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Abstract

We introduce a dynamic credit portfolio framework where optimal investment strategies are robust
against misspecifications of the reference credit model. The risk-averse investor models his fear of credit
risk misspecification by considering a set of plausible alternatives whose expected log likelihood ratios
are penalized. We provide an explicit characterization of the optimal robust bond investment strategy,
in terms of default state dependent value functions associated with the max-min robust optimization
criterion. The value functions can be obtained as the solutions of a recursive system of HJB equations.
We show that each HJB equation is equivalent to a suitably truncated equation admitting a unique
bounded regular solution. The truncation technique relies on estimates for the solution of the master
HJB equation that we establish.

1 Introduction.

Portfolio optimization problems rely on models of asset price dynamics whose probabilistic behavior is
imprecisely known. Although a great deal of effort is devoted to model calibration, the limited number of
available observations as well as the perturbing noise often result in parameter estimates subject to estimation
errors. As a result, the investor always fears model misspecifications of the transition law governing the joint
dynamic evolution of default probabilities. Since he is unable to detect the true underlying model, he wants
to design decision rules which are robust to model errors, i.e. take into consideration parameter uncertainty
into his optimization procedure. His objective is to construct portfolio strategies which, besides working well
when the model describing the price dynamics is correctly specified, also perform reasonably well in the case
when the model is misspecified.

Depending on the approach used to perturb the actual underlying model, there can be different robust
control formulations. The Bayesian approach, pioneered by Gilboa and Schmeidler (1989), models ambiguity
aversion through the formulation of multiple priors preferences. This approach has been extended to a
dynamic setting by Epstein and Schneider (2004), where priors are updated over time. The other approach,
pioneered by Anderson et al. (2000) (see also Anderson et al. (2003) for a related study), formulates the
robust decision making problem using a penalty function for model misspecifications. Mahenhout (2004)
builds on this framework by considering a diffusion model with uncertainty in the equity risk premium.
Mahenhout (2006) further extends the framework in Mahenhout (2004) by considering stochastic investment
opportunities. Liu et al. (2005) extends the analysis in Mahenhout (2004) to a jump-diffusion model, where
the investor knows the diffusion component but is uncertain about the size and frequency of jumps. Jin and
Zhang (2012) extend the work of Liu et al. (2005) to the case of multiple assets. We also refer to Hansen et
al. (2006) for a survey of various mathematical formulations to achieve robustness.

The objective of our paper is to study the impact of credit risk model misspecification on optimal
investment strategies. Previous studies on optimal credit portfolios assume the underlying model governing
default intensities and contagion risk to be known. This is the case in the early work of Bielecki and Jang
(2006), in the first passage time framework of Kraft and Steffensen (2005), as well as in the default contagion
model by Kraft and Steffensen (2009). The credit model is also assumed to be known in the work of Capponi
and Figueroa-López (2014) and Capponi et al. (2014), where Markov-modulated dynamics drive the behavior
of default intensities and security prices. Bo and Capponi (2014) construct a credit default swaps portfolio
framework, but assume that changes in default intensities of obligors in reaction to default events are known.
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Empirical evidence, however, suggests that actual default intensities and default correlations are difficult
to estimate. This is because defaults are rare events, and most of the firms whose securities are traded in
the market have never defaulted or rarely experienced severe financial distress.1

Our study is the first to develop a dynamic credit portfolio optimization framework which accounts for
robust decision rules against misspecifications of the model for the actual default intensity process. We
consider a portfolio consisting of defaultable, coupon paying bonds. As in Bo and Capponi (2014), we model
default contagion via an interacting intensity model. Different from their work, the investor now protects
himself against ambiguity aspects of the reference credit model. He considers it to be the best statistical
characterization of the data, but models his fear of credit model misspecification by considering a set of
plausible alternatives whose expected log likelihood ratios (i.e., whose relative entropies) are penalized. As
in Anderson et al. (2000) (see also Hansen et al. (2006)), we restrict attention to perturbations that are
absolutely continuous over finite intervals, as these are statistically difficult to distinguish from the reference
model. A related study to ours is Jaimungal and Sigloch (2012), who consider a hybrid credit model where
default is modeled as the first jump of a Poisson process after the credit worthiness index of a company
has a crossed a certain barrier. Under this default model and accounting for model uncertainty, they study
robust indifference pricing of defaultable bonds and CDSs. As in our study, they penalize deviations from
the reference measure using an entropic penalty function. Their robust formulation allows to explain the
main drawback of structural models, namely the underestimation of short-term credit spreads.

We next list our main technical contributions. We develop an explicit characterization of the optimal
robust bond investment strategy. This is obtained by recovering an analytical expression for the vector of
optimal feedback functions, given as the product of two terms, the inverse of a matrix measuring the bond
depreciations at the default events, and a vector associated with the worst-case probability measure. Due
to the presence of default contagion, the value function associated with the max-min robust optimization
criterion depends on the default state. More specifically, we show that it corresponds to the solution of
a recursive system of nonlinear HJB equations. We remark that the recursive decomposition of a global
optimal investment problem has also been considered by Jiao et al. (2013). Their approach consists in first
defining the sub-control problems in the reference market filtration exclusive of default event information,
and then connecting them by assuming the existence of a conditional density on the default times. Despite
this similarity, there exist significant differences between ours and their approach. We consider the wealth
dynamics under the enlarged market filtration inclusive of default events and do not perform any decom-
position of the control problem at the level of the stochastic differential equation. It is only after deriving
the HJB equations that the recursive dependence between ODEs associated with different default states
naturally arises. Their approach instead exploits the exponential utility preference function of the investor
and reduce the optimal investment problem to solving a recursive system of backward stochastic differential
equations with respect to the default-free market filtration.

In our control problem, both the worst-case measure and the optimal feedback functions are coupled with
the HJB equations. By exploiting the property of a carefully identified smooth and increasing transform, we
are able to prove existence and uniqueness of a global classic solution to each equation. This is achieved by
showing the equivalence of each HJB equation to a truncated equation admitting a unique bounded regular
solution. The truncation is defined in terms of estimates established for the solution of the original HJB
equation. The study of smooth solutions to HJB equations with unbounded control space has also been
considered by Federico et al. (2015) and Gassiat et al. (2014). Therein, they consider one default-free stock
and an infinite-horizon framework in order to study the regularization of the viscosity solution of the HJB
equation, and its correspondence with the value function of the control problem.

We perform a numerical analysis of the robust strategies and value function. The investor allocates
higher fraction of wealth to the risky bond if the reference default intensity increases. However, he faces a
trade-off between investing more in risky securities to capture default risk premium and reducing his long
investment to avoid losses when the bond defaults. Indeed, his risk aversion leads him to divert wealth from
the riskier to the safer bond when the default risk becomes sufficiently high. Model uncertainty reduces the
utility achievable by the investor. In particular, it leads him to reduce the demand for risky bonds if he is
more tolerant against model misspecifications. In this case, the worst-case default intensity gets higher and
the investor derives smaller utility by implementing his robust credit strategy. The investor’s decisions are
more sensitive to penalty for mispecification in the current default state, but also take into account model
uncertainty in future states reached when an additional obligor defaults.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 derives the master
HJB equation associated with the robust control problem. Section 4 derives the robust bond investment
strategy. Section 5 analyzes the HJB equation. Section 6 proves a verification theorem. Section 7 performs a

1For instance, the typical cohort approach used by Moody’s and Standard and Poor’s is well known to underestimate default
risk, and has led to considering alternative approaches such as the continuous-time analysis of rating transitions proposed by
Lando and Skodeberg (2002).
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numerical analysis. Section 8 concludes. Technical proofs of auxiliary results are delegated to the appendix,
while proofs of the main results are given in the main body of the paper.

2 The Model

We use three probability measures in the specification of our model, which are equivalent to each other: (I)
P represents the reference measure, i.e. the one associated with the best description of the actual default
intensity process available to the investor, (II) P̃ corresponds to an alternative model chosen by the investor
who wants to protect himself against misspecifications of the reference measure, and (III) the risk-neutral
measure Q which is the measure under which prices of fixed income securities are observed. The investor is
uncertain about the actual default intensities, but is assumed to be certain about the pricing measure Q. We
will elaborate more on the relations between these measures as well as on the rational behind such a model
of uncertainty later in the section. We provide basic notation and definitions used throughout the paper in
section 2.1. We give the default model in section 2.2. We describe the portfolio securities in section 2.3. We
formulate the robust control problem in section 2.4.

2.1 Notation

Let S := {0, 1}M . Throughout the paper, the vector z = (z1, . . . , zM ) ∈ S captures the default state of the
portfolio, with zi = 0 if the obligor i has not defaulted and zi = 1 if he has defaulted. For z ∈ S such that
zj = 0, we use

zj := (z1, . . . , zj−1, 1, zj+1, . . . , zM ), j = 1, . . . ,M, (1)

to denote the vector obtained from z by setting its j-th component to one. Let m = 1, . . . ,M and
j1, j2, . . . , jm ∈ {1, . . . ,M}, be m distinct integers. Given z ∈ S such that zj1 = zj2 = · · · = zjm = 0,

we use zj1,...,jm :=
((
zj1
)...)jm

to denote the vector obtained from z by setting its components j1, j2, . . . jm
to one. In other words, zj1,...,jm denotes a default state where the names j1, j2, . . . , jm have defaulted. In
particular, zj1,...,jm = z if m = 0. For brevity of notation, we will use

fj1,...,jm(·) := f0j1,...,jm (·), (2)

where 0 = (0, . . . , 0) denotes the zero vector, and fz(·) is an arbitrary measurable function depending on the
default state z ∈ S. Moreover, if j 6= j1, j2, . . . , jm, we set

gj,j1,...,jm(·) := gj,0j1,...,jm (·), (3)

for any measurable function gj,z(·) depending on the default state z ∈ S and the index j of the obligor.

2.2 Default Model

We model default risk through an interacting intensity model. Models of this type are well suited for
modeling default contagion. We also refer the reader to Frey and Backhaus (2004) and Jarrow and Yu
(2001) for additional details.

We consider M ≥ 2 obligors subject to default risk. The default state is described by an M -dimensional
default indicator process Z = (Z1(t), . . . , ZM (t))t≥0 supported by a probability space (Ω,G,P). Here, P
denotes the probability measure associated with the reference model corresponding with the best description
of the data generating process available to the investor. We denote by EP the expectation operator w.r.t. P.
The state space of the default indicator process Z is given by S = {0, 1}M , where Zi(t) = 1 if the name i
has defaulted by time t and Zi(t) = 0 otherwise. The default time of the i-th name is given by

τi := inf{t ≥ 0; Zi(t) = 1}, i = 1, . . . ,M.

Hence, we have Zi(t) = 1τi≤t, where t ≥ 0. Here, 1A denotes the indicator of the event A. The default
indicator process Z is assumed to follow a continuous-time Markov chain on S, where Z(t) transits to a
neighbouring state Zi(t) at rate 1{Zi(t)=0}h

P
i,Z(t)(t). Here, for i = 1, . . . ,M , hPi,z(t) is a continuous function

in t ≥ 0, for each z ∈ S. We assume strictly positive default intensities satisfying inft≥0 h
P
i,z(t) > 0.

The market filtration is given by Gt = σ(Z(u); u ∈ [0, t]), t ≥ 0, augmented with its null sets so to satisfy
the usual conditions of completeness and right continuity; see Section 2.4 of Belanger et al. (2004). Using
the Dynkin’s formula (see (10.13) in Rogers and Williams (2000), pag. 254), we have

ξPi (t) := Zi(t)−
∫ t

0

(1− Zi(u))hPi,Z(u)(u)du, t ≥ 0 (4)

is a (P, (Gt)t≥0)-martingale.

3



2.3 The Portfolio Securities

The portfolio of securities at disposal of the investor are:

• Money market account. The value of one share at time t is denoted by B(t), and accrues interest
at a constant rate r > 0 so that B(t) = ert, t ≥ 0. We set B(0) = 1.

• Risky bonds. We consider M risky bonds referencing obligors whose default times are modeled as
described in section 2.2. Different from a primary asset such as the stock where one can directly assume
a convenient price process under the reference probability measure, fixed income securities are claims
depending on the occurrence of a credit event. Consequently, as for any traded derivative contract, the
bond price is equal to the expected discounted value of the credit contingent dividend process under
the risk-neutral measure Q. It is important to distinguish Q from the reference (subjective) probability
measure P of the investor. Bond prices are determined by the market and not by a single investor.

The dividend process of the i-th bond with maturity Ti is given by

Di(t) :=

∫ t

0

(1− Zi(u))Cidu+

∫ t

0

RidZi(u) + (1− Zi(Ti))1t≥Ti , t ≥ 0. (5)

Above, Ci ≥ 0 is the continuously paid coupon rate and thus Ci
∫ t

0
(1 − Zi(u))du is the cumulative

payment of the i-th bond before obligor i defaults. Ri ∈ [0, 1) is the constant recovery rate paid at
default time τi. The quantity (1 − Zi(Ti))1t≥Ti is the unit notional payment received by the bond
holder at the maturity time Ti if the obligor i has not defaulted.

