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Abstract

The well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local sequence alignments.

Unfortunately, SW has quadratic time complexity, which makes this algorithm computationally demanding for large

protein databases. In this paper, we present OSWALD, a portable, fully functional and general implementation to

accelerate SW database searches in heterogeneous platforms based on Altera’s FPGA. OSWALD exploits OpenMP

multithreading and SIMD computing through SSE and AVX2 extensions on the host while it takes advantage of pipeline

and vectorial parallelism by way of OpenCL on the FPGAs. Performance evaluations on two different heterogeneous

architectures with real amino acids datasets show that OSWALD is competitive in comparison with other top-performing

SW implementations reaching up to 442 GCUPS peak with the best GCUPS/watts ratio.
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Introduction

High throughput structural genomic and genome sequencing

have provided the scientific community with a huge amount

of data to be processed from structures and sequences

of many thousands of proteins. This “big data” can

be interesting for researchers in order to extract useful

and functional insights. One of the main computational

approaches is bioinformatics, which uses the statistical

analysis of structures and protein sequences to identify the

genome, recognize function, and additionally to anticipate

structures when only sequence information is available.

Bioinformatics has become one of the most powerful

technologies in life sciences nowadays, and it is being used

in research into evolution theories and protein design, among

other important applications.

Sequence alignment is a common task in bioinformatics,

and can be considered the basis of other biological tools.

This procedure is used to compare primary biological

sequence information, such as the amino-acid sequences

of different proteins or the nucleotides of DNA sequences.

The Smith-Waterman (SW) is the most accurate method

for local sequence alignment and its high sensitivity comes

from exploring all the possible alignments between two

sequences. This algorithm focuses on similar regions only

in part of the sequences, which means that the purpose

of the algorithm is finding small, locally similar regions.

To calculate optimal local alignment scores, the SW

algorithm has a linear space complexity and a quadratic time

complexity.

Considering the performance aspect, the SW computation

time may become impracticable due to its high complexity,

specially with large volume datasets. For this reason,

several heuristics, such as BLAST Altschul et al. (1990)

and FASTA Lipman and Pearson (1985), have been

developed to reduce the execution time but at the

expense of not guaranteeing to discover the optimal

local alignments. Because of the computational cost of

SW, the scientific community has made great efforts to

design more efficient implementations in recent years. Most

of the solutions proposed find and exploit the inherent

parallelism in the alignment process as intra-task and inter-

task parallelism Rognes (2011).

With the recent emergence of accelerator technologies,

such as Field-Programmable Gate Arrays (FPGAs), vector

processing units (SIMD) in many-core architectures,

Graphics Processing Units (GPUs), among others, the

challenge of accelerating life science analysis problems has

become more stimulating. Moreover, due the affordable cost

of these devices, their exploitation is becoming an attractive

solution.

As related work, we found a hybrid implementation of

SW Qiu et al. (2010) which makes use of cloud computing

and a cluster programmed with MPI. Moreover, there exist

SW versions based on SIMD-vector exploitation Farrar

(2007); Rognes (2011) that are available now on modern
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CPUs. In the field of heterogeneous computing, Farrar Farrar

(2008) makes use of the outdated Cell/BE processors.

Also, in the hardware accelerators scenario, the most

successful solution is the CUDASW++ software, and its

newer versions Liu et al. (2009, 2010, 2013), which offer

a performance range from 30 to 185.6 GCUPS (billion cell

updates per second) for single and multi CUDA-enabled

Graphics Processor Units (GPUs) with concurrent CPU

computing. More recently, Liu and Schmidt have released

an optimized hand-tuned SW implementation for Intel Xeon

Phi coprocessors Liu and Schmidt (2014); Liu et al. (2014),

denoted as SWAPHI and SWAPHI-LS, for protein and

DNA sequence alignment, respectively. While SWAPHI-LS

is able to achieve 30.1 GCUPS, SWAPHI obtains up to 58.8

GCUPS. Besides pointing out Intel Xeon Phi exploitation,

Rucci et al. Rucci et al. (2014, 2015b) have recently studied

not only the performance aspect but also the energy footprint

on a hybrid implementation that exploits both CPU and

coprocessors simultaneously.

Eventhough, in FPGAs scenario Li et al. (2007); Dydel,

Stefan and Bala, Piotr (2004); Weaver et al. (2003);

Yamaguchi et al. (2011); Isa et al. (2011) present SW

implementation on a FPGA. However, most of this software

implements DNA alignment (which is simpler than protein

alignment from an algorithmic perspective) and/or covers

special cases in SW alignment (for example, query and/or

database sequences of limited or fixed length, embedded

sequences in the design, among others). In addition,

these implementations are based on hardware description

languages such as VHDL or Verilog, which limits its

portability to other parallel devices. Under this premise,

Altera tries to promote its FPGA usage by means of

the support of the Open Computing Language∗ model

(OpenCL), traditionally used in heterogeneous computing

environments based on multicore and GPU. Despite Altera

staff having submitted an implementation of SW with

OpenCL Settle (2014), their implementation focuses on non-

real RNA sequence alignment with fixed query length.

Although previous studies have focused on exploiting the

FPGA, to the best of our knowledge our approach is the first

high-level programming implementation on FPGAs using

OpenCL with real amino acid datasets. Our implementation

is a fully functional solution for any sequence length and

general for FPGA-based platforms with different hardware

characteristics. This paper extends the insights already

offered in our previous approach Rucci et al. (2015a), with

the following new contributions:

• Among the main contributions, we can highlight

the creation of a public git repository with the

binary executable developed for this paper, denoted

as OSWALD †. OSWALD is a software to accel-

erate the well-known SW algorithm on heteroge-

neous platforms based on Altera’s FPGA by means

of high-level programming using OpenCL. OSWALD

exploits OpenMP multithreading and SIMD comput-

ing through SSE and AVX2 extensions on the host

while it takes advantage of pipeline and vectorial

parallelism on the FPGAs.

