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Abstract

We consider the linear programming approach for constrained and unconstrained Markov
decision processes (MDPs) under the long-run average cost criterion, where the class of MDPs
in our study have Borel state spaces and discrete countable action spaces. Under a strict un-
boundedness condition on the one-stage costs and a recently introduced majorization condition
on the state transition stochastic kernel, we study infinite-dimensional linear programs for the
average-cost MDPs and prove the absence of a duality gap and other optimality results. Our
results do not require a lower-semicontinuous MDP model. Thus, they can be applied to count-
able action space MDPs where the dynamics and one-stage costs are discontinuous in the state
variable. Our proofs make use of the continuity property of Borel measurable functions asserted
by Lusin’s theorem.
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1 Introduction

We consider discrete-time Markov decision processes (MDPs) with the long-run average cost crite-
rion. Our focus will be on the linear programming (LP) approach, for a class of unconstrained and
constrained MDPs that have Borel state spaces, discrete countable action spaces, and unbounded
one-stage costs.

LP methods for average-cost MDPs have a long history and an extensive literature. For MDPs
with finite state and action spaces, see e.g., [9, 24, 25, 28]; for countable state spaces and countable
or compact action spaces, see [6, 7, 26, 27, 31]; and for Borel state and action spaces, see [15, 17, 18,
21, 30, 38]. The interested reader may also consult the books [1, 13, 19, 20, 35] and their references.
The third group of results deal with uncountably infinite state spaces and are most closely related
to our work. In particular, using the theory of infinite-dimensional LP (Anderson and Nash [2]),
Hernández-Lerma and Lasserre [18] (see also [20, Chap. 12], [21]) formulated a general LP framework
for Borel space average-cost MDPs. They studied the relations between the values of the primal/dual
linear programs and the minimum average cost of an MDP, proved the absence of a duality gap
under certain continuity conditions on the MDP model, and related the solutions of the programs to
stationary optimal policies and average cost optimality equations (ACOE) of the MDP. Much earlier
than [18], Yamada [38] considered linear programs for a special class of geometrically ergodic MDPs
with compact Euclidean state/action spaces and proved duality results for these problems. Building
on the work [18], Hernández-Lerma and González-Hernández [15] provided additional results and
generalizations. Extensions of the LP method to constrained average-cost problems were studied by
Kurano et al. [30] for compact spaces and by Hernández-Lerma et al. [17] for non-compact spaces.

Another line of research that is closely related to our work, as well as to the prior work on LP
mentioned above, is the minimum pair approach for average-cost Borel space MDPs ([14, 29], [19,
Chap. 5.7]; see also the related convex analytic approach [6]). With this approach, one considers
minimizing the average cost over all policies and initial distributions, and the interest is in the
existence of an optimal pair of policy and initial distribution with the following structure. The
policy is stationary, and the associated initial distribution is an invariant probability measure of
the Markov chain induced by the policy. In this paper we shall call a pair with such a structure a
“stationary pair” and if it attains the minimum average cost, a “stationary minimum pair.” The
feasibility and solvability of the primal linear programs studied in the prior work mentioned earlier
in fact depend on the existence of such pairs. Conversely, a stationary minimum pair, when it exists,
can be found by solving a linear program in the space of invariant probability measures induced by
stationary policies, thus providing a way to find a stationary optimal policy for a subset of states.1

In some cases, with further ergodicity and regularity conditions, one can also extend the policy to
an optimal one over the entire state space and establish stronger optimality, including sample-path
optimality, of the policy [14, 29, 32, 37].

Our work builds upon earlier research on the LP and minimum pair methods for average-cost
MDPs mentioned above. In those prior results the action space is more general than the countable
action space we deal with in this paper. However, except for [38], all of those results assume a
lower-semicontinuous MDP model. Namely, they require the one-stage cost functions to be lower
semicontinuous and the state transition stochastic kernels to be (weakly) continuous ([38] involves
different continuity conditions; see Remark 3.2 for details). Our work does not require this assump-
tion.

We recently introduced in [40] a majorization condition on the state transition stochastic kernel to
deal with Borel space MDPs that do not satify such continuity conditions. For the case of countable

1For finite state and action MDPs, Denardo [8] seems to be the first to recognize the relation between the solution
of a certain linear program and a stationary minimum pair, and he proposed to find a stationary average-cost optimal
policy in a multichain MDP by repeatedly solving those linear programs on subproblems with smaller state spaces.
This procedure is not applicable in general when the state space is uncountably infinite, since the “chain structure”
of an MDP in this case can be complicated and hard to analyze. For some results on LP for “multichain” Borel space
MDPs, see [15].
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action spaces (with the discrete topology), we obtained the existence of a stationary minimum pair
and other average-cost optimality results analogous to those for lower-semicontinuous MDPs given
by [14, 29, 32, 37]. The purpose of the majorization condition is to make use of Lusin’s theorem
on the continuity of Borel measurable functions [11, Thm. 7.5.2]. Roughly speaking, we require
the existence of finite Borel measures on the state space that can majorize certain sub-stochastic
kernels created from the state transition stochastic kernel, at all admissible state-action pairs (see
Assumption 2.1(M)). We then use those majorizing finite measures in combination with Lusin’s
theorem to extract arbitrarily large (according to a given finite measure) sets on which certain
Borel measurable functions involved in our analysis have desired continuity properties. With this
technique, we are able to avoid the lower-semicontinuous model assumption and obtain results in
[40] that can be applied to MDPs with discontinuous dynamics and one-stage costs, although the
application range is currently limited to the case of countable action spaces.

The purpose of this work is to further analyze the implications of the majorization condition
and Lusin’s theorem in the LP context, for both unconstrained and constrained MDPs. The main
contributions of this paper are as follows.

(i) For unconstrained average-cost MDPs, under the strictly unbounded cost condition and the
majorization condition (cf. Assumption 2.1), we prove there is no duality gap between the
primal and dual linear programs in an LP formulation (see Theorem 3.1).

(ii) For constrained average-cost MDPs, under conditions similar to those in (i), we first prove the
existence of a stationary optimal pair and a stationary lexicographically optimal pair (which
are analogous to stationary minimum pairs for unconstrained MDPs), and we then prove the
absence of a duality gap for an LP formulation (see Theorems 4.1 and 4.2, respectively).

In addition, we also discuss the maximizing sequences of dual linear programs and their relation
with certain versions of ACOE (see Prop. 3.1 for unconstrained MDPs and Props. 4.1, 4.2 for
constrained MDPs). Our results for unconstrained (resp., constrained) MDPs given in this paper
can be compared with some of the prior results in [20, Chap. 12] and [21] (resp., [17] and [30]) for
lower-semicontinuous models.

While this paper focuses on the average cost criterion, the analysis we give, with minor changes,
can also be applied to constrained (or multi-objective) discounted-cost MDPs similar to those stud-
ied in [12, 16, 23], for finding constrained optimal or Pareto optimal policies (for a given initial
distribution) using the LP approach, in the case of countable action spaces. In a separate recent
work [39] based on similar ideas, we introduced another majorization condition for MDPs where both
the state and action spaces are Borel, and used the majorization condition instead of the commonly
required continuity/compactness conditions to prove the average cost optimality inequalities via the
vanishing discount factor approach.

The rest of this paper is organized as follows. In Section 2 we give background materials about
the average-cost MDP model, some prior optimality results for the minimum pair approach, and an
overview of linear programs in topological vector spaces. In Section 3 we present our LP formulation
and duality results for unconstrained MDPs. We then extend these results to constrained MDPs in
Section 4. Proofs for the theorems in Sections 3 and 4 are given in Section 5.

2 Preliminaries

We start with some notations and basic definitions. For a topological space X , B(X) denotes the
Borel σ-algebra on X , and P(X) denotes the set of probability measures on B(X). We will refer to
nonnegative or signed measures on B(X) as Borel measures. A Borel space (a.k.a. standard Borel
space) is a separable metrizable space that is homeomorphic to a Borel subset of some Polish space
(i.e., a separable and completely metrizable space) [3, Chap. 7]. Let X and Y be Borel spaces.
A Borel measurable stochastic kernel on Y given X is a Borel measurable function from X into
P(Y ), where the space P(Y ) is endowed with the topology of weak convergence. We denote the
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stochastic kernel by q(dy |x). When it is continuous on X , we call it a continuous stochastic kernel
(it is also called weakly continuous or weak Feller in the literature). For the space P(X) or more
generally, the space of finite Borel measures on X , besides the topology of weak convergence just
mentioned, we shall also consider other topologies in the next section when these spaces appear in
infinite-dimensional linear programs.

We now introduce average-costMDPs and the minimum pair approach, after which we will briefly
review infinite-dimensional linear programs in topological vector spaces.

2.1 MDP Model, Average Cost Criterion, and Minimum Pair Approach

We consider an MDP with state space X and action space A, where X is a Borel space and A is a
countable space endowed with the discrete topology. The control constraint is specified by a set-
valued map A : X → 2A. In particular, each state x ∈ X is associated with a nonempty set A(x) ⊂ A

of admissible actions, and the graph of the map A(·),

Γ := {(x, a) | x ∈ X, a ∈ A(x)},

is assumed to be a Borel subset of X× A. If an action a ∈ A(x) is taken at state x, a one-stage cost
c(x, a) is incurred, followed by a probabilistic state transition. We assume that the state transition is
governed by a Borel measurable stochastic kernel q(dy |x, a) on X given X×A, and that the one-stage
cost function c : X×A → [0,+∞] is nonnegative and Borel measurable, real-valued on Γ, and taking
the value +∞ outside Γ.

A policy is a sequence of stochastic kernels on A that specify how to take actions at each stage,
given the history up to that stage. More precisely, for infinite-horizon average cost problems that
we consider, a Borel measurable policy is an infinite sequence π := (µ0, µ1, . . .) where for each n ≥ 0,
µn

(

dan | x0, a0, . . . , an−1, xn

)

is a Borel measurable stochastic kernel on A given (X × A)n × X and
obeys the control constraint of the MDP:

µn

(

A(xn) | x0, a0, . . . , an−1, xn

)

= 1, ∀ (x0, a0, . . . , an−1, xn) ∈ (X × A)n × X.

Such a policy is called nonrandomized if in the above every measure on A is a Dirac measure, and
it is called stationary if the function (x0, a0, . . . , an−1, xn) 7→ µn(dan |x0, a0, . . . , an−1, xn) depends
only on the state xn, in the same way for every n ≥ 0. In the stationary case, we can write the
policy as π = (µ, µ, . . .) for a Borel measurable stochastic kernel µ(da |x) on A given X that obeys
the control constraint of the MDP, and we will simply designate this policy by µ.

Let Π denote the space of Borel measurable policies, and let Πs be the subset of all stationary
policies in Π. Given that the action space A is countable, Π and Πs are nonempty (see e.g., [40,
Sect. 2]), and the Borel measurable policies will be adequate for our purpose—henceforth, we shall
simply call them policies. We also note that although A is countable, in the above and throughout
the paper, we write probability measures on A using the general notation for probability measures
on a possibly uncountably infinite space, for notational simplicity.

2.1.1 Average Cost Criterion and Minimum Pair

In an MDP, a policy π ∈ Π and an initial (state) distribution ζ ∈ P(X) induce a stochastic process
{(xn, an)}n≥0 on the infinite product of state and action spaces, (X×A)∞. The probability measure
for this process is uniquely determined by the initial distribution ζ, the sequence of stochastic kernels
in π, and the state transition stochastic kernel q(dy |x, a) [3, Prop. 7.28]. We denote this probability
measure by Pπ

ζ and the corresponding expectation operator by E
π
ζ . The long-run expected average

cost of the policy π for the initial distribution ζ is defined by

J(π, ζ) := lim sup
n→∞

n−1
E
π
ζ

[
∑n−1

k=0 c(xk, ak)
]

.
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We shall also refer to J(π, ζ) as the average cost of the pair (π, ζ). With the minimum pair approach,
we consider the average costs of all policy and initial distribution pairs, and among these pairs, we
are especially interested in the types of pairs defined below.

Let ρ∗ be the minimum average cost over all policies and initial distributions:

ρ∗ := inf
ζ∈P(X)

inf
π∈Π

J(π, ζ).

Definition 2.1. A pair (π∗, ζ∗) ∈ Π× P(X) with J(π∗, ζ∗) = ρ∗ is called a minimum pair.

Definition 2.2 (stationary pair and stationary minimum pair).

(a) For a stationary policy µ ∈ Πs and an initial distribution p ∈ P(X), if p is an invariant probability
measure of the Markov chain induced by µ on X, we call (µ, p) a stationary pair. The set of all
stationary pairs is denoted by ∆s.

(b) If (µ∗, p∗) ∈ ∆s is a minimum pair, we call it a stationary minimum pair.

Remark 2.1. Various terminologies are used in the literature for what we call a stationary pair
(µ, p). In the references [17, 18, 20], the policy µ is called a “stable policy” if J(µ, p) < ∞. In the
reference [7], the probability measure γ(d(x, a)) = µ(da |x) p(dx) is called an “ergodic occupation
measure”—we will discuss such measures in Section 3.1.

2.1.2 Model Assumptions and Existence of Stationary Minimum Pair

We now impose additional conditions on the MDP model. For a set B in some space, let Bc denote
its complement; for a set B ⊂ X × A, let proj

X
(B) denote the projection of B on X. Recall that

Γ = {(x, a) | x ∈ X, a ∈ A(x)}.

Assumption 2.1.