Denote by hi,Z(t)(t) the positive risk-neutral default intensity of obligor i at time t. To guarantee that
Q is well defined, we assume that hi,z(t) is continuous in t for each default state z ∈ S. Then the
following process is a (Q, (Gt)t≥0)-martingale:

ξi(t) := Zi(t)−
∫ t

0

(1− Zi(u))hi,Z(u)(u)du, t ≥ 0. (6)

Lemma A.1 in Appendix A shows that, in the market without model uncertainty, the above risk-
neutral default intensity is uniquely determined under a mild invertibility condition on the matrix of
bond depreciations (see Lemma A.1 for the precise statement). By the Second Fundamental Theorem
of Asset Pricing (see for example Theorem 1.2 in Biagini (2010)), this implies that the market model
consisting of bank account and risky bonds is complete.

The time-t price of the i-th bond is given by

Pi(t) := (1− Zi(t))Et

[∫ Ti

t

e−
∫ u
t
rdsdDi(u)

]
, t ∈ [0, Ti], (7)

where the expectation Et[·] := E[·|Gt] is under the risk-neutral measure Q and conditional on the
current information set. Moreover, the price formula (7) shows that on τi ≤ t, the price of the i-th
bond is given by 0, while on τi > t, it is

Pi(t) = Et

[
Ci

∫ Ti

t

e−
∫ u
t
rds(1− Zi(u))du

]
+RiEt

[
Zi(Ti)e

−
∫ Ti
t r(1−Zi(u))du

]
+Et

[
(1− Zi(Ti))e−

∫ Ti
t rds

]
. (8)

2.4 Robust Control Formulation

This section describes the robust portfolio optimization problem of the investor. Our investor dynamically
allocates her wealth into the money market account and the M risky bond securities. Hereafter, let 0 <
T < ∧Mi=1Ti be the terminal horizon, i.e. the investment horizon is smaller than the maturities of the bond
securities.

For i = 1, . . . ,M , and t ∈ [0, T ], denote by φi(t) the number of shares of the i-th risky bond that the
investor buys (φi(t) > 0) or sells (φi(t) < 0) at time t. A short credit position is implemented by short-selling
a bond, while a long credit position is implemented by purchasing the bond security. In the latter case, the
investor pays the bond price and receives a stream of coupons until default occurs. Moreover, he receives
the recovery rate when default happens.
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We use φB(t) to denote the number of shares held in the money market account at time t. The process φ̄ =
(φ(t), φB(t))t∈[0,T ] with φ(t) = (φi(t))i=1,...,M is called a portfolio process. The wealth process associated

with the portfolio φ̄ = (φ(t), φB(t))t∈[0,T ], denoted by V φ̄t , is given by

V φ̄t =

M∑
i=1

φi(t)Pi(t) + φB(t)B(t). (9)

Actual default intensities and default correlations are notoriously difficult to estimate given that default
events happen rarely. For instance, Duffie et al. (2006) find that a proportional-hazards form for the default
intensity consisting of four macroeconomic and firm-specific covariates (the firm’s distance to default, the
firm’s trailing one-year stock return, the three-month Treasury bill rate, and the trailing one-year return
on the DJIA) is unable to fit empirically estimated historical default correlations. On the other hand, risk-
neutral default intensities can be more accurately estimated, especially after the growth of the liquid CDS
market. On the basis of these considerations, we only consider uncertainty in the actual default intensities
and assume risk-neutral default intensities to be perfectly known.

Given his limited ability to assess the likelihood of default events and their correlation, the investor
considers alternative models to protect himself against possible model misspecifications. Each alternative
model is defined by an equivalent probability measure P̃∼ P on Gt specified via the Radon-Nikodym derivative
ηϑt given by

ηϑt = E

(
M∑
i=1

∫ ·
0

(
ϑi(u−)− 1

)
dξPi (u)

)
t

. (10)

In the above expression, ϑi(t) = ϑi,Z(t)(t), i.e. ηϑt changes the investor’s probability assessment of reference
default intensities and default correlations.

Remark 2.1. The formulation of the robust decision making problem requires the introduction of three
equivalent probability measures P, P̃ and Q. While bond prices are observed under the risk neutral measure
Q, the investor wishes to optimize his expected utility from terminal wealth under the worst-case measure,
i.e. under the worst-case alternative model that he considers.

Under the alternative measure P̃, the default intensity of obligor i becomes hP̃i,Z(t)(t) := ϑi(t)h
P
i,Z(t)(t).

In light of (10), the investor operates under the reference model by choosing ϑi(t) = 1, for each i = 1, . . . ,M ,
and selects other models by choosing ϑi(t) 6= 1. If for a name i and time t, ϑi(t) < 1, it means that the
investor is more optimistic than the history on the credit quality of the obligor i. Viceversa, if ϑi(t) > 1, it
means that he is more pessimistic and believes that the credit quality of i is worse than what predicted by
his estimation method. Notice that the following process is a (P̃, (Gt)t∈[0,T ])-martingale:

ξP̃i (t) := Zi(t)−
∫ t

0

(1− Zi(u))hP̃i,Z(u)(u)du, t ∈ [0, T ]. (11)

Since P is statistically the best representation of existing data, the investor penalizes his choice of P̃
according to how much it deviates from the reference measure P. The distance measure is captured by the
relative entropy Ht(P̃|P). The latter is defined as the expectation, under the probability measure P̃ ∼ P on
Gt, of the logarithm of the Radon-Nikodym derivative at time t given by (10). We can rewrite ηϑt using Itô’s
formula as

ηϑt = exp

{
M∑
i=1

∫ t

0

log(ϑi(u−))dZi(u)−
M∑
i=1

∫ t∧τi

0

(
ϑi(u)− 1

)
hPi,Z(u)(u)du

}
. (12)

We denote by V0 the space of all (Gt)t∈[0,T ]-adapted positive processes ϑ = (ϑ(t))t∈[0,T ] so that the

density process ηϑ = (ηϑt )t∈[0,T ] is a (P, (Gt)t∈[0,T ])-martingale if the initial time is 0. Similarly, we use Vt
to represent the counterpart if the initial time is t ∈ [0, T ]. Notice that the log Radon-Nikodym derivative
process under P̃ is given by

log
(
ηϑt
)

=

M∑
i=1

∫ t

0

log(ϑi(u−))dξP̃i (u) +

M∑
i=1

∫ t∧τi

0

[
ϑi(u) log(ϑi(u))− ϑi(u) + 1

]
hPi,Z(u)(u)du.

Using (11), this leads to the following expression of the relative entropy:

Ht(P̃|P) := EP̃ [log
(
ηϑt
)]

= EP̃

[
M∑
i=1

∫ t∧τi

0

[
ϑi(u) log(ϑi(u))− ϑi(u) + 1

]
hPi,Z(u)(u)du

]
. (13)
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Moreover, over a sufficiently small time interval the relative entropy admits the following limit

lim
δ−→0

1

δ
EP̃
t

[
log

ηϑt+δ
ηϑt

]
=

M∑
i=1

(1− Zi(t))
[
ϑi(t) log(ϑi(t))− ϑi(t) + 1

]
hPi,Z(t)(t) =:

M∑
i=1

p̃i,ϑt , (14)

since ϑ(t) is Gt-adapted. Here EP̃
t := EP̃[·|Gt].

We follow Anderson et al. (2003) and assume that the investor chooses a robust portfolio strategy which is
the best choice in some worst-case model. We consider a rational risk-averse investor who wants to maximize
his power utility from terminal wealth, i.e. U : [0,∞)−→ [0,∞) is given by U(v) = vγ

γ , where γ ∈ (0, 1) is
the risk-aversion parameter. The investor maximizes his utility function, adjusted for model ambiguity, by
choosing an optimal admissible allocation strategy (the precise definition of admissibility will be given in the
next section) over the risky bond instruments. Concretely, we define the value function

wz(t, v) := sup
φ∈Ũt

inf
ϑ∈Vt

EP̃
t,v,z

[
U
(
V φ̄T
)

+

M∑
i=1

∫ T

t

p̃i,ϑu

Υi,Z(u)(u, V
φ̄
u )

du

]
, (15)

where the P̃-conditional expectation EP̃
t,v,z[·] := EP̃[·|Vt = v,Z(t) = z] for (t, v,z) ∈ [0, T ] × R+ × S, the

penalty rate p̃i,ϑt , t ∈ [0, T ], (i = 1, . . . ,M) is defined by (14) and Υi,z(t, v) denotes the preference parameter
governing aversion to uncertainty with respect to the reference default intensity of obligor i. For i = 1, . . . ,M ,
and z ∈ S, this is assumed to be of the following form:

Υi,z(t, v) =
µi,z(t)

U(v)
, (t, v) ∈ [0, T ]× R+, (16)

where µi,z(t) satisfies inft∈[0,T ] µi,z(t) > 0, is a continuous function in time t, and is allowed to depend
on the current default state. As in Mahenhout (2004), Mahenhout (2006) and Liu et al. (2005), we are
imposing a homothetic specification of ambiguity aversion which renders the problem tractable and allows
to separate the Hamiltonian into a term depending on the level of wealth and another term which only
depends on time (see Eq. (31) for the detailed expression). Under this homotheticity form, we are able to
derive a closed-form representation of the worst-case measure and of the optimal strategies. Under the above
specification of ambiguity, the larger the values of these functions and the less a given deviation from the
reference model is penalized. Symmetrically, the less confidence the investor has in the reference default
model, and the more the worst-case model will deviate from the reference model. Although this homothetic
specification is made for analytical convenience, it has been argued in Mahenhout (2004) that it is convenient
for calibration purposes and for economic reasons because it facilitates the construction of a representative
agent, see section 2 in his paper. The specification in Eq. (16) also allows distinguishing the degree of
uncertainty in the different information sources. For instance, if the source of information used to estimate
the physical default intensity of name i in the default state z ∈ S is very reliable, the investor has more faith
in the reference model, hence he would choose high values of the penalty (low values of µi,z(t)). If instead
the investor has unreliable information to perform such an estimation, he is more robust and has less faith
in the reference model, hence he would penalize less (higher values of µi,z(t)) deviations from the reference
model.

3 Dynamics Programming Formulation

The objective of this section is to derive the HJB equation associated with the robust control problem in
Eq. (15). For this, we need the dynamics of the wealth process which in turns depends on the dynamics of
the price process Pi(t) of the i-th bond security. We give the exact price dynamics of the bond price process
Pi(t), t ∈ [0, Ti], in section 3.1. We obtain the master HJB equation in section 3.2.

3.1 Price Dynamics of Risky Bonds

For i = 1, . . . ,M , using the price representation (8), we can rewrite it as

Pi(t) = (1− Zi(t))Fi,Z(t)(t), t ∈ [0, Ti], (17)

where Fi,z(t), (t, z) ∈ [0, Ti]× S, denotes the pre-default price function given by

Fi,z(t) = RiF
a
i,z(t) + CiF

b
i,z(t) + F ci,z(t). (18)
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Here the decomposed price functions are given by

F ai,z(t) := E
[
Zi(Ti)e

−
∫ Ti
t r(1−Zi(u))du

∣∣∣Z(t) = z
]
,

F bi,z(t) := E

[∫ Ti

t

e−
∫ u
t
rds(1− Zi(u))du

∣∣∣∣Z(t) = z

]
, (19)

F ci,z(t) := E
[
(1− Zi(Ti))e−

∫ Ti
t rdu

∣∣∣Z(t) = z
]
.

Obviously, Fi,z(Ti) = Rizi + 1− zi. Hence Pi(Ti) = 1− Zi(Ti) for i = 1, . . . ,M . We next give an auxiliary

lemma giving the P̃-dynamics of the dividend adjusted bond price process, later used to derive the dynamics
of the wealth process under the measure P̃.

Lemma 3.1. Under P̃, for each i = 1, . . . ,M , we have the following dynamics: for t ∈ [0, T ],

d
(
Pi(t) +Di(t)

)
Pi(t−)

=
[
r − (1− Zj(t))

(
hj,Z(t)(t)− ϑj(t)hPj,Z(t)(t)

)]
dt+

M∑
j=1

Gi,j,Z(t−)(t)dξ
P̃
j (t). (20)

We recall that the P̃-martingale ξP̃j (t) in the above expression is given by (11), and for i, j = 1, . . . ,M , we
define the functions

Gi,j,z(t) :=
Fi,zj (t)

Fi,z(t)
− 1, (t, z) ∈ [0, T ]× S. (21)

Proof. From Lemma A.2, it follows that

Pi(t) = Pi(0) +

∫ t

0

(1− Zi(u))
[
rPi(u)− Ci

]
du−RiZi(t) +

∫ t

0

Pi(u−)

M∑
j=1

Gi,j,Z(u−)(u)dξj(u).

Take the dividend given by (5) into account, and notice that T ∈ (0,∧Mi=1Ti). Then we have 1t≥Ti = 0 for
all t ∈ [0, T ]. Hence

Pi(t) +Di(t) = Pi(0) +Di(0) + r

∫ t

0

Pi(u)du+

∫ t

0

Pi(u−)

M∑
j=1

Gi,j,Z(u−)(u)dξj(u).

Then the P̃-dynamics (20) follows from (6) and the relation

ξP̃j (t) = ξj(t) +

∫ t

0

(1− Zj(u))
(
hj,Z(u)(u)− ϑj(u)hPj,Z(u)(u)

)
du. (22)

This completes the proof of the lemma. �
We can derive recursive explicit expressions for the pre-default price functions Fi,z(t). This in turn yields

explicit recursive expressions for the function Gi,j,z(t), and consequently for the dynamics of the bond price
process Pi(t). We give the detailed expressions in Appendix B.

