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Abstract
Recently, soft robots that consist of soft and deformable materials have received much attention for their adaptability
to uncertain environments. Although these robots are difficult to control with a conventional control theory due to their
complex body dynamics, research from different perspectives attempts to actively exploit these body dynamics as an
asset rather than a drawback. This approach is called morphological computation, in which, the soft materials are used
for computation that includes a new kind of control strategy. In this paper, we propose a novel approach to analyze
the computational properties of soft materials based on an algebraic method, called the input–output equation used in
systems analysis, particularly in systems biology. We mainly focus on the two scenarios relevant to soft robotics, that is,
analysis of the computational capabilities of soft materials and design of the input force to soft devices to generate the
target behaviors. The input–output equation directly describes the relationship between inputs and outputs of a system,
and hence by using this equation, important properties, such as the echo state property that guarantees reproducible
responses against the same input stream, can be investigated for soft structures. Several application scenarios of our
proposed method are demonstrated using typical soft robotic settings in detail, including linear/nonlinear models and
hydrogels driven by chemical reactions.
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Introduction

Much attention has been given lately to soft robots, which are
made of soft and deformable materials (see Rus and Tolley
(2015); Laschi, Mazzolai and Cianchetti (2016); Bao, Fang,
Chen, Wan, Xu, Yang and Zhang (2018).) Soft robots can
often deal with tasks that are difficult for conventional rigid
robots, such as locomotion in rough terrain (e.g., Shepherd,
Ilievski, Choi, Morin, Stokes, Mazzeo, Chen, Wang and
Whitesides (2011)) and manipulation of objects whose
structures are unknown beforehand (e.g., Brown, Rodenberg,
Amend, Mozeika, Steltz, Zakin, Lipson and Jaeger (2010)).
Their application domains are still developing (Pfeifer,
Lungarella and Iida (2012)).

In spite of the increasing popularity and success of
this research stream, soft robots are difficult to control
in general with the conventional control theory, and
hence a new approach is required (George Thuruthel,
Ansari, Falotico and Laschi (2018)). In this regard, a
framework called morphological computation has been
attracting attention (see Paul, Valero-Cuevas and Lipson
(2006); Pfeifer, Lungarella and Iida (2007)), in which the
softness is directly exploited as a computational resource.
In fact, morphological computation was motivated by some
observations of living creatures in nature. For example,
creatures like octopuses have soft bodies and can control
them without any difficulty (Kim, Laschi and Trimmer
(2013); Li, Nakajima, Kuba, Gutnick, Hochner and Pfeifer
(2012); Hochner (2012)). In Müller and Hoffmann (2017),

a number of real-world examples are provided and then
exploitation of morphology is suggested to be categorized
into the three groups: (a) morphology facilitating control, (b)
morphology facilitating perception and (c) morphological (in
a sense, purely) computation. Research in the first direction
includes Caluwaerts, D’Haene, Verstraeten and Schrauwen
(2013); Füchslin, Dzyakanchuk, Flumini, Hauser, Hunt,
Luchsinger, Reller, Scheidegger and Walker (2013); Moore,
Ober-Blöbaum and Marsden (2012); Rückert and Neumann
(2013), in which, for example, asymptotic behaviors of
the systems are controlled by appropriately choosing
certain parameters of the systems. Examples of (b) include
artificial compound eyes shown in Floreano, Pericet-Camara,
Viollet, Ruffier, Brückner, Leitel, Buss, Menouni, Expert,
Juston, Dobrzynski, L’Eplattenier, Recktenwald, Mallot and
Franceschini (2013), and of (c) the octopus-like device that
can predict a certain class of time series (Kim, Laschi and
Trimmer (2013); Li, Nakajima, Kuba, Gutnick, Hochner and
Pfeifer (2012); Hochner (2012)). In this paper, we propose a
novel approach to analyze the computational capabilities of
soft structures used in morphological computation, mainly

1 Kobe University, Japan2 Kobe University, Japan and JST PRESTO,
Japan 3 The University of Tokyo, Japan and JST PRESTO, Japan

Corresponding author:
Mizuka Komatsu, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe-shi,
Hyogo, 657-8501, Japan
Email: m-komatsu@stu.kobe-u.ac.jp

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

of the type (c); however, we also show an example where the
input force is designed for the position control of a model of
elastic rods, which is relevant to (a) to a certain extent.

The theoretical background of morphological computation
of the type (c) (which is abbreviated as morphological
computation in the following for simplicity) is given in
Hauser, Ijspeert, Füchslin, Pfeifer and Maass (2011). Their
approach is based on the theory of approximations of
nonlinear filters given by Boyd and Chua (1985). A filter
is a map that maps an input stream (e.g., information
from sensors) to an output stream (e.g., control signal), or
mathematically, a map from a space of functions to the set
of real numbers R. For example, approximation of Volterra
series operators with the parameters σ1, σ2, µ1, µ2

y(t) = Vu(t) =

∫ ∞
0

∫ ∞
0

h(r, s)u(t− s)u(t− r)dsdr,

h(r, s) = exp((r − µ1)2/2σ2
1 + (s− µ2)2/2σ2

2)

is considered in Hauser, Ijspeert, Füchslin, Pfeifer and Maass
(2011). Many target tasks in morphological computation
can be considered as approximations of filters; however,
morphological computation of other two categories (a) and
(b) cannot always be implemented as filters. The paper by
Boyd and Chua shows that a causal time-invariant filter
with fading memory can be approximated by polynomials
of outputs of huge linear systems. It is also shown that
the approximate polynomials can be rewritten as a linear
combination of outputs of certain nonlinear systems. This
result can be a theoretical basis of the feasibility of
morphological computation in that this shows the possibility
of approximation of various causal time-invariant filters
with fading memory by combining the outputs of nonlinear
dynamical systems with complicated motions. It has been
confirmed experimentally, such as by using octopus-inspired
soft robotic arms, that many temporal machine learning tasks
can be indeed implemented via morphological computation;
for example, soft body dynamics have been shown to
be capable of emulating nonlinear dynamical systems
(Nakajima, Li, Hauser and Pfeifer 2014; Nakajima, Hauser,
Li and Pfeifer 2015, 2018) and can be used to embed robust
closed-loop control into the body (Nakajima, Li, Hauser and
Pfeifer 2014; Zhao, Nakajima, Sumioka, Hauser and Pfeifer
2013).

This view of morphological computation is also compat-
ible with the framework of reservoir computing, in which
soft materials are considered as physical reservoirs. In
fact, the theory of Boyd and Chua is also the basis of
the theory of reservoir computing, which is a method for
training recurrent neural networks (see, e.g., Jaeger (2001);
Maass, Natschläger and Markram (2002); Jaeger and Haas
(2004); Jaeger, Lukoševičius, Popovici and Siewert (2007);
Lukoševičius and Jaeger (2009).) Recurrent neural networks
are neural networks with a characteristic property, specifi-
cally, the presence of loops inside the network. Due to this
property, these neural networks can learn time series, such as
natural languages; however, designing a learning algorithm
for such networks is difficult compared with algorithms for
forward neural networks. Reservoir computing has received
much attention as a simple but reliable approach to achieve
this.

In reservoir computing, first a complex and huge neural
network, which is called a reservoir, is prepared in advance.
Then the target time series are predicted by a linear
combination of outputs of the reservoir. In particular, in the
learning stage only the output weights are learned, and the
structure of the reservoir including the connection weights
is unchanged. In the theory of reservoir computing, for
example, a property called the echo state property (Jaeger
(2001); Yildiz, Jaeger and Kiebel (2012)) is considered to
be essential for a reservoir to have sufficient computational
ability. Therefore, it is beneficial to investigate whether and
when nonlinear systems used in morphological computation
have the echo state property.

The theorem by Boyd and Chua is proved by a method
of functional analysis and in this sense the existing
approach described above is analytical. In this paper, we
propose an alternative algebraic approach to morphological
computation. The proposed approach is based on the
technique of model identifiability analysis, which has
been studied in the field of mathematical modeling, in
particular, in systems biology (see Meshkat and Sullivant
(2014); Meshkat, Rosen and Sullivant (2018)). In the model
identifiability problem, the main interest is in whether the
values of parameters included in mathematical models can
be identified from observable data. Among the various
existing methods for identifiability analysis, we focus on
the method using computational differential algebra (Ritt
(1950); Kolchin (1973)). The main tool of this method is the
input–output equation, which is an equation that describes
the hidden relations in a given mathematical model between
the input variables and the output variables. This equation
is obtained by eliminating the internal variables from the
system of model equations while retaining the input and
output variables in a given mathematical model. Substitution
of the observed data into the input–output equation yields
a system of equations with the parameters as the unknown
variables. The identifiability of the parameters can be
determined by analyzing the uniqueness of the solutions for
this system of equations.

In this paper, we employ this technique to analyze the
computational ability of systems used in morphological
computation. In morphological computation, it is difficult to
determine what relationship exists between the solvable tasks
by a given system and the values of the physical parameters,
for example, the spring constants and damping coefficients
in mass–spring–damper systems.

