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Abstract

Recently Reny and Wooders ([23]) showed that there is some point
in the intersection of sets in Shapley's ([24]) generalization of the
Knaster-Kuratowski-Mazurkiwicz Theorem with the property that the
collection of all sets containing that point is partnered as well as bal-
anced. In this paper we provide a further extension by showing that
the collection of all such sets can be chosen to be strictly balanced,
implying the Reny-Wooders result. Our proof is topological, based
on the Eilenberg-Montgomery ¯xed point Theorem. Reny and Wood-
ers ([23]) also show that if the collection of partnered points in the
intersection is countable, then at least one of them is minimally part-
nered. Applying degree theory for correspondences, we show that if
this collection is only assumed to be zero dimensional (or if the set
of partnered and strictly balanced points is of dimension zero), then
there is at least one strictly balanced and minimally partnered point
in the intersection. The approach presented in this paper sheds a new
geometric-topological light on the Reny-Wooders results.
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1 Introduction
A solution concept for a game (or economy) is said to be partnered if it
exhibits no asymmetric dependencies between players. That is, whenever
player i needs the cooperation of player j or is dependent upon the actions
of player j then j similarly depends on i. Partnership is a natural property
to require of a solution concept. If a solution concept is not partnered, there
is an opportunity for one player to demand a larger share of the surplus from
another player. Thus, a payo® that is not partnered exhibits a potential for
instability. Consider, for example, the two-person divide the dollar game.
If the two players can agree on the division, the dollar is divided between
them according to the agreement. Any division giving the entire dollar to
one player displays an asymmetric dependency since the player receiving the
dollar needs the cooperation of the player getting nothing.

The de¯nition of partnership is based on the notion of partnered collec-
tions of subsets of a ¯nite set. Let N be a ¯nite set, whose members are called
players. A collection of coalitions, consisting of subsets of N , is partnered if
each player i in N is in some coalition in the collection and whenever i is in
all the coalitions containing player j then j is in all the coalitions containing
player i. If i is in all the coalitions containing j we think of this as a situation
where j \needs" i. Thus, a collection of coalitions is partnered if and only if
whenever a player i needs another player j then j similarly needs i:

Let x 2 RN be an outcome of an jN j-person game. A coalition S ½ N is a
supporting coalition for x if its part of x, xS, can be achieved by cooperation
of the membership of S alone. The supporting collection for x is the set of all
supporting coalitions for x. The outcome x is partnered if it is feasible and if
its supporting collection is partnered. To illustrate a partnered outcome for
a game, we return to the divide the dollar example. An outcome in which
one player receives the entire dollar is not partnered since the only coalition
that can a®ord to give him the dollar is the two-player coalition, while the
player getting nothing has an alternative coalition, the coalition consisting of
himself alone. Thus, the player receiving the dollar needs the player receiving
nothing but the player receiving nothing needs only himself.

A collection of subsets of a set N is minimally partnered if it is partnered
and if for each player i there does not exist another player j such that j is
in all the subsets containing player _i. In other words, no one needs anyone
else in particular. The only minimally partnered outcome for the divide the
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dollar game is that which assigns each player zero.
An outcome x is in the partnered core of a game if it is in the core (that is,

it is feasible for the grand coalition and not in the interior of the feasible set
for any coalition) and if, in addition, it is partnered. For the divide the dollar
game, any division of the entire dollar which gives both players a positive
share is in the partnered core. There are no outcomes in the partnered core
that are minimally partnered since, to have a positive payo®, each player
needs the other.

The partnership property was originally introduced to study solution con-
cepts of games and economies and has now been applied in a number of pa-
pers; see, for example, ([12], [13], [14], [1], [3], [4], [21]). Recently, it has been
shown that balanced games with and without side payments have nonempty
partnered cores (see [20], [22]). As an outgrowth [22], Reny and Wooders
([23]) extend Shapley's ([24]) generalization of the Knaster-Kuratowski-Ma-
zurkiwicz Theorem by showing that there is some point in the intersection
(whose nonemptiness is assured by the Theorem) with the property that
the supporting collection for that point is partnered as well as balanced.
Reny and Wooders ([23]) also show that if the intersection of a balanced
and partnered collection satisfying the conclusion of their extension of Shap-
ley's generalization of the K-K-M Theorem contains at most countably many
points, then at least one of these balanced collections is minimally partnered.