3.2 The HJB Equation

This section derives the HJB equation associated with the robust control problem. We require the portfolio
process φ̄ to be (Gt)t∈[0,T ]-predictable. A (Gt)t∈[0,T ]-predictable portfolio process φ̄ = (φ(t), φB(t))t∈[0,T ] is

said to be self-financing if V φ̄t = V φ̄0 + Θφ̄t , where the time-t wealth V φ̄t is defined in Eq. (9), and the time-t
gains process is given by

Θφ̄t =

M∑
i=1

∫ t

0

φi(u)d(Pi(u) +Di(u)) +

∫ t

0

φB(u)dB(u). (23)

Above, Di = (Di(t))t≥0 is the dividend process of the i-th risky bond given by (5).

For t ∈ [0, T ], we use π̃B(t) := φB(t)Bt

V φ̄t−
to denote the proportion of wealth invested in the money market

account. Similarly, π̃i(t) := φi(t)Pi(t−)

V φ̄t−
, i = 1, . . . ,M , denotes the the proportion of wealth invested in the
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i-th risky bond. From the above definition and using (7), it can be easily seen that π̃i(t) = (1−Zi(t−))π̃i(t)
for t ∈ [0, T ] . Further, from (9), it follows that

M∑
i=1

π̃i(t) + π̃B(t) = 1. (24)

We can then define the space of admissible strategies.

Definition 3.1. Let t ∈ [0, T ]. The t-admissible control set Ũt = Ũt(v, z), (v,z) ∈ R+ × S, is a class of
(Gt)t∈[0,T ]-predictable locally bounded feedback strategies π̃(u) = (π̃i(u))i=1,...,M given by

π̃i(u) = πi,Z(u−)

(
u, V π̃u−

)
, i = 1, . . . ,M, u ∈ [t, T ]. (25)

The feedback function πi,z(·) is locally bounded on [0, T ] × R+ for i = 1, . . . ,M and z ∈ S, and π̃i(u) =
(1− Zi(u−))πi,Z(u−)(u, V

π̃
u−) for u ∈ [t, T ]. The relative wealth process is of the form given by

∫ T

t

dV π̃u
V π̃u−

=

∫ T

t

α(u) du+

M∑
j=1

∫ T

t

βj(u)dZj(u),

where V π̃t = v ∈ R+, and Z(t) = z ∈ S. Above, α is an adapted process with well defined integral
∫ T
t
α(u) du,

and βj is a predictable process and bounded away from −1 and ∞ for all j = 1, . . . ,M . Moreover, we define
Ut to be the t-admissible set of locally bounded feedback function vectors π = (πi,z(·))i=1,...,M,z∈S .

The following lemma gives the dynamics of the wealth process:

Lemma 3.2. Let π̃ ∈ Ũ0 and t ∈ [0, T ]. Then the P̃-wealth dynamics is given by, V π̃0 = v > 0, and

dV π̃t
V π̃t−

= rdt−
M∑
j=1

(
M∑
i=1

π̃i(t)Gi,j,Z(t−)(t)

)
(1− Zj(t−))

(
hj,Z(t−)(t)− ϑj(t)hPj,Z(t−)(t)

)
dt

+

M∑
j=1

(
M∑
i=1

π̃i(t)Gi,j,Z(t−)(t)

)
dξP̃j (t), (26)

where, for i, j = 1, . . . ,M , the function Gi,j,z(t) with (t, z) ∈ [0, T ]× S, is defined by (21).

Proof. For π̃ ∈ Ũ0, using (23), it follows that

dV π̃t =

M∑
i=1

φi(t)d(Pi(t) +Di(t)) + φB(t)dB(t) = V π̃t−

M∑
i=1

π̃i(t)
d(Pi(t) +Di(t))

Pi(t−)
+ V π̃t−π̃B(t)rdt.

It follows from Lemma 3.1 that

dV π̃t = V π̃t−

M∑
i=1

π̃i(t)
d(Pi(t) +Di(t))

Pi(t−)
+ V π̃t−π̃B(t)rdt

= V π̃t−

M∑
i=1

π̃i(t)

r − M∑
j=1

Gi,j,Z(t−)(t)(1− Zj(t−))
(
hj,Z(t−)(t)− ϑj(t)hPj,Z(t−)(t)

)dt

+V π̃t−π̃B(t)rdt+ V π̃t−

M∑
j=1

(
M∑
i=1

π̃i(t)Gi,j,Z(t−)(t)

)
dξP̃j (t).

Then the P̃-wealth dynamics (26) follows from the condition (24). This completes the proof of the lemma.
�

The wealth dynamics (26) may be intuitively interpreted as follows. The investor accrues instantaneous
interest rate r on his wealth. When a credit event occurs, his wealth level is updated to reflect changes in the
mark-to-market value of his bond position resulting from contagion effects induced by the defaulted name
on the surviving entities.
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Remark 3.3. Using Definition 3.1 of admissible controls, we have π̃(u) = πZ(u−)(u, V
t,v,π
u− ) for u ∈ [0, T ].

Then, we can rewrite the wealth dynamics (26) as follows: for t ∈ [0, T ],

dV πt
V πt−

= rdt−
M∑
j=1

(
M∑
i=1

πi,Z(t−)(t, V
π
t−)Gi,j,Z(t−)(t)

)
(1− Zj(t−))

(
hj,Z(t−)(t)− ϑj(t)hPj,Z(t−)(t)

)
dt

+

M∑
j=1

(
M∑
i=1

πi,Z(t−)(t, V
π
t−)Gi,j,Z(t−)(t)

)
dξP̃j (t). (27)

Next, we derive the master HJB equation using (14) and (27). We first start by heuristic arguments and
then give a rigorous proof in the verification theorem. Recall the robust control optimization criterion given
by (15). If wz(t, v) is C1 in t, and is C2 in v for each z ∈ S, using the dynamic programming principle, we
expect that the master HJB equation associated with the robust control problem (15) is given by

sup
π∈U0

inf
ϑ∈V0

{(
∂

∂t
+ Lπ,ϑ

)
wz(t, v) +

M∑
i=1

(1− zi)
[
ϑi,z log(ϑi,z)− ϑi,z + 1

]
hPi,z(t)

Υi,z(t, v)

}
= 0 (28)

with terminal condition wz(T, v) = U(v). Here the operator Lπ,ϑ := Lπc +Lπ,ϑJ acts on any function ϕz(t, v)
which is C1 in (t, v), as follows:

Lπc ϕz(t, v) := v
∂ϕz(t, v)

∂v

r − M∑
j=1

(
M∑
i=1

πi(1− zi)Gi,j,z(t)

)
(1− zj)hj,z(t)

 , (29)

Lπ,ϑJ ϕz(t, v) :=

M∑
j=1

[
ϕzj

(
t, v + v

( M∑
i=1

πi(1− zi)Gi,j,z(t)

))
− ϕz(t, v)

]
(1− zj)ϑj,zhPj,z(t),

where, for i = 1, . . . ,M and z ∈ S, πi = πi,z(t, v) on (t, v) ∈ [0, T ]× R+ so that π = (πi)i=1,...,M ∈ U0.

4 Optimal Feedback Functions

This section rigorously analyzes the optimal feedback functions. Section 4.1 derives the HJB equation
associated with the worst-case measure. We then analyze the optimal feedback functions under such a
measure in section 4.2.

4.1 Worst-Case Measure

This section gives the explicit form of the HJB equation associated with the worst-case measure, i.e. it
analyzes the inner minimization problem in Eq. (28). To this purpose, we first use separation of variables
and propose the following decomposition of the value function:

wz(t, v) = U(v)Bz(t), (30)

where Bz(t) is a positive C1-function in t ∈ [0, T ] for each z ∈ S. Using the expressions for the operators in
(29) and the decomposition (30), we define the following Hamiltonian by

Hπ,ϑz (t, v) := Lπ,ϑwz(t, v) +

M∑
i=1

(1− zi)
[
ϑi,z log(ϑi,z)− ϑi,z + 1

]
hPi,z(t)

Υi,z(t, v)

= γU(v)Bz(t)

r − M∑
j=1

Γπj,z(t)(1− zj)hj,z(t)


+U(v)

M∑
j=1

[
Bzj (t)

(
1 + Γπj,z(t)

)γ −Bz(t)
]
(1− zj)ϑj,zhPj,z(t)

+U(v)

M∑
j=1

(1− zj)
[
ϑj,z log(ϑj,z)− ϑj,z + 1

]
hPj,z(t)

µj,z(t)
. (31)
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Above, we have used the following linear transformation of the feedback function: for (t, z) ∈ [0, T ]× S,
and π ∈ U0,

Γπj,z(t) :=

M∑
i=1

πi(1− zi)Gi,j,z(t), j = 1, . . . ,M. (32)

Then, for j = 1, . . . ,M , and z ∈ S, the solution of the first-order condition
∂Hπ,ϑz (t,v)
∂ϑj,z

= 0 is given by

ϑ∗,πj,z (t) = exp

{
− µj,z(t)

[
Bzj (t)

(
1 + Γπj,z(t)

)γ −Bz(t)
]}

, if zj = 0. (33)

We will prove in the verification theorem that ϑ∗,πj,z (t) given by (33) indeed identifies the worst-case measure
corresponding to π. Substituting the expression (33) into the master HJB equation (28) yields

sup
π∈Ut

{
U(v)B′z(t) +Hπ,ϑ

∗,π

z (t, v)
}

= 0 (34)

with terminal condition wz(T, v) = U(v). In the above expression, for π ∈ Ut, the Hamiltonian H
π,ϑ∗,πz
z (t)

is defined by (31) with ϑ replaced by ϑ∗,πz = (ϑ∗,πi,z )i=1,...,M given by (33). In the sequel of the paper, to

lighten notation, we use Hπ,ϑ
∗

z in place of H
π,ϑ∗,πz
z .

4.2 Optimal Feedback Functions under Worst Case Measure

This section derives an explicit expression for the optimal feedback functions. These are associated with the
HJB equation (34). Our objective is to find the optimal admissible feedback function π∗z(t) = (π∗i,z(t))i=1,...,M ,
(t, z) ∈ [0, T ]× S, where π∗i,z(t) is the feedback function yielding the optimal fraction of wealth invested in
the i-th bond when the default state is z ∈ S. From the definition of admissibility, for each (t, z) ∈ [0, T ]×S
it must hold that

1 + Γπ
∗

j,z(t) > 0, j = 1, . . . ,M, (35)

where Γπj,z(t) is given by (32). From (26), it can be seen that the condition (35) guarantees that the wealth
process remains positive after any occurrence of a default event.

We solve the system of first order conditions
∂Hπ,ϑ

∗
z (t,v)
∂πi

= 0, i = 1, . . . ,M , by using (31) and (33) and
obtain

M∑
j=1

(1− zj)hPj,z(t)Bzj (t)(1− zi)Gi,j,z(t)
(
1 + Γπj,z(t)

)γ−1
ϑ∗,πj,z

= Bz(t)

M∑
j=1

(1− zi)Gi,j,z(t)(1− zj)hj,z(t). (36)

For any integer 0 ≤ m ≤M , and default state z = 0j1,...,jm , Definition 3.1 implies that the feedback function
π∗j1,j1,...,jm(t) = · · · = π∗jm,j1,...,jm(t) = 0. Hence, for 0 ≤ m ≤ M − 1, the optimal strategies in the bonds
which have not yet defaulted, π∗j1,...,jm := (π∗j,j1,...,jm)j /∈{j1,...,jm}, is obtained from Eq. (36) and given by∑

j /∈{j1,...,jm}

hPj,j1,...,jm(t)Bj1,...,jm,j(t)Gi,j,j1,...,jm(t)
(
1 + Γπ

∗

j,j1,...,jm(t)
)γ−1

ϑ∗,π
∗

j,j1,...,jm

= Bj1,...,jm(t)
∑

j /∈{j1,...,jm}

Gi,j,j1,...,jm(t)hj,j1,...,jm(t), ∀ i /∈ {j1, . . . , jm}. (37)

Note: In the the rest of the paper, to lighten notation we omit the dependence of the above

quantities on j1, . . . , jm, i.e. on the obligors which have defaulted.

Our next step is to rewrite the above system in matrix form. Let {jm+1, . . . , jM} := {1, . . . ,M} \
{j1, . . . , jm}. Define the following matrices

G(t) :=


Gjm+1,jm+1(t) Gjm+1,jm+2(t) . . . Gjm+1,jM (t)
Gjm+2,jm+1

(t) Gjm+2,jm+2
(t) . . . Gjm+2,jM (t)

...
...

. . .
...

GjM ,jm+1
(t) GjM ,jm+2

(t) . . . GjM ,jM (t)


(M−m)×(M−m)

, (38)
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and

A(t) :=


hPjm+1

(t)Bjm+1(t) 0 . . . 0

0 hPjm+2
(t)Bjm+2(t) . . . 0

...
...

. . .
...

0 0 . . . hPjM (t)BjM (t)


(M−m)×(M−m)

. (39)

The matrix G(t) can be interpreted as a bond depreciation matrix. Each entry of this matrix gives the
depreciation of a bond underwritten by an alive obligor in case another obligor defaults. The matrix A(t),
instead, can be interpreted as a matrix of default risk adjustments. Each diagonal entry scales the reference
default intensity of an alive obligor by a factor equal to the value function in an augmented default state
where a new obligor defaults. We make the following assumption:

(A1) For t ∈ [0, T ], the matrix G(t) has full rank.

Such an assumption means that at any time t there exist no redundant bond securities. In other words,
each bond security cannot be replicated via a linear combination of the others. Clearly, it is always satisfied
in the absence of default contagion because in this case, for each time t, the matrix (38) would become
diagonal with nonzero entries.