• Regarding the original implementation, we have

focused on OpenCL kernel optimization through

FPGA resource stressing. The analysis includes

a performance and resource usage evaluation of

different kernel implementations.

• We have extended the optimized single-FPGA

implementation to allow multiple FPGAs and,

subsequently, to support concurrent host computation.

A performance evaluation was carried out using two

different protein databases over two heterogeneous

architectures.

• In addition, we have compared our hybrid CPU-FPGA

implementation to other reference implementations.

For this purpose we have chosen the best performing

CPU-based, Xeon Phi-based and GPU-based alterna-

tives: SWIMM Rucci et al. (2015b) was selected for

Xeon and Xeon Phi processors while CUDASW++

3.0 Liu et al. (2013) was chosen for CUDA-compatible

GPUs.

• Finally, this paper does not only focus on the

performance analysis of FPGA-based architectures,

but it also considers power consumption. It explores

different configurations in order to find the fastest

performance, the lowest power consumption and the

best performance/power ratio.

The rest of the paper is organized as follows. Section

2 introduces the basic concepts of the Smith-Waterman algo-

rithm. Section 3 introduces Altera’s OpenCL programming

extension and in Section 4 the methodology to efficiently

program this alignment through different optimization tech-

niques is described. Section 5 presents the results obtained,

and finally Section 6 contains the conclusions and future

lines of work for this novel viability study.

Smith-Waterman Algorithm

In 1981 Smith and Waterman proposed an algorithm to

find the optimal local alignment of two sequences (Smith

and Waterman 1981). This algorithm is based on dynamic

programming and was later improved by Gotoh (Gotoh

1982). The SW method guarantees the optimal alignment

because it explores all possible alignments between the pair

of sequences.

To compute the optimal alignment of two sequences q =
q1q2q3 . . . qm and d = d1d2d3 . . . dn, SW fills a matrix H
which keeps track of the degree of similarity between the

two sequences compared. The matrix is computed according

to the recurrence relations defined as follows:

Hi,j = max



















0

Hi−1,j−1 + SM(qi, dj)

Ei,j

Fi,j

(1)

Ei,j = max

{

Hi,j−1 −Goe

Ei,j−1 −Ge

(2)

∗Khronos Groups. OpenCL: https://www.khronos.org/opencl
†OSWALD is available online at https://github.com/

enzorucci/OSWALD
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Figure 1. Data dependences in the alignment matrix H.

Fi,j = max

{

Hi−1,j −Goe

Fi−1,j −Ge

(3)

where Hi,j represents the score for aligning the prefixes of

q and d ending at position i and j, respectively. Ei,j and Fi,j

are the scores ending with a gap involving the first i residues

of q and the first j residues of d, respectively. SM is the

substitution matrix which defines the substitution scores for

all residue pairs. GenerallySM rewards with a positive value

when qi and dj are identical or relatives, and punishes with a

negative value otherwise.Goe is the sum of gap open and gap

extension penalties while Ge is the gap extension penalty.

The recurrences should be calculated with 1 ≤ i ≤ m and

1 ≤ j ≤ n, after initializing H , E and F with 0 when i = 0

or j = 0. The maximal alignment score in the matrix H is the

optimal local alignment score S.

It is important to remark that any cell of the matrixH has a

dependency on three cells: the one to the left, the one above

and the one from the upper left diagonal, as illustrated in

Figure 1. So computation must advance from top to bottom

and from left to right.

OpenCL Extension on Altera’s FPGA

OpenCL is a host-device-based framework for parallel

implementation working across heterogeneous platforms.

The language is based on the C programming language

and contains extensions that allow for the specification of

parallelism. Nowadays, it is supported by most hardware

devices, such as CPUs, GPUs, DSPs, and FPGAs,

among others. These devices (acting as coprocessors or

accelerators) may have different instruction set architectures

and may share memory with the host processor. OpenCL

programming interfaces consider the heterogeneity between

the host CPU and all connected devices.

The host-device model administers the following issues:

1. The use of different contexts for specifically available

accelerators.

2. The management of memory transfers, controlling

memory allocations.

3. The compilation of OpenCL codes and kernel cores to

be executed on target devices.

4. The launch of the kernels on target devices, querying

execution progress, and checking for errors produced.

An OpenCL kernel is the basic unit of parallel code that

can be executed on a target device. OpenCL organizes a

program workload into work-groups and work-items. Work-

items are grouped into a work-group, which are executed

independently with respect to other work-groups. Data-level

parallelism is regularly exploited by means of the SIMD

philosophy, where several work-items are grouped according

to the lane width capabilities of the target device.

The OpenCL memory model deals with different

memory regions that are characterized by the access type,

performance and scope. Global memory is read-write

accessible by all work-items across all work-groups, and it

usually corresponds to the DRAM memory device which

carries a high latency memory access but high capacity.

Local memory is a shared read-write memory accessible

from all work-items of a single work-group, it usually

involves a low latency memory access. Constant memory is

a read-only memory that is visible to all work-items across

all work-groups, and private memory it is only accessible by

a single work-item.

Since OpenCL is a cross platform standard for parallel

programming, (oriented to heterogeneity between the host

and connected devices, as mentioned above), the developer

can thus focus on behavioural algorithmic specifications,

avoiding implementation details. On the one hand, the

OpenCL specification, thus, defines a platform, memory

and programming model which permits many add-ons

that are vendor specific, cross-vendor and from the

Khronos consortium. There is considerable freedom in

terms of implementing the platform providing the final

implementation satisfies the OpenCL specifications Altera

Corporation (2014). On the other hand, FPGAs present

programmable arrays containing logic elements, memory

blocks and specific DSP blocks. This fact allows the design

of dynamic custom instruction pipelines against the fixed

data-path architectures of CPUs, DSPs and GPUs. The

hardware Description Languages (HDLs) such as VHDL

or Verilog used to develop and verify FPGA designs are

complex, error prone and affected by an extra abstraction

layer as they contain the additional concept of timing.