In this paper, we ¯rst obtain a further extension of Shapley's generaliza-
tion of the K-K-M Theorem, showing that the collection of sets satisfying
the conclusion of the Theorem can be chosen to be strictly balanced { the
weights on the sets in the balanced collection are all positive. Our argument
involves the Eilenberg-Montgomery ¯xed point Theorem for set-valued map-
pings. It is well-known (cf., Shapley and Vohra [25]) that properties of closed
coverings indexed by coalitions may be inferred from ¯xed point theorems
for convex-valued correspondences. Here we are dealing with partnerships
of certain balanced collections of coalitions (indexing closed coverings) and
make use of nonconvex-valued correspondences (satisfying the assumptions
of Eilenberg-Montgomery). Assuming that the set of partnered and balanced
points is zero dimensional (weaker than countable), we obtain a stronger re-
sult on minimal partnership than Reny and Wooders ([23]): There is at least
one point in the intersection of a strictly balanced and partnered collection
of sets that is minimally partnered. We use a version of degree theory valid
for set-valued maps (correspondences), where the image of a point is not
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necessarily convex. In addition, we obtain the same conclusion under the
assumption that the closure of the set of strictly balanced (and hence part-
nered) points is of zero dimension. We demonstrate, by examples, that the
set of partnered and balanced points may be countably in¯nite with closure
of positive dimension or may be uncountably in¯nite with dimension zero.
Thus, our result showing the existence of a strictly balanced and partnered
collection of sets that is minimally partnered provides a meaningful extension
of the Reny and Wooders result on minimal partnership.

The results of the current paper induce similar game-theoretic results to
those of Reny and Wooders ([22]). From our extension of Shapley's general-
ization of the K-K-M Theorem, it follows that for a balanced game there is a
point in the core with the property that the supporting collection of sets for
the said point is strictly balanced. From strict balancedness it follows that
the point in the core is partnered. Our minimal partnership results on closed
coverings also apply to partnered cores of games. We show by an example
that the minimally partnered core of a game may be homeomorphic to the
Cantor set.

Concerning mathematical methods, note that the Eilenberg-Montgomery
¯xed point Theorem for set-valued maps is deeper than the Kakutani ¯xed
point theorem `customarily' used in game theory and economics. (Excep-
tions include Debreu ([6]), Mas-Colell ([15]), Keiding ([10]), and McLennan
([17]).) Degree theory for non-convex valued correspondences may appear
not to be entirely standard; see, however, Borisovitch ([5]) for an exposi-
tion, Mas-Colell ([16]) for an accessible account of the key lemma required
for development of the theory, and McLennan ([18]), where the lemma is
applied for the construction of a Leftschetz ¯xed point index. Degree theory
for (single-valued) functions, however, has been more extensively employed
in the past in game theory and mathematical economics.

We are very much indebted to Philip Reny for pointing out an inaccuracy
in an earlier version and for other suggestions which led to improvements in
the present paper. We are also indebted to Andrew McLennan for references
and to two anonymous referees for helpful comments.
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2 De¯nitions and the Main Results
Let N = f1; 2; :::; ng and let P be a collection of subsets of N . For each i in
N let

Pi = fS 2 P : i 2 Sg:
We say that P is partnered if for each i in N the set Pi is nonempty and for
every i and j in N the following requirement is satis¯ed1:

if Pi µ Pj then Pj µ Pi;

i.e. if all subsets in P that contain i also contain j then all subsets containing
j also contain i. Let P [i] denote the set of those j 2 N such that Pi = Pj .
We say that P is minimally partnered if it is partnered and for each i 2 N ,
P[i] = fig.

Let N denote the set of nonempty subsets of N . For any S 2 N let eS

denote the vector in <N whose ith coordinate is 1 if i 2 S and 0 otherwise.
For ease in notation we denote efig by ei.

Let ¢ denote the unit simplex in <N . For every S 2 N de¯ne

¢S = convfei : i 2 Sg; and

mS =
eS

jSj ;

where \conv" denotes the convex hull and jSj denotes the number of elements
in the set S.

Let B be a collection of subsets of N . The collection is balanced if there
exist nonnegative weights f¸SgS2B such that

X

S2B
¸SeS = eN

and the collection is strictly balanced if all weights ¸S can be chosen to be
positive. It is easy to show that a strictly balanced collection of sets is
partnered.

1The concept of a partnered collection of sets was introduced in Maschler and Peleg
([12], [13]). They used the term \separating collection." We follow the terminology of
Bennett ([3]).
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Proposition 1. Let § be a strictly balanced family of subsets of N . Then
§ is partnered.

Proof. Suppose that § is strictly balanced but not partnered. Then there
exists i; j 2 N such that for all S 2 § with i 2 S it holds that j 2 S,
but there exists T 2 § with j 2 T; i =2 T . Let f!S : S 2 §g denote a
set of strictly positive balancing weights for §: Since the weights !S on all
the sets in § are strictly positive,

P
S: i2S !S <

P
S: j2S !S = 1. This is a

contradiction.

Observe that the collection B is balanced if and only if

mN 2 convfmS : S 2 Bg:

Reny and Wooders ([23]) have obtained the following two results.