Next, for (y, x) ∈ R2
+, we define the following function

Yy(x) := xe−yx
γ
γ−1

. (40)

For fixed y > 0, the positive function x−→ Yy(x) is smooth and increasing on x ∈ R+, since γ ∈ (0, 1). This
implies that it admits an inverse function x−→ Y−1

y (x), x ∈ R+, which is also smooth and increasing. Let
δ := γ

1−γ . Then

Yy(x) = xe−yx
−δ

= xe−(y−1/δx)−δ = y1/δy−1/δxe−(y−1/δx)−δ = y1/δY1(y−1/δx).

Hence, for fixed x ∈ R+ the positive function y−→ Yy(x) is also smooth on y ∈ R+, and further it holds that

Yy
(
y1/δY−1

1 (y−1/δx)
)

= y1/δY1

(
y−1/δy1/δY−1

1 (y−1/δx)
)

= y1/δY1

(
Y−1

1 (y−1/δx)
)

= x.

Hence, we obtain the following useful relation

Y−1
y (x) = y1/δY−1

1

(
y−1/δx

)
. (41)

This shows that for fixed x ∈ R+, the positive inverse function y−→ Y−1
y (x), y ∈ R+, is also smooth. We

next discuss the analytic properties of the derivative of the function x−→ Y−1
y (x). Since Yy

(
Y−1
y (x)

)
= x,

application of the chain rule leads to

∂Y−1
y (x)

∂x
=

1
∂Yy(z)
∂z

∣∣
z=Y−1

y (x)

. (42)

Hence, we deduce that x−→ ∂Y−1
y (x)

∂x , x ∈ R+, is continuous and y−→ ∂Y−1
y (x)

∂x , y ∈ R+, is also continuous.
Using (33) and (40), it holds that

Yπ
∗

j (t) := eµj(t)B(t)Yµj(t)Bj(t)
(
(1 + Γπ

∗

j (t))γ−1
)

= eµj(t)B(t)(1 + Γπ
∗

j (t))γ−1e−µj(t)Bj(t)(1+Γπ
∗

j (t))γ

= (1 + Γπ
∗

j (t))γ−1e−µj(t)
[
Bj(t)(1+Γπ

∗
j (t))γ−B(t)

]
=
(
1 + Γπ

∗

j (t)
)γ−1

ϑ∗,π
∗

j (t). (43)

Further, define the following matrices:

Yπ
∗
(t) :=


Yπ∗jm+1

(t)

Yπ∗jm+2
(t)

...

Yπ∗jM (t)


(M−m)×1

, and B(t) := B(t)


hjm+1(t)
hjm+2(t)

...
hjM (t)


(M−m)×1

. (44)

Then, we can rewrite (37) in the matrix form given by

G(t)A(t)Yπ
∗
(t) = G(t)B(t), t ∈ [0, T ]. (45)

This leads to the following lemma.
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Lemma 4.1. Under Assumption (A1), we have Yπ
∗
(t) = A−1(t)B(t), for all t ∈ [0, T ], i.e. for each

j ∈ {jm+1, . . . , jM},

Yπ
∗

j (t) =
B(t)hj(t)

Bj(t)hPj (t)
. (46)

We recall that we are omitting the subscripts j1, . . . , jm to lighten notation.

We next use the above lemma to obtain the optimal feedback functions. From (40), it can be seen that
the positive smooth function x−→ Yµj(t)Bj(t)(x) is increasing on x ∈ R+, being γ ∈ (0, 1). Hence, the

corresponding positive smooth inverse function x−→ Y−1
µj(t)Bj(t)

(x), x ∈ R+, is also increasing. Further, it

follows from (40) and (41) that limx↓0 Y−1
µj(t)Bj(t)

(x) = 0, and limx↑+∞ Y−1
µj(t)Bj(t)

(x) = +∞. Using (46), we

obtain, for j ∈ {jm+1, . . . , jM},

(
1 + Γπ

∗

j (t)
)γ−1

= Y−1
µj(t)Bj(t)

(
hj(t)B(t)

hPj (t)Bj(t)
e−µj(t)B(t)

)
. (47)

Next, define the following (M −m)-dimensional column vector of optimal feedback functions by π∗(t) =
(π∗j (t))j∈{jm+1,...,jM}, and the following (M −m)-dimensional column vector

Ŷ(t) :=



[
Y−1
µjm+1

(t)Bjm+1
(t)

( hjm+1
(t)B(t)

hP
jm+1

(t)Bjm+1
(t)
e−µjm+1

(t)B(t)
)] 1

γ−1 − 1[
Y−1
µjm+2

(t)Bjm+2
(t)

( hjm+2
(t)B(t)

hP
jm+2

(t)Bjm+2
(t)
e−µjm+2

(t)B(t)
)] 1

γ−1 − 1

...[
Y−1
µjM (t)BjM (t)

( hjM (t)B(t)

hP
jM

(t)BjM (t)
e−µjM (t)B(t)

)] 1
γ−1 − 1


(M−m)×1

. (48)

We then have the following main result.

Proposition 4.2. Under Assumption (A1), the vector of optimal feedback functions is

π∗(t) =
(
G−1(t)

)>Ŷ(t), t ∈ [0, T ]. (49)

Proof. Plugging the expression for Γπ
∗

j,z(t) with j ∈ {jm+1, . . . , jM} given by Eq. (32) inside Eq. (47), we
obtain, for t ∈ [0, T ],

M∑
i=1

π∗iGi,j(t) =

[
Y−1
µj(t)Bj(t)

(
hj(t)B(t)

hPj (t)Bj(t)
e−µj(t)B(t)

)] 1
γ−1

− 1, ∀ j ∈ {jm+1, . . . , jM}.

We can then rewrite the above equations in a matrix-vector form, and recover π∗(t), t ∈ [0, T ] as the solution

of a system of linear equations G>(t) π∗(t) = Ŷ(t), where > denotes the transpose of the matrix. The result
then follows using the invertibility assumption on G. �

We will prove in the verification theorem that the (M −m)-dimensional vector π∗(t), t ∈ [0, T ], given
by (49) is indeed the optimal feedback function at time t in the default state where names jm+1, . . . , jM are
alive and j1, . . . , jm defaulted.

5 HJB Equations

This section is devoted to analyze the HJB equation (34). Our goal is to establish existence and uniqueness
of a classical solution.

Throughout the section, we set ϑ∗z(t) = ϑ∗,π
∗

z (t) for notational convenience. Using (31) and the expression
for ϑ∗,πj,z (t) given in Eq. (33), it follows that the Hamiltonian associated with the optimal feedback function
and the worst-case measure is given by

Hπ
∗,ϑ∗

z (t, v) = U(v)Hπ
∗

z (t), (50)

where, for (t, z) ∈ [0, T ]× S, the function

Hπ
∗

z (t) := γBz(t)

r − M∑
j=1

Γπ
∗

j,z(t)(1− zj)hj,z(t)

+

M∑
j=1

(1− zj)hPj,z(t)

µj,z(t)

(
1− ϑ∗j,z

)
. (51)
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Then, the HJB equation (34) is equivalent to the following equation:

B′z(t) +Hπ
∗

z (t) = 0, t ∈ [0, T ), and Bz(T ) = 1. (52)

Next, we analyze existence and uniqueness of the solution to the default-state dependent Eq. (52). We
proceed inductively and prove that for some positive default-state dependent constants θz < θ̄z, Bz(t) ∈
[θz, θ̄z], t ∈ [0, T ], is the unique global positive solution to the HJB equation (52) associated with the default
state z.

• Base step: m = M . The default state is z = 0j1,...,jM = 1. By definition of admissible strategies, the
optimal feedback function π∗j (t) = π∗j,j1,...,jM (t) = 0 for all j = 1, . . . ,M . From (32), it follows that

Γπ
∗

j (t) = Γπ
∗

j,j1,...,jM
(t) = 0 for all j = 1, . . . ,M . Using Eq. (51), the HJB equation (52) is reduced to

B′j1,...,jM (t) + γrBj1,...,jM (t) = 0 on t ∈ [0, T ) and Bj1,...,jM (T ) = 1. The unique solution is then given
by

Bj1,...,jM (t) = eγr(T−t) ∈ [1, eγrT ], t ∈ [0, T ]. (53)

Hence, our statement holds.

• The default state is z = 0j1,...,jm with m ≤M−1. By the induction hypothesis, there exists θj1,...,jm <

θ̄j1,...,jm such that Bj(t) = Bj1,...,jm,j(t) ∈ [θj1,...,jm , θ̄j1,...,jm ], t ∈ [0, T ], is the unique global positive

solution to the HJB equation (52) associated with the default state zj = 0j1,...,jm,j , j /∈ {j1, . . . , jm}.
Given this inductive assumption, we show the existence of a unique global positive solution to the HJB
equation (52), when the default state is z.

First, by definition of admissibility, the optimal feedback function π∗j = π∗j,j1,...,jm = 0 for all j ∈
{j1, . . . , jm}, and hence for all j /∈ {j1, . . . , jm}, it holds that Γπ

∗

j,j1,...,jm
(t) =

∑
i/∈{j1,...,jm} π

∗
i (t)Gi,j(t).

For all j /∈ {j1, . . . , jm}, we further have

ϑ∗j (t) = ϑ∗j,j1,...,jm(t) = exp
{
− µj(t)

[
Bj(t)

(
1 + Γπ

∗

j (t)
)γ −B(t)

]}
, (54)

where we recall that B(t) = Bj1,...,jm(t), since we are omitting the dependence on the defaulted obligors
to lighten notation. Then the HJB equation (52) is reduced to

0 = B′(t) + γB(t)

r − ∑
j /∈{j1,...,jm}

Γπ
∗

j (t)hj(t)


+

∑
j /∈{j1,...,jm}

hPj (t)

µj(t)

{
1− e−µj(t)[Bj(t)(1+Γπ

∗
j (t))γ−B(t)]

}
, (55)

with terminal condition B(T ) = 1.

Next, we derive an equivalent representation for Eq. (55), which turns out to be more convenient for
the analysis of the solution. First, using (47) we obtain

Γπ
∗

j (t) =

[
Y−1
µj(t)Bj(t)

(
hj(t)

hPj (t)

B(t)

Bj(t)
e−µj(t)B(t)

)] 1
γ−1

− 1, (56)

and from (43), (47) and Lemma 4.1, it follows that

ϑ∗j (t) =
Yπ∗j (t)(

1 + Γπ
∗

j (t)
)γ−1 =

hj(t)

hPj (t)

B(t)
Bj(t)

Y−1
µj(t)Bj(t)

(
hj(t)B(t)

hP
j(t)Bj(t)

e−µj(t)B(t)
) . (57)

Thus, the Hamiltonian Hπ
∗
(t) given by (51) can be rewritten in the following form (notice that, as

stated earlier, we are omitting the dependence on z):

Hπ
∗
(t) = B(t)

γ(r +
∑

j /∈{j1,...,jm}

hj(t)

)
−

∑
j /∈{j1,...,jm}

Cj
(
t, µj(t)Bj(t);B(t)

)
+

∑
j /∈{j1,...,jm}

hPj (t)

µj(t)
, (58)
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where, the function Cj(t, y;x), j /∈ {j1, . . . , jm}, on (t, y, x) ∈ [0, T ]× R2
+ is defined as

Cj(t, y;x) := γhj(t)

[
Y−1
y

(
µj(t)hj(t)

yhPj (t)
J
(
µj(t);x

))] 1
γ−1

+
hj(t)

y

[
Y−1
y

(
µj(t)hj(t)

yhPj (t)
J
(
µj(t);x

))]−1

, (59)

with the function J (a;x) := xe−ax for (a, x) ∈ R2
+. Then we obtain the following equation which is

equivalent to the original HJB equation (55):

0 = B′(t) +B(t)

γ(r +
∑

j /∈{j1,...,jm}

hj(t)

)
−

∑
j /∈{j1,...,jm}

Cj
(
t, µj(t)Bj(t);B(t)

)
+

∑
j /∈{j1,...,jm}

hPj (t)

µj(t)
. (60)

Given any positive continuous function f(t) on t ∈ [0, T ] which admits a strictly positive lower bound,
set

mf
T := inf

t∈[0,T ]
f(t), Mf

T := sup
t∈[0,T ]

f(t). (61)

Then 0 < mf
T ≤ Mf

T < +∞. Existence of a classical solution to the HJB equation is then proved
in two main steps. We first show that if a solution exists, then it must be bounded. We then use
the established lower and upper bounds to show existence and uniqueness of a solution to the HJB
equation.

Proposition 5.1. If Eq. (60) admits a unique global solution B(t), t ∈ [0, T ], then there exist two
positive constants θ < θ̄ so that B(t) ∈ [θ, θ̄] for all t ∈ [0, T ].