However, the theoretical analysis of morphological
computation and model identifiability analysis share the
following common objectives. If the target tasks of
morphological computation are restricted to approximation
of time-invariant filters, the relationship between the
computational ability of the systems and the values of
the parameters is essentially revealed by determining the
physical parameters so that the outputs of the systems can
well approximate the target filters. Hence, the objective
of the theoretical analysis of the time-series prediction
by morphological computation is almost the same as
determining the parameters of mathematical models so as to
approximate the given observation data, which is the aim of
model identifiability analysis. Therefore, the various existing
techniques in model identifiability analysis must be useful
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for the theoretical analysis of morphological computation.
Besides, the input–output equation can be used for designing
the input function so that the output function becomes an
well approximation of the target function. With this feature,
the proposed approach has a potential application to control
of soft devices.

In this paper, we show that the techniques, particularly, the
input–output equations in model identifiability analysis, are
in fact useful for analysis of morphological computation.

In the next section, we will explain how the input–output
equation is used for analysis in morphological computation.
The equation is derived by an algebraic method in which the
ideal, which is a certain set of equations, is investigated using
the Gröbner basis. We summarize the mathematical topics
needed for understanding the method in Appendix 1 and 5.
See also Hibi (2014) for details of the algebraic theory. Some
applications to analysis of morphological computations of
soft materials are shown, followed by the application to
designing the input force for a model of elastic rods.

Methodology
In this section, we explain the input–output equation and
why this equation is useful for analyzing the properties of
the system. The detailed algebraic theory is summarized
in Appendix 1 along with a list of mathematical terms in
Appendix 5.

The input–output equation has been extensively studied
especially in systems biology. This equation has been used
for the parameter identifiability problem, in particular, to
determine whether the parameters in a model are identified
from the observed data; however, its application to other
research area is limited. In this paper, we use this equation
for the analysis of morphological computation. In addition,
although here we focus on the morphological computation
for approximation of time-invariant filters, an application to
designing the input function to achieve the target outputs will
be shown in the later section.

As a toy example, let us consider the following state-space
model with an input and an output:

dx1

dt
= a11x1 + a12x2 + u,

dx2

dt
= a21x1 + a22x2,

y = w1x1 + w2x2. (1)

x1(t), x2(t) are the state variables. u(t) and y(t) are the input
and the output, respectively. a11, a12, a21, a22 are parameters
of the system. w1 and w2 are the weights which are assumed
to be user-specified. We may regard this system as a filter
that maps the input function u to the output function y.
Fundamental questions regarding filters introduced in this
way are the echo state property (Jaeger (2001); Yildiz, Jaeger
and Kiebel (2012)), the point-wise separation property
(Boyd and Chua (1985); Maass, Natschläger and Markram
(2002); Maass and Markram (2004)) and the fading memory.
The echo state property refers to the asymptotic uniqueness
of the output, that is, a system has the echo state property if
the state of the system is uniquely determined by the input
asymptotically. A set of filters is said to have the point-wise
separation property if, for any pair of inputs u1 and u2 there
exists a filter F in this set such that F(u1) 6= F(u2). A filter
that has weak dependence on the past data is said to have

a fading memory. More precisely, a filter is said to have a
fading memory if it is continuous with respect to a weighted
norm of which weight is exponentially decay as the time goes
back to the past. If a set of filters with both the point-wise
separation property and the fading memory is combined with
a system with the universal approximation property (e.g.,
artificial neural networks), then any nonlinear filters with
fading memory can be approximated (Maass, Natschläger
and Markram (2002); Maass and Markram (2004)).

In this paper, we propose a method to analyze the
filters introduced by using physical systems from a slightly
different point of view. While we consider the echo state
property, which is certainly important because systems
without this property do not yield a unique output from
a given input, the above theoretical framework may not
suitable for situations where the system under consideration
can approximate only a certain limited class of filters. In
the following, we propose an algebraic method to directly
describe the filter defined by a given system, which may have
a limited computational capability, thereby investigating the
properties of the filters that can be approximated by the
system. In other words, if a reservoir is considered as a bank
of filters, the proposed method is useful to see what filters
are in the bank.

To investigate the properties of the filter, it is useful to
rewrite the equation as

d2y

dt2
− (a11 + a22)

dy

dt
+ (a11a22 − a12a21)y

= w1
du

dt
+ (−w1a22 + w2a21)u (2)

by eliminating the internal variables x1 and x2 and their
derivatives. This equation is called the input–output equation
in the studies of the parameter identifiability problem.
Indeed, the filter F defined by the system (1) is essentially
the map F that maps the input function u(t) to the solution
y(t) of (2). Hence the echo state property is related to the
asymptotic uniqueness of the solution y to the input–output
equation. Besides, the set of filters that can be introduced by
using this system can be investigated by analyzing the space
(or the manifold if the equation is nonlinear) of the solutions
y, that is, the dependence of y on the weights w1 and w2.

Moreover, (2) is also used to design the input function
so that the output of the system behaves in a desired way.
As an example, in the later section we use the input–
output equation for position control of a model of elastic
rods. Another example is designing the parameters of the
system so that the system have, for instance, an attractor
suitable for the situation under consideration. In particular,
for those purpose, one must choose the only 4 param-
eters c1 = a11 + a22, c2 = a11a22 − a12a21, c3 = w1, c4 =
−w1a22 + w2a21 instead of each a11, a12, a21, a22, w1, w2,
because the same c1, c2, c3, c4 results in the same dynamics
of the output y.

In the following section of this paper, we consider the
computational capabilities of systems described by the state-
space model

dx

dt
= f(x; θ) + u, y = g(x; θ), (3)

where x : R→ Rn is a function that depends on time t,
u : R→ Rm and y : R→ R are the input and the output
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of the system respectively, both of which are function
of time t. f and g are nonlinear functions that depend
on the parameter θ ∈ Rl. Here we assume that f and
g are polynomials of x. Note that this assumption is
essential because we employ an algebraic approach and
algebra is basically a mathematical theory for polynomials.
If they are not polynomials, the model equations should
be reformulated or approximated to be polynomials or
piecewise polynomials by using, for example, the Taylor
series expansion. There is a tradeoff between the number of
terms used in the approximation and the computational time;
however, the increase of the computational time is actually
highly dependent on each specific state-space model. Finding
an effective reformulation is an important future work.

Under the above assumption, the input–output equation
for (3) is obtained by using an algebraic method: the Gröbner
basis in differential algebra as summarized in Appendix 1. It
is known as the elimination theorem that specified variables
(e.g., state variables x1 and x2 in the above example) can be
eliminated from a given system of polynomial equations by
computing the Gröbner basis. This procedure is regarded as
an extension of the Gaussian elimination for solving systems
of linear equations to systems of polynomial equations. In
particular, differential algebra is an algebraic framework
in which the differentiation is allowed as an algebraic
operation. Hence by using the Gröbner basis in differential
algebra, the specified variables can be eliminated from the
given system of differential equations. The input–output
equation is obtained by eliminating the state variables from
the model of the system under consideration.

This procedure of eliminating variables can be performed
by computer algebra software, such as Singular, Magma,
Mathematica, Maple. An example of a series of commands
of Singular for computation of the Gröbner basis is shown in
Remark 4 in Appendix 1. For details, see the summary of the
algebraic theory and Example 1 in Appendix 1.

In the following sections, we illustrate this algebraic
approach using some examples.

Illustration of Proposed Approach for Linear
Systems
In the following sections, applications of the proposed
method are shown. In this section, a general method to
investigate computational abilities of linear systems are
illustrated. Because the examples considered here are well-
examined, some of the results (e.g., the echo state property
of mass-spring systems) have already been established;
however we use these examples for ease of understanding
the proposed approach. As an example, a system of equations
which describes two connected springs one of which is fixed
to the wall (see Figure 1) is considered:

m
d2x1

dt2
= −k(x1 − l) + k(x2 − x1 − l)− γ

dx1

dt
+ u,

m
d2x2

dt2
= −k(x2 − x1 − l)− γ

dx2

dt
. (4)

We assume that the output from the system is given as

y(t) = w1x1(t) + w2x2(t).

Figure 1. Two connected springs investigated in the 3rd
section. One of the springs is fixed to a wall.

In this section, we consider the task of predicting time
series s(t) using the output of the system. Basically, this
task is reduced to the problem of finding the values of
the parameters w1, w2 so that ‖s(t)− y(t)‖ is as small as
possible. Here we consider what kind of functions can be
well approximated by using this system, in other words, how
many filters are in the bank of filters of this system as a
reservoir.

The input–output equation of the system is obtained as
follows:

m2 d4y

dt4
+ 2mγ

d3y

dt3
+ (3km+ γ2)

d2y

dt2
+ 3kγ

dy

dt
+ k2y

= w1((m
d2u

dt2
+ γ

du

dt
+ ku) + k2l) + w2(ku+ 2k2l).

