,1), they show

that the optimal average queue length for an online policy diverges to infinity in the heavy-traffic

regime, with

Q∗(λ,0)∼ log 1
1−p

1

1−λ
, as λ→ 1. (3)

In sharp contrast, there exists a positive constant ch, whose value can depend on p, so that if

Wλ ≥ ch ln
1

1−λ
, (4)

for all λ sufficiently close to 1, then the optimal average queue length converges to a finite constant

in the heavy-traffic regime:

Q∗(λ,Wλ)→
1− p

p
, as λ→ 1. (5)

1 Depending on the application, one can think of the lookahead window as being provided by some external oracle,
or a predictive model that has access to side information.
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A main open question posed by Spencer et al. (2014) is whether significant performance gain

over the online policy can still be achieved under much less future information. It is conjectured

that if Wλ = o
(

ln 1
1−λ

)

, then the average queue length will necessarily diverge to infinity in the

heavy-traffic limit (Conjecture 1, Spencer et al. (2014)). In other words, a sufficient amount of

future information may be essential in achieving superior delay performance.

Our Result. The main result of this paper confirms, and strengthens, this conjecture of

Spencer et al. (2014). We show that if the amount of future information is insufficient even by a

constant factor, then not only will the delay be infinite in the heavy-traffic regime, but the delay

scaling will essentially be no better than that of an online policy. Specifically, we have the following

theorem.

Theorem 1 (Necessity of Future Information). Fix p∈ (0,1). There exist cl > 0 and λ̃∈ (1−
p,1), so that if

Wλ ≤ cl ln
1

1−λ
, ∀λ∈ (λ̃,1), (6)

then2

Q∗(λ,Wλ) =Θ

(

ln
1

1−λ

)

, as λ→ 1. (7)

Together with the results of Spencer et al. (2014), Theorem 1 suggests that the performance of

the admission control problem depends critically on the amount of future information available, and

in particular, on how the length of the lookahead window, Wλ, scales relative to the watershed of

Θ
(

ln 1
1−λ

)

. A graphical illustration of Theorem 1, with a comparison to the results of Spencer et al.

(2014), is provided in Figure 2.

The proof of Theorem 1 is given in Section 4. It is worth noting that our proof techniques are

quite different from those employed by Spencer et al. (2014). In fact, they are somewhat “dual” to

each other: the earlier achievability result (Eq. (5)) was proved by analyzing the distribution of the

lengths of busy periods associated with the queue length process (a property in time), whereas the

core of our arguments relies on the excursion properties of a transient random walk (a property in

space).

2.1. Implications of Theorem 1

There are several interesting implications of Theorem 1. First, by virtue of being a lower bound

for the case where the decision maker is given the exact realizations of future input, Theorem 1

automatically extends to settings where predictions can be noisy or corrupted, as is typically the

case in practical applications.

2 The notation f(x) = Θ(g(x)), as x → 1, represents the statement that, for any sequence xn → 1, we have 0 <
lim infn→∞ f(xn)/g(xn)≤ lim supn→∞ f(xn)/g(xn)<∞.
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Figure 2 Impact of future information on the effectiveness of admission control, in the heavy-traffic regime of

λ→ 1. The solid red segment corresponds to the regime established by this paper, where Wλ 4 cl ln
1

1−λ

(Theorem 1), and the dotted black segment corresponds to the regime established by Spencer et al.

(2014), where Wλ < ch ln
1

1−λ
(Eq. (4) and (5) in the current paper). The case of Wλ = 0 is covered by

either paper.

Theorem 1 also implies an interesting “conservation law” between delay and future information:

from Eqs. (3) through (7), we see that the sum of Q∗(λ,Wλ) and Wλ must be of order Ω
(

ln 1
1−λ

)

,

as λ→ 1. In a rough sense, this is because the same type of stochastic discrepancies in the input

processes, which necessitate large queueing delays in the heavy-traffic when future information is

limited, also determines how much lookahead is required in order to achieve a bounded delay. Even

though such conservation seems to suggest that there is no “free lunch” to be had, the ability to

understand and make such trade-offs can still be useful, because depending on the application,

future information may be significantly less costly than delay, or vice versa.

From an operational point of view, although Theorem 1 invalidates the usefulness of future

information in certain regimes, it is nevertheless reassuring to know that a simple online policy

could do almost as well as any sophisticated prediction-guided policies, even when the amount of

predictive information available grows as the traffic intensity increases. Moreover, the theorem does

not rule out the possibility of having meaningful prediction-guided policies when future information

is limited; it only implies that our search in such scenarios should aim at more moderate, constant

factor performance improvements over online policies. In fact, numerical results in Xu and Chan

(2014) on a similar admission control model suggest that sizable performance gains can still be

achievable, even with limited and noisy predictive information.

2.2. Related Work

In terms of modeling assumptions, our setup is identical to that of Spencer et al. (2014), and

hence we refer the reader to Spencer et al. (2014) for a review of the model’s connections with the
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literature on classical Markov admission control problems and competitive analysis. The model is

also related to a multi-server system with partial resource pooling (cf. Tsitsiklis and Xu (2012));

the reader is referred to Chapter 7 of Xu (2014) for more details. In addition, Xu and Chan (2014)

examines the model’s relevance in the context of reducing waiting times at emergency departments.

Our result can be viewed as a generalization of the Markov optimal admission control problem

that has been studied in the literature (Stidham (1985)), and it is interesting to contrast some of the

differences in analytical approaches. Optimal policies in the Markov setting (Wλ =0) are known to

often admit a threshold (or control-limit) form, where a diversion is made only if the current queue

length reaches a fixed threshold. To prove the optimality of these policies, one would typically

analyze the Bellman equations of the corresponding Markov decision process (MDP) in order to

establish a set of monotonicity properties in the policy space, e.g., that the cost-to-go function for

a threshold policy would be dominated by policies that divert with non-zero probabilities when the

queue is small (c.f. Yechiali (1971)). Successive applications of such monotonicity properties will

then narrow the policy space down to only those with a threshold form.

Unfortunately, these arguments employed in the Markov setting do not seem to carry over

easily when the lookahead window is taken into account. While our setting can still be cast as

an MDP by incorporating the lookahead window into the state space, the structure of the state

space is now considerably more complex (and increasingly so, as Wλ →∞), and it is not so clear

as to whether any monotonicity property continues to hold. Our proof techniques circumvent this

complexity by focusing on the “macroscopic” sample-path characteristics of the system, instead

of the more refined details of the Bellman equations. As a trade-off, our analysis is more “coarse”

by nature, and it provides neither a characterization of the multiplicative constant in the delay

scaling, nor a concrete diversion policy that achieves the lower bound of the necessary amount of

future information (which, fortunately, has already been given in Spencer et al. (2014)).