The main advantage of FPGA-based implementations

using the OpenCL paradigm is the shorter time to market

and faster developments in comparison with traditional

FPGA developments using HDLs. FPGAs are dedicated

co-processor accelerators that contain a complex hierarchy

memory model (see Table 1, particularized for the FPGA

used in this research). The host processor is connected to the

accelerators through a peripheral interface such as a PCIe.

Table 1. OpenCL memory model for FPGAs

OpenCL Memory FPGA Memory BittWare S5PHQ

global external 2x4GB DDR3

constant cache 16KB DDR3

local embedded 44Mbits

private registers 674Kbits

The OpenCL Altera (FPGA vendor) SDK supports the

1.0 specification, which is a subset of the latest current 2.1

profile (March 2015) with some flexible requirements and

advanced features. As an example of these extensions, we

can point to the advantage of using I/O channels and kernel

Prepared using sagej.cls
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channels by means of pipes Khronos Group (2014), which

appeared in OpenCL 2.0. Altera’s channel extension allows

the transfer of data between work-item’s in the same kernel

or between different kernels by means of a FIFO buffer.

This fact makes it possible to pass data to another work-

group without additional synchronization and without host

interaction.

Each Altera FPGA can have multiple in-order command

queues to be executed independently and concurrently.

Kernels are compiled previously and after that are passed to

create the OpenCL program object at runtime. Regarding the

execution model, it is possible to use the work-item ordering

within a pipeline, outperforming the obtained throughput

thanks to this topology. The OpenCL paradigm model

defines the execution of an instance of a kernel by a work-

item up to NDRange. Kernels are executed across a global

domain of work-items where work-items are subsequently

grouped into local work-groups. The execution model does

not specify the work-item execution order.

SW Implementation

In this section we will address the programming aspects

and optimizations applied to our implementations on FPGA

accelerated platforms. First, we present a heterogeneous

implementation where alignments are carried out on a single

FPGA. Then, this implementation is extended to support

more than one FPGA. The final implementation concurrently

exploits both host computing and FPGA devices. The

algorithms comprise three stages:

1. Pre-processing stage: the reference database is

preprocessed to adapt sequence data for parallel

processing on multiple devices.

2. SW stage: after preprocessing the database, align-

ments among query sequences and database sequences

are carried out.

3. Sorting stage: finally all alignment scores are sorted in

descending order.

It is important to remark that stages 1 and 3 are executed

on the host in all the implementations developed. Stage 2 is

offloaded to the FPGA(s) and partially computed on the host

in the hybrid version.

Parallelization scheme

Alignments are computed following the inter-task paral-

lelization scheme, which takes advantage of the null data

dependency between different alignments. Instead of align-

ing one database sequence against a query sequence at a time,

multiple database sequences are aligned in parallel by means

of the SIMD vector capabilities available on the target plat-

form. For this reason, database sequences are processed in

groups and the size of the groups is determined by the num-

ber of SIMD vector lanes. On the host, database sequences

are grouped according to the vector processing unit’s (VPU)

lane size. On the FPGA, it is possible to configure the number

of sequences that are processed simultaneously. This aspect

depends on the resources available on the FPGA.

Database preprocessing

Database sequences are sorted by their lengths in ascending

order before being grouped and padded with dummy

symbols. This is done to favor memory pattern access

and minimize imbalances in group processing. In the

FPGA implementations, the database is divided into chunks

because FPGA global memory is not large and the sequence

allocation space is limited. Moreover, the number of chunks

should be a multiple of the number of FPGAs, and should

also have the same size in order to improve workload balance

between accelerators.

We would like to point out that in the hybrid

implementation, the database is split into two main parts

to enable a balanced workload distribution. This strategy is

described in the hybrid implementation section. The host

database part is performed as a single piece while on the

accelerators it is divided again into several chunks, following

the approach of the FPGA implementations. To avoid

repeating this process, sequence databases are preprocessed

separately on the host and accelerators. The databases are

read from the FASTA format ‡ and then transformed into an

internal binary format which favors faster disk access.

Heterogeneous single-FPGA implementation

Algorithm 1 shows the pseudo-code for the host imple-

mentation. Memory management is performed in OpenCL

by means of clCreateBuffer (memory allocation and initial-

isation), clEnqueueWriteBuffer and clEnqueueReadBuffer

(memory transfer to device/host). The kernel computes the

alignments between a single query and a chunk of the

sequence database. Kernels are invoked through the clEn-

queueNDRangeKernel function.

The kernel is implemented following the task parallel pro-

gramming model described in the OpenCL 1.0 specification,

where the kernel consists of a single work-group that con-

tains a unique work-item. This scheme is suitable because a

single work-item does not require any synchronization stage.

Algorithm 2 shows the pseudo-code for our kernel imple-

mentation. The alignment matrix is divided into vertical

blocks and computed in a row-by-row manner (see Figure 2).

This blocking technique not only improves data locality

but also reduces the memory requirements for computing

a block, which favors the use of the private low-latency

memory. The inner loop is fully unrolled by the compiler

to increase performance. Since the compiler can perform

loop unrolling, its boundaries must be constant values, so

sequences are extended in the preprocessing stage to make

their lengths a multiple of fixed BLOCK WIDTH value.

Additionally, we employed Altera OpenCL channels to

efficiently transfer previously computed values in order to

solve data dependences between blocks (last column H and

E values are needed). The combination of these techniques

is essential for the Altera OpenCL compiler to successfully

generate parallel pipeline execution.