(G) For some π ∈ Π and ζ ∈ P(X), the average cost J(π, ζ) < ∞.

(SU) There exists a nondecreasing sequence of compact sets Γj ↑ Γ such that

lim
j→∞

inf
(x,a)∈Γc

j

c(x, a) = +∞.

(M) For each compact set K ∈ {proj
X
(Γj)}, there exist an open set O ⊃ K, a closed set D ⊂ X,

and a finite measure ν on B(X) (all of which can depend on K) such that

q
(

(O \D) ∩B | x, a
)

≤ ν(B), ∀B ∈ B(X), (x, a) ∈ Γ, (2.1)

where the closed set D (possibly empty) is such that restricted to D × A, the state transi-
tion stochastic kernel q(dy |x, a) is continuous and the one-stage cost function c(x, a) is lower
semicontinuous.2

The first two conditions in this assumption are standard: (G) excludes vacuous problems, and
(SU) defines the case of strictly unbounded one-stage costs. They were used in, e.g., [14, 20, 32, 37]
to derive average-cost optimality and LP duality results for lower-semicontinuous MDP models with
strictly unbounded costs.

When the function c(·) is lower semicontinuous, (SU) is equivalent to c(·) being inf-compact on
Γ, i.e., Er := {(x, a) ∈ Γ | c(x, a) ≤ r} is compact for all r ≥ 0. In our case, these sets Er need not
be closed and instead, (SU) is equivalent to Er having compact closures. Note also that the set Γ is
σ-compact under (SU) and, since proj

X
(Γj) ↑ X, the space X thus must also be σ-compact.

2Since A is discrete, the continuity condition here means that for each action a ∈ A, q(dy | ·, a) and c(·, a) are
continuous and lower semicontinuous, respectively, on the set D.
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Condition (M) was introduced in our recent work [40]. We use the majorization property required
in (M) instead of the lower-semicontinuity model conditions commonly required in the literature.
The set D in (M) is introduced to separate a “continuous part” of the model from the rest, in order
to sharpen (M), although this condition can also be used with D = ∅. Condition (M) seems natural
for problems where the probability measures {q(· |x, a) | (x, a) ∈ Γ} have densities on X \ D with
respect to (w.r.t.) a common σ-finite reference measure and those density functions are bounded
uniformly from above. For instance, if X = R

n and the reference measure is the Lebesgue measure,
we can take ν in (M) to be a multiple of the Lebesgue measure restricted to a bounded open set
that contains K. See [40, Example 3.2 and Remark 3.3] for more specific examples that illustrate
situations where (M) is naturally satisfied or cannot be satisfied.

Under the preceding assumption, the following results are proved in [40] by making use of Lusin’s
theorem (see [40, Thm. 3.5] for sample-path and other optimality properties of a stationary minimum
pair). They are analogous to the prior results for lower-semicontinuous MDPs [14, 20, 29], and they
will serve as the starting point for the analyses we present in this paper.

Theorem 2.1 (optimality of stationary pairs [40, Prop. 3.2, Thm. 3.3]).
Under Assumption 2.1, the following hold:

(i) For any pair (π, ζ) ∈ Π × P(X) with J(π, ζ) < ∞, there exists a stationary pair (µ̄, p̄) ∈ ∆s

with J(µ̄, p̄) ≤ J(π, ζ).

(ii) There exists a stationary minimum pair (µ∗, p∗) ∈ ∆s.

2.2 Linear Programs in Topological Vector Spaces

We now give a brief overview of topological vector spaces over the real field and infinite-dimensional
linear programs in such spaces. The reader is referred to the books [2, 36] for in-depth studies of
these subjects, and to the book [20, Chap. 12.2] for a more detailed introduction than ours. Here
we shall focus on a few basic concepts and results that will be needed in this paper.

Let X and Y be two (real) vector spaces, and let 0 denote the element zero for both spaces. The
pair (X,Y ) is called a dual pair if there is a bilinear form 〈·, ·〉 : X × Y → R such that

• for each x 6= 0 in X , there exists some y ∈ Y with 〈x, y〉 6= 0,

• for each y 6= 0 in Y , there exists some x ∈ X with 〈x, y〉 6= 0.

For a dual pair (X,Y ), the coarsest topology on X under which the function |〈·, y〉| is continuous
for every y ∈ Y is called the weak topology on X determined by Y , and denoted by σ(X,Y ). By
symmetry, (Y,X) is also a dual pair and σ(Y,X), the weak topology on Y determined by X , is
likewise defined.

We recall that a topological vector space is a vector space with a topology that is compatible with
its algebraic structure (namely, with that topology, the addition and multiplication operations are
continuous; see [36, Chap. I.3]). When endowed with the weak topologies given above, each space
in a dual pair (X,Y ) is a topological vector space that is separated (i.e., a Hausdorff space) and
locally convex (i.e., every point in the space has a base of convex neighborhoods) [36, Chap. II.3].
Convergence in X under the weak topology σ(X,Y ) can be characterized as follows: a net {xi}i∈I

in X converges to x̄ ∈ X if and only if (iff)

〈xi, y〉 → 〈x̄, y〉, ∀ y ∈ Y.

We consider equality-constrained linear programs and their dual linear programs in topological
vector spaces. The definitions of these programs involve several objects, which we introduce first:

• two dual pairs of vector spaces (X,Y ) and (Z,W ), with each space endowed with its respective
weak topology;

• a linear mapping L : X → Z that is required to be weakly continuous (i.e., L is continuous
under the topology σ(X,Y ) for X and the topology σ(Z,W ) for Z);
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• a convex cone Λ in X and its dual cone Λ∗ in Y defined as

Λ∗ :=
{

y ∈ Y | 〈x, y〉 ≥ 0, ∀x ∈ Λ
}

.

The convex cones Λ and Λ∗ induce a partial ordering “≤” on X and Y , respectively:

x1 ≤ x2 iff x2 − x1 ∈ Λ; y1 ≤ y2 iff y2 − y1 ∈ Λ∗.

The linear mapping L appears in the constraints of a linear program designated as the primal
program (P). Associated with L is another linear mapping L∗ on the space W , called the adjoint
or transpose of L, that maps each w ∈ W to a linear form L∗w on X and is defined by the identity
relation (where 〈x, L∗w〉 stands for (L∗w)(x)):

〈x, L∗w〉 := 〈Lx,w〉, ∀x ∈ X, w ∈ W.

An important property of L and L∗ is given by the following proposition:

Proposition 2.1 ([36, Chap. II, Prop. 12 and its corollary]). A linear mapping L : X → Z is weakly
continuous if and only if L∗(W ) ⊂ Y . If L is weakly continuous, so is L∗.

This proposition gives a convenient way to verify whether a linear mapping is weakly continuous
or not. When L is weakly continuous, with the weakly continuous mapping L∗ : W → Y , one can
define the dual of the primal linear program.

Let c ∈ Y and b ∈ Z. Consider the following equality-constrained primal linear program (P) in
the space X and its dual linear program (P∗) in the space W (cf. [2, Chap. 3.3]):

(P) minimize 〈x, c 〉

subject to Lx = b, x ∈ Λ. (2.2)

(P∗) maximize 〈 b, w 〉

subject to − L∗w + c ∈ Λ∗, w ∈ W. (2.3)

Similarities between these programs and standard finite-dimensional linear programs can be seen by
writing the constraints x ∈ Λ and −L∗w + c ∈ Λ∗ equivalently as x ≥ 0 and L∗w ≤ c, respectively.

If the program (P) or (P∗) has a feasible solution, it is said to be consistent ; if it admits an
optimal solution, it is said to be solvable. Let inf(P) and sup(P∗) denote the values of (P) and (P∗),
respectively. The elementary duality theory (cf. [2, Chap. 3.3]) asserts that if (P) and (P∗) are both
consistent, then

sup(P∗) ≤ inf(P).

If the equality sup(P∗) = inf(P) holds, we say there is no duality gap.
There are several sufficient conditions for the absence of a duality gap. For our purpose, one

duality theorem—Theorem 2.2 below from [2]—will be the most important. It characterizes the
relation between the value of (P∗) and the subvalue of (P), which is defined as follows.

Consider the set H ⊂ Z × R defined by

H :=
{(

Lx, 〈x, c 〉+ r
) ∣

∣ x ∈ Λ, r ≥ 0
}

. (2.4)

Let H denote the closure of H in the weak topology σ(Z × R, W × R) (corresponding to the dual
pair (Z×R, W ×R) with the bilinear form 〈(z, r), (w, r′)〉 = 〈z, w〉+ rr′). We call (P) subconsistent
if there exists some r ∈ R with (b, r) ∈H. When (P) is subconsistent, the subvalue of (P) is defined
by

subvalue(P) := inf
{

r
∣

∣

(

b, r
)

∈H
}

.

For comparison, note that inf(P) = inf
{

r
∣

∣

(

b, r
)

∈ H
}

. Note also that if ρ is the subvalue of (P),

then by the definition of the closure H,
(

b, ρ
)

∈ H and there exists some net {xi}i∈I with xi ∈ Λ
for all i, such that Lxi → b and 〈xi, c〉 → ρ, where xi need not be feasible for (P).
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Theorem 2.2 (subconsistency and duality [2, Thm. 3.3]). (P) is subconsistent with a finite subvalue
ρ if and only if (P∗) is consistent with a finite value ρ.

We will apply this theorem in analyzing the duality relationship between the primal and dual
linear programs for average-cost MDPs.

3 Linear Programming for Average-Cost MDPs

In this section we study the LP approach for the average-cost MDP under Assumption 2.1. Roughly
speaking, the primal linear program (P) is formulated to find a stationary minimum pair among
the stationary pairs of the average cost MDP—this is viable since under Assumption 2.1, the set
of stationary pairs is nonempty and a stationary minimum pair exists (cf. Theorem 2.1). The dual
linear program (P∗) is then determined by the primal program and the two dual pairs of vector spaces
involved in the formulation (cf. Section 2.2). We present the LP formulation and our main duality
results in Sections 3.1 and 3.2, respectively. (The proofs of the theorems are given in Section 5.)

Our formulation of the primal linear program is the same as that given by the prior work [20,
Chap. 12.3]. But our dual program formulation is different; it avoids a condition on the state
transition stochastic kernel used in [20, Chap. 12.3], without affecting the desired duality result
(cf. Remark 3.3). This LP formulation we present is one instance of a general class of formulations
discussed in the prior work [18, Sect. 4]; however, for the sake of completeness, we will give a detailed
account of it using the terminologies introduced in Section 2.2.

Regarding notations, in what follows, R+ denotes the set of nonnegative numbers. For X = X

or Γ, M(X) denotes the space of finite signed Borel measures on X , and F(X) the set of real-valued
Borel measurable functions on X . We write M

+(X) or F
+(X) for the subset of those nonnegative

elements in M(X) or F(X), and we will use similar notations for the subspaces of M(X) or F(X).
For the one-stage cost function c(·), we will also need to work with its restriction to the set Γ

of state and admissible action pairs (on which c(·) is finite as we recall). For notational simplicity,
we shall use the same notation c or c(·) for the restriction of c(·) to Γ, and the context will make it
clear which function is involved in the discussion. Likewise, for a Borel measure γ on Γ, sometimes
we will also need to work with its extension to the whole state-action space X×A, which is simply a
Borel measure concentrated on Γ, and conversely, if γ is a Borel measure on X × A concentrated on
Γ, sometimes we will need to consider its restriction to Γ. In such cases, for notational simplicity,
we will use the same notation γ for both measures.

3.1 Primal and Dual Linear Programs

For a Borel measure γ on Γ, let γ̂ denote the marginal of γ on X. To define minimization problems on
stationary pairs in an MDP, let us first explain a well-known (many-to-one) correspondence between
a stationary pair (µ, p) ∈ ∆s and a Borel probability measure γ on Γ that satisfies

γ̂(B) =

∫

Γ

q(B | x, a) γ(d(x, a)), ∀B ∈ B(X). (3.1)

The correspondence is essentially given by

γ(d(x, a)) = µ(da | x) p(dx), (3.2)

and has the property that

J(µ, p) =

∫

c dγ. (3.3)

Indeed, for (µ, p) ∈ ∆s, as p is an invariant probability measure on X induced by µ, we have

p(B) =

∫

X

∫

A

q(B | x, a)µ(da |x) p(dx), ∀B ∈ B(X). (3.4)
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This is the same as (3.1) for the probability measure γ given by (3.2), since the marginal of γ is
γ̂ = p and µ obeys the control constraint of the MDP. The equality (3.3) follows from the definition
of the average cost and the stationarity of the Markov chain under µ when the initial distribution is
p. Conversely, given a probability measure γ satisfying (3.1), by [3, Cor. 7.27.2], we can decompose
γ as in (3.2) with p = γ̂ and µ(da |x) being a Borel measurable stochastic kernel on A given X that
obeys the control constraint of the MDP. Then, since γ satisfies (3.1), the pair (µ, p) with p = γ̂
satisfies (3.4), which means that p is invariant for the Markov chain induced by µ and hence (µ, p) is
a stationary pair. The policy µ here is in general not unique; however, by stationarity, every (µ, p)
from this decomposition of γ has the same average cost (3.3).

Due to this correspondence between (µ, p) and γ, finding a stationary minimum pair can be
expressed as an optimization problem in which one minimizes

∫

c dγ over the set of probability
measures γ that satisfy (3.1) (a.k.a. the set of “ergodic occupation measures” [7]).