Our work is also similar in spirit to the techniques of information relaxation and path-wise

optimization for MDPs (Rogers (2007), Brown et al. (2010), Desai et al. (2012)). In this case, one

considers an relaxed version of the original MDP, where the decision maker has access to realizations

of the future input sample paths. This relaxed problem is often simpler to solve and simulate than

the original stochastic optimization problem, and hence can be used, for instance, as a performance

benchmark for evaluating heuristic policies. Our work is different from this literature in several

aspects. Most notably, we focus on rigorously understanding the stochastic dynamics involved in

the relaxed problem with future information, and how performance scales with respect to the length

of the lookahead window, as opposed to using the relaxed problem to approximate the performance

of an optimal online policy, which is well understood in our setting.
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3. Model and Notation

We now present the mathematical formalism and modeling assumptions that will be used through-

out the remainder of the paper. An illustration of the system is given in Figure 1.

System Dynamics. The system runs in continuous time, indexed by t∈R+. There is a queue with

infinite waiting room, whose length at time t is denoted by Q(t). The input to the system consists

of two independent Poisson processes:

1. A, with rate λ, which corresponds to the arrival of jobs;

2. S, with rate 1− p, which corresponds to the generation of service tokens.

When an event occurs in A at time t, we say that a job has arrived to the system, and the value

of Q(t) is incremented by 1, if the job is “admitted” (see below for the description of admission

policies). Similarly, when an event occurs in the process S at time t, we say that a service token is

generated, and the value of Q(t) is decremented by 1, if Q(t)> 0, and remains at 0, otherwise.3

For our purposes, it is more convenient to work with the sequence {(Zn,Rn) : n∈N}, where

Zn = time of the nth event in A∪S, (8)

and Rn encodes the type of the nth event, with

Rn =

{

1, if the nth event is in A (arrival),
−1, if the nth event is in S (service token).

(9)

We will let {N (t) : t∈R+} be the counting process associated with {Zn}, with

N (t) = sup{n ∈Z+ :Zn ≤ t}, (10)

and denote by S(s, t) the difference between the numbers of arrival and services tokens in the

interval (s, t],

S(s, t) =
∑

N (s)+1≤n≤N (t)

Rn. (11)

Note that when λ 6= 1− p the process {S(0, t) : t∈R+} is a transient random walk, with

E(S(0, t))= [λ− (1− p)]t. (12)

Future Information. The notion of future information is captured by a lookahead window. At

any time t, the system manager has access to the realization of all events in A∪S in the interval

3 The generation of a service token at time t can be thought of as the server being able to fetch a new job from
the queue at time t. As such, the service token model attributes the randomness in processing times to an external
source, which does not depend on the identities of the jobs. It can be shown that, in the online setting, the service
token model is equivalent to the more conventional assumption of exponentially distributed job sizes, though such
equivalence is generally not true when future information is taken into account. The reader is referred to Page 9 of
Spencer et al. (2014), and the references therein, for more details on the service token model.
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[t, t+Wλ]. Throughout, we will denote by Wλ the length of the lookahead window, under arrival

rate λ.

Admission Policies. Upon arrival, each job is either admitted, in which case it joins the queue, or

diverted, in which case it disappears from the system immediately. The role of a diversion policy, π,

is to output a sequence of diversion decisions for all events, represented by the sequence of indicator

variables, {H(n) : n ∈N}, where

H(n) = I{Rn = 1, and π chooses to divert at time Zn} . (13)

Given the form of future information, we will require that the diversion policy be (t+Wλ)-causal,

so that the decision made at time t does not depend on any event after time t+Wλ. A diversion

policy is said to be feasible, if the resulting time-average rate of diversion is at most p, i.e.,

limsup
N→∞

λ+1− p

N
E

(

N
∑

n=1

H(n)

)

≤ p. (14)

where the constant λ+1− p corresponds to the total rate of events in A∪S. The objective of the

decision maker is to choose a feasible policy, π, so as to minimize the time-average queue length,

defined by4

Q(π,λ,Wλ) = limsup
N→∞

E

(

1

N

N
∑

n=1

Q(Zn−)

)

. (15)

3.1. Notation

We will assume that all asymptotic expressions with respect to λ are taken in the limit of λ→ 1.

We will use f ≪ g and f 4 g to denote f = o(g) and f =O(g), respectively. We will write f � g

to mean that f(x) ≤ g(x) for all x sufficiently closely to 1, i.e., that there exists y ∈ (0,1), such

that f(x) ≤ g(x), for all x ∈ (y,1). The expressions f ≫, < and � g are defined analogously to

their respective counterparts. When a statement is made concerning the limit “as x→ 1”, without

specifying the exact sequence with respect to which the limit is taken, it is understood that the

statement should hold for any sequence, {xn}, with limn→∞ xn = 1. The notation X
d
= Y means

that the random variables X and Y have the same distribution.

4. Proof of Theorem 1

The remainder of the paper is devoted to the proof of Theorem 1. We begin with a high-level

summary of the main steps involved. First, we argue that there exists a stationary optimal policy,

which makes decisions only based on the current queue length and the content of the lookahead

window. Furthermore, the queue length process under this stationary policy admits a well-defined

4 Throughout, f(x−) represents the limit limy↑x f(y).
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steady-state distribution (Section 4.1.1). This stationarity will allow us to simplify the analysis by

focusing on the policy’s actions over a finite time horizon.

We will prove Theorem 1 by contradiction, where we start by assuming that a small average

queue length is indeed achievable under an optimal stationary policy, even with a small lookahead

window, and later refute this assumption. Our main arguments are based on the identification of

a set of base sample paths (Section 4.2), with the property that any feasible policy must perform

poorly over these sample paths, should the length of the lookahead window be too small. The

stationarity property described earlier will then allow us to extend this argument to showing the

policy’s failure over the infinite time horizon. It is worth noting that the base sample paths are

not “typical,” in the sense that their occurrences possess only vanishingly small probability, as

λ→ 1. This is because the failures of a policy under a small lookahead window are not caused by

the average behavior of the inputs, but rather by some rare excursions of the random walk S(0, ·).
Though occurring with small probabilities, these excursions are in some sense unforeseeable under

a small lookahead window, and their existence forces an optimal policy to be overly restrained in

diverting jobs and hence yield a large average queue length.

To carry out the arguments using the base sample paths, we will exploit a key relationship

between diversions and server idling. In particular, we will demonstrate that, without sufficient

lookahead, if a constant fraction of the arrivals are diverted during a specific portion of a base

sample path, it will inevitably result in excessive idling of the server not far away in the future,

even as λ→ 1. However, such server idling cannot occur in the heavy-traffic limit, since the server

must be fully utilized in order to ensure system stability. This reasoning then implies that any

policy that makes such diversions must be infeasible, or conversely, that any feasible policy must

divert very few arrivals over these segments of the base sample paths (Proposition 1). However,

such conservatism comes at a cost, in that it leads to long episodes during which the queue length

stays at a high level (Proposition 2). We then argue that the frequent appearances of such “bad”

episodes will result in a large average queue length in steady-state, which contradicts with our

initial assumption and hence completes the proof of Theorem 1.