Theorem A. (Reny and Wooders ([23]) Let fCS : S 2 Ng be a collection
of closed subsets of ¢ such that

[

SµT
CS ¶ ¢T for all T 2 N : (1)

Then there exists x¤ 2 ¢ such that the supporting collection for x¤; S(x¤) ´
fS 2 N : x¤ 2 CSg; is balanced and partnered.

Remark 1. Observe that the supporting collection for the point x¤ consists
of all those coalitions S such that x¤ 2 CS.

Theorem B. Reny and Wooders ([23]). Let fCS : S 2 Ng be a collection
of closed subsets of ¢ satisfying (1). If the set

fx¤ 2 ¢ : S(x¤) is balanced and partneredg

is at most countable, then at least one x¤ 2 ¢ renders the supporting collec-
tion S(x¤) balanced and minimally partnered.

The next two Theorems, used in our extension of Reny and Wooders'
results, are topological and essentially ¯xed point theorems for correspon-
dences. Theorem 1 implies a strengthening of Theorem A of Reny and
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Wooders ([23]). Under somewhat di®erent assumptions, Theorem 2 yields
a stronger conclusion than those of Theorem B of Reny and Wooders ( [23]).

Theorem 1. Let F (x) be a correspondence from ¢ into the closed convex
subsets of ¢ such that:

F is upper ¡ hemicontinuous; (2)

For all x 2 B (:= @¢); F (x) µ B and g(x) =2 F (x); where g is the
antipodal map; g : B ! B; (3)

and
F assumes ¯nitely many values: (4)

Then there exists x 2 ¢ such that mN 2 rel int(F (x)).

(As usual, rel int(K) means the interior of K in the a±ne submanifold
spanned by K.)

Recall the de¯nition of zero (topological) dimension (Hocking and Young
[8], Spanier [26], Arkhangel'ski̧³ and L.S. Pontryagin [2]): A topological space
X has dimension zero if for every p 2 X there is an arbitrarily small open set
with empty boundaries containing p. It is well known (cf., Hocking and Young
[8], p. 147 or Arkhangel'ski̧³ and L.S. Pontryagin[2], p. 106-109) that among
compact spaces the zero-dimensional spaces and the totally disconnected
spaces are identical.

Theorem 2. Let F (x) be a correspondence from ¢ into the closed convex
subsets of ¢ satisfying (2), (4) and:

For all x 2 B; x 2 ¢S ) F (x) µ ¢S (S µ N): (5)

Assume also that:

The closure of the set fx : mN 2 rel int(F (x)g is zero ¡ dimensional: (6)

Then there exists x 2 ¢ such that F (x) has non-empty (n¡ 1)-dimensional
interior and mN 2 int(F (x)):
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(By \int" we mean the \interior in the topology on the hyperplane
Pn
i=1 xi =

1".)

The following Proposition, establishing a link between correspondences
and closed coverings, is derived from the Shapley and Vohra ( [25]) proof of
the KKMS Theorem. A proof of the Proposition is provided in an appendix
to this paper.

Proposition 2. Let fCS : S µ Ng be a family of closed subsets of ¢
satisfying (1). Then there is a homeomorphism ' of ¢ into the interior of ¢
and a correspondence F from ¢ into the closed convex subsets of ¢ satisfying
(2), (4), (5) and such that

F (y) = convfmS : '¡1(y) 2 CSg for all y 2 '(¢); (7)

and
if mN 2 F (x) then x 2 '(¢): (8)

The following Theorem shows that the point satisfying the conclusion of
the statement of the KKMS Theorem can be chosen so that its support-
ing collection is strictly balanced. By Proposition 1, strict balancedness im-
plies partnership so the Theorem implies Theorem A of Reny and Wooders
( [23]). To show that our Theorem is a strengthening of the prior result,
we must exhibit a collection of sets which is partnered but not strictly bal-
anced. It is well known (Maschler, Peleg, and Shapley ([14])) that there
exist partnered collections which are not balanced. Let § be such a col-
lection for an n-person game. Then fNg [ § is balanced and partnered,
but mN =2 rel int[convfmSgS2§[fNg]. One may even choose § to be min-
imally partnered. Then § [ fNg is balanced and minimally partnered,
but again mN =2 rel int[convfmSgS2§[fNg]. As a concrete example, take
N = f1; 2; 3; 4; 5g and § = ff1; 3g; f1; 4g; f1; 5g; f2; 3g; f2; 4g; f2; 5gg: The
collection § is partnered and, in fact, minimally partnered. The collection
§ [ fNg is balanced and minimally partnered, but the only possible collec-
tion of balancing weights ¸S must assign zero weight to all sets S 6= N and
weight 1 to N:
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The next Theorem follows from Theorem 1 and Proposition 2:

Theorem 3. Let fCS : S µ Ng be a family of closed subsets of ¢ such that
(1) is satis¯ed. Then there exists x 2 ¢ such that the supporting collection
S(x) = fS : x 2 CSg is strictly balanced.