(5)

In the following, applications of the input–output equation
are described using two types of systems: systems with and
without input. Firstly, for a system without an input, (5) is
rearranged to

m2 d4y

dt4
+ 2mγ

d3y

dt3
+ (3km+ γ2)

d2y

dt2
+ 3kγ

dy

dt
+ k2y

= (w1 + 2w2)k2l. (6)

Remark 1. Because the derived input–output equation
often contains high-order derivatives, it is hard to interpret
the physical meaning of the equation unlike the given model
itself. However, the input–output equation is derived from
the given model and hence it is equivalent to the model.
Therefore, in fact, the input–output equation makes sense
under the assumption that the given model is physically
plausible.

The functions that can be approximated by this system are
the particular solution of (6) and the functions in

Ker

(
m2 d4

dt4
+ 2mγ

d3

dt3
+ (3km+ γ2)

d2

dt2
+ 3kγ

d

dt
+ k2I

)
(7)

where I is the identity mapping.
The operator in (7) is a 4th order differential operator

and hence the dimension of general solutions is 4. This
is considered to be reasonable because the system consists
of two point masses having two degrees of freedom, the
position and the velocity, for each mass point.

Furthermore, changes in the values of the output weights
w1, w2 do not affect (7), which accounts for a large part
of possible approximated functions, but only affect the
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particular solution. In addition, the particular solution is
affected by w1, w2 only through the term (w1 + 2w2)k2l,
which means that the system essentially has just one
parameter (w1 + 2w2), that is, w1 and w2 with the
same value of w1 + 2w2 yield the system with the same
computational capability. In terms of reservoir computing,
this means that although the system has the two parameters
w1 andw2, the dimension of the corresponding bank of filters
is reduced to 1. This result can be generalized to other linear
systems.

Theorem 1. Consider systems described by a linear state-
space model

dx

dt
= Ax+ u, y = w · x, (8)

where x = (x1, . . . , xn), u = (u1, . . . , un), w =
(w1, . . . wn) and A is an n× n matrix. Suppose that
the matrix A is irreducible. Then the weights w do not
affect the general solutions of the input–output equation. In
addition, the particular solution to the system is determined
by

w1 det(
d

dt
I −A1) + · · ·+ wn det(

d

dt
I −An)

= Cn
dnu

dtn
+ · · ·+ C1

du

dt
+ C0u,

where Aj is the matrix obtained by replacing the jth column
with the vector u and the matricesCn, Cn−1, . . . , C0 depend
on w1, . . . , wn and the matrix A.

A proof of this theorem is provided in Appendix 2.
Besides, the explicit expression of the essential polynomials
in terms of the weight parameters for the dynamics of the
output, e.g., w1 + 2w2 in the above example, is obtained
from C0, . . . , Cn. The number of independent conponents
of Cj’s implies the dimension of the bank of filters. In
addition, the explicit expression C0, . . . , Cn will be useful
for implementations of morphological filters for real-world
applications, for example, as shown in Remark 2 below.

Remark 2. In Section 3.3.2 of Füchslin, Dzyakanchuk,
Flumini, Hauser, Hunt, Luchsinger, Reller, Scheidegger and
Walker (2013), an application of morphological control
for radio-oncology is shown. They considered a model
of tumor dynamics described by a system of differential
equations with parameters called the dose equivalent. In
the paper, they suggested to use the dose equivalent as a
true parameter of the system. The input–output equation
can be used for deriving these true parameters of systems.
In fact, the essential polynomials of the weight parameters,
such as w1 + 2w2 in the example, are regarded as the true
parameters of the systems.

Secondly, for the system with an input, (5) can be regarded
as an equation that can find input u given a target function y
so that the equation has the desired output y as its particular
solution. In this case, if all of the functions in (7) decay over
t→∞, the behavior of the solution after a sufficiently long
time is determined only by the input, which implies that the
system has the echo state property. Actually, in this case,
the system has the particular solution alone as its solution
after a long time, and thereby the target function can be

approximated by the output by giving the input determined
by (5). As mentioned above, the echo state property can
be confirmed by analyzing the dissipation property of the
system over t→∞. For that, the characteristic polynomial
of the differential equation that is defined by the left hand
side of (5) needs to have zeros in the left half plane. This
can be checked by the Routh–Hurwitz stability criterion. The
characteristic equation of the system is as follows:

m2s4 + 2mγs3 + (3km+ γ2)s2 + 3kγs+ k2 = 0. (9)

To guarantee the existence of roots of the equation in the left
half plane, the followings need to be satisfied:

• the coefficient of each term in the equation is not 0,
• all of the coefficients have the same sign, and
• all of the following determinants are positive:

D1 =
∣∣2mγ∣∣ , D2 =

∣∣∣∣2mγ 3kγ
m2 3km+ γ2

∣∣∣∣ ,
D3 =

∣∣∣∣∣∣
2mγ 3kγ 0
m2 3km+ γ2 k2

0 2mγ 3kγ

∣∣∣∣∣∣ ,
D4 =

∣∣∣∣∣∣∣∣
2mγ 3kγ 0 0
m2 3km+ γ2 k2 0
0 2mγ 3kγ 0
0 m2 3km+ γ2 k2

∣∣∣∣∣∣∣∣ .
Because the first two conditions are clearly satisfied, we
only need to check the third one. D1 is obviously positive
and because D4 = k2D3 the positivities of D2, D3 are the
remaining concerns. D2 is simplified as follows:

D2 = 2mγ(3km+ γ2)− 3km2γ = mγ(2γ2 + 3km).

Therefore to make D2 positive, γ > 0 must be satisfied.
Similarly, for D3 from

D3 = 2mγ(3kγ(3km+ γ2)− 2mγk2)− 9m2k2γ2

= mkγ2(5km+ 6γ2)

the same condition γ > 0 is sufficient as well. In other words,
if γ > 0 is satisfied, the system always admits the echo state
property.

As an illustration we provide a numerical example. We
used the system with m = 1, k = 1.5, and γ = 1.0 for
predicting the function 11 + sin t. The input to the system
is derived by the input–output equation (5). The equation
of motion (4) is solved by the Python function odeint
with the initial condition x1(0) = 5.5, v1(0) = 0, x2(0) =
5.5, v2(0) = 0. Note that the frequencies of the springs in
the system and the target function are different. Hence, to
approximate the target function, a carefully designed input is
required.

The result is shown in Figure 2. The target function
11 + sin t and the output of the system are shown by the
red and blue curves, respectively. As shown in the figure, at
the early stage of the computation (t < 8), we can see a gap
between the two curves. However, this gap becomes smaller
as time proceeds and the target function is successfully
approximated. This result implies that the system acquires
the echo state property.

Remark 3. The above procedure is also applied to
designing the input for a kind of control problems, which will
be illustrated in the later section.
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Figure 2. The target function(red curve) and system output
with two linear springs along with the input determined by the
input–output equation (5) (blue curve.)

Figure 3. One dimensional mass-spring-damper array, as
analyzed in this paper.

Application to Analysis of Linear
Mass–Spring Array Models

In this section, the behaviors of 1-dimensional soft materials
are analyzed as another application of the proposed method.
The softness of the material, which has a total length of L,
is modeled by the 1-dimensional mass-spring-damper array,
which consists of N + 1 point masses, of which the two
masses at both ends are fixed (see Figure 3). The physical
parameters are the spring constant k, the natural length
l0 and damper coefficient γ of the springs, and the point
masses m. This model corresponds to an object such as a
1-dimensional tensegrity that consists of flexible and elastic
materials with a fixed length. We assume that the natural
length of springs is small enough and the distances between
point masses l = L/N are larger than l0. In this situation,
as N becomes smaller, the springs become less flexible and
hence the system becomes firmer. That is to say, the largerN
is, the softer the system becomes and hence we may regard
N as the measure of the softness of the materials.

The position of the point mass is given as xj(t) =
jL/N + ∆xj . Note that both ends are fixed, as mentioned
before: x0 = 0, xN = L. We assume that an external force
uj is applied to each point mass as the input to the system and
the output is given as a linear combination of displacements
of the point mass: y = wj∆xj .

The input–output equation in the case of N = 6 is derived
in Appendix 3. The solution y(t) to the equation is a linear
combination of exp(st) with

s =
−γ̃ ±

√
γ̃2 − 12k̃

2
,
−γ̃ ±

√
γ̃2 − 8k̃

2
,

−γ̃ ±
√
γ̃2 − 4k̃

2
,
−γ̃ ±

√
γ̃2 − 8k̃ ± 4

√
3k̃

2
.

See Appendix 3 for details. From these, it is seen that
s can be imaginary numbers or negative real numbers. In
particular, when the damping term is strong so that γ̃ > 12k̃,
all of the values of s become negative real numbers. In
this case, as for applications to morphological computation,
such systems are able to approximate only monotonically
decreasing systems. When γ̃ is small, s can be approximated
as

s '±
√
−12k̃

2
,
±
√
−8k̃

2
,

±
√
−4k̃

2
,
±
√
−8k̃ ± 4

√
3k̃

2
.

By noting that 4
√

3 ' 7.0, the expressions can be rearranged
as

s ' ±
√
−15k̃

2
,

√
−12k̃

2
,
±
√
−8k̃

2
,
±
√
−4k̃

2
,
±
√
−k̃

2
,

which means that the solution s uniformly cover a wide range
of frequency. To satisfy the assumption, however, γ̃ needs to
be considerably small. If not, the modes that correspond to
±
√
−k̃/2 are negative real numbers. According to this, it is

considered that the system with large damping coefficients is
able to approximate high-frequency modes easily, but it has
difficulties in approximating low frequencies.