4.1. Preliminaries

Without loss of generality, we will consider only the cases where the length of the lookahead

window, Wλ, diverges to infinity in the heavy-traffic regime, i.e.,

Wλ →∞, as λ→ 1. (16)

To see why this is justified, note that because we can always achieve the same average queue

length with a longer lookahead window, the optimal average queue length Q∗(λ,Wλ) must be
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monototically non-increasing in Wλ. Therefore, any lower bound we obtain on Q∗(λ,Wλ) under

the assumption of Eq. (16) also applies to the case where Wλ =O(1). For simplicity of notation,

we will drop the dependency on Wλ, and denote by qλ the optimal average queue length,

qλ =Q∗(λ,Wλ), ∀λ∈ (1− p,1). (17)

Main Assumption. We will assume the validity of the following hypothesis throughout the remain-

der of the proof, which states that it is indeed possible to achieve a small delay as long as Wλ is of

order Ω
(

ln 1
1−λ

)

. As will be shown in Section 4.5, invalidating this hypothesis will imply the lower

bound in Theorem 1.

Hypothesis 1. Fix p∈ (0,1). Suppose that Wλ < ln 1
1−λ

, as λ→ 1. Then

qλ ≪ ln
1

1−λ
, as n→∞. (18)

Assuming the validity of Hypothesis 1, it also follows that if Wλ < ln 1
1−λ

, as λ→ 1, then

qλ ≪Wλ, as λ→ 1. (19)

4.1.1. State Representation and Stationary Policies We show in this section that there

always exists an stationary optimal policy that depends only on the state, which consists of the

current queue length and content of the lookahead window.

Since all diversion decisions are associated with events in A∪S, it suffices to specify the nature

of future information for the event times, {Zn : n ∈ N}. At t = Zn, the content of the lookahead

window is defined to be the vector F (n) = (Fk(n) : k ∈Z+), where

Fk(n) = (Zn+k −Zn , Rn+k), 0≤ k≤N (Zn +Wλ)−N (Zn). (20)

In other words, Fk(n) specifies the time of the kth future event starting from the current time,

Zn, along with its type for all events within the lookahead window of length Wλ. For future events

beyond the lookahead window which we have no access to, we simply set the value of Fk(n) to

zero:

Fk(n) = (0 , 0), k >N (Zn +Wλ)−N (Zn). (21)

Recall that Q(t) is the queue length at time t. Consider the sequence {X(n) : n∈N}, where

X(n) = (Q(Zn−), F (n)) . (22)

From this point on, we will refer to {X(n) : n ∈N} as the states of our system.
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Stationary Policies. A diversion policy π is stationary, if its diversion decision at time Zn depends

only on the state, X(n), or formally, that

P
(

H(n) = 1
∣

∣X(n)
)

= P

(

H(n) = 1
∣

∣

∣
{(Zk,Rk)}N (Zn+Wλ)

k=1

)

, a.s. (23)

A stationary policy, π, is stable, if the evolution of {X(n) : n ∈ N} under π admits a well-defined

steady-state distribution, γ, so that steady-state queue length and probability of diversion coincide

with the time-average queue length and diversion rate, respectively, given that the initial condition,

X(1), is distributed according to γ.

In our admission control problem, because the arrivals and service tokens are generated according

to Poisson processes, future evolution of the system starting from t=Zn is independent conditional

on the current state Xn and diversion decision. As such, our problem can be cast as a discrete-

time Markov decision process (MDP), with states {Xn : n ∈ N} and actions that correspond to

the probabilities of diversion. Using existing results in the literature (c.f. Hernández-Lerma et al.

(2003), Gonzlez-Hernández and Villarreal (2011)), it can be shown that, for MDPs of this kind,

there exists an optimal policy that is also stationary and stable. This is summarized in the following

lemma, whose proof is given in Appendix A.1.

Lemma 1. Fix any p > 0, λ ∈ (1 − p,1), and Wλ > 0. The admission control problem admits a

stable stationary optimal policy, π, which achieves the minimum time-average queue length among

all feasible diversion policies.

In light of Lemma 1, we will, in the remainder of the proof of Theorem 1, focus on the family of

stable stationary policies, which we will refer to simply as stationary policies. Given a stationary

policy, π, the resultant state sequence {X(n) : n ∈N} is a stationary Markov chain. Since we are

interested in deriving a performance lower bound, we may assume that, at time t = 0, both the

queue length and the content of the lookahead window are initialized according to the steady-state

distributions, γ. In particular, we have that

E (Q(t)) =E (Q(0)) =Q(π,λ,Wλ), t∈R+. (24)

and, that

E(H(n)) =E(H(1))= limsup
N→∞

E

(

∑N

n=1H(n)
)

N
, ∀n∈N. (25)

Define the process {L(t) : t∈R+}, where

L(t) = I{Q(t)≤ 2qλ} , t∈R+. (26)

The following lemma will be useful.
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Lemma 2. Fix p∈ (0,1). For all λ∈ (1− p,1), we have that

E(L(t)) = P (Q(0)≤ 2qλ)≥
1

2
, ∀t∈R+, (27)

under any optimal stationary policy.

Proof. The result follows from the stationarity of Q(·) and the Markov’s inequality:

E(L(t)) = P (Q(t)≤ 2qλ) = P (Q(0)≤ 2qλ) = P (Q(0)≤ 2E(Q(0)))≥ 1

2
. (28)

Q.E.D.

In the remainder of the proof, we will show that there exists cl > 0 such that if Wλ � cl ln
1

1−λ
,

then Eq. (27) cannot be true under any sequence of optimal stationary policies, unless Q∗(λ,Wλ)<

ln 1
1−λ

. This would invalidate Hypothesis 1, which would in turn prove the lower bound onQ∗(λ,Wλ)

in Theorem 1.

4.2. Base Sample Paths

We now describe the construction of a set of base sample paths which will serve as the basis of

our subsequent analysis. In later sections, we will show that, roughly speaking, the non-negligible

chance of occurrence of such sample paths will “force” any feasible policy to be overly conservative

in diverting jobs, should Wλ be too small.

Figure 3 This figure illustrates the “macroscopic” behavior of the base sample paths. The dashed blue segment

between Wλ and Wλ +B represents a period of sustained upward drift of S(0, ·), and the dotted red

segment starting at 2Wλ +B represents a downward drift. The two solid black segments, each with

length equal to that of the lookahead window, serve as a “buffer”, ensuring that the actions of the

diversion policy before the segment are independent from the evolution of S(0, ·) afterwards.
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Let B ∈ R+ be a quantity whose value will be specified in the sequel. We define the following

time markers, whose positions relative to each other are illustrated in Figure 3.

U1 =Wλ,

U2 =U1 +B =Wλ +B,

U3 =U2 +Wλ = 2Wλ+B.