Before expressing this optimization problem as a linear program, we also need to restrict attention
to those stationary pairs that have finite average costs, so that ∞ does not appear in the objective
function and the constraints. The following definitions are introduced for this purpose. Consider a
positive weight function w : Γ → R+,

w(x, a) := 1 + c(x, a), (x, a) ∈ Γ.

Let Mw(Γ) be the set of finite, signed Borel measures on Γ w.r.t. which the function w is integrable:

Mw(Γ) :=
{

γ ∈ M(Γ)
∣

∣

∫

w d|γ| < ∞
}

where |γ| denotes the total variation of γ. Let Fw(Γ) be the set of Borel measurable functions φ on
Γ such that

|φ| ≤ ℓ w for some ℓ > 0.

Then every φ ∈ Fw(Γ) is integrable w.r.t. all γ ∈ Mw(Γ). By (3.3) and the definition of w(·), if a
stationary pair (µ, p) has finite average cost, then the corresponding probability measure γ ∈ Mw(Γ).

We are now ready to define the primal and dual linear programs for the average-cost MDP. Let
us specialize the programs (P) and (P∗) defined in Section 2.2, by identifying the objects involved
in those programs as follows:

• The dual pair (X,Y ) =
(

Mw(Γ),Fw(Γ)
)

, with the bilinear form

〈γ , φ〉 :=

∫

Γ

φdγ, γ ∈ Mw(Γ), φ ∈ Fw(Γ).

• The dual pair (Z,W ) =
(

R × M(X), R × Fb(X)
)

, where M(X) is the set of finite signed Borel
measures on X as defined earlier, Fb(X) is the set of bounded Borel measurable functions on X,
and the bilinear form on

(

R × M(X)
)

×
(

R × Fb(X)
)

is defined as

〈

(r, ζ) , (ρ, h)
〉

:= rρ+

∫

X

h dζ, (r, ζ) ∈ R × M(X), (ρ, h) ∈ R × Fb(X).

• The convex cone Λ = M
+
w(Γ), the subset of nonnegative measures in Mw(Γ). The dual cone of

Λ is Λ∗ = F
+
w(Γ), the subset of nonnegative functions in Fw(Γ).

• The objective function of the primal program (P) is 〈 γ, c 〉, and the feasible set of (P) is defined
by the following constraints:

γ ∈ M
+
w(Γ), γ(Γ) = 1, γ̂(B) =

∫

Γ

q(B | x, a) γ(d(x, a)), ∀B ∈ B(X), (3.5)

where γ̂ is the marginal of γ on X, as we recall. In other words, in accordance with the earlier
discussion, the feasible solutions of (P) correspond to those stationary pairs with finite average
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costs, and the objective is to minimize the average cost over them. In the form of (P) discussed
in Section 2.2, the two equality constraints in (3.5) can be written as

Lγ = b := (1, 0 ).

Here 0 is the trivial measure on X (i.e., 0 (B) ≡ 0 for all B ∈ B(X)), and the linear mapping L
is defined as L : Mw(Γ) → R × M(X) with L = (L0, L1) where, for γ ∈ Mw(Γ),

L0γ := γ(Γ), (3.6)

(L1γ)(B) := γ̂(B)−

∫

Γ

q(B | x, a) γ(d(x, a)), ∀B ∈ B(X). (3.7)

• From the identity
〈

γ, L∗(ρ, h)
〉

=
〈

Lγ, (ρ, h)
〉

, the adjoint L∗ of L is given by the linear mapping
that maps each (ρ, h) ∈ R × Fb(X) to the function

L∗(ρ, h)(x, a) := ρ+ h(x)−

∫

X

h(y) q(dy | x, a), (x, a) ∈ Γ. (3.8)

Since L∗
(

R × Fb(X)
)

⊂ Fw(Γ), both L and L∗ are weakly continuous ([36, Chap. II, Prop. 12
and its corollary]; see also Prop. 2.1). The inequality constraint in the program (P∗) is

−L∗(ρ, h) + c ∈ F
+
w(Γ).

We can write this constraint as L∗(ρ, h) ≤ c or more explicitly, as

ρ+ h(x)−

∫

X

h(y) q(dy | x, a) ≤ c(x, a), ∀ (x, a) ∈ Γ. (3.9)

The objective function of the dual program (P∗) is
〈

b, (ρ, h)
〉

=
〈

(1, 0 ), (ρ, h)
〉

= ρ.

Expressed in the form introduced in Section 2.2, the primal and dual linear programs for the
average-cost MDP are:

(P) minimize 〈 γ, c 〉

subject to Lγ = (1, 0 ), γ ∈ M
+
w(Γ), (3.10)

and

(P∗) maximize ρ

subject to L∗(ρ, h) ≤ c, ρ ∈ R, h ∈ Fb(X). (3.11)

As mentioned earlier, our formulation of (P∗) is different from the one given in the book [20,
Chap. 12.3]. We will explain the difference and the reason for it in detail in the next subsection (see
Remark 3.3).

A few properties of (P) and (P∗) are easy to see. From the relation between stationary pairs and
feasible solutions of the primal program (P), it is clear that under Assumption 2.1, the existence of
a stationary minimum pair (cf. Theorem 2.1(ii)) ensures that (P) is both consistent and solvable.
Moreover, the proof of Theorem 2.1(ii) (cf. [40]) shows that due to the strict unbounedness of the
one-stage costs, if {γn} is a sequence of feasible solutions of (P) with 〈γn, c〉 ↓ inf(P) = ρ∗ (such a
sequence is called a minimizing sequence of (P)), then any subsequence of {γn} contains a further
subsequence that converges to an optimal solution of (P) in the topology of weak convergence
(of probability measures). The consistency of the dual program (P∗) is trivial: since c ≥ 0, a
feasible solution is given by ρ = 0 and h(·) ≡ 0. We then have 0 ≤ sup(P∗) ≤ inf(P) = ρ∗ under
Assumption 2.1.

Next, we will address the duality between (P) and (P∗). We will also examine a connection
between (P∗) and the ACOE for the MDP, through a maximizing sequence of (P∗). Such a sequence
is defined as a sequence {(ρn, hn)} of feasible solutions of (P∗) with the property that ρn ↑ sup(P∗).
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3.2 Optimality Results and Discussion

Our main result of this section is the absence of a duality gap stated in part (ii) of the following
theorem. It can be compared with the prior result of [20, Chap. 12.3, Thm. 12.3.4] for average-cost
lower-semicontinuous MDPs. In our case, without lower-semicontinuity model assumptions, we will
use Lusin’s theorem together with the majorization property in Assumption 2.1(M) to prove it.

Theorem 3.1 (consistency and absence of a duality gap). Under Assumption 2.1, the linear pro-
grams (P) and (P∗) in (3.10)-(3.11) satisfy the following:

(i) (P) is consistent and solvable, and (P∗) is consistent.

(ii) There is no duality gap: inf(P) = sup(P∗) = ρ∗.

Remark 3.1 (about the proof of Theorem 3.1). Besides the differences in assumptions as mentioned
above, another difference between our proof of the absence of a duality gap and the proof given in
the prior work [20, Chap. 12.3C] is the following. The approach of the latter proof is to show that the
set H defined by (2.4) is weakly closed (i.e., H =H). This is a sufficient condition for the absence of
a duality gap, but it requires one to show that every point of H is in H . Our proof uses the duality
between the subvalue ρ of (P) and the value of (P∗) asserted in [2, Thm. 3.3] (cf. Theorem 2.2).

With this it suffices to show that a single point of H, namely, the point
(

b, ρ
)

=
(

(1, 0 ), ρ
)

, is in H .
Thus our proof is simpler in this respect.

We can also prove that H is weakly closed under our assumptions. This requires some minor
changes in the proof arguments used in [40], which we will also use to prove Theorem 3.1 (in
particular, we only need to change slightly the finite measures used when applying Lusin’s theorem).
Nonetheless, it will take some space to explain the details of those changes, and this is another
reason that we choose to use the duality theorem [2, Thm. 3.3] instead in our proof.

Remark 3.2 (comparison with a duality result in [38]). For compact Euclidean state and action
spaces, Yamada proved an LP duality result [38, Thm. 3] under certain continuity and ergodicity
conditions on the MDP. His continuity conditions are different from the lower-semicontinuous model
assumption we mentioned, but they can be related to our model assumptions. So let us explain
in more detail how our assumptions and duality result compare with his. Among others, Yamada
assumed that c(x, a) is continuous in a for each fixed x, and q(dy |x, a) has a density p(y |x, a) w.r.t.
the Lebesgue measure, where p(y |x, a) is continuous in (y, a) for each fixed x [38, Condition (A2)].
In our case, since the action space has the discrete topology, trivially, c(x, a) and q(dy |x, a) are
continuous in a for each fixed x, so there are similarities to Yamada’s conditions. Our majorization
condition (M) is, however, entirely different from Yamada’s geometric ergodicity condition [38,
Conditions (A1), (A4)], in which he required the density function p(y |x, a) to be bounded away
from zero uniformly for all (x, a) ∈ Γ. Using this condition together with the continuity and other
assumptions, he proved the absence of a duality gap [38, Thm. 3]. Both his conditions and his proof
arguments are very different from ours.

Remark 3.3 (about the formulation of (P∗) and its solvability). In defining (P∗), we have chosen
the space Fb(X) of bounded Borel measurable functions to form the dual pair with the space M(X)
of finite Borel measures. With this choice, (P∗) is in general not solvable (i.e., an optimal solution
may not exist), since the inequality

ρ∗ + h(x) ≤ c(x, a) +

∫

X

h(y) q(dy | x, a), ∀ (x, a) ∈ Γ,

need not admit a bounded solution h.

As mentioned earlier, our LP formulation is only an instance of the class of formulations discussed
in [18, Sect. 4]. A different dual program (P∗) is studied in [20, Chap. 12.3]. It involves, instead of
(

R × M(X),R × Fb(X)
)

, the dual pair
(

R × Mw0(X),R × Fw0(X)
)

, where the two spaces Mw0(X) and
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Fw0(X) are defined similarly to Mw(Γ) and Fw(Γ), respectively: with w0(x) := 1 + infa∈A(x) c(x, a),
x ∈ X,

Mw0(X) :=
{

p ∈ M(X)
∣

∣

∫

w0 d|p| < ∞
}

, Fw0(X) :=
{

h ∈ F(X)
∣

∣ |h| < ℓw0 for some ℓ > 0}.

This choice leaves more room for (P∗) to admit an optimal solution. However, a disadvantage is
that to ensure the weak continuity of the linear mapping L, an additional condition on the state
transition stochastic kernel is required (cf. [20, Chap. 12.3A, Assumption 12.3.1]): for some constant
k > 0,

∫

X

inf
a′∈A(y)

c(y, a′) q(dy | x, a) ≤ k
(

1 + c(x, a)
)

, ∀ (x, a) ∈ Γ. (3.12)

Yet, since the costs are strictly unbounded, this condition (3.12) is neither needed for the existence
of a minimum pair, nor needed for the absence of a duality gap between (P) and (P∗).

Also, the use of the dual pair
(

R×Mw0(X),R×Fw0(X)
)

alone cannot guarantee that (P∗) has an
optimal solution, for which one would still need to make additional assumptions about the functions
hn in a maximizing sequence {(ρn, hn)} for (P∗)(cf. [20, Chap. 12.4B, Thm. 12.4.2]). This makes it
less appealing to us to have the dual pair

(

R × Mw0(X),R × Fw0(X)
)

with its extra condition (3.12)
in the LP formulation.

For these reasons, we have formulated (P∗) differently. Accordingly, we treat the result on ACOE
given in the next proposition not as the property of a dual optimal solution, which may not exist,
but as a potential consequence of the results from the LP approach.

As just noted, the dual program (P∗) in our formulation need not admit an optimal solution.
However, because there is no duality gap, one can still obtain a version of ACOE for the MDP
from a maximizing sequence {(ρn, hn)} of (P∗), under certain conditions on {hn}, using essentially
the same arguments as those for [20, Chap. 12.4B, Thm. 12.4.2(c)]. We include the result in the
proposition below, for the sake of completeness. The first part of its condition is satisfied under
Assumption 2.1 (Theorem 3.1); the second part of its condition specifies the additional conditions
on {hn} we need. The ACOE (3.14) in the conclusion holds for “almost all” (a.a.) states and in
general, it need not hold for all x ∈ X (see e.g., [40, Example 3.1]).

Proposition 3.1 (ACOE for p∗-a.a. states). Let {(ρn, hn)} be a maximizing sequence of the dual
program (P∗), and let h∗ = lim supn→∞ hn. Suppose that:

(i) a stationary minimum pair (µ∗, p∗) exists and inf(P) = sup(P∗) = ρ∗ < +∞;

(ii) the functions hn satisfy that

∫

X

|h∗| dp∗ < +∞,

∫

X

sup
n≥0

|hn(y)| q(dy | x, a) < +∞ ∀ (x, a) ∈ Γ.