Proof. First we notice that for fixed a ∈ R+, the smooth function J (a;x) = xe−ax with x ∈ R+

admits supx∈R+
J (a;x) = J (a; a−1) = a−1e−1 and limx↓0 J (a, x) = limx↑+∞ J (a, x) = 0. Recall that

the the positive inverse function x−→ Y−1
µj(t)Bj(t)

(x) is C1 and increasing. Then, for fixed (t, y) ∈
[0, T ]× (0,+∞), and for all x ∈ R+,[

Y−1
µj(t)Bj(t)

(
hj(t)

hPj (t)Bj(t)
J
(
µj(t);x

))]−1

≥

[
Y−1
µj(t)Bj(t)

(
hj(t)

hPj (t)Bj(t)
J
(
µj(t);µ

−1
j (t)

))]−1

≥

[
Y−1
µj(t)Bj(t)

(
e−1 sup

t∈[0,T ]

[ hj(t)

hPj (t)µj(t)Bj(t)

])]−1

=: κT
(
µj(t)Bj(t)

)
,

where we used the fact that
hj(t)

hP
j(t)Bj(t)

J
(
µj(t);µ

−1
j (t)

)
= e−1 hj(t)

hP
j(t)µj(t)Bj(t)

. Moreover, the quantity κT

is finite since, recalling the notation introduced in (61), we have

0 <
m
hj/h

P
j

T

M
µj
T M

Bj
T

≤ sup
t∈[0,T ]

[
hj(t)

hPj (t)

1

µj(t)Bj(t)

]
≤

M
hj/h

P
j

T

m
µj
T m

Bj
T

< +∞.

Using the above given lower bound, we obtain the following lower bound for all x ∈ R+,

Cj
(
t, µj(t)Bj(t);x

)
≥ γhj(t)

(
κT
(
µj(t)Bj(t)

)) 1
1−γ +

hj(t)

µj(t)Bj(t)
κT
(
µj(t)Bj(t)

)
. (62)

Define the function

Dm

(
t, µj(t)Bj(t), x

)
:= γ

(
r +

∑
j /∈{j1,...,jm}

hj(t)

)
−

∑
j /∈{j1,...,jm}

Cj
(
t, µj(t)Bj(t);x

)
. (63)

It then holds that

Dm

(
t, µj(t)Bj(t), x

)
≤ γ

(
r +

∑
j /∈{j1,...,jm}

hj(t)

)
− γ

∑
j /∈{j1,...,jm}

hj(t)
(
κT
(
µj(t)Bj(t)

)) 1
1−γ

−
∑

j /∈{j1,...,jm}

hj(t)

µj(t)Bj(t)
κT
(
µj(t)Bj(t)

)
=: D̄m(t). (64)
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Notice that the strictly positive function y−→ κT (y) is continuous in y > 0 since y−→ Y−1
y (x) is

continuous for fixed x ∈ R+ using (41). Then

M D̄m
T ≤ γ

(
r +

∑
j /∈{j1,...,jm}

M
hj
T

)
− γ

∑
j /∈{j1,...,jm}

m
hj
T

{
inf

y∈[m
µj
T m

Bj
T ,M

µj
T M

Bj
T ]

κT (y)

} 1
1−γ

−
∑

j /∈{j1,...,jm}

m
hP
j

T m
hj/h

P
j

T

M
µj
T M

Bj
T

{
inf

y∈[m
µj
T m

Bj
T ,M

µj
T M

Bj
T ]

κT (y)

}
< +∞,

since γ ∈ (0, 1). Using the integral representation of the solution to Eq. (60) and the inequality (63),
it follows that

B(t) = e
∫ T
t
Dm(u,µj(u)Bj(u),B(u))du +

∑
j /∈{j1,...,jm}

∫ T

t

hPj (s)

µj(s)
e
∫ s
t
Dm(u,µj(u)Bj(u),B(u))duds

≤ eM
D̄m
T (T−t) +

∑
j /∈{j1,...,jm}

∫ T

t

hPj (s)

µj(s)
eM

D̄m
T (s−t)ds

≤ eM
D̄m
T (T−t)

[
1 + (M −m)(T − t)

M
hP
j

T

m
µj
T

]
≤ eTM

D̄m
T

[
1 + TM

M
hP
j

T

m
µj
T

]
=: θ̄, (65)

where the constant θ̄ ∈ R+. Above, M −m is the number of obligors which are alive. It is also clear
from the first equality in the above array of equations that B(t) > 0 for all t ∈ [0, T ]. This is because
hPj (t) and µj(t) are all strictly positive on t ∈ [0, T ].

Next, we use the above established upper bound θ̄ > 0 to conclude the existence of a positive lower
bound for the solution B(t), t ∈ [0, T ]. Recall the definition of Γπj (t) given in Eq. (32). We choose
an admissible control π̂ = (π̂i(t, B(t)); i ∈ {1, . . . ,M}) which satisfies the following relation for
i /∈ {j1, . . . , jm}:

Γπ̂j (t) = Γπ̂j (t, B(t)) :=
∑

i/∈{j1,...,jm}

π̂i(t, B(t))Gi,j(t) =

(
B(t)

Bj(t)

) 1
γ

− 1, j /∈ {j1, . . . , jm}. (66)

We define π̂i(t, B(t))) = 0 for i ∈ {j1, . . . , jm}. Notice that the existence of such an admissible control
is guaranteed by Assumption (A1) on the invertibility of the matrix G(t), t ∈ [0, T ], given in Eq. (38).
In fact, this admissible control is given by π̂ = [π̂i; i /∈ {j1, . . . , jm}]> = (G−1(t))>[(B(t)/Bj(t))

1/γ −
1; j /∈ {j1, .., jm}]>. Rearranging terms in Eq. (66), we obtain

Bj(t)
(
1 + Γπ̂j (t)

)γ −B(t) = 0, j /∈ {j1, . . . , jm}.

The above equation directly implies that

∑
j /∈{j1,...,jm}

hPj (t)

µj(t)

{
1− e−µj(t)

[
Bj(t)(1+Γπ̂j (t))γ−B(t)

]}
= 0. (67)

Using that B(t) > 0 for all t ∈ [0, T ], and recalling the expression for ϑ∗j (t) given in Eq. (54), the
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Hamiltonian (51) satisfies

Hπ
∗
(t) = γB(t)

r − ∑
j /∈{j1,...,jm}

Γπ
∗

j (t)hj(t)

+
∑

j /∈{j1,...,jm}

hPj (t)

µj(t)

{
1− e−µj(t)

[
Bj(t)(1+Γπ

∗
j (t))γ−B(t)

]}
≥ Hπ̂(t)

= γB(t)

r − ∑
j /∈{j1,...,jm}

Γπ̂j (t)hj(t)

+
∑

j /∈{j1,...,jm}

hPj (t)

µj(t)

{
1− e−µj(t)

[
Bj(t)(1+Γπ̂j (t))γ−B(t)

]}

= γB(t)

r − ∑
j /∈{j1,...,jm}

Γπ̂j (t)hj(t)

 = γB(t)

r − ∑
j /∈{j1,...,jm}

[(
B(t)

Bj(t)

) 1
γ

− 1

]
hj(t)


≥ γB(t)

r +
∑

j /∈{j1,...,jm}

hj(t)−
∑

j /∈{j1,...,jm}

(
θ̄

Bj(t)

) 1
γ

hj(t)


≥ γB(t)

r +
∑

j /∈{j1,...,jm}

m
hj
T −

∑
j /∈{j1,...,jm}

(
θ̄

m
Bj
T

) 1
γ

M
hj
T

 =: B(t)KT . (68)

Above, the third equality is obtained using (67). The first inequality follows because the Hamiltonian
achieves its maximum value at the optimum π∗. The second inequality follows from the upper bound
for B(t) established in Eq. (65). The last inequality follows from the the fact that, by definition (61),

we have m
hj
T ≤ hj(t) ≤M

hj
T and Bj(t) ≤M

Bj
T for all t ∈ [0, T ].

Let b ∈ (0, 1] be an arbitrary constant. Consider the following ODE:

v′(t) + v(t)KT = 0, t ∈ [0, T ), v(T ) = b.

Using the comparison theorem of ODEs along with the inequality (68), it follows that the solution to
Eq. (55) is lower bounded by the solution of the above ODE, i.e., B(t) ≥ v(t) = beKT (T−t) for t ∈ [0, T ].
Further, define the positive constant

θ :=

{
b, if KT ≥ 0,

beKTT , if KT < 0.
(69)

Then we obtain B(t) ≥ θ for all t ∈ [0, T ]. This completes the proof of the proposition. �

Using the above established lower and upper bounds, we can prove the main theorem which ensures
existence and uniqueness of a solution to our HJB equation.

Theorem 5.2. There exists a unique solution B(t), t ∈ [0, T ], to the HJB equation (60) satisfying
B(t) ∈ [θ, θ̄] for all t ∈ [0, T ]. We recall that the positive constants θ and θ̄ have been given in
Proposition 5.1, see equations (69) and (65) therein.

Proof. We first consider the following truncated HJB equation:

0 = B′θ(t) +
∑

j /∈{j1,...,jm}

C
(θ)
j

(
t, µj(t)Bj(t);Bθ(t)

)
+

∑
j /∈{j1,...,jm}

hPj (t)

µj(t)
, (70)

with Bθ(T ) = 1. For all j /∈ {j1, . . . , jm} and (t, x) ∈ [0, T ]× R+, we define the function

C
(θ)
j

(
t, µj(t)Bj(t);x

)
:= xγ

(
r +

∑
j /∈{j1,...,jm}

hj(t)

)
−

∑
j /∈{j1,...,jm}

(
θ ∨ x ∧ θ̄

)
Cj
(
t, µj(t)Bj(t); θ ∨ x ∧ θ̄

)
.

Using (41) and (42), and recalling the expression (59), it can be easily verified that the function

x−→ C
(θ)
j

(
t, µj(t)Bj(t);x

)
, x ∈ R+, is Lipschitz continuous uniformly in t ∈ [0, T ]. This implies

existence and uniqueness of the solution to Eq. (70), since the function t−→
∑
j /∈{j1,...,jm}

hP
j(t)

µj(t)
is

continuous and bounded on t ∈ [0, T ]. By Proposition 5.1, Bθ(t) ∈ [θ, θ̄] for t ∈ [0, T ]. This yields that

C
(θ)
j

(
t, µj(t)Bj(t);Bθ(t)

)
= Cj

(
t, µj(t)Bj(t);Bθ(t)

)
. Then the uniqueness of the solution of Eq. (70)

implies that B(t) = Bθ(t) is the unique solution of the HJB equation (60). �
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6 Verification Theorem

In this section, we show that the optimal feedback function is given by Eq. (49). Notice that the optimal
feedback function immediately yields the optimal bond investment strategy in light of Eq. (25). We also show
that the value function associated with the control problem is given by the product U(v)B∗z(t), (v, t,z) ∈
R+ × [0, T ]× S, where B∗z(t), (t, z) ∈ [0, T ]× S, is the unique classical solution of Eq. (52).

Theorem 6.1. For t ∈ [0, T ], let the default state Z(t−) = 0j1,...,jm , where 0 ≤ m ≤ M . Here, j1, . . . , jm
denote m distinct obligors on which risky bonds are underwritten. We then have

• If m = M (i.e., all obligors have defaulted), the time t-optimal strategy in risky bonds is given by
π̃∗1(t) = · · · = π̃∗M (t) = 0. The corresponding value function is given by w1(t, v) = U(v)eγr(T−t) for
(t, v) ∈ [0, T ]× R+.

• If 0 ≤ m ≤ M − 1, let (π∗j,j1,...,jm(t), B∗j1,...,jm(t))j /∈{j1,...,jm}, t ∈ [0, T ], be given by (49) and by the
unique positive bounded solution to Eq. (60) respectively. Then the following holds:

1. The time t-optimal strategy in each risky bond is given by π̃∗j (t) = 0 for j ∈ {j1, . . . , jm}, and
π̃∗j (t) = π∗j,j1,...,jm(t) for j /∈ {j1, . . . , jm}.

2. The time t-worst-case measure corresponding to the optimal feedback function π∗ ϑ∗,π
∗

j,j1,...,jm
(t) :=

ϑ∗,π
∗

j,0j1,...,jm
(t) is given by (33), where π∗ = (π∗j,j1,...,jm(t), t ∈ [0, T ]; j /∈ {j1, . . . , jm}) has been

specified above.

3. The value function associated with the robust optimization criterion (15) is given by wj1,...,jm(t, v) :=
w0j1,...,jm (t, v) = U(v)B∗j1,...,jm(t) for (t, v) ∈ [0, T ]× R+.

Proof. Recall the Hamiltonian given by (31). Then, given the default state Z(t−) = z = 0j1,...,jm , 0 ≤
m ≤ M − 1, (j, n) /∈ {j1, . . . , jm} × {j1, . . . , jm}, and for a fixed admissible feedback function π satisfying
(35), it holds that

Hπ,ϑj,n (t, v) :=
∂2Hπ,ϑ(t, v)

∂ϑj∂ϑn
= 0, if j 6= n, and Hπ,ϑj,j (t, v) = U(v)

hPj (t)

µj(t)
ϑ−1
j > 0, (71)

since ϑj > 0. Hence Hπ,ϑ(t, v) is concave in ϑ, and ϑ∗,π = (ϑ∗,πj ; j /∈ {j1, . . . , jm}) given by (33) is the
worst-case measure corresponding to π, i.e.,

Hπ,ϑ
∗,π

(t, v) ≤ Hπ,ϑ(t, v), for all (π,ϑ) ∈ U0 × V0. (72)

Fix ϑ∗,π. Then, for the default state z = 0j1,...,jm with 0 ≤ m ≤ M − 1, (i, k) /∈ {j1, . . . , jm}2, and π
satisfying (35), one has

Hπi,k(t, v) :=
∂2Hπ,ϑ

∗,π
(t, v)

∂πi∂πk
=

∑
j /∈{j1,...,jm}

`j(t, v)Gi,j(t)Gk,j(t), (73)

where for all j /∈ {j1, . . . , jm} and (t, v) ∈ [0, T ]× (0,+∞), we define

`j(t, v) := −γU(v)hPj (t)Bj(t)
(
1 + Γπj (t)

)γ−2
ϑ∗,πj

[
(1− γ) + γµj(t)Bj(t)

(
1 + Γπj (t)

)γ]
< 0.