The set of base sample paths is defined as the intersection of the events E1 through E5, described

as follows. Let ǫ, ζ and φ be positive constants.

1. Event E1, parameterized by ǫ and ζ, says that the sample path of S(0, ·) stays close to its

expected behavior during the interval (U1,U2]:

E1 = {|S (U1, t)− [λ− (1− p)]t| ≤ ǫt+ ζ, for all t∈ (U1,U2]} , (29)

When ǫ is small, this implies that S(0, ·) undergoes a consistent upward drift during (U1,U2].

Event E1 is illustrated by the dashed blue line segment in Figure 3.

2. Event E2 says that the queue length at t= 0 is not too large compared to the optimal average

queue length,

E2 = {Q(0)≤ 6qλ} . (30)

3. The events E3 and E4 put some restriction on the amount of upward excursion of S(0, ·) during
the intervals (0,U1] and (U2,U3], respectively,

E3 = {S(0,U1)≤ 2Wλ} , (31)

E4 = {S(U2,U3)≤ 2Wλ} , (32)

The main purpose of E3 and E4 is to serve as “buffers” to induce certain independence property,

which will be useful for subsequent analysis: since the lengths of (0,U1] and (U2,U3] are both

equal to that of the lookahead window, the actions of the diversion policy before each interval

are independent from the evolution of S(0, ·) after it. The two events are illustrated by the

black line segments in Figure 3.

4. Finally, the event E5 says that S(0, ·) will undergo a substantial downward excursion soon

after U3, as is illustrated by the dotted red line segment in Figure 3. Let Z be the stopping

time

Z = inf {z ∈R+ : S (U3,U3 + z)<− [6qλ + [λ− (1− p)− ǫ]B+ ζ +4Wλ]} , (33)

and E5 is defined by putting an upper bound on Z:

E5 = {Z ≤ φWλ} . (34)
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The right-hand-side of the inequality in the definition of Z was chosen so that, conditional on

the joint occurrence of E1 through E4, a downward excursion in S(0, ·) of such magnitude is

guaranteed to deplete the queue by time U3 +Z. As will become clearer in the next section,

this depletion will help us connect diversions to future idling of the server.

Note that the events E1, E3, E4 and E5 concern the input sample path S(0, ·) only, and are indepen-

dent of the diversion policies, while E2 also depends on the choice of diversion policy.

Having described the events that together characterize the base sample paths, we next illustrate

some of their statistical properties. The first lemma shows that the events E1 through E4 can occur

with fairly high probabilities. The proof is given in Appendix A.2.

Lemma 3. 1. Fix ǫ > 0. For all θ ∈ (0,1), there exists ζ > 0, so that for all λ> 1− 1
2
p,

inf
B≥0

P (E1)≥ θ. (35)

2. Under optimal stationary policies, P (E2) = P(Q(0)≤ 6qλ)≥ 5
6
, for all λ∈ (1− p,1).

3. limλ→1 P (E3) = limλ→1 P (E4) = 1.

The next lemma shows that the event E5 occurs with a small yet non-negligible probability. The

proof is given in Appendix A.3.

Lemma 4. Fix k,φ, ζ > 0, and ǫ ∈ (0 , min{ζ,λ− (1− p)}). Suppose that B = kWλ, and qλ ≪Wλ,

as λ→ 1. There exists γ > 0, such that

P (E5)< exp(−γWλ) , as λ→ 1. (36)

Finally, the following independence properties among the events will be useful. The proof is given

in Appendix A.4.

Lemma 5. Fixing a feasible diversion policy, the following holds.

1. The events E1,E3,E4 and E5 are mutually independent.

2. The event E2 is independent of E1,E4 and E5, but not necessarily E3.

3. Denote by Y the number of diversions in the interval (U1,U2], i.e.,

Y =
∑

N (U1)+1≤n≤N (U2)

H(n). (37)

Then Y is independent of E5.
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4.3. From Diversions to Server Idling

The goal of this subsection is to show that, if Wλ is small, then the number of diversions made

during the the interval (U1,U2], i.e., the random variable Y (Eq. (37)), must also be appropriately

small, under any optimal stationary policy. To achieve this, we will exploit a connection between

Y and the idling of the server at a later time.

The intuition is perhaps best seen pictorially, as depicted in Figure 3. Conditional on the occur-

rence of the events E1 through E5, and suppose no diversion has been made, the queue length

process Q(t) would have “followed” the trajectory depicted in the figure and reached zero by time

U3 + φWλ. Suppose now that a large number of diversions are made during the interval (U1,U2]

(dashed line segment in blue), the depletion of the queue implies that there must be an extended

period of server idling prior to U3 + φWλ. Such idling, if it persists even as λ→ 1, can be prob-

lematic and will be shown to contradict the feasibility of the diversion policy. This in turn implies

that the number of diversions in (U1,U2] must be small.

The next proposition is the main result of this subsection, which formalizes the above intuition.

There is, however, one adjustment: as opposed to conditioning on all five events, which has van-

ishingly small probability due to the presence of E5, we will condition only on E1 and E2, which

occur with high probability. To do so, we will exploit several independence properties among the

events, as in Lemma 5, and show that the impact of S(0, ·)’s downward excursion described by E5

is unavoidable when Wλ is too small, even without explicitly conditioning on E5.

Proposition 1. Fix k > 0, and let B = kWλ. There exists c > 0, so that if

Wλ � c ln
1

1−λ
, as λ→ 1, (38)

then for every τ > 0,

lim
λ→1

P
(

Y ≥ τB
∣

∣E1 ∩E2

)

= 0, (39)

under any sequence of optimal stationary policies, where Y is the number of diversions during

(U1,U2], defined in Eq. (37).

Proof. We say that a service token generated at time t is wasted, if there is currently no job

in the queue, i.e., Q(t) = 0. Let {J (t) : t ∈ R+} be the counting process of wasted service tokens,

where

J (t) =# of wasted service tokens in [0, t]. (40)

For the sake of contradiction, assume the following is true: if Wλ < ln 1
1−λ

as λ→ 1, then there

exist τ > 0, and a sequence of optimal stationary policies, {πλ}, under which

lim inf
λ→1

P
(

Y ≥ τB
∣

∣E1 ∩E2

)

= q > 0. (41)
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The following lemma is a key ingredient to the proof, which says that the number of wasted tokens

must be substantial. The proof is based on the intuition explained in the passages above Proposition

1, and is given in Appendix A.5.

Lemma 6. Fix k > 0, and let B = kWλ. Suppose Eq. (41) is true for some sequence of optimal

stationary policies, {πλ}. Then there exist a, γ > 0 (whose values can depend on k) such that

E (J (aWλ))<Wλ exp (−γWλ) , (42)

as λ→ 1, under {πλ}.