Then h∗ is finite everywhere,

ρ∗ + h∗(x) ≤ c(x, a) +

∫

X

h∗(y) q(dy | x, a) ∀ (x, a) ∈ Γ, (3.13)

and for p∗-a.a. x ∈ X,

ρ∗ + h∗(x) = inf
a∈A(x)

{

c(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

(3.14)

=

∫

A(x)

{

c(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

µ∗(da | x). (3.15)

Remark 3.4. We discuss briefly a relation between the above ACOE and nonrandomzed stationary
optimal policies for the average-cost MDP. Firstly, one can find a subset X̂ ⊂ X with p∗(X̂) = 1 and
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a Borel measurable function f : X → A with f(x) ∈ A(x) for all x ∈ X, such that X̂ is absorbing
w.r.t. f and f attains the minimum in the ACOE (3.14) on X̂:

q(X̂ |x, f(x)) = 1, ρ∗ + h∗(x) = c(x, f(x)) +

∫

X̂

h∗(y) q(dy | x, f(x)), ∀x ∈ X̂. (3.16)

More specifically, to find such X̂ and f , consider the set X
′ with p∗(X′) = 1 on which (3.14)-(3.15)

hold, and the Markov chain {xn} induced by the policy µ∗ and the initial distribution p∗. Since
p∗ is an invariant probability measure of this Markov chain, one can construct a set X̂ ⊂ X

′ with
p∗(X̂) = 1 that is absorbing under µ∗ (see the proof of [22, Lem. 2.2.3(c)] or [33, Prop. 4.2.3(ii)]).
Next, based on the relations (3.14)-(3.15) on X̂, the desired function f can be found: this can be done
either directly in the special case of a countable action space we have here, or, more generally, by
using the Blackwell and Ryll-Nardzewski selection theorem [5, Thm. 2] as discussed in [18, Remark
4.6].

Secondly, for X̂ and f satisfying (3.16), one can apply standard arguments to show that under
certain conditions, the nonrandomized stationary policy f is average-cost optimal for all initial states
x ∈ X̂. In particular, if h∗ ≥ 0, it is straightforward to show that f is optimal on X̂. In more general
cases of h∗, the optimality of f on X̂ can be established by imposing further conditions to ensure
that for all x ∈ X̂, E

f
x

[

|h∗(xn)|
]

< ∞ for n ≥ 0 and lim infn→∞ n−1
E
f
x

[

h∗(xn)
]

≥ 0. (For derivation
details, see e.g., the related discussions in [18, Sect. 3] and [19, Chap. 5.2] on canonical triplets.)

4 Extension to Constrained Average-Cost MDPs

In this section, we extend our results for an unconstrained average-cost MDP to a constrained one.
Let the state and action spaces and the state transition stochastic kernel of the MDP be the same
as before. Consider multiple one-stage cost functions on X× A: c0, c1, . . . , cd. We assume that these
functions are nonnegative and Borel measurable, finite on Γ, and taking the value +∞ outside Γ.
The goal is to minimize the average cost w.r.t. c0, while keeping the average costs w.r.t. c1, . . . , cd
within given limits.

More specifically, let κ := (κ1, . . . , κd) ≥ 0 be prescribed upper limits on the average costs in the
constraints. For a policy π and initial distribution ζ, let Ji(π, ζ) denote the average cost of this pair
w.r.t. ci, i = 0, 1, . . . , d. Define the feasible set of policy and initial distribution pairs by

S :=
{

(π, ζ) ∈ Π× P(X)
∣

∣ J0(π, ζ) < ∞, Ji(π, ζ) ≤ κi, i = 1, . . . , d
}

. (4.1)

Define the optimal average cost of this constrained problem to be

ρ∗c := inf
(π,ζ)∈S

J0(π, ζ).

As before, within the feasible set S, we are especially interested in those stationary pairs. Anal-
ogous to the minimum pairs and stationary minimum pairs for an unconstrained MDP, let us define
optimal pairs and stationary optimal pairs for the constrained MDP. (What we call optimal pairs
are called “constrained optimal pairs” in the prior work [30].)

Definition 4.1 (optimal pairs).

(a) We call (π∗, ζ∗) ∈ Π× P(X) an optimal pair for the constrained MDP if

(π∗, ζ∗) ∈ S and J0(π
∗, ζ∗) = ρ∗c .

(b) We call an optimal pair (π∗, ζ∗) lexicographically optimal if for each (π, ζ) ∈ S, either Ji(π
∗, ζ∗) =

Ji(π, ζ) for all 0 ≤ i ≤ d, or for some d̄ ≤ d,

Ji(π
∗, ζ∗) = Ji(π, ζ) ∀ i ≤ d̄− 1, Jd̄(π

∗, ζ∗) < Jd̄(π, ζ).
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Definition 4.2 (stationary optimal pairs). If a stationary pair (µ∗, p∗) ∈ ∆s is (lexicographically)
optimal for the constrained MDP, we call it a stationary (lexicographically) optimal pair.

In what follows, we first adapt the strict unboundedness condition (SU) and the majorization
condition (M) to accommodate multiple one-stage cost functions in the constrained MDP, and
under those modified conditions we show that stationary optimal pairs exist (Section 4.1). We
then formulate primal/dual linear programs for the constrained MDP and present duality results
that are analogous to the ones for unconstrained problems (Section 4.2). The proofs of the theorems
of this section are collected in Section 5.2.

4.1 Model Assumptions and Existence of Stationary Optimal Pairs

We impose the following conditions on the constrained MDP model:

Assumption 4.1.

(G) The feasible set S 6= ∅.

(SU) There exists a nondecreasing sequence of compact sets Γj ↑ Γ such that for some 0 ≤ i ≤ d,

lim
j→∞

inf
(x,a)∈Γc

j

ci(x, a) = +∞.

(M) For each compact set K ∈ {proj
X
(Γj)}, there exist an open set O ⊃ K, a closed set D ⊂ X,

and a finite measure ν on B(X) (all of which can depend on K) such that

q
(

(O \D) ∩B | x, a
)

≤ ν(B), ∀B ∈ B(X), (x, a) ∈ Γ,

where the closed set D (possibly empty) is such that restricted to D × A, the state transition
stochastic kernel q(dy |x, a) is continuous and all the one-stage cost functions ci, 0 ≤ i ≤ d,
are lower semicontinuous.

This assumption is similar to Assumption 2.1 for the unconstrained problem. Condition (G)
is to exclude vacuous problems. Condition (SU) is the same as that considered in [17] for the
constrained MDP, and it differs from Assumption 2.1(SU) in that here we require some one-stage
cost function in the constrained problem to be strictly unbounded. Condition (M) is almost identical
to Assumption 2.1(M) except that here the closed set D must be such that on it, every one-stage
cost function in the constrained problem is lower semicontinuous in the state variable. As before,
having a nonempty set D in the majorization condition (M) sharpens this condition by allowing us
to treat a “continuous” part of the model separately from the rest.

Theorem 4.1 below extends our earlier results for MDPs [40, Prop. 3.2, Thm. 3.3] (cf. Theo-
rem 2.1) to constrained MDPs. In particular, its part (i) can be compared with Theorem 2.1(i), and
its parts (ii)-(iii) with Theorem 2.1(ii). The proof will only be outlined in Section 5.2, as it is mostly
based on the arguments given in [40]—roughly speaking, the present majorization condition allows
us to apply the reasoning in [40] to every one-stage cost function ci in the constrained MDP.

Parts (i)-(ii) of this theorem are also comparable with the results of [17, Thm. 3.2] and [30,
the solvability part of Lem. 2.3] for constrained lower-semicontinuous MDPs. Part (iii) concerns
lexicographically optimal solutions of the constrained MDP, which can be related to solutions for
multi-objective MDPs similar to those discussed in [23].

Theorem 4.1 (optimality of stationary pairs). Under Assumption 4.1, the following hold:

(i) For any pair (π, ζ) ∈ S, there exists a stationary pair (µ̄, p̄) ∈ ∆s ∩ S with

Ji(µ̄, p̄) ≤ Ji(π, ζ), ∀ i = 0, . . . , d.

(ii) There exists a stationary optimal pair (µ∗, p∗) ∈ ∆s ∩ S.

(iii) There exists a stationary lexicographically optimal pair (µ∗, p∗) ∈ ∆s ∩ S.
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Remark 4.1. It is known that even in a finite-state-and-action MDP, for a given initial state or dis-
tribution, there need not exist a stationary optimal policy for the constrained average cost problem.
See [25, Sect. 4, p. 284] for an interesting counterexample (involving a multichain MDP) that is due
to Derman [10]. The difference between this known fact and the existence of a stationary optimal
pair in Theorem 4.1 is that in the constrained MDP here, the initial distribution is not given and
there is freedom of choosing it to optimize the average costs.

Remark 4.2 (pathwise average costs of µ∗). Suppose that in part (ii) or (iii) of Theorem 4.1, the
policy µ∗ induces on X a positive Harris recurrent Markov chain (see e.g., [33, Chap. 10.1] for
definition). Then, by the ergodic properties of such Markov chains and by the same proof of [40,

Thm. 3.5(b)], we have that for all initial distributions ζ, Pµ∗

ζ -almost surely,

lim
n→∞

n−1∑n−1
k=0 ci(xk, ak) = Ji(µ

∗, p∗), i = 0, 1, . . . , d.

In other words, almost surely, on each sample path, the pathwise average costs of the policy µ∗ w.r.t.
ci, i = 1, 2, . . . d, are also within the prescribed limits κi, while its pathwise average cost w.r.t. c0
equals ρ∗c as well.

4.2 Linear Programming Formulation and Optimality Results

Similarly to the unconstrained case, for the constrained MDP, the primal linear program (P) is
formulated to minimize the average cost J0(π, ζ) over feasible stationary pairs, by utilizing the
correspondence between a stationary pair and a probability measure that satisfies (3.1) discussed
at the beginning of Section 3.2. Under Assumption 4.1, the existence of a stationary optimal pair
given by Theorem 4.1 ensures that such a pair can be obtained by solving the primal program (P).
The dual linear program (P∗) is, as before, determined by (P) and two dual pairs of vector spaces
we choose.

We now define precisely (P) and (P∗) for the constrained MDP, by identifying the spaces and
linear mappings involved in the general LP formulation given in Section 2.2. To define the primal
linear program (P), we consider the dual pair of vector spaces

(

Mw(Γ)× R
d, Fw(Γ)× R

d
)

where the weight function w : Γ → R+ is given by

w(x, a) = 1 + sup
0≤i≤d

ci(x, a), (x, a) ∈ Γ.

The bilinear form associated with this dual pair is defined as the sum of the bilinear forms associated
with the two dual pairs,

(

Mw(Γ), Fw(Γ)
)

and (Rd, R
d); i.e.,

〈

(γ, α) , (φ, α′)〉 := 〈γ, φ〉+ 〈α, α′〉 =

∫

Γ

φdγ +

d
∑

i=1

αiα
′
i (4.2)

for γ ∈ Mw(Γ), φ ∈ Fw(Γ), and α, α′ ∈ R
d (with αi, α

′
i denoting their ith components).

The feasible set of (P) corresponds to the subset of stationary pairs that are feasible for the
constrained MDP, and it is defined by the following constraints:

γ ∈ M
+
w(Γ), γ(Γ) = 1, γ̂(B) =

∫

Γ

q(B | x, a) γ(d(x, a)), ∀B ∈ B(X),

and
(

〈γ, c1〉, · · · , 〈γ, cd〉
)

+ α = κ, α ≥ 0.
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Note that if γ is a probability measure associated with some stationary pair (µ, p) ∈ S via (3.2),

then γ is feasible for (P); in particular, 〈γ, w〉 ≤ 1 +
∑d

i=1〈γ, ci〉 < ∞, so γ ∈ M
+
w(Γ). The objective

of (P) is to minimize the average cost 〈γ, c0〉. We can state the primal program (P) in the form
introduced in Section 2.2 as follows:

(P) minimize 〈 γ, c0 〉

subject to L(γ, α) = (1, 0 , κ), γ ∈ M
+
w(Γ), α ≥ 0 (4.3)

where the linear mapping L : Mw(Γ)× R
d → R × M(X)× R

d is given by L = (L0, L1, L2) with

L0(γ, α) := γ(Γ), (4.4)

L1(γ, α)(B) := γ̂(B)−

∫

Γ

q(B | x, a) γ(d(x, a)), ∀B ∈ B(X), (4.5)

L2(γ, α) :=
(

〈γ, c1〉, · · · , 〈γ, cd〉
)

+ α, (4.6)

for γ ∈ Mw(Γ) and α = (α1, . . . , αd) ∈ R
d.

To define the dual linear program (P∗), we consider the dual pair of vector spaces

(

R × M(X)× R
d, R × Fb(X) × R

d
)

,

with the bilinear form defined as the sum of the bilinear forms for the three dual pairs, (R, R),
(

M(X), Fb(X)
)

, and (Rd, R
d), similar to (4.2). From the definition of L, the adjoint mapping L∗ can

be identified: it is the linear mapping L∗ = (L∗
1, L

∗
2) on R × Fb(X)× R

d given by

L∗
1(ρ, h, β)(x, a) := ρ+ h(x) −

∫

X

h(y) q(dy | x, a) +

d
∑

i=1

βici(x, a), (x, a) ∈ Γ, (4.7)

L∗
2(ρ, h, β) := β, (4.8)

for (ρ, h, β) ∈ R × Fb(X) × R
d. Clearly, L∗(R × Fb(X) × R

d) ⊂ Fw(Γ) × R
d, so both linear mappings

L and L∗ are weakly continuous ([36, Chap. II, Prop. 12 and its corollary]; cf. Prop. 2.1). The
objective function of (P∗) is

〈

(1, 0 , κ), (ρ, h, β)
〉

= ρ+

d
∑

i=1

βiκi.