Proof: Let F be the map whose existence is stated in Proposition 2. Note
that since F satis¯es condition (5) it also satis¯es condition (3). By Theo-
rem 1 there exists y 2 ¢ such that mN 2 rel int(F (y)), and by (7) and (8)
there exists x 2 ¢ (x = '¡1(y)) such that

mN 2 rel int[convfmS : x 2 CSg]: (9)

Clearly, § := fS : x 2 CSg is balanced. Moreover, it is strictly balanced.
In fact, let S 2 §; S 6= N (without loss of generality, § 6= fNg) and let `S
denote the line joining mN and mS. Then mN is contained in the interior of
the interval `S\convfmSgS2§. Hence there exists an aS 2 convfmSgS2§ and
positive numbers ®S; ¯S such that ®S + ¯S = 1 and mN = ®SmS + ¯SaS:We
may average these equations with positive weights over S 2 §; S 6= N and
obtain mN as a convex combination of the points mS; S 2 §, with positive
weights for each S 6= N .

The following consequence of Theorem 2 is related to Theorem B of Reny
and Wooders ([23]).

Theorem 4. Let fCS : S µ Ng be a family of closed subsets of ¢ such that
(1) is satis¯ed. Assume that the closure of the set

fx : fS : x 2 CSg is strictly balancedg

is zero-dimensional. Then there exists x 2 ¢ such that the collection fS :
x 2 CSg is minimally partnered and strictly balanced.

Proof. Let F be the map whose existence is stated in Proposition 2. Note in
particular that F satis¯es (5), and the assumptions imply that (6) is satis¯ed
as well. Hence there exists (by Theorem 2) x 2 ¢ such that mN 2 int(D(x))
[where D(x) = conv(mS : x 2 CS)]. If § = fS : x 2 CSg is not minimally
partnered, then there exists a pair i; j such that for every S 2 § either i and
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j both belong to S, or neither belongs. Hence for all y 2 D(x); yi = yj .
Thus int(D(x)) is empty, a contradiction.

Comparing the assumptions of Theorem 4 with those of Reny and Wood-
ers ([23]) Theorem B, it appears that neither is stronger than the other. On
the one hand a countable set (as assumed in Theorem B) may be dense and
hence have closure of positive dimension; on the other hand, a set of dimen-
sion zero (as assumed in Theorem 4) may be uncountable (for example, a
Cantor set on a line). Example 1 below illustrates a situation covered by
Theorem B but not by Theorem 4 while Example 2 illustrates a situation
covered by Theorem 4 but not by Theorem B.

Example 1. For a two-dimensional simplex, let m denote the barycenter
and let Cfig = feig for i = 1; 2; Cfi;;jg = convfei; ej ;mg for i; j = 1; 2,3; and
Cf1;2;3g = convfe1; e2; e3g: For Cf3g ¯rst select a sequence Q in the interior
of Cf1;2g such that the set of limit points of Q is the interval [e2;m]. Then
set Cf3g to be the union of fe3g with the closure of Q. The set of partnered
points in the intersection, \SCS consists of Q and m, a countable in¯nite
set, whose closure is 1-dimensional.

Example 2. Let C denote the Cantor set. Denote by E the union of intervals
removed in an even step (that is, numbers for which the ¯rst\1" in the ternary
expansion appears in an even place) and let O be the union of intervals
removed in an odd step. Let C1 denote the union of E and C, let C2 denote
the union of O and C and let C12 be C. Note that the sets CS satisfy the
conditions of the KKMS theorem. The set of partnered points C is neither
countable nor a (topological) continuum.

Remark 2. Note that the statement \mN 2 int(D(x));" established in the
proof of Theorem 4, is stronger than the conclusion of the Theorem. The
statement means that every hyperplane through mN (except for

Pn
i=1 xi = 1)

has vectors eS with x 2 CS on both sides.

Our ¯nal result is a proper strengthening of Theorem B of Reny and
Wooders ([23]). As a formulation for correspondences (similar to Theorems 1
and 2) is cumbersome, we state here the result only for closed coverings.

Theorem 5. Let fCSgSµN be a closed covering of ¢ such that (1) is satis¯ed.
If the set fx¤ 2 ¢ : S(x¤) is balanced and partneredg is zero dimensional,
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then at least one x¤ 2 ¢ renders S(x¤) strictly balanced and minimally
partnered. Moreover, mN 2 int [convfmSgS2S(x¤)].

3 Partnered cores of games
In this section we obtain, as a corollary to Theorem 3, the Reny-Wooders
result that a balanced game has a nonempty partnered core. We also present
an example showing that the partnered core may be homeomorphic to the
Cantor set. This resolves the question raised in Reny and Wooders ([23])
whether it is possible that the set of points in the partnered core is either
countable or zero-dimensional but not ¯nite. We use standard notation,
de¯nitions and terminology { see, for example, Shapley and Vohra [25] and
Reny and Wooders ([22]).