Notice that `j(t, v) is negative in the whole domain, using (35) and the fact that γ ∈ (0, 1). Hence, the
Hessian matrix of the Hamiltonian Hπ,ϑ

∗,π
(t, v) in π is given by

Hπ(t, v) = G(t)`(t, v)G>(t), (t, v) ∈ [0, T ]× (0,+∞), (74)

where the (M − m) × (M − m)-dimensional matrix G(t) is given by (38), and the (M − m) × (M − m)-
dimensional matrix

`(t, v) :=


`jm+1

(t, v) 0 . . . 0
0 `jm+2(t, v) . . . 0
...

...
. . .

...
0 0 . . . `jM (t, v)


(M−m)×(M−m)

. (75)

17



Using (74), for every non-zero row vector x consisting of M −m real components, we obtain

xHπ(t, v)x> = xG(t)`(t, v)G>(t)x> =
∑

j /∈{j1,...,jm}

`j(t, v)

 ∑
k/∈{j1,...,jm}

xkGk,j(t)

2

< 0, (76)

since `j(t, v) < 0 for all j /∈ {j1, . . . , jm}. This shows that for fixed (t, v) ∈ [0, T ] × (0,∞), the Hessian
Hπ(t, v) is negative definite for all feedback functions π satisfying (35). Hence, π∗ = (π∗j )j /∈{j1,...,jm}
obtained from the first order conditions (37) is the optimum, the value of π at which Hπ,ϑ

∗,π
(t, v) achieves

the maximum, i.e.,

Hπ,ϑ
∗,π

(t, v) ≤ Hπ
∗,ϑ∗,π

∗

(t, v), for all π ∈ U0. (77)

By the inequality (72) and take π = π∗ therein, we obtain Hπ
∗,ϑ∗,π

∗

(t, v) ≤ Hπ
∗,ϑ(t, v) for all ϑ ∈

V0. Further, using the inequality (77), we obtain Hπ,ϑ
∗,π

(t, v) ≤ Hπ
∗,ϑ∗,π

∗

(t, v) ≤ Hπ
∗,ϑ(t, v) for all

(π,ϑ) ∈ U0×V0. This implies that π∗ is the optimal feedback function and ϑ∗,π
∗

is the worse-case measure
corresponding to π∗.

Recall the notation ϑ∗ := ϑ∗,π
∗

introduced at the beginning of section 5. For u ∈ [t, T ], define the
process Y π̃

∗

u := U(V π̃
∗

u )B∗Z(u)(u), where π̃∗ = (π̃∗i )i=1,...,M with π̃∗i (u) = π∗i,Z(u−)(u), u ∈ [t, T ], and V π̃
∗

u is

the optimally controlled wealth process satisfying the dynamics (26). Applying Itô’s formula, for u ∈ [t, T ]
we obtain

Y π̃
∗

u = Y π̃
∗

t +

∫ u

t

Rπ̃
∗

Z(s)(s, V
π̃∗

s )ds+M π̃∗

u −M π̃∗

t , (78)

where, for (u, v) ∈ [t, T ] × R+, Rπ̃
∗

z (s, v) := U(v)B∗
′

z (s) + Lπ∗,ϑ∗(U(v)B∗z(s)). The operator Lπ∗,ϑ∗ :=

Lπ∗c + Lπ
∗,ϑ∗

J , where Lπ∗c and Lπ
∗,ϑ∗

J are defined by (29) with (π,ϑ) replaced by the optimum (π∗,ϑ∗).

Moreover, the P̃-(local) martingale M π̃∗

u , u ∈ [t, T ], is given by

M π̃∗

u :=

M∑
j=1

∫ u

0

U(V π̃
∗

s− )
[
B∗Zj(s−)(s)

(
1 + Γπ

∗

j,Z(s−)(s)
)γ −B∗Z(s−)(s)

]
dξP̃j (s). (79)

Notice that B∗z(t) satisfies (52). Then

Rπ̃
∗

z (s, v) = −U(v)

M∑
j=1

(1− zj)
[
ϑ∗j,z(s) log(ϑ∗j,z(s))− ϑ∗j,z(s) + 1

]
hPj,z(s)

µj,z(s)
,

where we set ϑ∗j,z(s) := ϑ∗,π
∗

j,z (s), given by (33) with (π, Bzj (t), Bz(t)) replaced by (π∗, B∗zj (t), B
∗
z(t)). Recall

the notation EP̃
t [·] := EP̃[·|Gt] introduced earlier. Then

EP̃
t

Y π̃∗u +

M∑
j=1

∫ u

t

U
(
V π̃

∗

s

) (1− Zj(s))
[
ϑ∗j,Z(s)(s) log(ϑ∗j,Z(s)(s))− ϑ

∗
j,Z(s)(s) + 1

]
hPj,Z(s)(s)

µj,Z(s)(s)
ds


= U

(
V π̃

∗

t

)
B∗Z(t)(t) + EP̃

t

[
M π̃∗

u −M π̃∗

t

]
.

We next take u = T ∧ τa,b, where τa,b := inf{s ≥ t; V π̃
∗

s ≥ b−1, or V π̃
∗

s ≤ a}, with 0 < a < V π̃
∗

t = v <
b−1 < +∞. Notice that for each z ∈ S, both B∗z(s) and Γπ

∗

i,z(s), i ∈ {1, . . . ,M}, are bounded on the closed

time interval [0, T ]. Then, for 0 < a < b−1 < +∞, it holds that EP̃
t

[
M π̃∗

T∧τa,b −M
π̃∗

t

]
= 0. Thus, we obtain

EP̃
t

[
Y π̃

∗

T∧τa,b

]
= U

(
V π̃

∗

t

)
B∗Z(t)(t) (80)

−
M∑
j=1

EP̃
t

[∫ T∧τa,b

t

U
(
V π̃

∗

s

) (1− Zj(s))
[
ϑ∗j,Z(s)(s) log(ϑ∗j,Z(s)(s))− ϑ

∗
j,Z(s)(s) + 1

]
hPj,Z(s)(s)

µj,Z(s)(s)
ds

]
.

Next, we want to prove that

lim
a,b−→0

EP̃
t

[
Y π̃

∗

T∧τa,b
]

= EP̃
t

[
Y π̃

∗

T

]
. (81)
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Let CT > 0 be a generic positive constant depending on T that may be different for each inequality below.
Since for each z ∈ S, B∗z(t) is bounded on t ∈ [0, T ] and γ ∈ (0, 1), by employing Hölder’s inequality, it
follows that

EP̃
t

[
Y π̃

∗

T∧τa,b

]
=

1

γ
EP̃
t

[(
V π̃

∗

T∧τa,b
)γ
B∗Z(T∧τa,b)(T ∧ τa,b)

]
≤ CTEP

t

[(
V π̃

∗

T∧τa,b

)2
]
.

Moreover, according to Corollary 7.1.5 in Chow and Teicher (1978), in order to prove (81), it suffices to
prove that there exists a constant CT > 0 so that

EP̃
t

[
sup

u∈[t,T ]

∣∣∣V π̃∗u − V π̃
∗

t

∣∣∣2] ≤ CT [1 +
∣∣∣V π̃∗t ∣∣∣2] . (82)

In order to establish the estimate (82), we first recall the dynamics of the wealth process V π̃
∗

u given

by (26). Writing it under P̃, we obtain dV π̃
∗

u = V π̃
∗

u $Z(u)(u)du + V π̃
∗

u−
∑M
j=1 Γπ

∗

j,Z(u−)(u)dξP̃j (u), where, for

j ∈ {1, . . . ,M}, z ∈ S, and u ∈ [t, T ], $z(u) := r +
∑M
j=1(1 − zj)Γπ

∗

j,z(u)
(
ϑ∗j,z(u) − hj,z(u)

hP
j,z(u)

)
hj,z(u). Using

(33) and Proposition 4.2, it follows that, ∀ z ∈ S,

max

 sup
t∈[0,T ]

|$z(t)| , sup
t∈[0,T ]

M∑
j=1

∣∣∣Γπ∗j,z(t)
∣∣∣
 < +∞. (83)

Using Hölder’s inequality, we get using (83) that for u ∈ [t, T ],

EP̃
t

[
sup

u∈[t,T ]

∣∣∣∣∫ u

t

V π̃
∗

s $Z(s)(s)ds

∣∣∣∣2
]
≤ (T − t)EP̃

t

[∫ T

t

∣∣∣V π̃∗s ∣∣∣2 ∣∣$Z(s)(s)
∣∣2 ds

]

≤ 2(T − t)EP̃
t

[∫ T

t

(∣∣∣V π̃∗s − V π̃
∗

t

∣∣∣2 +
∣∣∣V π̃∗t ∣∣∣2) ∣∣$Z(s)(s)

∣∣2 ds

]

≤ CT

{
EP̃
t

[∫ T

t

∣∣∣V π̃∗s − V π̃
∗

t

∣∣∣2 ds

]
+
∣∣∣V π̃∗t ∣∣∣2} .

Since t−→ hPj,z(t) is continuous, it is bounded on t ∈ [0, T ]. From Burkhölder-Davis-Gundy inequality (see
Protter (2004), Theorem IV.48, pag. 193), it follows that

EP̃
t

 sup
u∈[t,T ]

∣∣∣∣∣∣
M∑
j=1

∫ u

t

V π̃
∗

s− Γπ
∗

j,Z(s−)(s)dξ
P̃
j (s)

∣∣∣∣∣∣
2
 ≤ CTEP̃

t

 M∑
j=1

∫ T

t

∣∣∣V π̃∗s− ∣∣∣2 ∣∣∣Γπ∗j,Z(s−)(s)
∣∣∣2 dZj(s)


= CT

M∑
j=1

EP̃
t

[∫ T

t

∣∣∣V π̃∗s ∣∣∣2 ∣∣∣Γπ∗j,Z(s)(s)
∣∣∣2 ϑ∗j,Z(s)(s)h

P
j,Z(s)(s)ds

]

≤ CT

{
EP̃
t

[∫ T

t

∣∣∣V π̃∗s − V π̃
∗

t

∣∣∣2 ds

]
+
∣∣∣V π̃∗t ∣∣∣2} .

Then the moment estimate (82) follows from the Grownwall’s lemma. This shows the limiting equality (81).
Similarly, using (33), for each z ∈ S and j ∈ {1, . . . ,M}, it holds that

sup
u∈[t,T ]

∣∣∣∣∣
[
ϑ∗j,z(u) log(ϑ∗j,z(u))− ϑ∗j,z(u) + 1

]
hPj,z(u)

µj,z(u)

∣∣∣∣∣ < +∞.

We also have that for all j ∈ {1, . . . ,M},

lim
a,b−→0

EP̃
t

[∫ T∧τa,b

t

U
(
V π̃

∗

s

) (1− Zj(s))
[
ϑ∗j,Z(s)(s) log(ϑ∗j,Z(s)(s))− ϑ

∗
j,Z(s)(s) + 1

]
hPj,Z(s)(s)

µj,Z(s)(s)
ds

]

= EP̃
t

[∫ T

t

U
(
V π̃

∗

s

) (1− Zj(s))
[
ϑ∗j,Z(s)(s) log(ϑ∗j,Z(s)(s))− ϑ

∗
j,Z(s)(s) + 1

]
hPj,Z(s)(s)

µj,Z(s)(s)
ds

]
.
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Then, by (80) and using the relation (16), along with the terminal condition B∗z(T ) = 1 for all z ∈ S, we
obtain

EP̃
t

Y π̃∗T +

M∑
j=1

∫ T

t

(1− Zj(s))
[
ϑ∗j,Z(s)(s) log(ϑ∗j,Z(s)(s))− ϑ

∗
j,Z(s)(s) + 1

]
hPj,Z(s)(s)

Υj,Z(s)(s, V π̃
∗

s )
ds


= EP̃

t

U(V π̃∗T )
+

M∑
j=1

∫ T

t

(1− Zj(s))
[
ϑ∗j,Z(s)(s) log(ϑ∗j,Z(s)(s))− ϑ

∗
j,Z(s)(s) + 1

]
hPj,Z(s)(s)

Υj,Z(s)(s, V π̃
∗

s )
ds


= U

(
V π̃

∗

t

)
B∗Z(t)(t).

This shows that the value function defined by (15) and associated with the robust optimization criterion
admits the decomposition wz(t, v) = U(v)B∗z(t). This completes the proof of the verification theorem. �

7 Numerical Analysis

We perform a numerical study to assess the impact of robustness on feedback and value functions. We
develop an efficient implementation to solve the coupled system of HJB equations and recover the optimal
controls. This study is for illustrative purposes only. In particular, parameter values are chosen in an ad
hoc manner in order to exemplify typical qualitative behavior of the model. We consider two obligors, i.e,
set M = 2, with j1 = 1 and j2 = 2.

We describe the fixed point procedure used to recover the value function and the optimal feedback
function in Section 7.1. We provide a comparative statics in Section 7.2.