Let us now state the dual program (P∗) in the form introduced in Section 2.2:

(P∗) maximize ρ+

d
∑

i=1

βiκi

subject to L∗(ρ, h, β) ≤ (c0, 0), ρ ∈ R, h ∈ Fb(X), β ∈ R
d. (4.9)

Note that the inequality constraint in (4.9) is the same as the cone constraint −L∗(ρ, h, β)+
(

c0, 0
)

∈
F
+
w(Γ)× R

d
+ (cf. Section 2.2), and it can be expressed more explicitly as

ρ+ h(x) −

∫

X

h(y) q(dy | x, a) +

d
∑

i=1

βici(x, a) ≤ c0(x, a), ∀ (x, a) ∈ Γ, (4.10)

β ≤ 0. (4.11)

The next theorem about the primal/dual programs (P) and (P∗) is an extension of Theorem 3.1
to the constrained MDP. The solvability of (P) is a consequence of the existence of a stationary
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optimal pair given in Theorem 4.1(ii). Moreover, the proof of Theorem 4.1(ii) also shows that any
minimizing sequence {(γn, αn)} of (P) has a subsequence (γnk

, αnk
) → (γ∗, α∗), where (γ∗, α∗) is an

optimal solution of (P) and γnk
→ γ∗ in the topology of weak convergence of probability measures.

The absence of a duality gap is the main result of this section. Its proof, outlined in Section 5.2,
uses essentially the same proof arguments for Theorem 3.1(ii), which handle the discontinuous MDP
models by making use of Lusin’s theorem together with the majorziation property in Assump-
tion 4.1(M).

Theorem 4.2 (consistency and absence of a duality gap). Under Assumption 4.1, the following
hold for the linear programs (P) and (P∗) given in (4.3) and (4.9):

(i) (P) is consistent and solvable, and (P∗) is consistent.

(ii) There is no duality gap: inf(P) = sup(P∗) = ρ∗c .

This theorem is comparable with the prior results [17, Thm. 4.4] and [30, Lem. 2.3] on the LP
approach for constrained lower-semicontinuous MDPs ([30] considers compact spaces, and [17] non-
compact spaces). Besides the differences in model assumptions, our formulation of the dual program
(P∗) also differs from that in [17]. The main difference lies in the choice of the spaces M(X) and
Fb(X) for (P∗). As in the unconstrained case, our motivation for this choice is to avoid an extra
condition on the state transition stochastic kernel used in [17], which is the same condition (3.12)
from [20, Chap. 12.3] that we discussed earlier in Remark 3.3. For the same reason as explained in
Remark 3.3, the dual program (P∗) as we formulated above need not admit an optimal solution.

For completeness, in the rest of this section, we discuss some solution properties of the dual
program (P∗) and derive a version of ACOE for the constrained MDP. Consider a maximizing
sequence {(ρn, hn, βn)} of (P∗), i.e., feasible solutions of (P∗) with ρn + 〈κ, βn〉 ↑ sup(P∗). We
first examine the boundedness property of {βn}. Denote by βn,j the jth component of βn. Let us
separate the constraints of the MDP into two categories:

J (0) :=
{

i | 1 ≤ i ≤ d, ∃ (π, ζ) ∈ S s.t. Ji(π, ζ) < κi

}

, J (1) := {1, 2, . . . , d} \ J (0). (4.12)

When S 6= ∅, J (1) consists of all those i such that w.r.t. ci, every feasible pair in S has the same
maximally allowed average cost κi.

Proposition 4.1. Suppose Assumption 4.1 hold. Let {(ρn, hn, βn)} be a maximizing sequence of
the dual program (P∗). Then the following hold:

(i) The sequence {βn,j}n≥0 is bounded for every j ∈ J (0).

(ii) For 1 ≤ j ≤ d, limn→∞ βn,j = 0 if Jj(µ
∗, p∗) < κj for some stationary optimal pair (µ∗, p∗)

of the constrained MDP.

(iii) Suppose there exists (π, ζ) ∈ Π× P(X) such that

Jj(π, ζ) < κj ∀ j ∈ J (1), Jj(π, ζ) < ∞ ∀ j ∈ J (0) ∪ {0}.

Then the sequence {βn}n≥0 is bounded.

Remark 4.3. An optimal solution (γ∗, α∗) of (P) corresponds to a stationary optimal pair (µ∗, p∗)
with α∗

j = κj −Jj(µ
∗, p∗) for 1 ≤ j ≤ d (this follows from the correspondence relationship explained

at the beginning of Section 3.2). So Prop. 4.1(ii) entails the complementarity relation 〈α∗, β∗〉 = 0
for an optimal solution (γ∗, α∗) of (P), if we define β∗ = (β∗

1 , . . . , β
∗
d) as follows: β

∗
j = limn→∞ βn,j if

this limit exists, and assign β∗
j an arbitrary number otherwise. Proposition 4.1(iii) gives a sufficient

condition under which the J (1)-components of {βn} are also bounded—note that this condition
involves non-feasible policy and initial distribution pairs and is different from the Slater condition
Ji(π, ζ) < κi, 1 ≤ i ≤ d. One exceptional case where Prop. 4.1 is inapplicable is when κ = 0.
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When {βn}n≥0 is bounded, as when the condition of Prop. 4.1(iii) holds, we can choose a subse-
quence of the maximizing sequence {(ρn, hn, βn)} so that βn converges. The subsequence is obviously
also a maximizing sequence for (P∗). Then, with additional assumptions on the functions hn, we
can derive an optimality equation for the constrained MDP that is analogous to the ACOE (3.14)
in Prop. 3.1 for the unconstrained MDP. We state this result in the next proposition. It is compa-
rable with the result of [17, Thm. 5.2(b)] for constrained lower-semicontinuous MDPs; in the latter
reference, (4.14) is called the “constrained optimality equation.”

Proposition 4.2 (ACOE for p∗-a.a. states in the constrained MDP).
Let {(ρn, hn, βn)} be a maximizing sequence of the dual program (P∗), and let h∗ = lim supn→∞ hn.
Suppose that:

(i) a stationary optimal pair (µ∗, p∗) exists and inf(P) = sup(P∗) = ρ∗c < +∞;

(ii) the functions hn satisfy that

∫

X

|h∗| dp∗ < +∞,

∫

X

sup
n≥0

|hn(y)| q(dy | x, a) < +∞ ∀ (x, a) ∈ Γ;

(iii) the sequence {βn} converges to some finite β∗.

Then h∗ is finite everywhere and with

c∗(x, a) := c0(x, a)−
∑d

i=1 β
∗
i ci(x, a), ρ̃∗ := ρ∗c −

∑d
i=1 β

∗
i κi,

we have

ρ̃∗ + h∗(x) ≤ c∗(x, a) +

∫

X

h∗(y) q(dy | x, a), ∀ (x, a) ∈ Γ, (4.13)

and for p∗-a.a. x ∈ X,

ρ̃∗ + h∗(x) = inf
a∈A(x)

{

c∗(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

(4.14)

=

∫

a∈A(x)

{

c∗(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

µ∗(da | x). (4.15)

5 Proofs

This section collects the proofs of the theorems given in Sections 3 and 4.

5.1 Proofs for Section 3

Let us first recall a few definitions and facts about probability measures on a metrizable space
X . Let Cb(X) denote the set of real-valued, bounded continuous functions on X . By definition, a
sequence of probability measures pn ∈ P(X) converges weakly to some p ∈ P(X), denoted pn

w

→ p,
if
∫

fdpn →
∫

fdp for all f ∈ Cb(X). If E is a family of probability measures in P(X) such that for
any ǫ > 0, there is a compact set K ⊂ X with p(K) > 1− ǫ for all p ∈ E , we say that E is tight.

By Prohorov’s theorem [4, Thm. 6.1], any sequence in a tight family E has a further subsequence
that converges weakly to a probability measure in P(X). We will use this fact many times in our
proofs, for some family E ⊂ P(Γ) that satisfies supγ∈E〈γ, c〉 < ∞. By the strict unboundedness
condition on c given in Assumption 2.1(SU), such a family E must be tight (as can be seen easily
from condition (SU) and the definition of tightness).
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5.1.1 Proof of Theorem 3.1

The consistency of (P) and (P∗) and the solvability of (P) were already discussed in Section 3.1,
where we also showed that under Assumption 2.1, 0 ≤ sup(P∗) ≤ inf(P) = ρ∗.

We now prove that there is no duality gap between (P) and (P∗). Our approach is to use [2,
Thm. 3.3] (cf. Theorem 2.2 in Section 2.2), which asserts the equality between the subvalue of (P)
and the value of (P∗) when they are finite. Specifically, recall from Section 2.2 that the subvalue of
(P) is defined as

ρ := inf
{

r |
(

(1, 0 ), r
)

∈H
}

,

where the set H ⊂ R × M(X)× R is given by

H :=
{(

Lγ, 〈 γ, c 〉+ r
) ∣

∣ γ ∈ M
+
w(Γ), r ≥ 0

}

, (5.1)

andH is the closure of H in the weak topology σ
(

R×M(X)×R, R×Fb(X)×R
)

. Since (P) and (P∗)
are consistent, sup(P∗) is finite and equals the subvalue ρ by [2, Thm. 3.3] (cf. Theorem 2.2). So,
to show inf(P) = sup(P∗), we need to prove ρ∗ = ρ. In what follows, we will prove that

(

(1, 0 ), ρ
)

∈ H,

by constructing a stationary pair whose average cost is no greater than ρ. This will give us ρ∗ = ρ
(since it implies ρ ≥ ρ∗, whereas ρ∗ ≥ ρ). The proof will proceed in four steps, with the first three
steps making preparations for the last one.

Step (i): From the definition of ρ, it follows that
(

(1, 0 ), ρ
)

∈H and moreover, there exist a direct
set I and a net {γi}i∈I in M

+
w(Γ) with

(

Lγi , 〈 γi, c 〉
)

→
(

(1, 0 ), ρ
)

in the σ
(

R × M(X)× R, R × Fb(X)× R
)

topology. This means that

γi(Γ) → 1, (5.2)
∫

X

h(x) γ̂i(dx) −

∫

Γ

∫

X

h(y) q(dy | x, a) γi(d(x, a)) → 0, ∀h ∈ Fb(X), (5.3)

〈 γi, c 〉 → ρ. (5.4)

In view of (5.2), there exists ī ∈ I such that for all i ≥ ī, γi(Γ) > 0. Then, since all γi are
nonnegative measures and γi(Γ) → 1, by restricting attention to γi, i ≥ ī, and considering the
normalized measures γi(·)/γi(Γ) instead of γi, we can redefine the net {γi}i∈I in the above so that
every γi is a probability measure on B(Γ):

γi(Γ) = 1, ∀ i ∈ I.

Step (ii): Next, from the net {γi}i∈I , we will extract a sequence of probability measures with the
property that the convergence in (5.3) holds for a countable subset of the functions in Fb(X). We
start by defining this subset. It consists of two countable families of functions, Ĉb(X) and F̂b(X). The
set Ĉb(X) involves continuous bounded functions that will be used to determine if two probability
measures on X are equal. The set F̂b(X) involves indicator functions of certain sets in X that will be
important in the subsequent proof to handle the discontinuities in the MDP model by using Lusin’s
theorem and the majorization property in Assumption 2.1(M). The construction of F̂b(X) will use
the arguments we used in the proof of [40, Thm. 3.5(a)]. The precise definitions of these two sets
are as follows.
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Recall that Cb(X) is the set of (real-valued) bounded continuous functions on X. Since X is
metrizable, by [34, Chap. II, Thm. 6.6], there exists a countable set

Ĉb(X) := {h1, h2, . . .} ⊂ Cb(X)

such that in P(X), a sequence of probability measures pn
w

→ p ∈ P(X) if and only if

∫

h dpn →
∫

h dp, ∀h ∈ Ĉb(X).

Then by [11, Prop. 11.3.2], for any p, p′ ∈ P(X),

p = p′ ⇐⇒
∫

h dp =
∫

h dp′, ∀h ∈ Ĉb(X). (5.5)

The countable set Ĉb(X) is the first family of functions we will need.
We now define the other countable family F̂b(X) of indicator functions mentioned earlier. The

definition of this set involves some new notations and Lusin’s theorem.
Let Z+ denote the set of all positive integers. For m ∈ Z+, define the truncated one-stage cost

function cm(·) := min{c(·),m} on X × A (later, a technical argument in Step (iv) of our proof will
involve these cm functions). For each j ∈ Z+, corresponding to the compact set Γj in Assump-
tion 2.1(SU), let (Oj , Dj , νj) be the open set, the closed set, and the finite measure, respectively, in
Assumption 2.1(M) for K = proj

X
(Γj). Let Fj := proj

A
(Γj), the projection of Γj on A. Then the

set Fj is compact, and since A is countable and discrete, this means that the set Fj is finite.

Lemma 5.1. For each j,m ∈ Z+ and ℓ ∈ Z+, there exist closed subsets B1
j,m,ℓ and B2

j,ℓ of X such
that the following hold:

(i) νj
(

X \B1
j,m,ℓ

)

≤ ℓ−1 and νj
(

X \B2
j,ℓ

)

≤ ℓ−1;

(ii) restricted to the set B1
j,m,ℓ × Fj , the function cm(·) is continuous, and restricted to the set

B2
j,ℓ × Fj, the state transition stochastic kernel q(dy | ·, ·) is continuous.

Proof. This lemma is a consequence of Lusin’s theorem (see [11, Thm. 7.5.2]), which asserts that if
f is a Borel measurable function from a topological space X into a separable metric space S and ν
is a closed regular finite Borel measure on X , then for any δ > 0, there is a closed set B such that
ν(X \B) < δ and the restriction of f to B is continuous.