Consider an optimal stationary policy. Denote by H(t) the counting process representing the

number of diversions in [0, t], i.e.,

H(t) =

N (t)
∑

n=1

H(n). (43)

By the stationarity of {H(n) : n ∈N} (Eq. (25)) and definition of N (t) (Eq. (10)), it is not difficult

to show that, for all t > 0,

E(H(t))

t
=
1

t
E

(

N (t)
∑

n=1

H(n)

)

= (λ+1− p)E(H(1))

= limsup
N→∞

(λ+1− p)E
(

∑N

n=1H(n)
)

N
. (44)

By definition, we have that

Q(t) =Q(0)+S(0, t)+J (t)−H(t), ∀t > 0. (45)

Taking expectation on both sides of the above equation, and letting t= aWλ, where a is given as

in Lemma 6, we have that

E(H(aWλ))

aWλ

− p

=
1

aWλ

(E (S (0, aWλ))+E (J (aWλ))+E(Q(0))−E(Q(aWλ)))− p

(a)
=[λ− (1− p)]− p+

1

aWλ

E (J (aWλ))

(b)

<(λ− 1)+
1

aWλ

Wλ exp(−γWλ)

< exp(−γWλ)− (1−λ), (46)

where γ is given in Lemma 6. Step (a) follows from the fact that E(Q(0)) = E(Q(aWλ)) by the

stationarity of Q(·), and (b) from Eq. (42).
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Letting Wλ = c ln 1
1−λ

, with c=1/2γ, we have that

exp(−γWλ)<
√
1−λ, as λ→ 1. (47)

Combining Eqs. (46) and (47), we have that

E(H(aWλ))

aWλ

− p<
√
1−λ− (1−λ)<

√
1−λ, as λ→ 1. (48)

In particular, this implies that there exists λ′ ∈ (1− p,1), such that

E(H(aWλ))

aWλ

> p, ∀λ∈ (λ′,1). (49)

Since the stationary diversion policies we consider are feasible, we must have that

E(H(t))

t

(a)
= limsup

N→∞

(λ+1− p)E
(

∑N

n=1H(n)
)

N

(b)

≤ p, (50)

for all λ∈ (1− p,1), and t > 0, where (a) and (b) follow from Eqs. (44) and (14), respectively. This

leads to a contradiction with Eq. (49), which invalidates the assumption made in Eq. (41), and

hence proves Proposition 1. Q.E.D.

4.4. Consequences of Too Few Diversions

Proposition 1 tells us that, under optimal stationary policies, the number of diversions in (U1,U2]

must be small when Wλ is small. Building on this observation, we now focus on policies that

divert “very few” jobs during (U1,U2], i.e., with Y scaling sub-linearly with respect to B, and

show that they will necessarily lead to a large expected queue length in steady-state. The following

proposition is the main result of this subsection.

Proposition 2. Fix p∈ (0,1). There exists cl > 0, so that if

Wλ � cl ln
1

1−λ
, as λ→ 1, (51)

then

limsup
λ→1

E (L(0))≤ 1

3
. (52)

under any sequence of optimal stationary policies.

Proof. We will assume that B = kWλ, with k = 24, and that Wλ � cl ln
1

1−λ
, where cl is equal to

the constant c in Proposition 1 for the corresponding value of k.

Consider an optimal stationary policy, with a resultant average queue length of qλ. We will prove

the claim by showing that if E1 ∩E2 occurs and the number of diversions made in (U1,U2] is small

(cf. Eq. (39)), then, for a “long time” after U1, the queue length will stay at a high level (i.e.,
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Q(t)> 2qλ). Recall that Y is the number of diversions made during the period (U1,U2]. We have

the following inequality, derived from the queueing dynamics:

Q(t)≥Q(U1)+S(U1, t)−Y, ∀t∈ (U1,U2]. (53)

By the definition of E1 (Eq. (29)), Eq. (53), and the fact that Q(U1)≥ 0, we have that

P
(

Q(t)≥ [λ− (1− p)− ǫ]t− ζ−Y
∣

∣E1 ∩E2

)

= 1, ∀t∈ (U1,U2]. (54)

Let V be the last time in (U1,U2] when the queue length becomes less than 2qλ, with

V = sup{t∈ [0,B) :Q(U1 + t)≤ 2qλ} , if inft∈[0,B)Q(U1 + t)≤ 2qλ, (55)

and V = 0, otherwise. Applying the definition of V in the context of Eq. (54) yields that

P

(

V ≤ 1

λ− (1− p)− ǫ
(2qλ +Y + ζ +1)

∣

∣

∣

∣

E1 ∩E2

)

= 1. (56)

Recall from Proposition 1 that, conditional on E1 ∩ E2 and assuming Wλ � cl ln
1

1−λ
, Y must be

sub-linear in B = kWλ. In particular, by Eq. (39), we have that, for all τ > 0,

lim
λ→1

P
(

Y ≤ τkWλ

∣

∣E1 ∩E2

)

= 1. (57)

Combining Eqs. (56) and (57), and the fact that Wλ →∞ as λ→ 1, we have that, there exists

υ > 0, such that for all τ > 0,

P
(

V ≤ υqλ + τkWλ

∣

∣E1 ∩E2

)

= 1− δ(λ), ∀λ∈ (1− p,1), (58)

where δ(·) is a function with limx→1 δ(x) = 0. In other words, conditional on E1∩E2, Q(t) will reach

the level of 2qλ soon after U1, with high probability. Using the fact that V ≤ U2, Eq. (58) further

implies that

E
(

V
∣

∣E1 ∩E2

)

≤ (υqλ + τkWλ)(1− δ(λ))+U2δ(λ)≤ υqλ + τkWλ+U2δ(λ) (59)

Translating this into the value of E(V ), we have that

limsup
λ→1

E(V )

U2

≤ limsup
λ→1

1

U2

(

E(V | E1 ∩E2)P(E1∩E2)+U2(1−P(E1∩E2))
)

(a)

≤ limsup
λ→1

[

1−P(E1∩E2)+
P(E1 ∩E2)

U2

(υqλ + τkWλ+U2δ(λ))

]

(b)
= limsup

λ→1

(

1−P(E1 ∩E2)+
kWλ

U2

τP(E1 ∩E2)

)

(c)
= limsup

λ→1

(

1−P(E1 ∩E2)+
k

k+1
τP(E1 ∩E2)

)

≤τ + limsup
λ→1

(1−P(E1 ∩E2)) , (60)
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where step (a) follows from Eq. (59), (b) from the assumptions that qλ ≪Wλ and limλ→1 δ(λ) = 0,

and (c) from the fact that U2 =B+Wλ = (k+1)Wλ. We now connect the behavior of E(V ) to that

of E(L(0))= P(Q(0)≤ 2qλ), as follows. Fixing any λ∈ (1− p,1), we have that

E (L(0))
(a)
=E

(

1

U2

∫ U2

t=0

L(t)dt

)

(b)
=E

(

1

U2

∫ U1+V

t=0

L(t)dt

)

(c)

≤E

(

U1 +V

U2

)

=
U1 +E(V )

U2

. (61)

where step (a) follows from the stationarity of the process L(·), which in turn follows from the

stationarity of Q(·). Step (b) follows from the fact that L(t) = 0, for all t∈ [U1 +V, U2], which is a

consequence of the definition of V in Eq. (55). Step (c) is based on the fact that L(t)≤ 1, a.s. By

Eq. (61), we have that

limsup
λ→1

E (L(0))≤ limsup
λ→1

U1 +E(V )

U2

(a)
=

Wλ

(k+1)Wλ

+ limsup
λ→1

E(V )

U2

(b)

≤ 1

k
+ τ + limsup

λ→1

(1−P(E1∩E2)), (62)

where steps (a) and (b) follow from the fact that B = kWλ, and Eq. (60), respectively.