7.1 Fixed Point Algorithm

We solve for the coupled value function and optimal feedback functions by first computing the fixed point
solution (Cj , B), j = 1, 2 of Eq. (60) with coefficient (59). The solution B(t) solves the fixed point equation
B(t) = g(t, B(t)), where

g(t, B(t)) := B′(t) +B(t)

1 + γ

(
r +

∑
j /∈{j1,...,jm}

hj(t)

)
−

∑
j /∈{j1,...,jm}

Cj
(
t, µj(t)Bj(t);B(t)

)
+

∑
j /∈{j1,...,jm}

hPj (t)

µj(t)
, m ∈ {0, 1, 2}, (84)

and is guaranteed by Theorem 5.2. We then plug this solution in the system (49) and recover the optimal
feedback functions. Concretely, we proceed backwards as follows:

(I) z = (1, 0). Since the name j1 = 1 has defaulted, Eq. (60) becomes

0 = B′10(t) +B10(t)
[
γ
(
r + h2,10(t)

)
− C2,10

(
t, µ2,10(t)B11(t);B10(t)

)]
+
hP2,10(t)

µ2,10(t)
(85)

with terminal condition B10(T ) = 1. Moreover, the function C2,10 is obtained from Eq. (59) under this
default state and given by

C2,10(t, y;x) := γh2,10(t)

[
Y−1
y

(
µ2,10(t)h2,10(t)

yhP2,10(t)
J
(
µ2,10(t);x

))] 1
γ−1

+
h2,10(t)

y

[
Y−1
y

(
µ2,10(t)h2,10(t)

yhP2,10(t)
J
(
µ2,10(t);x

))]−1

. (86)

We use the following procedure to solve the coupled system given by the equations (85) and (86) above.

Suppose we are at the n-th iteration step of the procedure. Let C
(n−1)
2,10 :=

(
C

(n−1)
2,10 (t) ; t ∈ [0, T ]

)
and

B
(n−1)
10 :=

(
B

(n−1)
10 (t) ; t ∈ [0, T ]

)
be respectively the (n − 1)-th order approximation of the function

C2,10 and of the function B10 recovered in the (n−1)-th iteration. Using C
(n−1)
2,10 , we solve the nonlinear

equation (85). The corresponding solution yields the n-th order approximation of B10, which we denote

by B
(n)
10 . Then, for each t ∈ [0, T ], we use B

(n)
10 (t) to compute C

(n)
2,10 = C2,10(t, µ2,10(t)B11(t);B

(n)
10 (t)).
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We continue iterating until convergence is achieved. Let B∗10(t) be the function when the procedure
stops. We compute the optimal fraction of wealth invested in the risky bond “2” using Eq. (49).
In this specific case, it reduces to π∗2,10(t) = G−1

2,2,10(t)Ŷ10(t), where G2,2,10(t) = R2

F2,10(t) − 1, and

Ŷ10(t) :=
[
Y−1
µ2,10(t)B11(t)

(h2,10(t)B∗10(t)

hP
2,10(t)B11(t)

e−µ2,10(t)B∗10(t)
)] 1

γ−1 − 1. We recall that B11(t) is explicitly given

by Eq. (53).

(II) z = (0, 1). This case is completely symmetric to the one for the default state z = (1, 0). Hence, we
omit the description.

(III) z = (0, 0). In this case, both names are alive. Then Eq. (60) becomes

0 = B′00(t) +B00(t)

[
γ
(
r + h1,00(t) + h2,00(t)

)
− C1,00

(
t, µ1,00(t)B10(t);B00(t)

)
−C2,00

(
t, µ2,00(t)B01(t);B00(t)

)]
+
hP1,00(t)

µ1,00(t)
+
hP2,00(t)

µ2,00(t)
, (87)

with terminal condition B(T ) = 1. Moreover, the functions C1,00 and C2,00 are obtained from Eq. (59)
and given by

Ci,00(t, y;x) := γhi,00(t)

[
Y−1
y

(
µi,00(t)hi,00(t)

yhPi,00(t)
J
(
µi,00(t);x

))] 1
γ−1

+
hi,00(t)

y

[
Y−1
y

(
µi,00(t)hi,00(t)

yhPi,00(t)
J
(
µi,00(t);x

))]−1

, i = 1, 2. (88)

Using the same fixed point procedure described in (I), where we successively refine the n-th order

approximations of B
(n)
00 and of the pairs (C

(n)
1,00, C

(n)
2,00) until achieving convergence, we estimate B00.

Denote the corresponding estimate by B∗00. We then use it to compute the optimal feedback function.
Using Eq. (49), we obtain that the optimal feedback control function giving the fraction of wealth

invested in risky bonds is given by π∗(t) =
(
G−1(t)

)>Ŷ(t), t ∈ [0, T ], where

Ŷ(t) =


[
Y−1
µ1,00(t)B∗10(t)

(h1,00(t)B∗00(t)

hP
1,00(t)B∗10(t)

e−µ1,00(t)B∗00(t)
)] 1

γ−1 − 1[
Y−1
µ2,00(t)B∗01(t)

(h2,00(t)B∗00(t)

hP
2,00(t)B∗01(t)

e−µ2,00(t)B∗00(t)
)] 1

γ−1 − 1

 , G(t) =

[
G1,1,00(t) G1,2,00(t)
G2,1,00(t) G2,2,00(t)

]
.

The components of this matrix are given by, for t ∈ [0, T ],

G1,1,00(t) =
R1

F1,00(t)
− 1, G1,2,00(t) =

F1,01(t)

F1,00(t)
− 1, G2,1,00(t) =

F2,10(t)

F2,00(t)
− 1, G2,2,00(t) =

R2

F2,00(t)
− 1.

7.2 Comparative Statics Analysis

Throughout the analysis, whenever the following parameters are kept fixed and unless otherwise specified, we
use the following benchmark values. We consider the same contractual parameters for the two risky bonds.
Their loss rates are L1 = L2 = 0.3, and the coupon rates ν1 = ν2 = 0.6. We set the investment horizon to
T = 1, and the maturities of the two bonds to T1 = T2 = 3. We choose r = 0.05, and γ = 0.5. The reference
default intensities are set to hP1,00 = 0.5, hP2,00 = 0.5, hP1,01 = hP2,10 = 1. The penalty parameters are set to
µ1,00 = µ2,00 = µ1,01 = µ2,10 = 0.5. The risk neutral default intensities are set to h1,00 = h2,00 = 1 and
h1,01 = h2,10 = 2. We set the investment time to t = 0.

Notice that in the verification theorem, we have proven that (I) the vector of optimal wealth fractions
π̃∗, is independent of the wealth variable v and (II) the robust value function wz(t, v) = vγ

γ B
∗
z(t). In light of

this decomposition result, in the forthcoming section we will plot the time component B∗z(t) of the robust
value function, given that the additional term vγ

γ would not have any informative role in the sensitivity
analysis. Moreover, we will not specify the wealth level v in the plots, given that the fractional strategies
are independent of it.
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7.2.1 Impact of Credit Risk

Figure 1 shows that the investor increases his position in bonds if, ceteris paribus, the reference default
intensities increase. When this happens, the rate of bond returns increases because the investor receives
higher compensation for bearing default risk. The top panels indicate that the investor faces a trade-off
between receiving compensation for being exposed to default risk and bearing the consequences deriving
from the bond’s default: when the reference default intensity of obligor “1” is lower than that of name
“2”, the investor allocates a higher fraction of wealth to bond 1. However, as this exceeds the value of the
reference default intensity of obligor “2”, his risk aversion dominates and leads the investor to invest more
in the safer bond “2” and to reduce the fraction allocated to the riskier bond “1”.

The bottom panels of figure 1 indicate that the investor achieves higher utility by increasing the size of
his bond position in reaction to an increase in the reference default intensity.
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Figure 1: The top panels report the dependence of the optimal feedback functions on the default intensities
hP1,00 and hP2,00. The bottom panels give the same dependence for the time component B00 of the robust

value function. We set the risk-neutral default intensities h1,00 = 2hP1,00 and h2,00 = 2hP2,00.

7.2.2 Impact of Robustness

This section analyzes the sensitivity of the feedback functions and of the value functions with respect to the
robustness parameters.

We find that robustness reduces the demand for risky bonds. The investor allocates a higher fraction
of his wealth to the risky bond if he is more confident about the reference model. As the penalty for
misspecification of the reference default intensity of name “1” becomes lower (large values of µ1,00), the
investor decreases the fraction of wealth allocated to bond “1” and invests the saved proceeds in the bond
“2” (see top left panel of figure 2). This can be understood together with the graph of the worst-case default
intensity. When the investor is more tolerant about deviations from the reference model, his worst-case
default intensity is higher (see bottom panels of figure 2). Then the risk-averse investor decreases the size of
his long bond position because he considers a worst-case scenario where default is more likely to occur that
what estimated by his reference model. Increasing the tolerance against misspecifications of the reference
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default intensity hP1,01 has the highest impact on the investment strategy in bond “1” when the state is (0,1).
However, it also affects the strategy of the investor in the state (0, 0) when both names are alive, pushing
him to decrease the size of his long position in bond “1” and to increase the corresponding position in bond
2 (see also right panels of figure 2).
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Figure 2: The top panels report the dependence of the feedback functions on the penalty parameters µ1,00

and µ1,01. The bottom panels give the dependence of the worst-case default intensities on the penalty
parameters.

Changes of penalty for mispecification of the reference default intensity of obligor “1” lead the investor to
revise his investment strategy in bond 1, but only mildly affects his investment strategy in bond “2” (see left
panel of figure 3). Moreover, the investor is less sensitive to penalty against misspecification of default risk in
a future default state, i.e. the state when obligor “2” has defaulted, than to penalty against misspecification
of credit risk in the current state, i.e. the state when both obligors are alive (see right panel of figure 3).
This is because the default risk of name “2”, hP2,00, is relatively low. Hence, the probability that the investor

will find himself in the state 01 where the default intensity hP1,01 matters is not too high. We expect stronger
dependence of the strategy to penalty for mispecification of default intensities in future default states, if the
credit risk in the current state were higher.

Figure 4 shows that model uncertainty reduces the utility achievable by the investor. This finding is
consistent with Glasserman and Xu (2013), who also find that the robust value function is bounded above
by the nonrobust value function (corresponding to the parameter setting µ1,00 = 0 and µ2,00 = 0 in our
case), see section 5.1 therein. Together with figure 2, this indicates that by allocating a smaller fraction of
wealth to the risky bond, the robust investor incurs a loss of utility. He would have achieved higher returns
from a larger position in the risky bonds, had he been very confident on the reference model of default
intensities. As expected, when the planning horizon is higher, the investor achieves higher utility because he
has more investment opportunities at his disposal. Notice that the dependence of the expected utility on the
robustness parameters µ1,00 and µ2,00 is the same. This is expected given that the default characteristics of
the two names as well as the contractual parameters of the bonds underwritten by them are the same in our
numerical setup.
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Figure 3: The left panel reports the dependence of the optimal feedback function on the penalty parameters
(µ1,00, µ2,00). The right panel give the joint dependence of the same feedback function on the penalty
parameters (µ1,00, µ1,01).
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Figure 4: The left panel reports the dependence of the time component of the robust value function on the
penalty parameter µ1,00. The right panel reports the dependence on the penalty parameter µ2,00.

8 Conclusion

It is well understood that historical estimation of default risk is challenging and often prone to estimation
errors. This is because the available dataset is limited due to the rarity of default events. Nevertheless,
current literature on optimal credit portfolios has so far assumed the reference credit model to be known
with certainty. Since optimal strategies crucially depend on the ratio of risk-neutral and historical default
intensities (the so-called default risk premium) as well as on contagion effects, it is important to account for
misspecifications of the credit model when designing optimal decision rules.

This paper has introduced a novel dynamic framework, where an investor can choose optimal investment
strategies while protecting himself against misspecification of the reference credit model. We have obtained
an explicit characterization of the optimal feedback function yielding the strategy in risky bonds. The latter
has been shown to be coupled with the value function of the robust control problem, which we have shown
to correspond with the unique classical solution of the corresponding HJB equation.

The introduced framework is rich enough to accommodate several features of default risk, but at the same
time tractable since both optimal feedback functions and value functions can be recovered, respectively, as
a matrix-vector product, and as the solution of an ordinary differential equation.

A Proofs of Section 3

We give the following proofs:
We first have the following lemma on the uniqueness of the risk-neutral probability measure.
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Lemma A.1. Let the matrix Φz(t) = [(1 − zj)Gi,j,z(t)]i,j=1,...,M with (t, z) ∈ [0, T ] × S. Then the follow-
ing are equivalent: (I) The square matrix ΦZ(t)(t) is invertible a.s.; (II) The risk-neutral default intensity
(hj,Z(t)(t))j=1,...,M is unique.

Proof. Let Q̂ ∼ P be a risk-neutral probability measure with the corresponding risk-neutral default intensity
(ĥi,Z(t)(t))i=1,...,M with t ∈ [0, T ]. Then under Q̂, ξ̂j(t) := Zj(t)−

∫ t∧τj
0

ĥj,Z(u)(u)du is a martingale for each

j = 1, . . . ,M . Using (20), under Q̂, we then have

d
(
Pi(t) +Di(t)

)
Pi(t−)

= rdt+

M∑
j=1

Gi,j,Z(t)(t)(1− Zj(t))
(
ĥj,Z(t)(t)− hj,Z(t)(t)

)
dt+

M∑
j=1

Gi,j,Z(t−)(t)dξ̂j(t).