We apply this theorem with X = X and ν = νj for each j in the lemma. Since X is a metrizable
topological space, every finite Borel measure is closed regular by [11, Thm. 7.1.3], and therefore, the
finite measure νj in the lemma meets the condition in Lusin’s theorem.

For each j,m, ℓ ∈ Z+, to find the desired closed set B1
j,m,ℓ, we apply Lusin’s theorem with

X = X, S = R, ν = νj and δ = ℓ−1/|Fj |, and with the function f(·) = cm(·, a) for each action
a ∈ Fj . This gives us, for each a ∈ Fj , a closed set Ea such that νj(X \ Ea) < δ and restricted
to Ea, c

m(·, a) is continuous. Then the closed set B1
j,m,ℓ := ∩a∈Fj

Ea has the desired property that

νj
(

X \B1
j,m,ℓ

)

≤ ℓ−1 and restricted to B1
j,m,ℓ × Fj , c

m(·, ·) is continuous.

For each j, ℓ ∈ Z+, the desired closed setB2
j,ℓ is constructed similarly, by applying Lusin’s theorem

to the state transition stochastic kernel q(dy |x, a), which is a P(X)-valued Borel measurable function
on X × A. Specifically, we let X = X, S = P(X), ν = νj , and δ = ℓ−1/|Fj |. (Since X is separable
and metrizable, by [3, Prop. 7.20], P(X) is also a separable metrizable space and hence meets the
condition for the space S in Lusin’s theorem.) We apply Lusin’s theorem to f(·) = q(dy | ·, a) for
each a ∈ Fj to obtain a closed set Ea such that νj(X \ Ea) < δ and restricted to Ea, q(dy | ·, a) is
continuous. We then let the desired set B2

j,ℓ = ∩a∈Fj
Ea.

We group (Oj , Dj , νj , B
1
j,m,ℓ), (Oj , Dj , νj , B

2
j,ℓ) in the preceding proof into two countable collec-

tions W1 and W2:

W1 :=
{

(Oj , Dj, νj , B
1
j,m,ℓ) | j,m, ℓ ∈ Z+

}

, W2 :=
{

(Oj , Dj , νj , B
2
j,ℓ) | j, ℓ ∈ Z+

}

.
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Let 1E denote the indicator function for a set E. Finally, define a countable set F̂b(X) of indicator
functions on X by

F̂b(X) :=
{

1E(·) | E = (O \D) ∩Bc for some (O,D, ν,B) ∈ W1 ∪W2

}

. (5.6)

Note that the sets E in (5.6) are open sets (since O is open and D,B are closed); this fact will be
useful later.

We now extract a desirable sequence from the net {γi}i∈I :

Lemma 5.2. There exists a sequence {γn}n≥0 ⊂ {γi}i∈I such that
∫

X

h(x) γ̂n(dx) −

∫

Γ

∫

X

h(y) q(dy | x, a) γn(d(x, a)) → 0, ∀h ∈ Ĉb(X) ∪ F̂b(X), (5.7)

〈 γn, c 〉 → ρ. (5.8)

Proof. Let us order the functions in the countable set Ĉb(X)∪ F̂b(X) as h1, h2, . . .. Choose any ī0 ∈ I
and let γn = γī0 for n = 0. For each n ≥ 1, by (5.3)-(5.4), there exists īn ∈ I, īn ≥ īn−1 such that
for all i ≥ īn,

∣

∣

∣

∣

∫

X

h(x) γ̂i(dx) −

∫

Γ

∫

X

h(y) q(dy | x, a) γi(d(x, a))

∣

∣

∣

∣

≤ n−1, ∀h ∈
{

h1, h2, . . . , hn

}

,

ρ− n−1 ≤ 〈 γi, c 〉 ≤ ρ+ n−1.

Let γn = γīn . The resulting sequence {γn}n≥0 satisfies (5.7)-(5.8).

Step (iii): Henceforth, we work with the sequence {γn} of probability measures given by Lemma 5.2.
The relation (5.8) together with Assumption 2.1(SU) implies that {γn} is a tight family of probability
measures on B(Γ). So by Prohorov’s theorem [4, Thm. 6.1], it has a subsequence that converges
weakly to some probability measure γ̄ on B(Γ). To simplify notation, let us use the same notation
{γn} to denote the convergent subsequence. Thus γn

w

→ γ̄.
By [3, Cor. 7.27.2], the probability measure γ̄ can be decomposed into its marginal p̄ on X and

a stochastic kernel µ̄ on A given X that obeys the control constraint of the MDP; i.e.,

γ̄(d(x, a)) = µ̄(da | x) p̄(dx).

This gives us a stationary policy µ̄. Before we investigate the property of the pair (µ̄, p̄) in the next
step, we need the following majorization property, which will be used to deal with the discontinuities
in the MDP model:

Lemma 5.3. For every (O,D, ν,B) ∈ W1 ∪W2,

lim sup
n→∞

γ̂n
(

(O \D) ∩Bc
)

≤ ν(Bc), p̄
(

(O \D) ∩Bc
)

≤ ν(Bc).

Proof. For (O,D, ν,B) ∈ W1∪W2, let E = (O\D)∩Bc and since the indicator function 1E ∈ F̂b(X),
we have, by (5.7) in Lemma 5.2, that

ǫn :=
∣

∣ γ̂n(E)−
∫

Γ q(E | x, a) γn(d(x, a))
∣

∣ → 0.

We also have, by Assumption 2.1(M),
∫

Γ

q(E | x, a) γn(d(x, a)) ≤

∫

Γ

ν(Bc) γn(d(x, a)) = ν(Bc).

Hence γ̂n(E) ≤ ν(Bc) + ǫn for all n ≥ 0; consequently, lim supn→∞γ̂n(E) ≤ ν(Bc).
Now γ̂n

w

→ p̄ (since γn
w

→ γ̄) and E is an open set (since O is open and D,B are closed). Therefore,
by [11, Thm. 11.1.1] and the first part of the proof, p̄(E) ≤ lim infn→∞γ̂n(E) ≤ ν(Bc).
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Step (iv): We are now ready to prove that
(

(1, 0 ), ρ
)

∈ H .

Lemma 5.4. The pair (µ̄, p̄) is a stationary pair with J(µ̄, p̄) = 〈γ̄, c〉 ≤ ρ.

Proof outline. We will only outline the proof, because the arguments for this lemma are essentially
the same as those we used in an earlier work to prove the existence and pathwise optimality properties
of stationary pairs [40, Sect. 4.1 and Sect. 4.3.1]. By Lemma 5.2, it suffices to prove the inequality

〈γ̄, c〉 ≤ lim
n→∞

〈 γn, c 〉 = ρ (5.9)

and to prove that for all h ∈ Ĉb(X),

lim
n→∞

∫

Γ

∫

X

h(y) q(dy | x, a) γn(d(x, a)) =

∫

Γ

∫

X

h(y) q(dy | x, a) γ̄(d(x, a)). (5.10)

To see the sufficiency of (5.9) and (5.10), note that (5.10), together with (5.7) in Lemma 5.2 and
the fact limn→∞

∫

h dγ̂n =
∫

h dp̄ for all h ∈ Ĉb(X) (since γ̂n
w

→ p̄), will imply that

∫

Γ

∫

X

h(y) q(dy | x, a) γ̄(d(x, a)) =

∫

X

h p̄(dx), ∀h ∈ Ĉb(X).

In turn, this will imply that p̄ is identical to the probability measure
∫

Γ
q(· | x, a) γ̄(d(x, a)) (cf. (5.5)),

thus proving that p̄ is an invariant probability measure for the Markov chain induced by the policy µ̄
and hence (µ̄, p̄) is a stationary pair. Then the first relation (5.9) will give us the desired inequality
J(µ̄, p̄) = 〈γ̄, c〉 ≤ ρ.

Proving (5.9): The proof of (5.9) is essentially the same as that given in [40, Sect. 4, proofs of
Lems. 4.3, 4.9]. Below, we sketch the main proof arguments (see the proofs in [40] for the details of
each step):

1. To show (5.9), it suffices to show that for each m ∈ Z+,

∫

cm dγ̄ ≤ lim inf
n→∞

∫

cm dγn. (5.11)

(In the above, the probability measures γ̄ and γn are extended from Γ to X × A, and cm is the
truncated one-stage cost function min{c(·),m}, as we recall.)

2. Fix m. To prove (5.11), consider arbitrarily small ǫ = δ = ℓ−1, for some arbitrarily large
ℓ ∈ Z+. Assumption 2.1(SU) together with (5.8) in Lemma 5.2 allows us to choose j ∈ Z+ large
enough so that for the compact set Γj in Assumption 2.1(SU), we have γn(Γ

c
j) ≤ ǫ for all n and

γ̄(Γc
j) ≤ ǫ. This in turn allows us to bound

∫

Γc
j

cmdγn and
∫

Γc
j

cmdγ̄ by mǫ, an negligible term

when we take ǫ → 0. Consequently, to prove (5.11), we can focus on the integrals of cm on the
compact set Γj and on bounding the difference

∫

Γj

cmdγn −

∫

Γj

cmdγ. (5.12)

3. We now handle the term (5.12)—this is where we apply Lusin’s theorem and the majoriza-
tion property given in Assumption 2.1(M). Corresponding to Γj , let us choose the element
(O,D, ν,B) := (Oj , Dj , νj , B

1
j,m,ℓ) ∈ W1 (cf. the definition of the set W1 given in Step (ii)). By

the definition of the set B1
j,m,ℓ (cf. Lemma 5.1 in Step (ii)), the function cm is continuous on

the closed set B × F , where F = proj
A
(Γj), and ν(Bc) ≤ δ = ℓ−1. We handle the continuous

part of cm separately from the rest of cm. Specifically, we first consider the restriction of cm

to the closed set (D ∪ B) × F , which is a lower semicontinuous function on (D ∪ B) × F in



24 Linear Programming for Average-Cost MDPs

view of the property of D given in Assumption 2.1(M). We apply the Tietze–Urysohn extension
theorem [11, Thm. 2.6.4] to extend this function to a function c̃m on the entire space X × A

that is nonnegative, lower semicontinuous, and also bounded above by m. Since γn
w

→ γ̄, by [19,
Prop. E.2],

lim inf
n→∞

∫

c̃mdγn ≥

∫

c̃m dγ̄.

We then handle the difference between cm and c̃m. These two functions differ only outside the
set (D ∪B)× F . By using the fact ν(Bc) ≤ δ and O ⊃ proj

X
(Γj) (cf. Assumption 2.1(M)), the

majorization property given in Lemma 5.3, and the bounds
∫

Γc
j

cmdγn ≤ mǫ,
∫

Γc
j

cmdγ̄ ≤ mǫ

from Step 2, we can calculate that

lim sup
n→∞

∣

∣

∣

∣

∫

X×A

(cm − c̃m)dγn

∣

∣

∣

∣

≤ m (δ + ǫ),

∣

∣

∣

∣

∫

X×A

(cm − c̃m)dγ̄

∣

∣

∣

∣

≤ m (δ + ǫ).

4. Finally, putting all the pieces together gives us the inequality

lim inf
n→∞

∫

cm dγn ≥

∫

cm dγ̄ − 2m (δ + ǫ).

By letting ℓ → ∞ so that δ, ǫ → 0, the desired relation (5.11) follows for all m ∈ Z+ and this
implies (5.9).

Proving (5.10): The proof of (5.10) is similar to the above and essentially the same as that given
in [40, Sect. 4, proofs of Lems. 4.4, 4.10]. We outline the main arguments below (see [40] for detailed
derivations):

1. Consider an arbitrary h ∈ Ĉb(X). Let ǫ = δ = ℓ−1, for some arbitrarily large ℓ ∈ Z+. Proceed
as in Step 2 of the proof of (5.9) to choose j ∈ Z+ large enough so that for the compact set Γj

in Assumption 2.1(SU), we have γn(Γ
c
j) ≤ ǫ for all n and γ̄(Γc

j) ≤ ǫ.

2. Define a function φ(x, a) :=
∫

X
h(y)q(dy |x, a) on X × A. Corresponding to the chosen j and

ℓ, choose the element (O,D, ν,B) := (Oj , Dj , νj , B
2
j,ℓ) ∈ W2 and let F := proj

A
(Γj). By the

definition of the set B2
j,ℓ (cf. Lemma 5.1 in Step (ii)), ν(Bc) ≤ δ = ℓ−1 and on the closed set

B×F , q(dy | ·, ·) is continuous. Then, since q(dy | ·, ·) is also continuous on the closed set D×A

(cf. Assumption 2.1(M)) and h is a bounded continuous function, we have, by [3, Prop. 7.30],
that the function φ is continuous on the closed set (D ∪B)× F . We now treat the continuous
part of φ separately: by the Tietze–Urysohn extension theorem [11, Thm. 2.6.4], the restriction
of φ to (D ∪ B) × F can be extended to a bounded continuous function φ̃ on the entire space
X × A, with ‖φ̃‖∞ ≤ ‖φ‖∞ ≤ ‖h‖∞. Since γn

w

→ γ̄, we have

lim
n→∞

∫

φ̃ dγn =

∫

φ̃ dγ̄.