To confirm this, with k̃ fixed to 1. we derive the
characteristic equations of the input–output equations with
different N and γ̃ values. The solution of the characteristic
equations are plotted on the complex plane and shown in
Figure 4–6. As expected, for each N , if γ̃ is large, solutions
in low frequency regions are sparse. In addition, the larger
N is, which means that the softer the system is, the more the
number of general solutions increases, and in particular, there
tend to exist denser solutions in the high frequency region.
Considering that the system is a model of a tensegrity, for
approximating filters with high frequencies, N is preferred
to be large, which means that one needs to increase the
number of elastic rods and thus the degree of freedom of the
system. However, this implies that weakening the tension is
expected to work more effectively to approximate filters with
low frequency, rather than increasing the number of elastic
rods.

Application to Analysis of Nonlinear Models
In this section, we analyze a system with nonlinear terms
that are described by polynomials. For this sort of system,
the input–output equations are derived in the same way as
before. As an example, we consider hydrogels with chemical
reactions, which is one of the expected materials for soft
robots (Maeda, Hara, Sakai, Yoshida and Hashimoto (2007)).
In particular, the materials are modeled as reaction-diffusion
systems

∂u

∂t
= d∆u+ f(u).

where d is a diffusion coefficient and f is assumed
to be a polynomial (Maeda, Hara, Sakai, Yoshida and
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(a) k̃ = 1, γ̃ = 0.1, N = 6.
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(b) k̃ = 1, γ̃ = 1, N = 6.
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(c) k̃ = 1, γ̃ = 3, N = 6.

-6 -5 -4 -3 -2 -1 0

-2

-1

0

1

2

Re

Im

(d) k̃ = 1, γ̃ = 5, N = 6.

Figure 4. Distribution of the solutions of the characteristic
equation of the input–output equation in the case of N = 6 and
γ̃ = 0.1, 1, 3, 5.
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(a) k̃ = 1, γ̃ = 0.1, N = 11.
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(b) k̃ = 1, γ̃ = 1, N = 11.
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(c) k̃ = 1, γ̃ = 3, N = 11.
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(d) k̃ = 1, γ̃ = 5, N = 11.

Figure 5. Distribution of the solutions of the characteristic
equation of the input–output equation in the case of N = 11
and γ̃ = 0.1, 1, 3, 5.
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(a) k̃ = 1, γ̃ = 0.1, N = 16.
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(b) k̃ = 1, γ̃ = 1, N = 16.
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(d) k̃ = 1, γ̃ = 5, N = 16.

Figure 6. Distribution of the solutions of the characteristic
equation of the input–output equation in the case of N = 16
and γ̃ = 0.1, 1, 3, 5.

Figure 7. Discrete compartment model of hydrogels with
chemical reactions.

Hashimoto (2007)). In addition, the domain is assumed to
be 1-dimensional and the boundary condition is given as
the Dirichlet boundary condition: u(t, 0) = u(L, 0) = c. As
with the models described above, first the equations are
discretized, and the properties of the system are analyzed
by finding the input–output equation of the discretized
equations. Specifically, the domain L is divided into N
sections, and the equation is discretized in space by the
central difference method, yielding

duj
dt

= d
uj+1 − 2uj + uj

∆x2
+ f(uj)

where ∆x = L/N . u0 = uN = c is given as a boundary
condition. By replacing d/∆x2 with k, we get

duj
dt

= k(uj+1 − 2uj + uj) + f(uj).

Generally, for nonlinear systems, input–output equations are
likely to be considerably complicated. Even for a small
system with fewer than 10 degrees of freedom, its input–
output equation may consist of more than hundreds of terms.
Based on this, for brevity, the input–output equation of the
system mentioned above is derived whereN = 4 with simple
input and output as constant c and y = u1, respectively. Note
that this system can be regarded as the compartment model
shown in Figure 7. As for f , we consider f(u) = a(2u−
3u2) where a is a constant. In this situation, the above
partial differential equation forms the Allen–Cahn equation,
in which free energy is defined as au2(1− u). In the case of
N = 4, the discretized model becomes

du1

dt
= k(u2 − 2u1 + c) + a(2u1 − 3u2

1)

du2

dt
= k(u3 − 2u2 + u1) + a(2u2 − 3u2

2)

du3

dt
= k(c− 2u3 + u2) + a(2u3 − 3u2

3)

y = u1.

Next, we explain the lack of the echo state property of this
system for general parameter k and a. The input–output
equation of the above equation is derived as follows:

4k4c+ 9k3ac2 + 8k3ac+ 6k2a2c2 + 4k2a2c

+ (−4k4 − 36k3ac− 20k3a− 60k2a2c− 24k2a2

− 24ka3c− 8ka3)y

+ (−10k3 − 30k2ac− 24k2a− 24ka2c− 12ka2)
dy

dt

+ (−6k2 − 6kac− 6ka)
d2y

dt2
+ (−k)

d3y

dt3

+ (45k3a+ 54k2a2c+ 120k2a2 + 36ka3c+ 96ka3
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+ 24a4)y2

+ (84k2a+ 36ka2c+ 132ka2 + 48a3)y
dy

dt

+ (18ka+ 12a2)y
d2y

dt2

+ (27ka+ 18a2)

(
dy

dt

)2

+ 6a
dy

dt

d2y

dt2

+ (−108k2a2 − 180ka3 − 72a4)y3

+ (−162ka2 − 144a3)y2 dy

dt

− 18a2y2 d2y

dt2
+ (−36a2)y

(
dy

dt

)2

+ (81ka3 + 54a4)y4 + 108a3y3 dy

dt
= 0.

To investigate the echo state property of this system,
following Yildiz, Jaeger and Kiebel (2012), we check the
fixed points of the system. To this end, we establish y = y0 =
constant to obtain

4k4c+ 9k3ac2 + 8k3ac+ 6k2a2c2 + 4k2a2c

+ (−4k4 − 36k3ac− 20k3a− 60k2a2c

− 24k2a2 − 24ka3c− 8ka3)y0

+ (45k3a+ 54k2a2c+ 120k2a2 + 36ka3c+ 96ka3

+ 24a4)y2
0

+ (81ka3 + 54a4)y4
0 = 0, (10)

which is a 4th-order equation of y0. Generally, there are
4 complex solutions for 4th-order equations, and if they
are imaginary numbers, they must be conjugate. Thus, the
possible solutions are 4 real solutions permitting multiple
roots, 2 each of real and imaginary solutions, or 4 imaginary
solutions. Therefore, except for the case that the solutions
are 2 or 4 multiple roots, they are not unique. As a result,
this implies that the system with general parameters does not
have the echo state property.

Although this lack of the echo state property may make
morphological computation using hydrogels with chemical
reactions difficult, the above analysis also implies that the
echo state property may hold locally around each of the
fixed points. If carefully designed so that this local echo state
property is maintained, morphological computation using the
systems may be possible.

In addition, (10) is also useful from the perspective
of morphological control. In morphological control, the
asymptotic behaviors of a given system is often controlled
while the parameters of the system and the initial
condition are used as the control input (see, e.g., Füchslin,
Dzyakanchuk, Flumini, Hauser, Hunt, Luchsinger, Reller,
Scheidegger and Walker (2013)). (10) reveals how the steady
state changes along with the parameters of the system, that
is, the control input. This usage of the input–output equation
is generalized for other systems to analyze the dependence
of the asymptotic behaviors of the systems on the choice of
the control inputs.

Figure 8. The discretized model of an elastic rod. The inputs
are given as the external forces to the terminal portion of the
rod and the outputs are the position of the head portion.

Application to an Inverse Problem Regarding
the Position Control of Elastic Rods
In this section, as a potential application of the proposed
method, an inverse problem related to the position control
of elastic rods, which are used for, e.g., snake-like robots, is
considered. For simplicity, let us consider an elastic rod on
a 2-dimensional space. Typically, elastic rods in snakelike
robotic devices are described by a backbone curve (see
Chirikjian (2013))(

x1(t, s)
x2(t, s)

)
=

∫ s

0

(
ξ1(t, s)
ξ2(t, s)

)
ds,

where s is a curve parameter. ξ1, ξ2 are vectors representing
the deformation of the rod. We suppose that ξ1 = ξ̄1, ξ2 = ξ̄2
when the rod is in its natural shape. Assuming that the
density of the rod is ρ, and the elastic coefficient is k, the
Lagrangian of this system is defined as follows:

ρ

∫ 1

0

∣∣∣∣ d

dt

(
x1(t, s)
x2(t, s)

)∣∣∣∣2 ds

− k

2

∫ 1

0

∣∣∣∣(ξ1(t, s)
ξ2(t, s)

)
−
(
ξ̄1(t, s)
ξ̄2(t, s)

)∣∣∣∣2 ds.

Dividing the rod into N segments (see Figure 8) and adding
a damping term with the damping coefficient γ, we obtained
the equation of motion:

ρI∗I d2

dt2



ξ1,1(t)
...