Substitution score selection Our implementation is also

based on the Score Profile (SP ) optimization Rognes (2011)

‡FASTA format description: http://blast.ncbi.nlm.nih.gov/

blastcgihelp.shtml
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Algorithm 1 Host pseudo-code for single-FPGA exploita-

tion

1: ⊲ Q are the query sequences

2: ⊲ vD is the preprocessed sequence database

3: ⊲ SP are the Score Profiles

4: ⊲ SM is the substitution matrix

5: ⊲ S are the alignment scores

6: ⊲ n are the lengths of database sequences

7: ⊲ th is the number of host threads

8:

9: clCreateBuffer’s(...) ⊲ Create buffers + transfer data

10: for c ≤ get num chunks(vD) do

11: SPc = build SPs(vDc, SM, th)
12: clEnqueueWriteBuffer(SPc) ⊲ Score Profiles to device

13: clEnqueueWriteBuffer(nc) ⊲ Sequence lengths to device

14: for q ≤ get num sequences(Q) do

15: clEnqueueNDRangeKernel(...) ⊲ Compute align-

ments among query q and chunk c
16: end for

17: clEnqueueReadBuffer(Sc)

18: end for

19: S = recompute if overflow(S,Q, vD, SM, th) ⊲
Recompute alignments that overflowed

20: S = sort(S, th) ⊲ Sort all scores in descending order

Figure 2. Schematic representation of our OpenCL kernel

implementation.

to obtain scores from the substitution matrix. This technique

is based on constructing an auxiliary n× l × |
∑

| two-

dimensional score array, where n is the length of the database

sequence, l is the number of vector lanes and
∑

is the

alphabet. Since each row of the score profile forms an l-lane

score vector, its values can be loaded in parallel. To reduce

FPGA hardware resource usage, the score profiles are built

on the host using a set of SSE intrinsic functions and then

transferred to the FPGA.

Data type selection Optimizing FPGA area usage is

critical to obtaining high performance OpenCL applications.

The alignment scores do not need a wide range data

representation. For this reason we explored different integer

data types to compute alignments (char, short and int).

When the data type proves to be insufficient to represent

the similarity score, i.e. overflow occurs, the alignment is

recalculated on the host using the next widest integer range.

The host code employs SSE instructions and is based on the

Algorithm 2 Pseudo-code for Smith-Waterman kernel

1: ⊲ numSequences is the number of sequences

2: ⊲ q is the query sequence

3: ⊲ m is the query length

4:

5: kernel void SW kernel ( numSequences, n, SP , q, m,

S ) {
6: for s ≤ numSequences do

7: numBlocks = n[s]/BLOCK WIDTH
8: for k ≤ numBlocks do

9: for i ≤ m do ⊲ each row

10: if k 6= 0 then

11: ⊲ Receive data from previous block

12: end if

13: #pragma unroll

14: for j ≤ BLOCK WIDTH do

15: ⊲ Calculate current cell value

16: end for

17: if k 6= numBlocks− 1 then

18: ⊲ Send data to next block

19: end if

20: end for

21: end for

22: end for

23: }

open-source SWIMM tool (Rucci et al. 2015b). To allow

overflow detection on the host, saturated addition is used on

the FPGA kernel (in particular, the add sat function).

Host-side buffers and data transfers Host-side buffers are

allocated to be 64-byte aligned. This fact improves data

transfer efficiency because Direct Memory Access (DMA)

takes place to and from the FPGA. Common data to all

alignments, such as the queries, are transferred when creating

the device buffers.

Heterogeneous multi-FPGA implementation

A simple strategy for employing multiple FPGAs at the

same time consists in exploiting thread level parallelism on

the host. Following this approach, an OpenMP thread is

generated for each accelerator and the database chunks are

distributed among the threads as soon as they become idle

using a parallel for directive. Unfortunately, this strategy

is not practical because the Altera OpenCL library is not

thread-safe at host level (Altera Corporation 2014). To avoid

this limitation and to allow simultaneous FPGA execution,

host-device data transfers are called in a non-blocking way.

Because kernels can not be invoked before data transfers are

completed, the clFinish function is used to synchronize the

host and devices. Algorithm 3 shows the pseudo-code for the

host implementation. The kernel code remains invariant as in

the single-FPGA implementation.

Heterogeneous hybrid implementation

By exploiting thread level parallelism, we are able to take

advantage of CPU and FPGA computations. Algorithm 4

shows the pseudo-code for the host implementation. The

hybrid implementation is based on a nested parallel scheme:

Prepared using sagej.cls
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initially two threads are requested. The threads invoke

one routine each. The SWIMM search routine creates

a nested parallel region. For the CPU alignments, our

code is based on the SWIMM tool once again, which is

able to take advantage of multithreading and both SSE

and AVX2 extensions. The multi− FPGA search routine

computes the alignments as described in the multi-FPGA

implementation of Algorithm 3.

Workload distribution strategy A key to achieving a high

level of performance is the workload balance between host

and accelerators. Static techniques can lead to an almost

perfect distribution. However, these techniques involve

knowing some information in advance, such as hardware

features related to computational capabilities, and memory

hierarchy, among others. In contrast, dynamic approaches

do not need any previous information, at the expense of

certain performance penalization due to imbalances and/or

idling. To solve this issue, a semi-dynamic technique is

performed that takes advantage of both approaches: initial

tester workload (some pairwise alignments) is used to

estimate the performance of any device.

In fact, the query sequences and a configurable percentage

of the database residues (p) are performed, then a scheduler

estimates the relative computational capabilities of both the

host and the accelerators. The number of database residues

assigned to the FPGAs (RF ) is evaluated according to

Equation 4:

RF = |D| ×
nF ×GCUPSF

nF ×GCUPSF +GCUPSh

(4)

where |D| is the total number of residues in the database,

nF is the number of FPGA devices, and GCUPSF

and GCUPSh correspond to the GCUPS performance

achieved by the FPGAs and the host. th threads are employed

to estimate the compute power of the host while in the FPGA

case a single accelerator is used. We assume that in a system

based on multi-FPGAs each one has the same features. In

an environment with different FPGAs, the scheduler should

assess each FPGA’s capabilities in order to distributed the

workload as homogeneously as possible.

Experimental Results

Experimental environment and tests carried out

All tests were performed on two heterogeneous architectures

running CentOS (release 6.5). The first one consists of two

Intel Xeon CPU E5-2670 8-core 2.60GHz CPUs (hyper-

threading enabled) and 32 GB main memory while the

second one has two Intel Xeon E5-2695 v3 14-core 2.30GHz

CPUs (hyper-threading enabled) and 64 GB main memory.