Let (N; V ) be a game and let x 2 <N be a payo® for (N; V ). A coalition
S is said to support the payo® x if x 2 V (S): Let S(x) denote the set of
coalitions supporting the payo® x: The payo® x is called a partnered payo® if
the collection S(x) has the partnership property. The payo® x is minimally
partnered if it is partnered and if the set of supporting coalitions is minimally
partnered. Note that partnered payo®s need not be feasible.

Let P (N; V ) denote the set of all partnered payo®s for the game (N;V ).
The partnered core is denoted by C¤(N; V ) and is de¯ned by

C¤(N; V ) = P (N; V )
\
C(N;V )

where C(N;V ) denotes the core of the game (N; V ):
A game is balanced if for any balanced collection ¯

\

S2¯
V (S) µ V (N):

With Theorem 3 in hand, it is easy to prove that there is a point in
the core of a balanced game whose supporting collection is strictly balanced.
From Proposition 1, this implies the Reny-Wooders result that a balanced
game has a nonempty partnered core. For simplicity, our proof makes use of
two properties of games as de¯ned by Shapley and Vohra [25] and Reny and
Wooders ([22], namely, (i) for each S µ N , V (S) is bounded from above and
(ii) for each i 2 N; V (fig) > 0: With some additional work, another version
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of Scarf's proof, not requiring these two properties, as in Kannai ([9]), p.
376-377, could be used.

Theorem 6. Let (N;V ) be a balanced game. Then there is a point y in
the core whose supporting collection S(y) = fS ½ N : y 2 V (S)g is strictly
balanced.

Proof. Recall that in the proof of Scarf's Theorem on nonemptiness of
the core as in Shapley and Vohra ([25]), p. 111, (compare Kannai ([9]), p.
376-377) a certain function f : ¢ ! <N and certain closed subsets CS of a
simplex are constructed with the properties that

(a) f(x) =2 intV (S) for any S µ N and

(b) if f(x) >> 0 then for each coalition S the statements x 2 CS and
f(x) 2 V (S) are equivalent.

The sets CS satisfy the assumptions of Theorem 3 and thus x can be chosen
so that its supporting collection S(x) = fS : x 2 CSg is strictly balanced.
Let y = f(x). It follows that the collection of sets S(y) = fS : y 2 V (S)g is
strictly balanced, and since (N; V ) is a balanced game and y =2 intV (S) for
each S µ N ; y is in the core.

Theorems 4 and 5 similarly induce theorems on the set of minimally
partnered core outcomes of games.

The following example illustrates a balanced game whose partnered core
is homeomorphic to the Cantor set.

Example 3. A marriage and adoption game. We consider a game with
twelve players. To make clearer the roles of players in the game, we'll provide
some interpretation. Players 1 and 3 are adult males and players 2 and 4 are
adult females. The remaining players are children, who may be adopted by
male-female pairs who marry. Any married couple has the opportunity to
adopt either one of two children. However, there are complicated adoption
rules so that di®erent pairs of married players cannot adopt the same children.
Players 1 and 2, if they marry, may only adopt a child from the set f5,6g,
players 3 and 4 may only adopt a child from the set f7,8g, players 1 and
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4 may only adopt from the set f9,10g and 2 and 3 players may only adopt
from the set f11,12g. Let us call coalition consisting of a male-female pair
and one of their potential children a family.

In the following, as in Example 2 above, C denotes the Cantor set, E
denotes the union of intervals removed in an even step and O denotes the
union of intervals removed in an odd step. Each player alone may only realize
a outcome of 0. That is, for all i 2 N = f1; 2; :::; 12g;

V (fig) = fx 2 <12 : xi · 0g:

Also,

V (1; 2; c) = fx 2 <12 : there exists y 2 C S
O with x1 · y; x2 · 1 ¡ y

and xc satis¯es x1 + x2 + xc · 1g for c 2 f5; 6g:

V (3; 4; c) = fx 2 <12 : there exists y 2 C S
E with x3 · y; x4 · 1 ¡ y

and xc satis¯es x3 + x4 + xc · 1g for c 2 f7; 8g:

V (1; 4; c) = fx 2 <12 : there exists y 2 C S
O with x1 · y; x4 · 1 ¡ y

and xc satis¯es x1 + x4 + xc · 1g for c 2 f9; 10g:

V (2; 3; c) = fx 2 <12 : there exists y 2 C S
E with x3 · y; x2 · 1 ¡ y

and xc satis¯es x2 + x3 + xc · 1g for c 2 f11; 12g:

Let us call the above coalitions consisting of individual players and fam-
ilies, basic coalitions. For any nonbasic coalition S; de¯ne V (S) as the min-
imal set which renders the game (N; V ) superadditive and comprehensive.
Equivalently, de¯ne

V (S) =
[
P (S)

\
S02P (S)V (S0)

where P (S) denotes a partition of S into basic coalitions and the union is
taken over all such partitions.