ξ1,N (t)
ξ2,1(t)

...
ξ2,N (t)


=− k





ξ1,1(t)
...

ξ1,N (t)
ξ2,1(t)

...
ξ2,N (t)


−



ξ̄1,1(t)
...

ξ̄1,N (t)
ξ̄2,1(t)

...
ξ̄2,N (t)





− γ d

dt



ξ1,1(t)
...

ξ1,N (t)
ξ2,1(t)

...
ξ2,N (t)


+ f(t), (11)
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where ξ1,i(t), ξ2,i(t) are approximations of ξ1(t, i∆s) and
ξ2(t, i∆s),∆s = 1/N , respectively. f denotes the external
force. I is an approximation of the integral operator with
respect to s and I∗ is the adjoint operator of I, of which
matrix representations are supposed to be given as

I =

(
Ĩ O

O Ĩ

)
, Ĩ = ∆s


1 1 · · · 1 1
0 1 · · · 1 1

0 0
. . . 1 1

0 0 · · · 1 0
0 0 · · · 0 1

 ,

I∗ = I>.

Suppose that the inputs u1 and u2 are applied to the terminal
portion of the elastic rod as external forces f , and the outputs
y1 and y2 are the positions of the head portion:

f =



0
...
0

u1(t)
0
...
0

u2(t)


,

(
y1(t) y2(t)

)
=

(
1 0 · · · 0 1 0 · · · 0

)
I



ξ1,1(t)
...

ξ1,N (t)
ξ2,1(t)

...
ξ2,N (t)


.

We design the inputs u1(t), u2(t) so that y1(t), y2(t)
approach asymptotically given functions g1(t), g2(t) respec-
tively.

This problem, where the inputs are designed so that the
outputs of the system approximate the target functions, is
essentially the same as the problem considered in the 3rd
section (see Remark 3) and hence can be solved in the same
manner. For instance, when g1(t) = cos(t), g2(t) = sin(t),
ρ = 12, k = 1, γ = 1, the inputs u1(t), u2(t) are obtained
from the input–output equation as shown in Figure 9. Some
relatively small coefficients were ignored when deriving
the input–output equation. See Appendix 4 for details. The
numerical results are shown in Fig. 10. In the numerical
calculations, the equations of motion are discretized by
using the variational integrator (see, e.g., Marsden and West
(2001)). If t is large enough, it can be seen that the outputs
y1 and y2 are close to the target functions g1 and g2. In
terms of morphological computation, this indicates that the
outputs are approaching the target functions over time due
to the echo state property. Here, y1, y2 do not completely
converge to g1, g2 because of the neglected terms and the
numerical calculation errors. Actually, the neglected terms
are terms including a derivative of the 9th order or higher.
Hence although the coefficients are small, the effects on
the result may be considerable. In addition, y1 and y2
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Figure 9. The inputs u1(t), u2(t) to the elastic rod that are
designed so that the position of the head portion of the rod
asymptotically approaches to g1(t) = cos(t), g2(t) = sin(t).

once significantly departed from the target functions before
asymptotically approaching them. This is not preferable in
practical use, and it is necessary to combine the method with
the techniques in the optimal control to design robust inputs
so that ∫ ∣∣∣∣(y1(t)

y2(t)

)
−
(
g1(t)
g2(t)

)∣∣∣∣2 dt

is minimized in future work. Besides, the input functions
shown in Figure 9 are oscillatory for large t. This is due to the
numerical errors caused in the computation of the solutions
to the input–output equation; stable numerical methods for
the computation of the inputs must be developed for practical
applications.

Conclusion and Future Work
In this paper, analysis using the input–output equations is
illustrated as a new theoretical approach to the theoretical
analysis of morphological computation. In addition, an
application of designing the input functions to a model of
elastic rods is also provided as a potential application of
the method for control. The input–output equations specify
the relationships between the input and output with model
parameters explicitly. Thus, the equations provide much
information on the existence of the echo state property of
systems and changes of the possible approximate functional
space for outputs of systems. In particular, even for nonlinear
equations, theoretical analysis of the echo state property
becomes possible to some extent.
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Figure 10. The outputs y1(t), y2(t) of the elastic rod when the
input forces are designed so that the position of the head
portion of the rod asymptotically approaches to g1(t) = cos(t),
g2(t) = sin(t). When t is large enough (t > 20) y1(t), y2(t) are
close to g1(t), g2(t). The differences are small and are possibly
due to the numerical errors and the neglected term in the
input–output equation.

To apply the proposed approach to controlling real
soft robots, first, appropriate mathematical models for
the robots need to be constructed. Then, if the state
variables can be successfully removed from the ideal
defined from the mathematical models, the input–output
equation can be derived and hence the analyses described
in the previous sections can be applied. In particular,
when a linear or low-order approximation of the model
is possible, the input–output equation can be computed
for large systems by using simple matrix operations or
the Gröbner basis. Generally, however, neither the linear
nor the low-order approximation is appropriate, finding the
input–output equations requires the Gröbner basis, which is
often computationally expensive for large nonlinear systems.
Although the parallel computation of the Gröbner basis has
been partially explored (e.g., Sawada, Terasaki and Aiba
(1994)), further development of computer algebra software is
necessary to deal with such systems. Considering the above,
applying the method to real soft robots at the present time
can be performed by piecewise-linear approximation of the
model; that is, the possible configurations of the robots are
first divided into several regions, such that the input–output
equation can be obtained by linear approximation of the
model for each region. This approach should be considered
in future work.

As for other future studies, firstly, the input–output
equation is typically very complicated, even for small
models; thus, to apply the proposed method to complicated
physical models, the techniques of model reduction and
sparse modeling must be incorporated. Secondly, introducing
more advanced techniques of algebraic geometry should
be considered. For instance, by first applying the finite
difference method to a nonlinear differential equation and
then analyzing the number of solutions of the discretized
equation, the size of the set of solutions reportedly can
be investigated (see Hao, Hu and Sommese (2014)).
Moreover, the set of solutions of nonlinear equations is
generally considered as a manifold in which the initial
values are used as coordinate systems. For these types
of manifolds, geometric considerations have been explored
using a differential algebraic method. Thus, the differential
algebraic approach is surely useful for the analysis of the
computational abilities of nonlinear systems and must be
integrated into the proposed method.
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Füchslin RM, Dzyakanchuk A, Flumini D, Hauser H, Hunt KJ,
Luchsinger RH, Reller B, Scheidegger S and Walker R (2013)
Morphological Computation and Morphological Control: Steps
Toward a Formal Theory and Applications. Artificial Life
19(1): 9–34.

George Thuruthel T, Ansari Y, Falotico E and Laschi C (2018)
Control strategies for soft robotic manipulators: A survey. Soft
Robotics 5(2): 149–163.

Hao W, Hu B and Sommese A (2014) Numerical algebraic
geometry and differential equations. Springer Proceedings in
Mathematics and Statistics 84: 39–53.
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Appendix 1: Summary of the Algebraic
Theory

The Parameter Identifiability Problem
The parameter identifiability problem is a problem of
determining whether the parameter θ can be identified from
the observable input data and the output data u and y. In
this problem, the input–output equation is used to determine
whether the parameter θ is identified from the values u
and y. In fact, substitution of the values of u, y and their
derivatives at some t into the input–output equation gives
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a system of equations for the unknown parameters. In
general, the identifiability of the parameters is determined
by investigating the rank of the system of equations. For
example, for the equation of motion of a harmonic oscillator
with an input and an output

dx

dt
= v,

dv

dt
= −θx+ u, y = x,

suppose that y(t0) 6= 0 at t = t0. Then the parameter is given
using the data at t0 as

θ =
1

y(t0)

(
u(t0)− d2y

dt2
(t0)

)
,

and hence the system is identifiable.

The Method to Derive the Input–Output
Equation
We describe in detail the method to derive the input–
output equations along with the algebraic theories. See
also Appendix 5 for the list of definitions of mathematical
terms. Two methods to derive the input–output equations are
known: a method that can be used for nonlinear equations
and an efficient method for linear systems. Here we describe
the former method; for efficient methods for linear systems,
see, for example, Meshkat and Sullivant (2014).

To derive the input–output equations, we use the Gröbner
basis of an ideal, which is a set determined from the given
model equations. More precisely, we assume that the model
equations are given in the form

(polynomial) = 0

and identify the polynomials with the model equations.
In general, the model equations are given as differential
equations; actually, the differential equations can be treated
as polynomials by using differential algebra, which will be
explained later.

The main idea is that instead of concretely transforming
the equations to find the input–output equation (2), the set
of all possible equations obtained by transforming (2) is
examined to see whether this set has an expression that does
not contain the internal variables. Roughly speaking, the set
of equations obtained by transforming the original equation
is called an ideal. The Gröbner basis of an ideal is similar
to the basis of a linear space, with which it is possible to
determine whether a given polynomial belongs to the ideal.

Basically, deriving an equation by transformation of a
given set of equations is made by successive applications of
additions, subtractions and multiplications of polynomials.
For example, the elimination of the variable x from the
equations

y = x2, x = z

gives

y = z2.