Both architectures are equipped with:

• Two Altera Stratix V GSD5 Half-Length PCIe Boards

with Dual DDR3 (two banks of 4 GByte DDR3).

• A single NVIDIA Tesla K20c GPU (2496 CUDA

cores) with 5GB dedicated memory and Compute

Capability 3.5.

• A single 57-core Xeon Phi 3120P coprocessor card (4

hw thread per core, 228 hw threads overall) with 6GB

dedicated memory.

Algorithm 3 Host pseudo-code for multi-FPGA implemen-

tation

1: ⊲ nF is the number of FPGAs

2:

3: S = multi− FPGA search(Q, vD, SM, th, nF ) ⊲
Compute alignments in FPGAs

4: S = recompute if overflow(S,Q, vD, SM, th)
⊲ Recompute alignments that overflowed

5: S = sort(S, th) ⊲ Sort all scores in descending order

6:

7: function multi− FPGA search (Q, vD, SM , S, th, nF )

8:

9: for d ≤ nF do

10: clCreateBuffer’s(...) ⊲ Create buffers + transfer data

11: end for

12: for (i = 0; i ≤ get num chunks(vD); i+ = nF ) do

13: for d ≤ nF do

14: c = i+ d
15: SPc = build SPs(vDc, SM, th)
16: clEnqueueWriteBuffer(SPc) ⊲ Score Profiles to

device

17: clEnqueueWriteBuffer(nc) ⊲ Sequence lengths to

device

18: end for

19: wait() ⊲ Block until previous transferences finish

20: for d ≤ nF do

21: c = i+ d
22: for q ≤ get num sequences(Q) do

23: clEnqueueNDRangeKernel(...) ⊲ Compute align-

ments among query q and chunk c
24: end for

25: end for

26: wait() ⊲ Block until previous kernels finish

27: for d ≤ nF do

28: c = i+ d
29: clEnqueueReadBuffer(Sc)

30: end for

31: end for

32: return S
33: end function

We used Intel’s ICC compiler (version 15.0.2) with the

-O3 optimization level by default. The synthesis tool used

is Quartus II DKE V12.0 2 with OpenCL SDK v14.0.

OpenMP threads were bound to processor threads using

scatter affinity.

We evaluated our application by searching 20 query

protein sequences against two well-known databases: Swiss-

Prot (release 2013 11)§ and Environmental NR (release

2014 11)¶. The Swiss-Prot database comprises 192480382

amino acid residues in 541561 sequences, 35213 being the

maximum length in amino acids. The Environmental NR

database consists of 1291019045 amino acid residues in

6552667 sequences with the longest one containing 7557

§The Swiss-Prot database is available online at http://web.expasy.

org/docs/swiss-prot_guideline.html

¶The Environmental NR database is available online at ftp://ftp.

ncbi.nih.gov/blast/db/FASTA/env_nr.gz
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amino acids. The queries range in length from 144 to

5478, and they were extracted from the Swiss-Prot database

(accession numbers: P02232, P05013, P14942, P07327,

P01008, P03435, P42357, P21177, Q38941, P27895,

P07756, P04775, P19096, P28167, P0C6B8, P20930,

P08519, Q7TMA5, P33450, and Q9UKN1). Moreover,

BLOSUM62 was selected as the scoring matrix, and gap

insertion and extension penalties were set to 10 and 2,

respectively. Each particular test was run ten times and the

performance was calculated with the average of those ten

executions to avoid variability.

Since this paper considers energy consumption as well

as performance, we describe the measurement environment

used on hosts and accelerators:

• Host. Intel processors provide monitoring capabilities

via hardware counters, but it is not obvious how

to determine power consumption in this way. To

solve this issue, Intel has developed the Intel

PCM‖ (Performance Counter Monitor) to take power

measurements on the Intel Xeon processor. The Intel

PCM interface allows any programmer to perform an

analysis of CPU resource consumption by means of

hardware counters in an easy way.

• FPGA. The FPGA is monitored by means of Furaxa’s

PCI-Express extender connected to a data acquisition

device. The PCI-Express extender reports the current

supplied in both 12V and 3.3V PCIe power supply

lines. In particular, we use Furaxa’s PCIeEXT16HOT

model and the current is measured with a USB’ Data

Acquisition (DAQ) device that is connected to an

external computer. This ad-hoc environment allows

FPGA power consumption monitoring with enough

sampling frequency for our experiment.

• GPU. Modern NVIDIA GPUs have on-board sensors

for querying power consumption at runtime. This

information can be obtained through the use of

the NVIDIA System Management Interface (nvidia-

smi ∗∗) utility, which is based on the NVIDIA

Management Library (NVML) and intended to help in

the management and monitorization of NVIDIA GPU

devices.

• Xeon Phi. In a similar way to NVML for NVIDIA

GPUs, Intel provides power consumption information

via the Intel System Management Controller (SMC)

tool (Reinders and Jeffers 2014). The coprocessor

features a microcontroller located on the circuit board

which monitors incoming DC power and thermal

sensors. In this context, a software-based power

analyzer developed by Intel makes it easy to obtain

coprocessor power by means of the micsmc utility.

Moreover, the research performed in (Igual et al.

2014) also concludes that the measurements taken

by means of Intel SMC are completely reliable,

observing less than 1% deviation from directly

measured consumption through Xeon Phi’s PCI-e

channel power.

We would like to point out that the experiments of the

single and multi-FPGA implementations were carried out on

a system based on Xeon E5-2695 v3 processors using 28

OpenMP threads. The rest of the experiments include both

architectures.

With regard to databases, the experiments with the single

and multi-FPGA implementations were carried out using

Swiss-Prot. However, due to its limited size, Environmental

NR was used to complement the experiments in the multi-

FPGA implementation and to carry out a performance

comparison between the hybrid CPU-FPGA version and

other SW implementations. Also, this database was used

to analyze performance and power trade-off. Finally, the

percentage of the database used as tester to evaluate

performance capabilities on host and accelerators was fixed

to 1% on the system based on Intel Xeon E5-2670 and to 2%

on the system based on Intel Xeon E5-2695 v3.