We claim that the game (N; V ) is balanced. To show this, without loss of
generality we can restrict attention to balanced collections containing only
basic coalitions. Observe that for any balanced collection ¯ that is a partition,
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it follows from the de¯nition of V (N) that \S2¯V (S) ½ V (N): If the balanced
collection ¯ is not a partition, then at least one basic coalition S 2 ¯ must
have a positive weight ! less than 1: Let us suppose that, for a given balanced
collection ¯; not a partition, there is a outcome x for which x 2 \S2¯V (S)
and x =2 V (N): Since the outcome giving each player zero is in V (N), it
follows that x 6= 0. Since x 6= 0 there is at least one family, say F , in the
balanced collection ¯ and for at least one member i of the family, xi > 0:
If all families in the collection ¯ have balancing weights equal to 1, then the
balanced collection contains a partition and we have a contradiction to the
de¯nition of V (N). Thus, let us suppose that the family F has balancing
weight ! where 0 < ! < 1. This implies that the child in F must be
in another coalition in ¯. The only possibility is the coalition consisting
of that child alone. Thus, the child must receive an outcome of at most
zero. It follows that xi · 0 for i = 5; 6; :::; 12: Also, since the parents in
F must each be in at least two di®erent basic coalitions in the collection
¯, it follows that xi must satisfy either x · (d; 1 ¡ d; d0; 1 ¡ d0; 0; :::; 0) or
x · (d; 1 ¡ d0; d0; 1 ¡ d; 0; :::; 0) for some d and d0 in the Cantor set C. But
then x 2 V (N), a contradiction, so the game (N; V ) is balanced.

We now claim that a payo® x 2 <12 is in the core if and only if x is
of the form d = (d; 1 ¡ d; d; 1 ¡ d; 0; 0; :::; 0) for d in the Cantor set C and
that every outcome in the core is minimally partnered. First, it is easy
to see that for the case d2C; d is in the core. In fact, d is in the mini-
mally partnered core; for example, for 0 < d < 1 the supporting collection
ff1; 2; cgc2f5;6g; f3; 4; cgc2f7;8g; f1; 4; cgc2f9;10g; f2; 3; cgc2f11;12ggg is minimally
partnered:

Now suppose x 2 <12 is a payo® in the core. It is immediate that the
supporting collection for x must contain at least two nonintersecting families.
Also, for any male m and female f in the same family it must hold that
xm + xf > 0; this is immediate since at least one child available to that
couple for adoption must receive zero and that child, along with the two
parents m and f , could improve. In addition, xm ¸ 0 and xf ¸ 0: Now let
us suppose, for the purpose of obtaining a contradiction, that xm + xf < 1.
There are three possibilities:

1. For some y in O; xm · y and xf · 1 ¡ y:

2. For some y in E; xm · y and xf · 1 ¡ y:
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3. For some y 2 C, xm · y and xf · 1 ¡ y:

Suppose that y 2 O: Since O is the union of open intervals and since xm +
xf < 1 there are points x0m and x0f in O satisfying xm < x0m, xf < x0f ,
and x0m + x0f < 1: Thus, a family consisting of m and f and one of the
children available to them for adoption can improve upon x, a contradiction.
Therefore xm + xf = 1: Similarly, if y 2 E; it follows that xm + xf = 1:
If y 2 C, since every point in C is an accumulation point of C, the points
x0m and x0f can be chosen to be in C. Thus, for any pair of parents m and
f in the same family, it must hold that xm + xf = 1: Now suppose that m
and f are members of two di®erent families. Consideration of all possibilities
as above leads to the conclusion that xm + xf = 1: The cases where both
families have outcomes dominated by points in the same set, C, E or O; can
be treated as the above cases. If for one set of parents, say m1 and f1; it
holds that for some y12O , xm1 · y1 and xf1 · 1 ¡ y1 and for the other set
of parents, say m2 and f2, it holds that for some y2 2 E [ C; xm2 · y2 and
xf2 · 1¡ y2; then there is a point y3 in C such that, for xm = minfxm1 ; xm2g
and xf = minfxf1 ; xf2g; xm < y3 and xf < 1 ¡ y3: It follows that the male
and female who are receiving the smallest payo®s can, along with a child,
improve upon x. This proves that a payo® x is in the core if and only if x is
of the form d = (d; 1 ¡ d; d; 1 ¡ d; 0; :::; 0) for d in the Cantor set.