To obtain this result, first the terms in the right-hand side are
moved to the left-hand side to obtain

y − x2 = 0, x− z = 0

where the left-hand side form the polynomials to manipulate.
Then, the addition of the first equation, the second one
multiplied by x, and the second one multiplied by z gives

y − x2 = 0 ⇒ y − x2 + x(x− z) + z(x− z) = 0

⇒ y − x2 + x2 − xz + zx− z2 = 0

⇒ y − z2 = 0.

As seen in this simple example, the set of equations derived
by transformation of the given equations y − x2 = 0 and x−
z = 0 is essentially corresponding to the set of polynomials

p(x, y, z)(y − x2) + q(x, y, z)(x− z) (12)

for some polynomials p(x, y, z) and q(x, y, z). This set of
polynomials (12) is called the ideal generated by y − x2

and x− z and is typically denoted by 〈y − x2, x− z〉. The
important point is that if a polynomial of y and z only
is found in the ideal, it means that the polynomial can be
derived from the given system of equations and hence it is
an input–output equation. Thus, the derivation of the input–
output equations is reduced to finding a polynomial of y and
z in the ideal 〈y − x2, x− z〉.

This problem can be solved immediately using the
Gröbner basis. In the above calculations, y − x2 and x−
z are transformed to derive y − z2. However if these
calculations are reversed, y − x2 is also obtained from
y − x2 and x− z. This shows that 〈y − x2, x− z〉 is also
generated by y − z2 and x− z: 〈y − x2, x− z〉 = 〈y −
z2, x− z〉. In this way, both y − x2, x− z and y − z2, x− z
form a kind of basis of the ideal 〈y − x2, x− z〉 = 〈y −
z2, x− z〉 in the sense that they both generate this ideal.
Among these basis, there exists a special type of basis, the
Gröbner basis. The Gröbner basis of an ideal I is a set
of polynomials that generates I and also has an excellent
property, specifically, the uniqueness of the remainder of
division.

To define the Gröbner basis precisely, we prepare some
algebraic terms. A set K is called a field if addition,
subtraction, multiplication and division are defined and the
results of these operations belong toK. For example, the sets
of real numbers and rational numbers are both fields. The set
of integers is not a field because, for example, 2/3 is not an
integer. Similarly, a set in which addition, subtraction, and
multiplication are defined is called a ring. Thus, the set of
integers is a ring. The set of polynomials whose coefficients
are rational numbers is also a ring, while the set of rational
polynomials forms a field. For further algebraic terms, see
Appendix 5.

Definition 1. For an ideal I on a polynomial ring
K[x1, . . . , xn] over a field K with a given monomial order,
if its generator G = {g1, . . . , gs} satisfies

f ∈ I ⇔ f is divisible by G,

G is called the Gröbner basis of I .

Actually, the remainder of division by polynomials of
multiple variables is generally not unique. The above
property of the Gröbner basis ensures that a function is
in the ideal if and only if the remainder of division by
the polynomials in the Gröbner basis is zero. In other
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words, all polynomials in the ideal can be represented as
a linear combination of the Gröbner basis. In this sense
the Gröbner basis reveals all the members of the ideal and
hence by computing the Gröbner basis of the ideal generated
by polynomials corresponding to given equations, we can
essentially enumerate all algebraic equations that can be
derived from the given equations.

For example, y − x2 and x− z are in fact a Gröbner basis
of the ideal 〈y − x2, x− z〉. Similarly y − z2 and x− z are
also a Gröbner basis and each polynomial that belongs to this
ideal is written as

p̃(x, y, z)(y − z2) + q̃(x, y, z)(x− z)

with other polynomials p̃(x, y, z) and q̃(x, y, z). As in this
example, the Gröbner basis is not uniquely determined.
A different basis is obtained according to the ordering of
the variables. The ordering specifies priority between the
variables and is important when the Gröbner basis is used
to eliminate variables; as stated in the following theorem, the
desired elimination can be achieved if a carefully designed
ordering, for example a lexicographical or block ordering
(see Appendix 5), is employed.

Theorem 2. (Elimination Theorem). Suppose that the
lexicographic ordering is used as the monomial ordering
in a ring of polynomials K[x1, . . . , xn] over a field K so
that x1 > x2 > . . . > xn. If G is a reduced Gröbner basis
of an ideal I ⊂ K[x1, . . . , xn] then G ∩K[x1, . . . , xj ] is a
Gröbner basis of I ∩K[x1, . . . , xj ].

An ordering other than the lexicographic ordering can be
used; see Hibi (2014) for details. The important point here
is that, in the above example, the polynomial y − z2 that
is obtained by eliminating the variable x is a polynomial
in the ideal 〈y − x2, x− z〉 that has only y and z as its
variables. The set of such polynomials also defines an ideal.
The above theorem states that the Gröbner basis of this
ideal is immediately obtained from the Gröbner basis of
the original ideal associated with an appropriate ordering.
For example, G = {y − z2, x− z} is the Gröbner basis of
the ideal 〈y − x2, x− z〉 ⊂ Q[z, y, x] with the lexicographic
ordering. Then G ∩Q[z, y] = {y − z2} is the Gröbner basis
of 〈y − x2, x− z〉 ∩Q[z, y]. This shows that polynomials in
〈y − x2, x− z〉 with only variables y and z are written as

r(y, z)(y − z2)

where r(y, z) is a polynomial. Hence, y − z2 = 0 is
essentially the only equation that can be obtained by
eliminating x from the original equations.

Remark 4. The Gröbner basis can be computed using
computer algebra systems. For example, it can be computed
in the following way using the free software Singular
(Decker, Greuel, Pfister and Schönemann (2018)). The
commands of Singular are shown after the colon of each the
step.

1. Specify the ring and the monomial ordering: ring r =
(0),(x,y,z),lp;

2. Define the ideal: ideal i = (y-xˆ2, x-z);
3. Compute the Gröbner basis: groebner(i);

Note that the above commands are not efficient in general.
Faster ways are found in, for example, Hibi (2014).

The above method, which is explained using polynomials
as examples, is applied to ordinary differential equations as
described below. There are mainly two ways to deal with
differential operators. One is to specify the differentiated
equations, which are calculated by differentiating the given
equations by hand in advance, and the other is to equip
differential operators with the operations that belong to the
corresponding ring where the ideal is defined. In this paper
we adopt the former method for simplicity. In fact, as shown
in the following theorem, it is guaranteed that the elimination
of variables that are neither input nor output is achieved if
the given equations are differentiated N times, where N is
the number of state variables in the system.

Theorem 3. (Meshkat, Rosen and Sullivant (2018)). For
the model described by polynomials f, g with N state
variables x, R input variables, and an output variable y

dx

dt
= f(x, u; θ), y = g(x; θ),

if the ideal P is defined as

P =

〈dx
dt
− f, . . . , dNx

dtN
− f (N−1), . . . y − g, . . . , y(N) − g(N)〉

⊂ Q(θ)[x, y, u,
dx

dt
,

dy

dt
,

du

dt
,

. . . ,
dN−1x

dtN−1
,

dN−1y

dtN−1
,

dN−1u

dtN−1
,

dNx

dtN
,

dNy

dtN
〉

then P ∩Q(θ)[y, u, . . . dN−1y
dtN−1 ,

dN−1u
dtN−1 ,

dNy
dtN

] is not the zero
ideal.

Example 1. Let us consider the harmonic oscillator

dx

dt
= v,

dv

dt
= −θx+ u, y = x. (13)

as an example. Given Theorem 3, to eliminate two state
variables x, v from (13), up to the 2nd derivatives of the
equations in the system need to be included as generators
of the ideal. Specifically, first the equations

dx

dt
= v,

d2x

dt2
=

dv

dt
,

dv

dt
= −θx+ u,

d2v

dt2
= −θdx

dt
+

du

dt
,

y = x,
dy

dt
=

dx

dt
,

d2y

dt2
=

d2x

dt2

are specified in advance, and thus the Gröbner basis of the
ideal

〈dx
dt
− v, d2x

dt2
− dv

dt
,

dv

dt
+ θx− u, d2v

dt2
+ θ

dx

dt
− du

dt
,

y − x, dy

dt
− dx

dt
,

d2y

dt2
− d2x

dt2
〉

is calculated to eliminate state variables. In fact, by using
the free software Singular, the Gröbner basis is obtained as

θy − u+
d2y

dt2
,

d2v

dt2
+ θ

dy

dt
− du

dt
,

dx

dt
− dy

dt
,
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v − dx

dt
, x− y,

where

θy − u+
d2y

dt2

does not have the variables x and v. Hence the input–output
equation (2) is obtained by setting this polynomial as 0:

θy − u+
d2y

dt2
= 0.

Appendix 2: Proof of Theorem 1.
In this section, we show the proof of Theorem 1.