We then handle the difference between φ and φ̃. These two functions differ only outside the set
(D ∪ B) × F . By using the fact ν(Bc) ≤ δ and O ⊃ proj

X
(Γj) (cf. Assumption 2.1(M)), the

majorization property given in Lemma 5.3, and the bounds γn(Γ
c
j) ≤ ǫ, γ̄(Γc

j) ≤ ǫ from Step 1,
we can calculate that

lim sup
n→∞

∣

∣

∣

∣

∫

X×A

(φ− φ̃) dγn

∣

∣

∣

∣

≤ 2‖h‖∞ · (δ + ǫ),

∣

∣

∣

∣

∫

X×A

(φ− φ̃) dγ̄

∣

∣

∣

∣

≤ 2‖h‖∞ · (δ + ǫ).

3. Finally, putting all the pieces together gives us the bound

lim sup
n→∞

∣

∣

∣

∣

∫

φdγn −

∫

φdγ̄

∣

∣

∣

∣

≤ 4‖h‖∞ · (δ + ǫ).

By letting ℓ → ∞ so that δ, ǫ → 0, the desired relation (5.10) follows.
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The lemma now follows from (5.9)-(5.10), as discussed earlier.

By Lemma 5.4,
(

(1, 0 ), ρ
)

=
(

Lγ̄, 〈γ̄, c〉 + r̄
)

for r̄ = ρ − 〈γ̄, c〉 ≥ 0. Thus
(

(1, 0 ), ρ
)

∈ H and
consequently, ρ = ρ∗. This completes the proof of Theorem 3.1.

5.1.2 Proof of Prop. 3.1

The proof is similar to that of [20, Chap. 12.4B, Thm. 12.4.2(c)]. Since {(ρn, hn)} is a maximizing
sequence of (P∗), for all n ≥ 0, (ρn, hn) is feasible for (P∗):

ρn + hn(x) ≤ c(x, a) +

∫

X

hn(y) q(dy | x, a), ∀ (x, a) ∈ Γ. (5.13)

By assumption ρn ↑ ρ∗ and for each (x, a) ∈ Γ,
∫

X
supn |hn(y)| q(dy |x, a) < +∞. The latter implies

lim sup
n→∞

∫

X

hn(x) q(dy | x, a) ≤

∫

X

lim sup
n→∞

hn(x) q(dy | x, a) < +∞

by Fatou’s lemma. So, letting n → ∞ and taking limit superior on both sides of (5.13), we obtain

ρ∗ + h∗(x) ≤ c(x, a) +

∫

X

h∗(y) q(dy | x, a) < +∞, ∀ (x, a) ∈ Γ, (5.14)

which is the desired inequality and also shows that h∗ is finite everywhere.

Next, we prove the ACOE for p∗-a.a. states. Since (µ∗, p∗) is a stationary minimum pair and
∫

|h∗| dp∗ < ∞ by assumption, we have

ρ∗ =

∫

X

∫

A

c(x, a)µ∗(da | x) p∗(dx),

−∞ <

∫

X

h∗(x) dp∗ =

∫

X

∫

A

∫

X

h∗(y) q(dy | x, a)µ∗(da | x) p∗(dx) < +∞,

and hence

∫

X

∫

A

{

ρ∗ + h∗(x) − c(x, a)−

∫

X

h∗(y) q(dy | x, a)

}

µ∗(da | x) p∗(dx) = 0.

This together with (5.14) implies that for p∗-a.a. x ∈ X,

ρ∗ + h∗(x)−

∫

A

{

c(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

µ∗(da | x) = 0,

which in turn implies that for p∗-a.a. x ∈ X,

ρ∗ + h∗(x) =

∫

A

{

c(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

µ∗(da | x)

≥ inf
a∈A(x)

{

c(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

. (5.15)

Then, by (5.14), equality must hold in (5.15), and this gives the desired ACOE (3.14) and (3.15).
The proof of Prop. 3.1 is now complete.
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5.2 Proofs for Section 4

5.2.1 Proof of Theorem 4.1 (Outline)

The proof of Theorem 4.1 is similar to that of Theorem 2.1 on stationary minimum pairs for an
unconstrained MDP. The latter proof is given in our prior work [40, Sect. 4.1, proofs of Prop. 3.2 and
Thm. 3.3], and its main arguments have already been explained earlier in the proof of Lemma 5.4.
So we will only outline the proof of Theorem 4.1, in order to avoid repetition. We will first state
some of our prior results for unconstrained MDPs. We will then directly apply them to the present
case of constrained MDPs.

In [40, Sect. 4.1] we considered two kinds of sequences {γn} ⊂ P(Γ). In the first case, {γn} are
the occupancy measures of a policy π, for an initial distribution ζ that satisfies J(π, ζ) < ∞:

γn(B) := 1
n

∑n
k=1 P

π
ζ

{

(xk, ak) ∈ B
}

, B ∈ B(Γ). (5.16)

In the second case, {γn} corresponds to a sequence of stationary pairs (µn, pn) that satisfy
supn J(µn, pn) < ∞:

γn(d(x, a)) := µn(da |x) pn(dx). (5.17)

In both cases, supn〈γn, c〉 < ∞, which, together with the strict unboundedness condition in As-
sumption 2.1(SU), implies that (i) {γn} is tight and for the compact sets Γj in Assumption 2.1(SU),
as j → ∞, γn(Γj) → 0 uniformly in n; and (ii) a weakly convergent subsequence {γnk

} can be
extracted from any subsequence of {γn}: γnk

w

→ γ̄ ∈ P(Γ). For both cases, the limiting probability
measure γ̄ is proved to have the following properties, by using (i)-(ii) and the majorization condition
in Assumption 2.1(M):

(a) γ̄ corresponds to a stationary pair (µ̄, p̄) ∈ ∆s (i.e., γ̄(d(x, a)) = µ̄(da |x) p̄(dx)).

(b) The average cost of the pair (µ̄, p̄) satisfies

J(µ̄, p̄) = 〈γ̄, c〉 ≤ lim inf
k→∞

〈γnk
, c〉. (5.18)

We now explain how we can apply these results to prove Theorem 4.1 for the constrained MDP.
To prove Theorem 4.1(i), we consider {γn} defined by (5.16) for a pair (π, ζ) ∈ S. By the feasibility
of (π, ζ), its average costs are all finite:

Ji(π, ζ) = lim sup
n→∞

〈γn, ci〉 < ∞, ∀ i = 0, 1, . . . , d.

Since at least one of the one-stage cost functions c0, c1, . . . , cd is strictly unbounded by Assump-
tion 4.1(SU), this implies that {γn} is a tight family of probability measures on Γ and for the
compact sets Γj in Assumption 4.1(SU), the convergence γn(Γj) → 0 as j → ∞ is uniform in n. We
then proceed as in the unconstrained case to obtain, from a weakly convergent subsequence {γnk

}
of {γn}, the limiting probability measure γ̄. Next, using the majorization condition in Assump-
tion 4.1(M), it follows as before that γ̄ has the property (a) given above and gives us a stationary
pair (µ̄, p̄). Moreover, because Assumption 4.1(M) is the same as Assumption 2.1(M) holding for
every one-stage cost function ci in the constrained MDP, (5.18) in the property (b) above now holds
with the function c replaced by every ci; that is

Ji(µ̄, p̄) = 〈γ̄, ci〉 ≤ lim inf
k→∞

〈γnk
, ci〉, ∀ i = 0, 1, . . . , d.

Since Ji(π, ζ) = lim supn→∞〈γn, ci〉 ≥ lim infk→∞ 〈γnk
, ci〉, it follows that

Ji(µ̄, p̄) ≤ Ji(π, ζ), ∀ i = 0, 1, . . . , d.

This proves Theorem 4.1(i).
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To prove Theorem 4.1(ii), which asserts the existence of a stationary optimal pair, we consider
a sequence of stationary pairs (µn, pn) ∈ S with J0(µn, pn) ↓ ρ∗c (there exists such a sequence by
the part (i) just proved). Let γn be defined as in (5.17). Then, since Ji(µn, pn) = 〈γn, ci〉 for all
0 ≤ i ≤ d, we have

sup
n≥0

〈γn, ci〉 < ∞, ∀ i = 0, 1, . . . , d.

Since at least one of the functions ci is strictly unbounded under our assumption, as in the proof of
the part (i), we can extract a weakly convergent subsequence {γnk

} of {γn} and from its limiting
probability measure γ∗, we can obtain a stationary pair (µ∗, p∗) such that for all i = 0, 1, . . . , d,

Ji(µ
∗, p∗) = 〈γ∗, ci〉 ≤ lim inf

k→∞
〈γnk

, ci〉. (5.19)

Since 〈γnk
, ci〉 = Ji(µnk

, pnk
) and (µnk

, pnk
) is feasible for the constrained problem, (5.19) implies

J0(µ
∗, p∗) ≤ ρ∗c , Ji(µ

∗, p∗) ≤ κi, ∀ i = 1, 2, . . . , d.

Hence (µ∗, p∗) is a stationary optimal pair for the constrained MDP.
We now prove Theorem 4.1(iii), which asserts the existence of a stationary lexicographically

optimal pair. First, let us define recursively sets S∗
i and scalars κ∗

i as follows: Let

κ∗
0 := ρ∗c , S∗

0 :=
{

(π, ζ) ∈ S | J0(π, ζ) = ρ∗c
}

,

and for 1 ≤ i ≤ d, let

κ∗
i := inf

{

Ji(π, ζ)
∣

∣ (π, ζ) ∈ S∗
i−1

}

, S∗
i :=

{

(π, ζ) ∈ S∗
i−1 | Ji(π, ζ) = κ∗

i

}

.

Then S ⊃ S∗
0 ⊃ S∗

1 · · · ⊃ S∗
d and S∗

d consists of all the lexicographically optimal pairs. So, to prove
Theorem 4.1(iii), we need to show ∆s ∩S∗

d 6= ∅. By Theorem 4.1(ii) just proved, ∆s ∩S∗
0 6= ∅. Let

us prove by induction that ∆s ∩ S∗
i 6= ∅ for all i ≤ d.

Assume that for some j ≤ d, S∗
j−1 6= ∅. Then κ∗

j is well-defined, and there exists a sequence of
policy and initial distribution pairs (πn, ζn) ∈ S∗

j−1 with

Jj(πn, ζn) ↓ κ∗
j .

By Theorem 4.1(i) proved earlier, for each (πn, ζn), there is a stationary pair (µn, pn) with

Ji(µn, pn) ≤ Ji(πn, ζn), ∀ i = 0, 1, . . . , d.

This together with the fact (πn, ζn) ∈ S∗
j−1 implies that (µn, pn) ∈ S∗

j−1. Consider now the sequence
{(µn, pn)} of stationary pairs thus constructed. Exactly the same proof arguments for establishing
the part (ii) can be applied here, and they yield that there exists a stationary pair (µ∗, p∗) that
satisfies (5.19). Therefore,

Ji(µ
∗, p∗) = κ∗

i , i = 0, 1, . . . , j,

and consequently, (µ∗, p∗) ∈ S∗
j . This proves ∆s ∩S∗

j 6= ∅; then, by induction, ∆s ∩S∗
d 6= ∅. Hence

there is a stationary lexicographically optimal pair for the constrained MDP.
This completes the proof of Theorem 4.1.

5.2.2 Proof of Theorem 4.2 (Outline)

The consistency and solvability of (P) follow from Theorem 4.1(i)-(ii). The consistency of (P∗) is
trivial (e.g., let ρ = 0, h(·) ≡ 0, β = 0). Thus, 0 ≤ sup(P∗) ≤ inf(P) = ρ∗c .

We now prove the absence of a duality gap. This proof is similar to that of Theorem 3.1(ii) for
the unconstrained MDP case. Since the value of (P∗) is finite, by [2, Thm. 3.3] (cf. Theorem 2.2),
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the value of (P∗) equals the subvalue ρ of (P). Therefore, to prove there is no duality gap is to prove
ρ = ρ∗c . For this, it suffices to show

(

(1, 0 , κ), ρ
)

∈ H,

where the set H is as defined in (2.4) and, for the case here, is given by

H :=
{(

L(γ, α), 〈 γ, c0 〉+ r
)
∣

∣ γ ∈ M
+
w(Γ), α ∈ R

d
+, r ≥ 0

}

. (5.20)

Recall that by definition the subvalue ρ = inf
{

r |
(

(1, 0 , κ), r
)

∈H
}

(cf. Section 2.2).

To prove
(

(1, 0 , κ), ρ
)

∈ H , we will construct a stationary pair (µ̄, p̄) ∈ S with J0(µ̄, p̄) ≤ ρ,
and the proof proceeds in four steps as in the proof of Theorem 3.1(ii). Let us outline these steps,
explaining briefly some minor changes in the details of the arguments.

Step (i): From the definition of ρ, it follows that
(

(1, 0 , κ), ρ
)

∈ H and there exist a direct set I

and a net {(γi, αi)}i∈I in M
+
w(Γ)× R

d
+ such that

γi(Γ) → 1, (5.21)
∫

X

h(x) γ̂i(dx) −

∫

Γ

∫

X

h(y) q(dy | x, a) γi(d(x, a)) → 0, ∀h ∈ Fb(X), (5.22)

(

〈γi, c1〉, · · · , 〈γi, cd〉
)

+ αi → κ, (5.23)

〈 γi, c0 〉 → ρ. (5.24)

As before, in view of (5.21) and the fact γi ∈ M
+
w(Γ), by redefining the net {(γi, αi)}i∈I if necessary,

we may assume that every γi in the above is a probability measure on B(Γ).