Performance Results

Cell updates per second (CUPS) is a commonly used

performance measure in the Smith-Waterman context,

because it allows removal of the dependency on the query

sequences and the databases utilized for the different tests.

A CUPS represents the time for a complete computation of

one cell in matrix H, including all memory operations and

the corresponding computation of the values in the E and

F arrays. Given a query sequence Q and a database D, the

GCUPS (billion cell updates per second) value is calculated

by:
|Q| × |D|

t× 109
(5)

where |Q| is the total number of residues in the query

sequence, |D| is the total number of residues in the database

and t is the runtime in seconds (Liu et al. 2009). In this work,

runtime t includes the device buffer creation, the transfer

time of host data to FPGA, the calculation time of the SW

alignments, and the transfer-back time of the scores.

Performance results of the single-FPGA implementation

In order to evaluate FPGA performance rates, we have

considered different kernel implementations according to

data-parallelism degree and memory hierarchy exploitation.

We detail below the main differences:

• the scalar version is the baseline code where non

optimization is performed.

• SIMD versions employ different integer data types

and exploit data level parallelism by enabling

vectorization. Vectorial nomenclature refers to SIMD

width; i.e. int4 means small vectors of 4-elements,

while int8 and int16 use 8 and 16 integer packages

respectively. On the other hand, the name prefix

denotes the integer data type used; i.e. int, short and

char represent 8, 16 and 32 bit integer data types,

respectively.

• regarding memory exploitation, constant Q and

private Q versions refer to the use of read-only

constant memory and private memory to place query

sequences, respectively.

‖Intel Performance Counter Monitor: http://www.intel.com/

software/pcm

∗∗NVIDIA System Management Interface: https://developer.

nvidia.com/nvidia-system-management-interface
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Table 2. Performance and resource usage comparison for OpenCL kernels with different integer data type.

Kernel
Performance Resource Usage Performance Resource Usage

(GCUPS) ALMs Regs RAM DSPs Increase Decrease

int16 17.6 76% 39% 75% 1% - -

short16 22.7 54% 28% 48% 1% 1.29× 0-0.36×
char16 27.0 41% 24% 41% 1% 1.53× 0-0.46×

Table 3. Performance and resource usage comparison for OpenCL kernels with different SIMD width.

Kernel
Performance Resource Usage Performance Resource Usage

(GCUPS) ALMs Regs RAM DSPs Increase Increase

scalar 4.0 28% 16% 28% 1% - -

char4 14.2 34% 18% 31% 1% 3.56× 0-1.21×
char8 27.7 43% 22% 38% 1% 6.95× 0-1.54×

char16 47.5 60% 30% 70% 1% 11.9× 0-2.5×

Table 4. Performance and resource usage comparison for char16 kernel with different block width.

BLOCK WIDTH
Performance Resource Usage Performance Resource Usage

(GCUPS) ALMs Regs RAM DSPs Increase Increase

4 11.7 40% 21% 36% 1% - -

8 27.0 41% 24% 41% 1% 2.31× 0-1.14×
12 37.9 53% 29% 46% 1% 3.24× 0-1.38×
16 47.5 60% 30% 70% 1% 4.06× 0-1.94×
20 52.5 75% 39% 74% 1% 4.49× 0-2.06×
24 55.0 82% 41% 81% 1% 4.7× 0-2.25×
28 57.3 92% 42% 88% 1% 4.9× 0-2.44×

Table 5. Performance and resource usage comparison for char16 kernel with different memory exploitation.

Kernel Performance (GCUPS)
Resource Usage

ALMs Regs RAM DSPs

char16 57.3 92% 42% 88% 1%

char16 + constant Q 57.2 92% 41% 88% 1%

char16 + private Q 58.0 92% 42% 89% 1%

Table 2 presents FPGA resource utilization and perfor-

mance achieved for OpenCL kernels with different inte-

ger data types. The same BLOCK WIDTH value was

used in these experiments and was set to 8 because int16

resource consumption did not allow a higher value. As can

be observed, the best option proves to be char16, not only in

terms of GCUPS but also considering resource usage. char16

reports an increase of 1.53× in performance and a reduction

of 0-0.46× in resource usage with respect to int16. Even

though int16 does not require host recomputation, align-

ment scores do not need a wide range data representation.

Therefore, it is convenient to compute alignments using 8-

bit integers on the FPGA and recompute them on the host

using wider integer types when overflow occurs.

Table 3 shows FPGA resource utilization and performance

achieved for OpenCL kernels with different SIMD width.

Unlike Table 2 experiments, the BLOCK WIDTH
constant could be set to 16 due to a lower resource

usage from these kernels. Without using vectorization

(denoted as scalar), our implementation performs poorly.

The exploitation of data level parallelism by enabling

vectorization allows significant performance improvements.

The highest GCUPS are obtained by the char16 version,

which reports a speedup with respect to scalar of 11.9× at

the cost of 0-2.5× increase in resource usage.

BLOCK WIDTH constant determines the number of

vertical blocks in the alignment matrices. Table 4 exhibits

FPGA resource utilization and performance achieved

for char16 kernel with different block width. Larger

BLOCK WIDTH means better performance and higher

resource consumption, although the performance gain falls

as BLOCK WIDTH increases. Since sequence lengths

must be a multiple of the BLOCK WIDTH constant to

permit successful parallel pipeline execution, larger values

imply longer sequences, and as a consequence, the overhead

in alignment computing increases. The best performance

achieves 57.3 GCUPS.