Proof. BecauseA is irreducible the input–output function of
the system described by (8) becomes

det(
d

dt
I −A)y = w1 det(

d

dt
I −A1) (14)

+ w2 det(
d

dt
I −A2) + · · ·+ wn det(

d

dt
I −An), (15)

where Aj is the matrix that is obtained by replacing the jth
column with the vector u (see Meshkat and Sullivant (2014)).
The general solutions of the input–output equation are the
solutions to

det(
d

dt
I −A)y = 0,

and hence the weight does not affect the general solutions.
In addition, the particular solution to the system is

determined by the right-hand side of the input–output
equation (14). Because the size of the matrixA is n, the right-
hand side contains the differential of the input function u up
to the order n. Therefore we can write the right-hand side as

w1 det(
d

dt
I −A1) + · · ·+ wn det(

d

dt
I −An)

= Cn
dnu

dtn
+ · · ·+ C1

du

dt
+ C0u

with matrices Cn, Cn−1, . . . , C0 which depend on
w1, . . . , wn and the matrix A of the parameters of the
system.

Because the same Cj’s gives the same dynamics of the
output y, Cj’s are used as the true parameters of the system.

Appendix 3: The Equation of Motion and the
Input–Output Equation of the Mass–Spring
Array Model
The Lagrangian of the system shown in Figure 3 without the
input and dampers is

L(∆x1, . . . ,∆xN−1,∆ẋ1, . . . ,∆ẋN−1)

=

N−1∑
j=1

m

2
(ẋj)

2 −
N−1∑
j=0

k

2
(xj+1 − xj − l0)2

=

N−1∑
j=1

m

2
(∆ẋj)

2 −
N−2∑
j=1

k

2
(∆xj+1 −∆xj + l − l0)2

− k

2
(∆x1 + l − l0)2 − k

2
(−∆xN−1 + l − l0)2

which gives the Euler–Lagrange equation

∂L
∂∆xj

− d

dt

∂L
∂∆ẋj

= 0

⇔ m∆ẍj =

k(∆xj+1 −∆xj + l − l0)− k(∆xj −∆xj−1 + l − l0).

Therefore, the equation of motion of the system with the
input and dampers is

m∆ẍj = k(∆xj+1 − 2∆xj + ∆xj−1)− γ∆ẋj + uj .

By using k̃ = k/m and γ̃ = γ/m, the number of the physical
parameters are reduced to two:

∆ẍj = k̃(∆xj+1 − 2∆xj + ∆xj−1)− γ̃∆ẋj + uj ,

y =

N−1∑
j=1

wj∆xj .

The input–output equation of this system, for example, when
N = 6, is as follows:

d10y

dt10
+ 5γ̃

d9y

dt9
+ 10(γ̃2 + k̃)

d8y

dt8
+ (10γ̃3 + 40γ̃k̃)

d7y

dt7

+ (5γ̃4 + 60γ̃2k̃m+ 36k̃2)
d6y

dt6

+ (γ̃5 + 40γ̃3k̃ + 108γ̃k̃2)
d5y

dt5

+ (10γ̃4k̃ + 108γ̃2k̃2 + 56k̃3)
d4y

dt4

+ (36g3k2 + 112gk3)
d3y

dt3
+ (56γ̃2k̃3 + 35k̃4)

d2y

dt2

+ 35γ̃k̃4 dy

dt
+ 6k̃5y

= (k̃4w1 − 4k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w1

− 2γ̃k̃2 d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)w1

− 2k̃2 d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w1

− k̃2(2k̃ + γ̃
d

dt
+

d2

dt2
)2w1 + 2k̃(2k̃ + γ̃

d

dt
+

d2

dt2
)3w1

+ γ̃
d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)3w1

+
d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)3w1 − 2k̃3(2k̃ + γ̃

d

dt
+

d2

dt2
)w2

+ k̃(2k̃ + γ̃
d

dt
+

d2

dt2
)3w2 − k̃4w3

+ k̃2(2k̃ + γ̃
d

dt
+

d2

dt2
)2w3

+ k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w4 + k̃4w5)u1

+ (−2k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w1 + k̃(2k̃ + γ̃

d

dt
+

d2

dt2
)3w1

− 4k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w2 − 2γ̃k̃2 d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)w2

− 2k̃2 d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w2 + 2k̃(2k̃ + γ̃

d

dt
+

d2

dt2
)3w2

Prepared using sagej.cls



16 Journal Title XX(X)

+ γ̃
d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)3w2 +

d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)3w2

− 2k̃4w3 − γ̃k̃3 d

dt
w3 − k̃3 d2

dt2
w3

+ 2k̃2(2k̃ + γ̃
d

dt
+

d2

dt2
)2w3 + γ̃k̃

d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)2w3

+ k̃
d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)2w3

+ 2k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w4 + γ̃k̃2 d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ k̃2 d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 2k̃4w5 + γ̃k̃3 d

dt
w5 + k̃3 d2

dt2
w5)u2

+ (−k̃4w1 + k̃2(2k̃ + γ̃
d

dt
+

d2

dt2
)2w1

+ k̃2(−2k̃2 − γ̃k̃ d

dt
− k̃ d2

dt2
)w2

− (2k̃ + γ̃
d

dt
+

d2

dt2
)2(−2k̃2 − γ̃k̃ d

dt
− k̃ d2

dt2
)w2

− k̃2(−k̃2 + (2k̃ + γ̃
d

dt
+

d2

dt2
)2)w3

+ (2k̃ + γ̃
d

dt
+

d2

dt2
)2(−k̃2 + (2k̃ + γ̃

d

dt
+

d2

dt2
)2)w3

+ 3k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w4 + 4γ̃k̃2 d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ γ̃2k̃
d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 4k̃2 d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 2γ̃k̃
d3

dt3
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ k̃
d4

dt4
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4 + 3k̃4w5 + 4γ̃k̃3 d

dt
w5

+ γ̃2k̃2 d2

dt2
w5 + 4k̃3 d2

dt2
w5 + 2γ̃k̃2 d3

dt3
w5 + k̃2 d4

dt4
w5)u3

+ (k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w1 + 2k̃3(2k̃ + γ̃

d

dt
+

d2

dt2
)w2

+ γ̃k̃2 d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)w2

+ k̃2 d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w2

+ k̃(2k̃ + γ̃
d

dt
+

d2

dt2
)(−k̃2 + (2k̃ + γ̃

d

dt
+

d2

dt2
)2)w3

+ 4k̃3(2k̃ + γ̃
d

dt
+

d2

dt2
)w4

+ 10γ̃k̃2 d

dt
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 6γ̃2k̃
d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 10k̃2 d2

dt2
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ γ̃3 d3

dt3
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 12γ̃k̃
d3

dt3
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 3γ̃2 d4

dt4
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 6k̃
d4

dt4
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+ 3γ̃
d5

dt5
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4

+
d6

dt6
(2k̃ + γ̃

d

dt
+

d2

dt2
)w4 + 4k̃4w5

+ 10γ̃k̃3 d

dt
w5 + 6γ̃2k̃2 d2

dt2
w5 + 10k̃3 d2

dt2
w5

+ γ̃3k̃
d3

dt3
w5 + 12γ̃k̃2 d3

dt3
w5 + 3γ̃2k̃

d4

dt4
w5 + 6k̃2 d4

dt4
w5

+ 3γ̃k̃
d5

dt5
w5 + k̃

d6

dt6
w5)u4

+ (k̃4w1 + k̃(2k̃3 + γ̃k̃2 d

dt
+ k̃2 d2

dt2
)w2

+ k̃2(−k̃2 + (2k̃ + γ̃
d

dt
+

d2

dt2
)2)w3

+ (4k̃4 + 10γ̃k̃3 d

dt
+ 6γ̃2k̃2 d2

dt2
+ 10k̃3 d2

dt2
+ γ̃3k̃

d3

dt3

+ 12γ̃k̃2 d3

dt3
+ 3γ̃2k̃

d4

dt4
+ 6k̃2 d4

dt4
+ 3γ̃k̃

d5

dt5
+ k̃

d6

dt6
)w4

+ 5k̃4w5 + 20γ̃k̃3 d

dt
w5 + 21γ̃2k̃2 d2

dt2
w5 + 20k̃3 d2

dt2
w5

+ 8γ̃3k̃
d3

dt3
w5 + 42γ̃k̃2 d3

dt3
w5 + γ̃4 d4

dt4
w5

+ 24γ̃2k̃
d4

dt4
w5 + 21k̃2 d4

dt4
w5 + 4γ̃3 d5

dt5
w5 + 24γ̃k̃

d5

dt5
w5

+ 6γ̃2 d6

dt6
w5 + 8k̃

d6

dt6
w5 + 4γ̃

d7

dt7
w5 +

d8

dt8
w5)u5 = 0.

The general solutions of the equation are non-trivial
solutions y which satisfy

d10y

dt10
+ 5γ̃

d9y

dt9
+ 10(γ̃2 + k̃)

d8y

dt8
+ (10γ̃3 + 40γ̃k̃)

d7y

dt7

+ (5γ̃4 + 60γ̃2k̃m+ 36k̃2)
d6y

dt6

+ (γ̃5 + 40γ̃3k̃ + 108γ̃k̃2)
d5y

dt5

+ (10γ̃4k̃ + 108γ̃2k̃2 + 56k̃3)
d4y

dt4

+ (36g3k2 + 112gk3)
d3y

dt3
+ (56γ̃2k̃3 + 35k̃4)

d2y

dt2

+ 35γ̃k̃4 dy

dt
+ 6k̃5y = 0.