By Claim 3 of Lemma 3, and Claim 1 of Lemma 5, we have that

lim inf
λ→1

P (E1 ∩E2) = lim inf
λ→1

P (E1)P (E2)≥
5

6
θ, (63)

where θ is given in Eq. (35). Set τ = k = 24, and let ζ be sufficiently large so that θ ≥ 10/9. We

have that

limsup
λ→1

(1−P (E1 ∩E2))≤ 1− 5

6
· 9

10
= 1/4. (64)

From Eq. (61), we have that

limsup
λ→1

E (L(0))≤ 1

k
+ τ +(1−P(E1∩E2))≤

1

24
+

1

24
+

1

4
=

1

3
, (65)

which completes the proof of Proposition 2. Q.E.D.
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4.5. Proof of Theorem 1

We now complete the proof of Theorem 1. Assuming the validity of Hypothesis 1, Proposi-

tion 2 asserts that there exists cl > 0, so that if Wλ � cl ln
1

1−λ
as λ → 1, we must have that

limsupλ→1E(L(0)) ≤ 1/3 under any sequence of optimal stationary policies. However, this con-

tradicts the requirement that E(L(0))≥ 1/2, given in Eq. (27), which holds independently of the

validity of Hypothesis 1. Therefore, we conclude that Hypothesis 1 must be invalid.

The invalidity of Hypothesis 1 establishes the lower bound in Eq. (7), as follows. The negation

of the statement of Hypothesis 1 directly implies that there exists cl > 0, so that if Wλ � cl ln
1

1−λ
,

as λ→ 1, then, for any sequence {λn} in (1− p,1), with limn→∞ λn = 1, we have that

limsup
n→∞

Q∗(λn,Wλn)

ln 1
1−λn

> 0. (66)

We can further strengthen Eq. (66), and claim that, for any such sequence, we also have that

lim inf
n→∞

Q∗(λn,Wλn)

ln 1
1−λn

> 0. (67)

To show Eq. (67), suppose, for the sake of contradiction, that lim infn→∞
Q∗(λn,Wλn

)

ln 1
1−λn

= 0,

for some sequence {λn}. This implies that {λn} admits a subsequence, {λnk
}, such that

limsupk→∞

Q∗(λnk
,Wλn

)

ln 1
1−λnk

= 0. The existence of the sequence {λnk
} contradicts Eq. (66). This proves

Eq. (67), which in turn establishes the lower bound in Eq. (7), i.e., that if Wλ � cl ln
1

1−λ
, as λ→ 1,

then

Q∗(λ,Wλ)< ln

(

1

1−λ

)

, as λ→ 1. (68)

Finally, we show that the lower bound in Eq. (7) is achievable, i.e., that

Q∗(λ,Wλ)4 ln

(

1

1−λ

)

, as λ→ 1, (69)

when Wλ � cl ln
1

1−λ
. To this end, we invoke Theorem 7 in Spencer et al. (2014), which shows that

a deterministic queue-length-based diversion policy can achieve the scaling of Eq. (69), even when

Wλ = 0.5 This completes the proof of Theorem 1. Q.E.D.

5 As is described in Spencer et al. (2014), the scaling in Eq. (69) can be achieved by the following simple threshold
policy: divert the arrival if and only if the current queue length is equal to a threshold value x, where x is set to be the
smallest value such that the resultant rate of diversion is no more than p. Since the queue length process under this
policy is simply a birth-death process truncated at state x, it is easy to verify, via a direct calculation of steady-state
probabilities of Q(t), that qλ ∼ ln 1

1−λ
, as λ→ 1.
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5. Conclusions and Future Work

In the context of a class of queueing admission control problems, we showed that a non-trivial

amount of future information is necessary in order to achieve superior heavy-traffic delay perfor-

mance compared to an online policy. Theorem 1 also resolves a conjecture posed by Spencer et al.

(2014). Our proof exploited certain excursion properties of a transient random walk, which allowed

us to connect a policy’s diversion decisions to subsequent system idling.

There are several interesting avenues of future research. First, in light of Theorem 1 and the

results of Spencer et al. (2014) (Eq. (4)), an immediate question is whether the constants ch and

cl in the scaling of Wλ coincide. The granularity of our proof technique does not appear to be

sufficient to answer this question, which likely demands a finer analysis.

Because our proof relies mostly on the macroscopic properties of the input sample paths, the

techniques and resultant insights in this paper seem to be fairly robust and can potentially be

generalized to derive lower bounds on the necessary amount of future information for other resource

allocation problems. For example, one generalization could be for a setting where the arrival and

service token processes are non-Poisson (e.g., renewal or phase-type processes). In this case, we

expect similar arguments to work when the process, S(0, ·), admits similar excursion properties

as in the case of Poisson processes, and does not exhibit substantial long-range correlations (for

otherwise, one could potentially obtain more future information by looking into the history of

past inputs). Another possibility would be to consider systems with multiple queues, in which

case the relevant excursion properties of the input processes would likely be connected to those of

random walks in higher dimensions. Yet another variation would be to relax the hard diversion rate

constraint, and consider instead the scenario where the system manager is interested in minimizing

some combined cost as a function of the delay and diversion rate. However, depending on the cost

function, one may need to adjust the performance metric or regime of interest, since the system

may not ever have to become critically loaded, simply because the cost structure would encourage

a higher rate of diversion as the system load increases.

Finally, at a higher level, while our result focuses on the quantity of future information, mea-

sured by the length of a lookahead window, there is another important dimension of quality. For

instance, the observed future input may differ from the actual realizations due to prediction noise,

or alternatively, only distributional information of future input is available. Neither our results, nor

those of Spencer et al. (2014), deal with the impact of prediction noise, and Xu and Chan (2014)

considers only a specific noise model induced by random no-shows. A rigorous understanding of

the impact of prediction accuracy in the context of dynamic resource allocation problems could be

a promising direction for future research.
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Appendix

A. Additional Proofs

A.1. Proof of Lemma 1

Proof. We will formulate our admission control problem as a discrete-time Markov decision process

(MDP), and invoke existing results to verify the existence of a stable stationary optimal policy.