4 Proofs of Theorems 1, 2 and 5
To prove Theorem 1, note that if y is not in the relative interior of a con-
vex set K, then removing an open ball B(y; ±) of radius ± centered at y
from K results in a nonempty closed contractible set (i.e., a set homeo-
morphic to a simplex of a certain dimension) for ± > 0 su±ciently small.
It follows from (2) and (4) that if mN 2 rel int(F (x)) for no x 2 ¢,
then there exists a ± > 0 such that F (x)nB(mN ; ±) is nonempty and con-
tractible for all x 2 ¢. Moreover the openness of B(mN ; ±) implies that
the correspondence x ! F (x)nB(mN ; ±) is upper-hemicontinuous. Let h
denote the usual radial retraction of the punctured simplex ¢nfmNg onto
B. Then h(F (x)nB(mN ; ±)) is contractible for all x, and the same is true
of g(h(F (x)nB(mN ; ±))), where g is the antipodal map as given in (3).
Clearly the correspondence x ! g(h(F (x)nB(mN ; ±))) is upper hemicontin-
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uous. By the Eilenberg-Montgomery ¯xed point theorem ([7]) every upper-
hemicontinuous correspondence mapping the simplex into the collection of
its non-empty, closed, and contractible subsets has a ¯xed point. Hence there
exists a point x¤ 2 ¢ such that x¤ 2 g(h(F (x¤)nB(mN ; ±))). In particular,
x¤ 2 B. By assumption (3) F (x¤) µ B. But on B; h is the identity. Hence,
x¤ 2 g(F (x¤)nB(mN ; ±)) µ g(F (x¤)), contradicting (3).

For the proof of Theorem 2 we need degree theory as extended for cor-
respondences (see, for example, Lloyd ([11]), 115{120). Actually, a stronger
version is needed, where the values are not necessarily convex (see, for exam-
ple, Borisovich ([5])). In our case the values assumed by the correspondence
are contractible and compact, so that the Begle-Vietoris mapping theorem
([7], [8], [26]) is applicable and may serve as a basis for degree theory. See
also Mas-Colell ([16]) for an elementary proof of the key lemma required for
development of the theory and McLennan ( [18]) where the lemma is applied
for the construction of a Leftschetz ¯xed point index.

It follows from (5) and a simple homotopy argument that

d(F; int(¢);mN ) = 1: (10)

Denote by X the closure of the set fx : mN 2 rel int(F (x))g. By
assumption, X is zero-dimensional. This means that for every " > 0, the set
X may be covered by a ¯nite number of disjoint open sets whose diameter
is less than ". Let fDi;mgPmi=1 denote such a collection of sets with diam
(Di;m) < 1

m ; X µ [Pmi=1Di;m and Di;m \Dj;m = ; for i 6= j. Then Di;m \X is
both open and closed in X, so that @Di;m \X = ;.

With ± as in the proof of Theorem 1, set ±(x) = min[dist(x;X); ±], and
de¯ne an upper-hemicontinuous correspondence G by

G(x) = F (x)nB(mN ; ±(x)): (11)

Then mN =2 G(x) if x =2 X. It follows from (5) (compare (11)) that

d(G; int(¢);mN) = 1: (12)

By construction, mN =2 G(y) for all y 2 @Di;m; 1 · i · Pm. Hence
d(G;Di;m;mN ) is well de¯ned and

PmX

i=1
d(G;Di;m;mN ) = d(G; int(¢);mN): (13)
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It follows from (13) and (12) that there exists i0 = i0(m) such that
d(G;Di0(m);m;mN ) 6= 0. By compactness there exists x 2 X and a se-
quence Di0(m);m of neighborhoods (with Di0(m);m \ X compact) such that
x = \1m=1Di0(m);m. For each m; d(G;Di0(m);m;mN) 6= 0 implies the existence
of an (n¡ 1)-dimensional ball Bm; centered at mN ; such that

Bm µ
[
x2Di0(m);mG(x) µ

[
x2Di0(m);mF (x): (14)

Set ai = ei¡mN ; 1 · i · n. Fix for a moment aj for an index 1 · j · n.
By (4) there exists a positive number ±j such that if mN + "aj 2 F (y) for a
certain y 2 ¢ and a positive " (no matter how small), thenmN+±jaj 2 F (y).
By (14) there exists a sequence xm converging to x and a sequence of positive
real numbers "m such that mN + "maj 2 F (xm). Hence mN + ±jaj 2 F (xm).
By the upper-hemicontinuity mN + ±jaj 2 F (x). The convexity of F (x)
and the spanning property of a1; :::; an imply that mN is an interior point of
F (x).

Remark 2: Theorems 1 and 2 may be generalized to contractible non-convex
sets. Inspection of the proof of Theorem 1 shows that the condition (4) may
be replaced by the assumption that there exists a positive number ± such
that the sets F (x)nB(mN ; ±) are nonempty and contractible for all x 2 ¢.
Similarly, Theorem 2 is true if (4) is replaced by the property that for every
a 6= 0 there exists a ± > 0 such that if both mN and mN + "a are in F (x) for
any x 2 ¢ and " > 0 then mN + ±a 2 F (x).