The impact of using constant and private memories to

place query sequences is also evaluated. Table 5 shows

FPGA resource utilization and the performance achieved

for the kernels used in this experiment. Copying query

sequences to constant memory (char16 + constant Q)

slightly reduces performance, contrary to the expected

behavior. Constant memory is optimized for high cache

hit performance. Query residues are used to index the

corresponding SP and one residue is accessed for each

row of a processed vertical block. Because global memory

incorporates extra hardware to improve long memory

latencies, better performance can be obtained if query

sequences are transferred directly to this memory. However,

private memory usage for query sequences effectively
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Algorithm 4 Host pseudo-code for hybrid heterogeneous

implementation

1: ⊲ p is the database percentage used to compute RF

2: ⊲ RF is the number of database residues assigned to

FPGAs

3: ⊲ vDp is the preprocessed database chunk used to

estimate relative compute power

4: ⊲ vDh is the host part of the preprocessed database

5: ⊲ vDF is the accelerators part

of the preprocessed database

6:

7: vDp = extract(vD, p) ⊲ Extract database chunk to

estimate relative compute power

8:

9: [RF , S] = estimate compute power (Q,vDp,SM ,th) ⊲
Calculate RF calling hybrid search

10:

11: [vDh, vDF ] = split(vD, p,RF , nF ) ⊲ Split preprocessed

database

12:

13: S = hybrid search (Q, vDh, vDF , SM , th, nF ) ⊲
Compute alignment in host and FPGA(s)

14:

15: S = sort(S, th) ⊲ Sort all scores in descending order

16:

17: function hybrid search (Q, vDh, vDF , SM , th, nF )

18: #pragma omp parallel num threads(2)

19: {
20: #pragma omp single nowait

21: { SF = multi− FPGA search(Q, vDF , SM, 1, nF )
} ⊲ Compute alignments in FPGA(s)

22: #pragma omp single

23: { Sh = SWIMM search(Q, vDh, SM, th) } ⊲ Com-

pute alignments in host

24: }
25: S = recompute if overflow(SF , Q, vDF , SM, th) ⊲

Recompute alignments that overflowed

26: return S
27: end function

delivers a minor performance improvement with an

insignificant increase in resource consumption, as can be

seen in the char16 + private Q implementation.

We also evaluate the impact of the query length, and

Figure 3 illustrates the performance of different kernel

implementations with varying query lengths. As can be

seen, the scalar kernel hardly improves performance while

vectorized kernels benefit from larger workloads. Lastly, the

char16 + private Q version outperforms all other kernel

implementations, reaching up to 52.9 GCUPS.

Performance results of the multi-FPGA implementation

Table 6 shows the performance of the multi-FPGA

implementation for the two databases selected when

varying the number of accelerators. As can be seen, this

implementation benefits from larger workloads. It is also

possible to scale its performance with good workload

balance when using more than one accelerator. Due to the

limited size of the Swiss-Prot database, the multi-FPGA

implementation achieves a speedup of 1.85×when using two

Figure 3. Performance of different OpenCL kernel

implementations with queries of varying length.

Figure 4. Performance comparison between SW

implementations in system based on Intel Xeon E5-2670.

accelerators. However, the speedup goes up to 1.96× with

the larger Environmental NR database.

Performance results of the hybrid implementation We

have compared our hybrid version with other SW imple-

mentations on the two heterogeneous architectures used.

SWIMM (v1.0.3) was selected for pure Xeon and hybrid

Xeon-Xeon Phi computing (Rucci et al. 2015b). SWIMM

accelerates similarity searches by exploiting multithreading

and takes advantage of SSE and AVX2 extensions on the

host and KNC instructions on the coprocessor. Regarding

hybrid CPU-GPU computing, the fastest SW implementa-

tion on CUDA-based GPUs, CUDASW++ 3.0 (v3.1), was

chosen (Liu et al. 2013). This implementation processes

database sequences of short and medium length on the GPU

device while long ones are carried out on the host by using

the SSE instruction set as in the SWIPE approach (Rognes

2011).

Figure 4 shows the performance achieved on the

heterogeneous system based on Intel Xeon E5-2670

processors. As can be observed, pure SWIMM presents

an almost flat curve because of multithreading and inter-

task parallelism exploitation through SSE extensions.

The addition of Xeon Phi allows SWIMM to improve
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Table 6. Performance of multi-FPGA implementation.

Database
FPGAs

1 2

Swiss-Prot 58.0 107.1

Environmental NR 58.4 114.7

Figure 5. Performance comparison between SW

implementations in system based on Intel Xeon E5-2695 v3.

its performance, except for shorter queries where this

implementation is not able to take advantage of all the

compute power available. The absence of low-range integers

in the KNC instruction set of the Xeon Phi coprocessor

is the cause of the small performance improvement. The

peak performances are 129.3 and 156.7 for pure and hybrid

versions, respectively. However, OSWALD’s performance

is always better than that of SWIMM (including for short

queries), and the difference gets bigger as the query length

increases. Thanks to a balanced workload distribution,

OSWALD reaches up to 168.3 GCUPS. Lastly, CUDASW++

3.0 outperforms all other implementations, achieving an

impressive 210 GCUPS, principally due to NVIDIA’s K20c

computational power.

Figure 5 shows the performance achieved on the

heterogeneous system based on Intel Xeon E5-2695 v3

processors. Unlike the other heterogeneous architecture,

this system features more hardware threads and the AVX2

instruction set, which permits higher data-level parallelism.

The behaviour of SWIMM is similar to the previous case.

Pure SWIMM achieves a nearly flat curve, reaching 360

GCUPS. Xeon Phi incorporation decreases performance

for short queries and provides little additional GCUPS

for the rest. In contract to the results obtained with the

previous system, CUDASW++ 3.0 presents the slowest

performance. This is due to CUDASW++ 3.0 exploiting

the SSE2 extension on the host and not being able to take

advantage of its more powerful AVX2 counterpart. Finally,

OSWALD achieves the best performance ratios, being close

to 400 GCUPS peak. We would like to remark that the AVX2

exploitation and the well-balanced workload are key aspects

in OSWALD’s performance.