Recall that state of the system at the nth step is Xn = (Q(Zn−), Fn), where Fn was defined in

Eq. (20). Define X as the set

X =Z+ × [−1,w]N. (70)

Note that Xn can be represented as an element in X for all n, because Q(Zn−) is the queue

length just before the nth event and hence belongs to Z+, and each coordinate of Fn, which either

represents the type of an event or an inter-arrival time upper-bounded by Wλ, lies in the interval

[−1,Wλ]. The following topological properties of X are useful, whose proof is given in Appendix

A.6.

Lemma 7. The following holds.

1. X is Polish, i.e., it is complete and separable.

2. Under an appropriate metric, the set {x ∈X : x1 ≤ a} is compact for all a∈R+.

The MDP associated with our admission control problem is defined as follows:

1. The state space is X , defined in Eq. (70).

2. The action space, L, is the closed interval [0,1], and the action at step n, ln ∈L , specifies the

probability of diversion, i.e., ln = P(H(n) = 1). Denote by L(X) the set of allowable actions

when the system is in state X. Then L(Xn) = [0,1] if An(0) = 1, which corresponds to the

nth event being an arrival, and L(Xn) = {0} if Sn(0) = 1, which corresponds to the nth event

being the generation of a service token.

3. The stochastic kernel is the one associated with the Poisson arrival and service token processes,

as well as the queueing and diversion dynamics.

4. The nth step is associated with a penalty, f(Xn, ln), which is equal to the queue length,

Q(Zn−). It also incurs a cost, c(Xn, ln), which is equal to the probability of diversion, ln.

5. The objective is to minimize the time-average penalty, defined in Eq. (15), subject to a

constraint on the time-average cost, defined in Eq. (14).

Theorem 3.2 and Lemma 3.5 of Hernández-Lerma et al. (2003) show that an MDP of this kind

admits a stable stationary optimal policy, provided that a set of conditions are satisfied, which

are given in Section 2 and Assumption 3.1 of Hernández-Lerma et al. (2003). These conditions are

met by our MDP, and we highlight a few among them: (1) the state space is Polish (by the first



Xu: Necessity of Future Information in Admission Control
25

claim of Lemma 7), (2) the set {(X, l) ∈ (X ,L) : f(Xn, ln)≤ a} is compact for all a ∈ R+ (by the

second claim of Lemma 7), (3) c(Xn, ln), which in our case is simply equal to ln, is non-negative and

lower semi-continuous in ln for every state Xn ∈X , and (4) the stochastic kernel satisfies a certain

weak continuity condition, which essentially requires the distribution of Xn not vary abruptly as a

function of the state-action pair (Xn, ln), and this continuity condition can be verified by using the

definitions of Poisson processes and the associated queueing dynamics. This completes the proof

of Lemma 1. Q.E.D.

A.2. Proof of Lemma 3

Proof. Recall from Eq. (11) that S(s, t) is defined as the difference between the numbers of arrivals

and service tokens in (s, t]. Since the arrival and service tokens processes are independent Poisson

processes with rate λ and 1− p, respectively, it is not difficult to verify that

S(s, t)
d
=

Ns,t
∑

n=1

Xn, (71)

where Ns,t is a Poisson random variable with mean (λ+ 1− p)(t− s), which corresponds to the

total number of events in (t, s], and the Xns are i.i.d., with

X1 =

{

1, w.p. λ

λ+1−p
,

−1, otherwise,
(72)

By Eq. (71), and the fact that limB→∞
Ns,s+B

B
= λ + 1 − p almost surely, Claim 1 follows from

a variation of the standard Functional Law of Large Numbers (FLLN) for the sum of bounded

i.i.d. random variables. Claim 3 follows from the Weak Law of Large Numbers applied to the sum

of i.i.d. Poisson random variables, and our assumption that Wλ →∞ as λ→ 1 (Eq. (16)). Finally,

Claim 2 follows from the Markov’s inequality, in the same way as in Eq. (27), by noting that

E(Q(0))= qλ under an optimal stationary policy. Q.E.D.

A.3. Proof of Lemma 4

Proof. Based on the stationarity of A and S, and the assumption that B = kWλ and qλ ≪Wλ, it

suffices for us to show, that for any a, b > 0, there exists γ > 0, such that

P (S(0, aWλ)≤−bWλ)< exp(−γWλ), as λ→ 1. (73)

By definition, the distribution of S(0, t) can be written as

S(0, t)
d
=Aλt −D(1−p)t, (74)

where Aλt and D(1−p)t are independent Poisson random variables with mean λt and (1 − p)t,

respectively. The following lemma follows from the standard large-deviation principles of Poisson

random variables, and its proof is omitted.
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Lemma 8. Let Dx be a Poisson random variable with mean x. Then, for all c1 > 0, there exists

c2 > 0, such that

P (Dx ≥ c1x)< exp(−c2x), as x→∞. (75)

Combining Lemma 8 and the fact that Wλ →∞ as λ→ 1, we have that there exists γ > 0, such

that

P
(

D(1−p)aWλ
≥ (b+2a)Wλ

)

< exp(−γWλ) (76)

as λ→ 1. We have that

P (S(0, aWλ)≤−bWλ)

≥P
({

AλaWλ
< 2aWλ

}

∩
{

D(1−p)aWλ
≥ (b+2a)Wλ

})

(a)
=P

(

AλaWλ
< 2aWλ

)

P
(

D(1−p)aWλ
≥ (b+2a)Wλ

)

(b)

≥P
(

AλaWλ
< 2λaWλ

)

P
(

D(1−p)aWλ
≥ (b+2a)Wλ

)

(c)

≥ 1

2
P
(

D(1−p)aWλ
≥ (b+2a)Wλ

)

(d)

< exp(−γWλ), (77)

as λ→ 1, where step (a) follows from the independence between AλaWλ
and D(1−p)aWλ

, (b) from

the fact that λ < 1, (c) from the Markov’s inequality, and (d) from Eq. (76). This proves Eq. (4),

and hence Lemma 4. Q.E.D.

A.4. Proof of Lemma 5

Proof. For Claim 1, observe that each of the event concerns only the behavior of the arrival and

service token processes over an interval, and that these intervals are disjoint from each other. Claim

1 follows by noting that both A and S are Poisson processes and hence memoryless. For Claim

2, because the policy has access to a lookahead window of length Wλ, the queue length at time t

is hence Ft+Wλ
measurable, where F is the natural filtration induced by the input processes. The

claim follows again from the memoryless property of Poisson processes. Claim 3 follows from the

same arguments as for Claim 2. Q.E.D.

A.5. Proof of Lemma 6

Proof. Consider the sequence of optimal stationary policies, {πλ}. Let φ be defined as in Eq. (34).