The proof of Theorem 5 runs parallel to the previous proofs, with several
essential re¯nements. Thus, let F and ' denote the correspondence and
homeomorphism introduced in Proposition 1 and let the positive number ±
be chosen so that the set F (x)nB(mN ; ±) is nonempty and contractible for
all x 2 ¢, (compare the proof of Theorem 1), and if mN =2 F (x), then
B(mN ; ±) \ F (x) = ;. We follow Reny-Wooders ([23]) (inspired by [4]) and
set

cij(x) = min
fS:i=2S;j2Sg

dist(x;CS) (15)

for x 2 ¢, 1 · i < j · n,

cii(x) = 0 for x 2 ¢; 1 · i · n; (16)
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´i(x) =
nX

j=1
[cij(x) ¡ cji(x)] for x 2 ¢; 1 · i · n; (17)

±(x) = min[
nX

i=1
j´i(x)j; ±] for x 2 ¢; (18)

Then ±(x) is a non-negative continuous function on ¢. De¯ne the correspon-
dence H(x) by

H(x) = F (x)nB(mN ; ±('¡1(x))) for x 2 '(¢); (19)

H(x) = F (x) for x =2 '(¢): (20)

(Contrast with the de¯nition of G(x) in (11).) The choice of ± and (8)
imply that H(x) is upper-hemicontinuous. Let X denote the set fx¤ 2 ¢ :
S('¡1(x¤))g is balanced and partnered.

We claim that if x =2 X then mN =2 H(x). In fact, if mN 2 H(x) then
mN 2 F (x). Thus (8) implies that x 2 '(¢). Hence H(x) is given by (19).
It follows that S('¡1(x)) is balanced and ±('¡1(x)) = 0. But according
to a Lemma of Bennett-Zame ([4]), as adapted by Reny-Wooders ([23]), if
´i(y) = 0 for all i = 1; :::; n (as implied by ±(y) = 0), then S(y) is partnered.
Hence x = '(y) 2 X.

Set now Y = fx 2 ¢ : mN 2 H(x)g. Then Y is a closed subset of
X, hence a closed zero-dimensional set. Note that the correspondence H(x)
satis¯es the conditions of Theorem 1, except for (4). But by Remark 2,
the conclusion of Theorem 1 holds for the correspondence H (see also (18)).
Hence there exists a point x 2 ¢ such that mN 2 rel int(H(x)), and in
particular Y is not empty.

We can now continue the proof as in the proof of Theorem 2, with Y
replacing X and H replacing G. We conclude that there exists x 2 Y such
that mN is an interior point of F (x). As in the proof of Theorem 4, this
implies the existence of x 2 ¢ (x = '¡1(x)) such that mN 2 int(D(x)), from
which all the assertions of Theorem 5 follow.

Remark 3: Note that x 2 Y implies ±('¡1(x)) = 0 or ´i('¡1x)) = 0 for all
1 · i · n. Thus the net credits (de¯ned in ([4], [22])) of each player at x are
zero. However, one does not need all the assumptions of Theorem 5 for the
non-emptiness of Y . For this the assumptions of Theorem 3 su±ce. (This
observation was made in response to a suggestion by Philip Reny.)
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5 Appendix
Proof of Proposition 2.

Following Shapley and Vohra (1991) set

¢0 = fx 2 <N :
X

i2N
xi = 1; xi ¸ ¡1 for all i 2 Ng

and let ´ : ¢0 ! ¢ be de¯ned by

´i(y) =
max (yi; 0)P
j2N max (yj ; 0)

for all i 2 N:

In addition, (not found in Shapley and Vohra) de¯ne ' : <N ! <N by

'(x) = (
1 + x1
n+ 1

; :::;
1 + xn
n+ 1

):

Then ' : ¢0 ! ¢; ' : ¢ ! '(¢) ½ int(¢) are homeomorphisms. Note that

'¡1(y) = [(n+ 1)y1 ¡ 1; :::; (n+ 1)yn ¡ 1]

and that '(¢) is an (n¡ 1)-simplex whose vertices are

ei = (
1
n+ 1

; :::;
2
n+ 1

; :::;
1
n+ 1

)

where 2
n+1 occurs in the ith position.

Similarly to Shapley and Vohra, we de¯ne the following labelling function
in ¢0:

L0(y) = fS : ´(y) 2 CS and yi ¸ 0 for all i 2 Sg;
and a correspondence

G0(y) = convfmS : S 2 L0(y)g:
We now set

F (y) = G0('¡1(y)):

(Note that G0(y) and F (y) are set-valued mappings and can assume only a
¯nite number of distinct values. Note also that the domain of G0 is ¢0 while
the domain of F is ¢.) For y 2 '(¢); '¡1(y) 2 ¢ ) ´(y) = y and (7)
follows.

The boundary behavior and upper-semi-continuity of F follow as in Shap-
ley and Vohra.
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