Hence the discounted prices are (local) Q̂-martingales if and only if
∑M
j=1Gi,j,Z(t)(t)(1−Zj(t))

(
ĥj,Z(t)(t)−

hj,Z(t)(t)
)

= 0, a.s. for all i = 1, . . . ,M . The system of linear equations admits a unique solution ĥj,Z(t)(t)−
hj,Z(t)(t) = 0 with j = 1, . . . ,M if and only if the matrix ΦZ(t)(t) has a full rank a.s.. �

We next give the lemma on the risk-neutral dynamics of the i-th risky bond price process, which is a key
result to prove Lemma 3.1.

Lemma A.2. The risk-neutral dynamics of the i-th risky bond price process is given by

dPi(t) =
[
rPi(t)− (1− Zi(t))

(
Ci +Rihi,Z(t)(t)

)]
dt− Pi(t−)dξi(t)

+Pi(t−)
∑
j 6=i

Gi,j,Z(t−)(t)dξj(t), t ∈ [0, T ], (89)

where, for i, j = 1, . . . ,M , the functions Gi,j,z(t), (t, z) ∈ [0, T ]× S, are given by (21).

In order to prove Lemma A.2, we need the following auxiliary lemma:

Lemma A.3. The pre-default price Fi,Z(t)(t), t ∈ [0, Ti], of the i-th risky bond admits the decomposition:

Fi,Z(t)(t) = Fi,Z(0)(0) +

M∑
j=1

∫ t

0

[
Fi,Zj(u−)(u)− Fi,Z(u−)(u)

]
dξj(u) (90)

+

∫ t

0

[
r(1− Zi(u))Fi,Z(u)(u) + rZi(u)

(
CiF

b
i,Z(u)(u) + F ci,Z(u)(u)

)
− Ci(1− Zi(u))

]
du,

where F bi,z(t) and F ci,z(t) are defined in Eq. (20).

Proof. Define the operator Agz(t) =
∑M
j=1(1− zj)hj,z(t)[gzj (t)− gz(t)] acting on an arbitrary measurable

function gz(·) with z ∈ S. Using Feynman-Kac’s formula, we obtain that F ai,z(t), F bi,z(t) and F ci,z(t) satisfy(
∂

∂t
+A

)
F ai,z(t) = r(1− zi)F ai,z(t), F ai,z(Ti) = zi,(

∂

∂t
+A

)
F bi,z(t) + (1− zi) = rF bi,z(t), F bi,z(Ti) = 0, (91)(

∂

∂t
+A

)
F ci,z(t) = rF ci,z(t), F ci,z(Ti) = 1− zi.

Then the i-th pre-default price function Fi,z(t) given by (18) satisfies(
∂

∂t
+A

)
Fi,z(t) = Ri

(
∂

∂t
+A

)
F ai,z(t) + Ci

(
∂

∂t
+A

)
F bi,z(t) +

(
∂

∂t
+A

)
F ci,z(t)

= rRi(1− zi)F ai,z(t) + rCiF
b
i,z(t)− Ci(1− zi) + rF ci,z(t)

= r(1− zi)Fi,z(t) + rzi
(
CiF

b
i,z(t) + F ci,z(t)

)
− Ci(1− zi). (92)

Using Itô’s formula, we have

Fi,Z(t)(t) = Fi,Z(0)(0) +

∫ t

0

(
∂

∂u
+A

)
Fi,Z(u)(u)du+

N∑
j=1

∫ t

0

[
Fi,Zj(u−)(u)− Fi,Z(u−)(u)

]
dξj(u)

= Fi,Z(0)(0) +

M∑
j=1

∫ t

0

[
Fi,Zj(u−)(u)− Fi,Z(u−)(u)

]
dξj(u)

+

∫ t

0

[
r(1− Zi(u))Fi,Z(u)(u) + rZi(u)

(
CiF

b
i,Z(u)(u) + F ci,Z(u)(u)

)
− Ci(1− Zi(u))

]
du
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which corresponds to the equality in (90). �
Proof of Lemma A.2. Using (17) and Itô’s formula, it follows that

dPi(t) = (1− Zi(t−))dFi,Z(t)(t)− Fi,Z(t−)(t)dZi(t) + ∆(1− Zi(t))∆Fi,Z(t)(t)

= (1− Zi(t−))dFi,Z(t)(t)− Fi,Z(t−)(t)dZi(t)−∆Fi,Z(t)(t)dZi(t)

= (1− Zi(t−))dFi,Z(t)(t)− Fi,Z(t−)(t)dZi(t)−
[
Fi,Zi(t−)(t)− Fi,Z(t−)(t)

]
dZi(t), (93)

where we used the equality ∆Fi,Z(t)(t)dZi(t) =
[
Fi,Zi(t−)(t)− Fi,Z(t−)(t)

]
dZi(t) which follows from the fact

that our default model excludes the occurrence of simultaneous defaults. Using Eq. (90) in Lemma A.3, we
obtain

(1− Zi(t−))dFi,Z(t)(t)

= (1− Zi(t))
[
r(1− Zi(t))Fi,Z(t)(t) + rZi(t)

(
CiF

b
i,Z(t)(t) + F ci,Z(t)(t)

)
− Ci(1− Zi(t))

]
+(1− Zi(t−))

M∑
j=1

[
Fi,Zj(t−)(t)− Fi,Z(t−)(t)

]
dξj(t)

= r(1− Zi(t))Fi,Z(t)(t)− Ci(1− Zi(t)) + (1− Zi(t−))

M∑
j=1

[
Fi,Zj(t−)(t)− Fi,Z(t−)(t)

]
dξj(t).

It follows from (93) that

dPi(t) = (1− Zi(t))
[
rFi,Z(t)(t)− Ci

]
dt− Fi,Z(t−)(t)dZi(t) (94)

+(1− Zi(t−))

M∑
j=1

[
Fi,Zj(t−)(t)− Fi,Z(t−)(t)

]
dξj(t)−

[
Fi,Zi(t−)(t)− Fi,Z(t−)(t)

]
dZi(t).

From Proposition B.1-(I) below, we know that Fi,zi(t) = Ri for all (t, z) ∈ [0, Ti] × S. Using this along

with the fact that Pi(t) = (1− Zi(t))Fi,Z(t)(t) and ξj(t) = Zj(t)−
∫ t

0
(1− Zj(s))hj,Z(s)(s)ds, we obtain the

desired result. �

B Explicit Recursive Representation of Price Functions

Recalling the definition of zj given in (1), we will write zj = 0j1,...,jm,j if z = 0j1,...,jm , and j /∈ {j1, . . . , jm}.
Then

Proposition B.1. Let i = 1, . . . ,M . Then Fi,z(Ti) = Rizi+ 1− zi for all z ∈ S, and on (t, z) ∈ [0, Ti)×S,
it holds that

(I) If m = M , or there exists an integer l = 1, . . . ,m so that jl = i for m = 1, . . . ,M − 1, then

Fi,j1,...,jm(t) := Fi,0j1,...,jm (t) = Ri.

(II) If m = M − 1, then for i = jM ,

Fi,j1,...,jM−1
(t) = exp

{
−
∫ Ti

t

(
r + hi,j1,...,jM−1

(s)
)

ds

}
(95)

+

∫ Ti

t

(
Ci +Rihi,j1,...,jM−1

(u)
)

exp

{
−
∫ u

t

(
r + hi,j1,...,jM−1

(s)
)

ds

}
du.

(III) If i /∈ {j1, . . . , jm} with m = 0, 1, . . . ,M − 2, then

Fi,j1,...,jm(t) = exp

−
∫ Ti

t

(
r +

∑
j /∈{j1,...,jm}

hj,j1,...,jm(s)

)
ds


+

∫ Ti

t

(
Ci +Rihi,j1,...,jm(u)

)
exp

−
∫ u

t

(
r +

∑
j /∈{j1,...,jm}

hj,j1,...,jm(s)

)
ds

du (96)

+

∫ Ti

t

∑
j /∈{j1,...,jm,i}

hj,j1,...,jm(u)Fi,j1,...,jm,j(u) exp

−
∫ u

t

(
r +

∑
j /∈{j1,...,jm}

hj,j1,...,jm(s)

)
ds

du.
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Proof. Using (92), Fi,z(t), (t, z) ∈ [0, Ti)× S, admits(
∂

∂t
+A

)
Fi,z(t) = r(1− zi)Fi,z(t) + rzi

(
CiF

b
i,z(t) + F ci,z(t)

)
− Ci(1− zi), (97)

and Fi,z(Ti) = Rizi + 1− zi for all z ∈ S. Hence Eq. (97) can be rewritten as

∂

∂t
Fi,z(t) = r(1− zi)Fi,z(t) + rzi

(
CiF

b
i,z(t) + F ci,z(t)

)
− Ci(1− zi)

−
M∑
j=1

[
Fi,zj (t)− Fi,z(t)

]
(1− zj)hj,z(t), (98)

and Fi,z(Ti) = Rizi + 1− zi for all z ∈ S.
The conclusion (I) can be followed from the definition (18) of the pre-default function directly. Next, we

consider (II). In this case, the only jM -name is alive. In terms of (98), we have that for i /∈ {j1, . . . , jM−1}
(and hence zi = zjM = 0), Fi,j1,...,jM−1

(t) := Fi,0j1,...,jM−1 (t), t ∈ [0, Ti), satisfies

∂

∂t
Fi,j1,...,jM−1

(t) = rFi,j1,...,jM−1
(t)− Ci −

[
Fi,1(t)− Fi,j1,...,jM−1

(t)
]
hi,j1,...,jM−1

(t)

=
(
r + hi,j1,...,jM−1

(t)
)
Fi,j1,...,jM−1

(t)−
(
Ci +Rihi,j1,...,jM−1

(t)
)
, (99)

and Fi,j1,...,jM−1
(Ti) = 1. Here we used (I), i.e., Fi,1(t) = Ri for all t ∈ [0, Ti]. Then the solution to

Eq. (98) admits (95) for i = jM .
Finally, we consider the proof of (III). In this case, the all j /∈ {j1, . . . , jm} names are alive, i.e., zj = 0 for

all j /∈ {j1, . . . , jm}. We assume that for all j /∈ {j1, . . . , jm}, Fi,j1,...,jm,j(t) satisfies Eq. (98) at the default
state z = 0j1,...,jm,j . From Eq. (98), it follows that for i /∈ {j1, . . . , jm}, Fi,j1,...,jm(t) := Fi,0j1,...,jm (t),
t ∈ [0, Ti), satisfies

∂

∂t
Fi,j1,...,jm(t) =

r +
∑

j /∈{j1,...,jm}

hj,j1,...,jm(t)

Fi,j1,...,jm(t)−
(
Ci +Rihi,j1,...,jm(t)

)
−

∑
j /∈{j1,...,jm,i}

hj,j1,...,jm(t)Fi,j1,...,jm,j(t) (100)

with Fi,j1,...,jm(Ti) = 1, where we used Fi,j1,...,jm,i(t) = Ri obtained in (I). Then the closed-form solution to
Eq. (100) is given by (96). �

We next provide a lower bound for the price function Fi,j1,...,jm(t) assuming Ci ≥ rRi for i = 1, . . . ,M .
This condition is in line with empirical evidence. Bond coupon rates are typically set at the prevailing market
rate (proxied by r in our case) when issued. Since Ri < 1, this assumption is clearly satisfied. In particular,
if Ri = 0, i.e. there is zero recovery rate on default of obligor i, the assumption is trivially satisfied given
that the coupon rate Ci ≥ 0.

Lemma B.2. Let i = 1, . . . ,M , and j1, . . . , jm ∈ {1, . . . ,M}\{i}. Then Fi,j1,...,jm(t) > Ri for all t ∈ [0, Ti)
if Ci ≥ rRi.

Proof. From (95), and the fact Ci ≥ rRi with Ri ∈ [0, 1), it follows that, for all t ∈ [0, Ti),

Fi,j1,...,jM−1
(t) ≥ exp

{
−
∫ Ti

t

(
r + hi,j1,...,jM−1

(s)
)

ds

}

+Ri

∫ Ti

t

(
r + hi,j1,...,jM−1

(u)
)

exp

{
−
∫ u

t

(
r + hi,j1,...,jM−1

(s)
)

ds

}
du

= Ri + (1−Ri) exp

{
−
∫ Ti

t

(
r + hi,j1,...,jM−1

(s)
)

ds

}
> Ri. (101)

Next, assume that, for m = 0, 1, . . . ,M − 2, and i /∈ {j1, . . . , jm}, it holds that Fi,j1,...,jm,j(t) > Ri for all
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j /∈ {j1, . . . , jm}. We want to prove Fi,j1,...,jm(t) > Ri. Using (96), we obtain

Fi,j1,...,jm(t) ≥ exp

−
∫ Ti

t

(
r +

∑
j /∈{j1,...,jm}

hj,j1,...,jm(s)

)
ds


+Ri

∫ Ti

t

(
r + hi,j1,...,jm(u)

)
exp

−
∫ u

t

(
r +

∑
j /∈{j1,...,jm}

hj,j1,...,jm(s)

)
ds

du

+

∫ Ti

t

Ri
∑

j /∈{j1,...,jm,i}

hj,j1,...,jm(u) exp

−
∫ u

t

(
r +

∑
j /∈{j1,...,jm}

hj,j1,...,jm(s)

)
ds

du

= Ri + (1−Ri) exp

−
∫ Ti

t

(
r +

∑
j /∈{j1,...,jm}

hj,j1,...,jm(s)

)
ds

 > Ri, (102)

using the fact Ri ∈ [0, 1) again. Thus we prove recursively that, for i /∈ {j1, . . . , jm}, the pre-default price
function Fi,j1,...,jm > Ri for all t ∈ [0, Ti). �
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