Fix φ> 0, and let

K =U3 +φWλ

(a)
= (k+φ+2)Wλ, (78)

where step (a) follows from the fact that U3 = B + 2Wλ and B = kWλ. The main idea for the

proof is based on the following observation: conditional on ∩5
i=1Ei, the queue length process, Q(t),
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would have reached zero before time K, even if no diversion had been made in (0,K] (illustrated in

Figure 3). Therefore, each diversion made in (U1,U2] will necessarily lead to a waste service token

in (0,K], and hence

P
(

J (K)≥ τB
∣

∣ ∩5
i=1 Ei

)

≥ P
(

Y ≥ τB
∣

∣ ∩5
i=1 Ei

)

. (79)

We next give a lower bound on the above probability, as follows:

P
(

J (K)≥ τB
∣

∣E1 ∩E2

)

≥P
(

J (K)≥ τB,∩5
i=3Ei

∣

∣E1 ∩E2

)

=P
(

J (K)≥ τB
∣

∣ ∩5
i=1 Ei

)

P
(

∩5
i=3Ei

∣

∣E1 ∩E2

)

(a)

≥P
(

Y ≥ τB
∣

∣ ∩5
i=1 Ei

)

P
(

∩5
i=3Ei

∣

∣E1 ∩E2

)

=P
(

Y ≥ τB,∩5
i=3Ei

∣

∣E1 ∩E2

)

(b)
=P (E5)P

(

Y ≥ τB,E3 ∩E4

∣

∣E1 ∩E2

)

≥P (E5)
(

P
(

Y ≥ τB
∣

∣E1 ∩E2

)

+P
(

E3

∣

∣E1 ∩E2

)

+P
(

E4

∣

∣E1 ∩E2

)

− 2
)

≥P (E5)

(

P
(

Y ≥ τB
∣

∣E1 ∩E2

)

+P
(

E3

∣

∣E1 ∩E2

)

+
P (E4)+P (E1 ∩E2)− 1

P (E1 ∩E2)
− 2

)

(c)
=P (E5)

(

P
(

Y ≥ τB
∣

∣E1 ∩E2

)

+P (E3)+
P (E4)− 1

P (E1 ∩E2)
− 1

)

(80)

where step (a) follows from Eq. (79), and (b) and (c) from the independence between E5 and

E1∩E2, and between E3 and E1∩E2, respectively (Lemma 5). We have also used the inequality that

P (A∩B)≥ P (A)+P(B)− 1, for any events A and B.

By Claim 3 of Lemma 3, we have that

lim
λ→1

P (E3) = lim
λ→1

P (E4) = 1. (81)

Combining the assumption (Eq. (41))

lim inf
λ→1

P
(

Y ≥ τB
∣

∣E1 ∩E2

)

= q > 0 (82)

with Eqs. (80) and (81), we have that there exists λ̃∈ (0,1), such that

P
(

J (K)≥ τB
∣

∣E1 ∩E2

)

≥P (E5)P
(

Y ≥ τB
∣

∣E1 ∩E2

)

≥P (E5) q/2, (83)

for all λ∈
(

λ̃,1
)

. We have that

E (J (K))≥τB ·P (J (K)≥ τB)
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≥τB ·P (J (K)≥ τB,E1 ∩E2)

=τB ·P
(

J (K)≥ τB
∣

∣E1 ∩E2

)

·P (E1 ∩E2)
(a)

<BP (E5)P (E1 ∩E2)
(b)

<BP (E5)
(c)

<B exp(−γWλ) , (84)

for some γ > 0, as λ→ 1, where step (a) follows from Eq. (83), (b) from Claims 1 and 2 of Lemma

3 and the independence of the events E1 and E2 (Claim 1 of Lemma 5), i.e., that

P (E1 ∩E2) = P (E1)P (E2)≥
5

6
θ, (85)

and (c) from Lemma 4. This proves Lemma 6, by setting a= k+φ+2. Q.E.D.

A.6. Proof of Lemma 7

Proof. Let X0 = [−1,Wλ]
N. We will show that X0 is compact under the metric ‖x − y‖g =

∑∞

i=1 2
−i|xi − yi|. If this is true, it is not difficult to show that, for any a ∈ R+, the set {x ∈ X :

x1 ≤ a}= {0, . . . , ⌊a⌋} × X0 is also compact under ‖ · ‖g, and our second claim follows. Note that

a compact metrizable space is Polish, and it is easy to show that Z+ is Polish under the l1 norm.

Our first claim thus also follows from the compactness of X0, by observing that the product of two

Polish spaces remains Polish.

We now show the compactness of X0. It suffices to show that any sequence in X0, {xi}i∈N, admits

a sub-sequence that converges to a point in X0. We will construct such a limiting point coordinate-

by-coordinate, as follows. Because xi
1 is an element of the compact interval [−1,Wλ] for all i ∈N,

there exists y1 ∈ [−1,Wλ] and an increasing sequence, {i1,j}j∈N ⊂ N, such that limj→∞ xi1,j

1 = y1.

We now apply the same reasoning for progressively larger values of k: there exist yk ∈ [−1,Wλ] and

{ik,j}j∈N for k=2,3, . . ., such that, for every k≥ 2, {ik,j}j∈N is a sub-sequence of {ik−1,j}j∈N, and

lim
j→∞

xik,j

k = yk. (86)

Fix k≥ 2. Because {ik,j}j∈N is a sub-sequence of {im,j}j∈N for all m≤ k−1, Eq. (86) further implies

that

lim
j→∞

xik,j

m = ym, ∀m∈ {1, . . . , k}, (87)

or, equivalently, that

lim
j→∞

k
∑

i=1

2−m

∣

∣

∣
xik,j

m − ym

∣

∣

∣
= 0, ∀k ∈N. (88)
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Let y be the element of X0 whose coordinates are defined according to the above procedure. We

argue that y is the limiting point for some sub-sequence of {xi}Ni=1. For every k ∈ N, there exists

j(k)∈N, such that for all j ≥ j(k),

∥

∥

∥
y−xik,j

∥

∥

∥

g
=

∞
∑

m=1

2−m

∣

∣

∣
ym −xik,j

m

∣

∣

∣

(a)

≤
(

k
∑

m=1

2−m

∣

∣

∣
ym −xik,j

m

∣

∣

∣

)

+(1+Wλ)2
−(k−2)

(b)

≤ 1

k
+(1+Wλ)2

−(k−2), (89)

where step (a) follows from the fact that
∣

∣

∣
ym −xik,j

m

∣

∣

∣
≤ 2(Wλ+1) for all m∈N, and step (b) from

Eq. (88). Define

nk =max{im,j(m) : 1≤m≤ k}, ∀k ∈N. (90)

By Eq. (89), we have that

∥

∥

∥
y−xnk

∥

∥

∥

g
≤ 1

k
+(1+Wλ)2

−(k−2), ∀k ∈N, (91)

Therefore, {xnk}k∈N is a sub-sequence of {xi}i∈N, and it converges to y as k→∞ under the metric

‖ · ‖g . This proves that X0 is compact. Q.E.D.
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