Step (ii): Similarly to Lemma 5.2, we extract a sequence {(γn, αn)}n≥0 ⊂ {(γi, αi)}i∈I such that

∫

X

h(x) γ̂n(dx)−

∫

Γ

∫

X

h(y) q(dy | x, a) γn(d(x, a)) → 0, ∀h ∈ Ĉb(X) ∪ F̂b(X), (5.25)

(

〈γn, c1〉, · · · , 〈γn, cd〉
)

+ αn → κ, (5.26)

〈 γn, c0 〉 → ρ, (5.27)

where Ĉb(X) and F̂b(X) in (5.25) are two chosen countable subsets of Fb(X), the properties of which
are needed in the subsequent two steps of our proof. In particular, the set Ĉb(X) is the countable
set of bounded continuous functions with the property (5.5), the same set as defined in the proof of
Theorem 3.1(ii). The countable set F̂b(X) is also defined by the equation (5.6) in that proof:

F̂b(X) :=
{

1E(·) | E = (O \D) ∩Bc for some (O,D, ν,B) ∈ W1 ∪W2

}

.

However, while the set W2 is defined in the same way as before, we define the set W1 slightly
differently here, to take into account the multiple one-stage cost functions in the constrained MDP.
Specifically, in the definition of W1 (cf. Lemma 5.1 and the definitions preceding this lemma),
we make the following changes. We now use the sets and finite measures (O,D, ν) involved in
Assumption 4.1(M) instead of Assumption 2.1(M). We choose the sets B1

j,m,ℓ for each j,m, ℓ ∈ Z+

such that besides the property in Lemma 5.1(i), we have that restricted to B1
j,m,ℓ×Fj , all the (d+1)

truncated one-stage cost functions, cmi , i = 0, 1, . . . , d, are continuous (where cmi (·) = min{ci(·),m}).
This is possible by Lusin’s theorem (since we have only a finite number of these cost functions, we
can apply Lusin’s theorem to each one of them and then combine the results).

Step (iii): This step is the same as before. The relations (5.26)-(5.27) together with Assump-
tion 4.1(SU) imply that {γn} is a tight family of probability measures and therefore has a weakly
convergent subsequence {γnk

}. Consider the corresponding subsequence {(γnk
, αnk

)}; for notational
simplicity, we will drop the subscript k by redefining {(γn, αn)} to be this subsequence. Now, denote
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the limit of {γn} by γ̄, and decompose γ̄ as γ̄(d(x, a)) = µ̄(da |x) p̄(dx), where p̄ is the marginal of
γ̄ on X and µ̄ is a stationary policy. Then, using Assumption 4.1(M) instead of Assumption 2.1(M),
we have that Lemma 5.3 holds as before, which gives us the desired majorization properties for γ̂n
and p̄ that we will need in the next, last step.

Step (iv): This step is almost the same as before, except that we apply those arguments in the
proof of (5.9) to every cost function ci, 0 ≤ i ≤ d, in the present constrained problem. Then, similar
to Lemma 5.4, we obtain that the pair (µ̄, p̄) is a stationary pair and satisfies that

Ji(µ̄, p̄) = 〈γ̄, ci〉 ≤ lim inf
n→∞

〈γn, ci〉, ∀ i = 0, 1, . . . , d.

Combining this with (5.26) and (5.27) (recall also αn ≥ 0), we obtain

J0(µ̄, p̄) ≤ ρ, Ji(µ̄, p̄) ≤ κi, ∀ i = 0, 1, . . . , d.

Therefore, if we let

r̄ := ρ− J0(µ̄, p̄) ≥ 0, ᾱ := κ−
(

J1(µ̄, p̄), . . . , Jd(µ̄, p̄)
)

≥ 0,

then
(

(1, 0 , κ), ρ
)

=
(

L(γ̄, ᾱ), 〈γ̄, c0〉+ r̄
)

∈ H.

This implies ρ = ρ∗c (since it implies ρ∗c ≤ ρ, whereas ρ ≤ ρ∗c). Hence there is no duality gap between
(P) and (P∗).

5.2.3 Proofs of Props. 4.1 and 4.2

Proof of Prop. 4.1. (i) Consider any j ∈ J (0) and some pair (π, ζ) ∈ S with Jj(π, ζ) < κj . By
Theorem 4.1(i), there exists a stationary pair (µ̄, p̄) ∈ S with Ji(µ̄, p̄) ≤ Ji(π, ζ) for all 0 ≤ i ≤ d.
Then Jj(µ̄, p̄) < κj .

Now for each n ≥ 0, since (ρn, hn, βn) is feasible for (P
∗), we have from (4.10)-(4.11) that βn ≤ 0

and for all (x, a) ∈ Γ,

ρn + hn(x) ≤ c0(x, a)−

d
∑

i=1

βn,ici(x, a) +

∫

X

hn(y) q(dy | x, a),

and therefore, by adding
∑d

i=1 βn,iκi to both sides,

ρn +

d
∑

i=1

βn,iκi + hn(x) ≤ c0(x, a) +

d
∑

i=1

βn,i

(

κi − ci(x, a)
)

+

∫

X

hn(y) q(dy | x, a). (5.28)

Integrate both sides of (5.28) w.r.t. the probability measure γ̄(d(x, a)) = µ̄(da |x) p̄(dx). Notice that
∫

hn dp̄ =
∫

Γ

∫

X
hn(y) q(dy |x, a) γ̄(d(x, a)) since (µ̄, p̄) is a stationary pair. We thus obtain

ρn +

d
∑

i=1

βn,iκi ≤ J0(µ̄, p̄) +

d
∑

i=1

βn,i

(

κi − Ji(µ̄, p̄)
)

. (5.29)

Take n → ∞. Since {(ρn, hn, βn)} is a maximizing sequence for (P∗), ρn +
∑d

i=1 βn,iκi → ρ∗c by
Theorem 4.2(ii). It then follows from (5.29) that

ρ∗c − J0(µ̄, p̄) ≤ lim inf
n→∞

d
∑

i=1

βn,i

(

κi − Ji(µ̄, p̄)
)

(5.30)

≤ lim inf
n→∞

βn,j

(

κj − Jj(µ̄, p̄)
)

, (5.31)
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where we used the fact κi−Ji(µ̄, p̄) ≥ 0 and βn,i ≤ 0 for all i to derive (5.31). Since κj−Jj(µ̄, p̄) > 0,
(5.31) implies lim infn→∞ βn,j > −∞. Hence the sequence {βn,j}n≥0 is bounded.

(ii) In this case, suppose j is such that Jj(µ
∗, p∗) < κj . Then j ∈ J (0) and (5.31) holds with

(µ̄, p̄) = (µ∗, p∗) and with its left-hand side equal to ρ∗c−J0(µ
∗, p∗) = 0. This yields limn→∞ βn,j = 0.

(iii) In this case, by assumption there is some pair (π̄, ζ̄) ∈ Π× P(X) satisfying

Jj(π̄, ζ̄) < κj ∀ j ∈ J (1), Jj(π̄, ζ̄) < ∞ ∀ j ∈ J (0) ∪ {0}.

As in part (i), let us consider a stationary pair (µ̄, p̄) with Ji(µ̄, p̄) ≤ Ji(π̄, ζ̄) for all 0 ≤ i ≤ d.
Such a pair exists by Theorem 4.1(i), since we can apply this theorem with a different feasible set
S ′ instead of S and in S ′ we can use Ji(π̄, ζ̄) as the upper limits on the average costs w.r.t. ci for
1 ≤ i ≤ d, for instance.

The average costs of this stationary pair (µ̄, p̄) thus satisfy

Jj(µ̄, p̄) < κj ∀ j ∈ J (1), Jj(µ̄, p̄) < ∞ ∀ j ∈ J (0) ∪ {0}. (5.32)

We also have, as in part (i), that (5.30) holds for this pair (µ̄, p̄). Now, as we proved in part (i),
{βn,i}n≥0 is bounded for every i ∈ J (0). This together with the second relation in (5.32) implies
that the term

lim sup
n→∞

∑

i∈J (0)

βn,i

(

κi − Ji(µ̄, p̄)
)

is finite. From (5.30), we have the inequality

ρ∗c − J0(µ̄, p̄) ≤ lim inf
n→∞

d
∑

i=1

βn,i

(

κi − Ji(µ̄, p̄)
)

≤ lim sup
n→∞

∑

i∈J (0)

βn,i

(

κi − Ji(µ̄, p̄)
)

+ lim inf
n→∞

∑

i∈J (1)

βn,i

(

κi − Ji(µ̄, p̄)
)

. (5.33)

In (5.33), since the term on the left-hand side and the first term on the right-hand side are both
finite, the second term on the right-hand side must satisfy

lim inf
n→∞

∑

i∈J (1)

βn,i

(

κi − Ji(µ̄, p̄)
)

> −∞.

Then, since βn ≤ 0, in view of the first relation in (5.32), the preceding inequality implies that
{βn,i}n≥0 must be bounded for every i ∈ J (1). Combining this with the result of part (i), we obtain
that for every i = 1, 2, . . . , d, the sequence {βn,i}n≥0 is bounded. Hence {βn} is bounded.

Proof of Prop. 4.2. The proof arguments are similar to those of [17, Thm. 5.2(b)] for constrained
MDPs and those of Prop. 3.1 for unconstrained MDPs. By the feasibility of {(ρn, hn, βn)} for (P∗),
we have the inequality (5.28); that is, for each n ≥ 0,

ρn +
d

∑

i=1

βn,iκi + hn(x) ≤ c0(x, a) +
d

∑

i=1

βn,i

(

κi − ci(x, a)
)

+

∫

X

hn(y) q(dy | x, a), ∀ (x, a) ∈ Γ.

Let n → ∞. Since ρn +
∑d

i=1 βn,iκi ↑ ρ∗c < ∞ and βn → β∗ ≤ 0 by assumption, we obtain

ρ∗c + lim sup
n→∞

hn(x) ≤ c0(x, a) +
d

∑

i=1

β∗
i

(

κi − ci(x, a)
)

+ lim sup
n→∞

∫

X

hn(y) q(dy | x, a), ∀ (x, a) ∈ Γ.
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For each (x, a) ∈ Γ, it follows from the assumption
∫

X
supn≥0 |hn(y)| q(dy |x, a) < +∞ and Fatou’s

lemma that

lim sup
n→∞

∫

X

hn(y) q(dy | x, a) ≤

∫

X

lim sup
n→∞

hn(y) q(dy | x, a) < +∞.

Combining the preceding two relations gives us the desired inequality (4.13):

ρ∗c + h∗(x) ≤ c0(x, a) +

d
∑

i=1

β∗
i

(

κi − ci(x, a)
)

+

∫

X

h∗(y) q(dy | x, a), ∀ (x, a) ∈ Γ, (5.34)

which also shows that h∗ is finite everywhere.
Next, corresponding to the stationary optimal pair (µ∗, p∗), let γ∗(d(x, a)) = µ∗(da |x) p∗(dx)

and integrate both sides of (5.34) w.r.t. the probability measure γ∗. As in the proof of Prop. 3.1,
here the integrability is ensured by our assumption

∫

|h∗| dp∗ < ∞ and the invariance property of
p∗, which also imply that −∞ <

∫

X
h∗(x) dp∗ =

∫

Γ

∫

X
h∗(y) q(dy |x, a) γ∗

(

d(x, a)
)

< +∞. We thus
obtain

ρ∗c ≤ J0(µ
∗, p∗) +

d
∑

i=1

β∗
i

(

κi − Ji(µ
∗, p∗)

)

.

But J0(µ
∗, p∗) = ρ∗c and the second term in the right-hand side above is nonpositive, so equality

must hold in the above inequality. This result can be equivalently expressed as

∫

X

∫

A

{

ρ∗c + h∗(x)− c0(x, a) −

d
∑

i=1

β∗
i

(

κi − ci(x, a)
)

−

∫

X

h∗(y) q(dy | x, a)

}

µ∗(da | x) p∗(dx) = 0.

Similarly to the proof of Prop. 3.1, the preceding equality together with the inequality (5.34) implies
that for p∗-a.a. x ∈ X,

ρ∗c −
d

∑

i=1

β∗
i κi + h∗(x) =

∫

a∈A(x)

{

c0(x, a)−
d

∑

i=1

β∗
i ci(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

µ∗(da | x)

= inf
a∈A(x)

{

c0(x, a) −
d

∑

i=1

β∗
i ci(x, a) +

∫

X

h∗(y) q(dy | x, a)

}

.

This gives the desired ACOE (4.14) and (4.15).
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cost Markov control processes in Borel spaces. SIAM J. Control Optim., 42:442–468.
[18] Hernández-Lerma, O. and Lasserre, J. B. (1994). Linear programming and average optimality of Markov

control processes on Borel spaces–unbounded costs. SIAM J. Control Optim., 32:480–500.
[19] Hernández-Lerma, O. and Lasserre, J. B. (1996). Discrete-Time Markov Control Processes: Basic

Optimality Criteria. Springer, New York.
[20] Hernández-Lerma, O. and Lasserre, J. B. (1999). Further Topics on Discrete-Time Markov Control

Processes. Springer, New York.
[21] Hernández-Lerma, O. and Lasserre, J. B. (2002). The linear programming approach. In Feinberg, E. A.

and Shwartz, A., editors, Handbook of Markov Decision Processes: Methods and Applications, chapter 12.
Springer Science+Business Media, New York.

[22] Hernández-Lerma, O. and Lasserre, J. B. (2003). Markov Chains and Invariant Probabilities. Birkhäuser
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