Performance and power consumption

comparison

Finally, Table 7 presents a summary of the average

performance and consumption achieved on the different

architectures under study. As it can be seen, FPGA

computing is the worst approach from performance

perspective. However, it can be a good choice from the power

point of view; its low power consumption (Thermal Design

Power less than 25 watts) can be useful in environments with

power restrictions or when power is the main concern. Also,

following the same purpose, it is observed that the use of a

single thread in the host is a convenient way to reduce power

consumption (16%) at the cost of a smaller performance

detriment (8%). In opposite sense, the use of a heterogeneous

architecture based on Xeon and Xeon Phi processors is not

a good option from power perspective. The incorporation

of Xeon Phi coprocessor delivers low performance gain

and decreases GCUPS/Watt ratio compared to host-only

computing. The inability of the Xeon Phi to take advantage

of low-range integer vectors prevents it from achieving

better results. Moreover, the exploitation of wider vector

capabilities is a key aspect to improve GCUPS/Watt ratio, as

it is evidenced in the Xeon E5-2695 v3 (AVX2) compared

to the Xeon E5-2670 (SSE). It is also observed that the

use of hyper-threading (2 hw threads per core instead

of a single thread) improves GCUPS/Watt ratio in both

architectures. On the other hand, CPU combined with GPU

can be a good alternative in systems that feature SSE

instruction set, although AVX2 extensions are not available.

In the system based on Intel Xeon E5-2670, CUDASW++

3.0 improves GCUPS and GCUPS/Watt ratio compared to

SWIMM (host-only version). However, it is not able to

repeat its performance in the system based on Intel Xeon

E5-2695 v3 because CUDASW++ 3.0 only exploits SSE

instructions. Finally, hybrid CPU-FPGA computing stands

as the best option from the performance/power point of

view considering that it achieves the highest GCUPS/Watt

ratio in both systems. Even more, the inclusion of an

additional FPGA improves this ratio in both architectures.

We would like to conclude that the use of FPGA improves

significantly GCUPS/Watt ratio in both system, highlighting

an improvement by 20% in the ‘less’ powerful system mainly

due to a more homogeneous workload distribution between

the host and FPGAs.

Conclusions

The SW algorithm is one of the most popular algorithms

in sequence alignment because it performs an exact local

alignment. However, due to its high computational demands

scientists have developed several parallel implementations

in order to reduce its response time. In addition, with the

emergence of heterogeneous computing it is necessary to

evaluate not only computationally scalable solutions but also
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Table 7. Performance and power consumption summary.

System Compute units Cores GCUPS Power (Watt) GCUPS/Watt

Based on Intel Xeon E5-2695 v3

Host 28 309.3 228.2 1.355

Host 56 354.8 240 1.478

FPGA* 1 53.5 69 0.775

FPGA* 28 58.4 83.1 0.702

2×FPGA* 28 114.7 169.5 0.677

Host + Xeon Phi 56+228 450.5 380 0.843

Host + GPU 56+2496 298.8 328.2 0.910

Host + FPGA 56 401.1 265.6 1.510

Host + 2 ×FPGA 56 441.6 291.2 1.516

Based on Intel Xeon E5-2670

Host 16 110.1 209.7 0.525

Host 32 127.5 230 0.554

Host + Xeon Phi 32+228 165.5 438.5 0.377

Host + GPU 32+2496 206.2 303.2 0.680

Host + FPGA 32 178.9 253.1 0.707

Host + 2×FPGA 32 225.1 271 0.830

*Host takes part in overflow recomputation.

the energy efficiency of the system. Taking into account

these considerations, this paper examines the benefits of a

highly innovative technology in the form of supporting the

OpenCL parallel programming model in the field of FPGAs.

To the best of the authors’ knowlegde, our proposal is the first

high-level programming implementation on FPGAs using

OpenCL with real amino acid datasets.

The main contributions of this study can be summarized

as follows:

• Starting from a single-FPGA implementation, we have

stressed FPGA resources to achieve a fast kernel

implementation. In this sense, the exploitation of a

low range integer type is a key aspect to improving

performance and reducing resource usage at the same

time. Data level parallelism is also critical to achiev-

ing successful performance rates at the expense of a

moderate increase in resource usage. With respect to

OpenCL hierarchy memory exploitation, private mem-

ory reports considerable benefits, although constant

memory must be carefully studied before use. Our

most successful single-FPGA implementation reaches

up to 58.4 GCUPS, significantly higher than the Altera

staff implementation (Settle 2014).

• We have extended the single-FPGA implementation to

allow execution on multiple devices and to support

concurrent host execution by means of OpenMP

multithreading and SIMD computing using SSE and

AVX2 extensions. Estimating the relative compute

power of the host and the FPGAs to calculate

SW alignments before dividing workload contributes

to a well-balanced distribution. At the same time,

this strategy allows us to generalize our approach

to different hardware characteristics of FPGA-

based platforms. Performance evaluations on two

different heterogeneous architectures demonstrate that

OSWALD is competitive with other top-performing

SW implementations, reaching up to 442 GCUPS

peak.

• Finally, we have evaluated the performance of the

different implementations from an energy point of

view, considering power consumption and GCUP-

S/Watt ratio. FPGA computing (without host concur-

rent execution) can be a good choice when power is

the top priority. In the opposite sense, heterogeneous

systems based on Xeon Phi coprocessors are not a

good option for SW protein searches. The absence

of low-range integer vectors on this coprocessor is

the cause of its poor energy efficiency. Furthermore,

taking advantage of wider vector capabilities is critical

to improving the GCUPS/Watt ratio, as indicated by

the Xeon E5-2695 v3 (AVX2) compared with the

Xeon E5-2670 (SSE). On the other hand, GPU-based

systems can lead to higher GCUPS (especially on

those without AVX2 support) with acceptable GCUP-

S/Watt ratios. Based on our experiments, hybrid CPU-

FPGA computing stands out as the best option from

a performance/power perspective since it achieves the

highest GCUPS/Watt ratio on both systems. Further-

more, the inclusion of an additional FPGA improves

this ratio in the two architectures used.

The programming cost and the lack of portability of

FPGA code have traditionally limited its applicability

for SW alignments. OSWALD is a portable, completely

functional and general implementation for accelerating

similarity searches on FPGA-based architectures. We expect

OSWALD to become an established option for accelerating

SW searches in an energy-efficient way.
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