The solution y(t) is a linear combination of exp(st), where
s is the solution to the characteristic equation of the above
differential equation:

s5 + 5γ̃s9 + 10(γ̃2 + k̃)s8 + (10γ̃3 + 40γ̃k̃)s7

+ (5γ̃4 + 60γ̃2k̃m+ 36k̃2)s6 + (γ̃5 + 40γ̃3k̃ + 108γ̃k̃2)s5

+ (10γ̃4k̃ + 108γ̃2k̃2 + 56k̃3)s4

+ (36g3k2 + 112gk3)s3 + (56γ̃2k̃3 + 35k̃4)s2 + 35γ̃k̃4s

+ 6k̃5 = 0.
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Appendix 4: the Input–Output Equation for
the Discretized Model of Elastic Rods

We derived the asymptotic input–output equation for the
discretized model (11) of an elastic rod divided into 10
segments:

k10y1 + 10gk9y
(1)
1 + (45g2k8 + 0.55k9r)y

(2)
1

+ (120g3k7 + 4.95gk8r)y
(3)
1

+ (210g4k6 + 19.8g2k7r + 0.0495k8r2)y
(4)
1

+ (252g5k5 + 46.2g3k6r + 0.396gk7r2)y
(5)
1

+ (210g6k4 + 69.3g4k5r

+ 1.386g2k6r2 + 0.001716k7r3)y
(6)
1

+ (120g7k3 + 69.3g5k4r + 2.772g3k5r2

+ 0.012012gk6r3)y
(7)
1

+ (45g8k2 + 46.2g6k3r + 3.465g4k4r2 + 0.036036g2k5r3

+ 0.00003003k6r4)y
(8)
1

+ (10g9k + 19.8g7k2r + 2.772g5k3r2 + 0.06006g3k4r3

+ 0.00018018gk5r4)y
(9)
1

+ (g10 + 4.95g8kr + 1.386g6k2r2 + 0.06006g4k3r3

+ 0.00045045g2k4r4 + 3.003× 10−7k5r5)y
(10)
1

+ (0.55g9r + 0.396g7kr2 + 0.036036g5k2r3

+ 0.0006006g3k3r4 + 1.5015× 10−6gk4r5)y
(11)
1

+ (0.0495g8r2 + 0.012012g6kr3 + 0.00045045g4k2r4

+ 3.003× 10−6g2k3r5 + 1.82× 10−9k4r6)y
(12)
1

+ (0.001716g7r3 + 0.00018018g5kr4

+ 3.003× 10−6g3k2r5 + 7.28× 10−9gk3r6)y
(13)
1

+ (0.00003003g6r4 + 1.5015× 10−6g4kr5

+ 1.092× 10−8g2k2r6 + 6.8× 10−12k3r7)y
(14)
1

+ (3.003× 10−7g5r5 + 7.28× 10−9g3kr6

+ 2.04× 10−11gk2r7)y
(15)
1

+ (1.82× 10−9g4r6 + 2.04× 10−11g2kr7

+ 1.53× 10−14k2r8)y
(16)
1

+ (6.8× 10−12g3r7 + 3.06× 10−14gkr8)y
(17)
1

+ (1.53× 10−14g2r8 + 1.9× 10−17kr9)y
(18)
1

+ 1.9× 10−17gr9y
(19)
1 + 10−20r10y

(20)
1

= 0.1k9u1 + 0.9gk8u
(1)
1

+ 0.1(36g2k7 + 3.46945× 10−17k8r)u
(2)
1

+ 0.1(84g3k6 + 2.77556× 10−16gk7r)u
(3)
1

+ 0.1(126g4k5 + 5.55112× 10−16g2k6r

+ 8.13152× 10−18k7r2)u
(4)
1

+ 0.1(126g5k4 − 1.11022× 10−15g3k5r

+ 1.30104× 10−17gk6r2)u
(5)
1

+ 0.1(84g6k3 − 1.21431× 10−16g2k5r2

+ 3.17637× 10−19k6r3)u
(6)
1

+ 0.1(36g7k2 − 1.11022× 10−15g5k3r

+ 1.56125× 10−16g3k4r2 + 1.0842× 10−18gk5r3)u
(7)
1

+ 0.1(9g8k + 5.55112× 10−16g6k2r

+ 1.56125× 10−16g4k3r2

+ 3.04932× 10−18g2k4r3 + 1.58819× 10−21k5r4)u
(8)
1

+ 0.1(g9 + 2.77556× 10−16g7kr − 1.21431× 10−16g5k2r2

+ 3.18484× 10−18g3k3r3

− 3.09696× 10−20gk4r4)u
(9)
1

+ 0.1(3.46945× 10−17g8r + 1.30104× 10−17g6kr2

+ 3.04932× 10−18g4k2r3 + 5.82335× 10−21g2k3r4

+ 2.23274× 10−23k4r5)u
(10)
1

+ 0.1(8.13152× 10−18g7r2 + 1.0842× 10−18g5kr3

+ 5.82335× 10−21g3k2r4 + 5.62224× 10−23gk3r5)u
(11)
1

+ 0.1(3.17637× 10−19g6r3 − 3.09696× 10−20g4kr4

− 3.44185× 10−22g2k2r5 − 2.26182× 10−25k3r6)u
(12)
1

+ 0.1(1.58819× 10−21g5r4 + 5.62224× 10−23g3kr5

− 1.29247× 10−24gk2r6)u
(13)
1

+ 0.1(2.23274× 10−23g4r5

− 1.29247× 10−24g2kr6 + 1.10441× 10−27k2r7)u
(14)
1

+ 0.1(−2.26182× 10−25g3r6

+ 2.20881× 10−27gkr7)u
(15)
1

+ 0.1(1.10441× 10−27g2r7

− 2.00297× 10−31kr8)u
(16)
1

− 2.00297× 10−32gr8u
(17)
1 .

The equation for y2 is omitted for simplicity. y(n)
1 , u(n)

1

represents the nth order derivative of y1(t) and u1(t) with
respect to t. Substituting the target functions g1 into y1 in this
equation leads to a differential equation, of which unknown
variable is u1. The solution of this differential equation
can be used as the input that makes y1 asymptotically
approach g1; however, there are higher derivatives of u1 with
small coefficients on the right-hand side, which may make
the solution unstable. Therefore we deleted the terms with
negligible coefficients to get

(right-hand side) ' 0.1k9u1 + 0.9gk8u
(1)
1

+ 0.1× 36g2k7u
(2)
1 + 0.1× 84g3k6u

(3)
1

+ 0.1× 126g4k5u
(4)
1 + 0.1× 126g5k4u

(5)
1

+ 0.1× 84g6k3u
(6)
1 + 0.1× 36g7k2u

(7)
1 + 0.1× 9g8ku

(8)
1

+ 0.1× g9u
(9)
1 .

The input functions u1 and u2 shown in Figure 9 are obtained
by solving this equation.

Appendix 5: The List of the Mathematical
Terms
The mathematical terms used in the paper are listed below.
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Explanation of the Terms Related to the
Definition of the Gröbner Basis

• field: a set in which addition, subtraction,
multiplication and division are defined.
(e.g.) the set of real numbers, the set of rational
numbers, the set of complex numbers.

• ring: a set in which addition, subtraction and
multiplication are defined.
(e.g.) the set of integers, the set of polynomials whose
coefficients are rational numbers.

• polynomial ring K[x1, . . . , xn]: a ring of polynomials
in n variables x1, . . . , xn with coefficients in the field
K.

• ideal (on a polynomial ring K[x]): a non-zero subset
of K[x] that satisfies

if f ∈ I, g ∈ I, then f + g ∈ I,
if f ∈ I, g ∈ K[x], then gf ∈ I

where K[x] is a polynomial ring and f, g are
polynomials. See “generator” for an example of
ideals.

• order: ≤ is an order on a set Σ if the followings are
satisfied for all a, b, c ∈ Σ:

a ≤ a,
if a ≤ b and b ≤ a, then a = b,

if a ≤ b and b ≤ c, then a ≤ c.
In this paper we only use the lexicographic order. This
is also a total order and a monomial order, which are
described below. Especially for lexicographic order,
we show an example later.

• total order: an order ≤ is a total order on a set Σ if

a ≤ b or b ≤ a, for all a, b ∈ Σ.

• monomial order (of a ring K[x]): a total order < on a
set of monomials Mn of a ring K[x] = K[x1, . . . , xn]
is a monomial order if the followings are satisfied:

1 < u for all u ∈Mn, u 6= 1,

if u < v, u, v ∈Mn, then uw < vw for all w ∈Mn.

• generator (of an ideal I): For an ideal I , if there exists
a non-zero subset {fλ | λ ∈ Λ} of a ring K[x] that
satisfies

I =

{∑
λ∈Λ

gλfλ

∣∣∣∣∣ for all gλ ∈ K[x]

}
,

{fλ : λ ∈ Λ} is called a generator of I . In that case, I
is denoted by I = 〈{fλ | λ ∈ Λ}〉.
(e.g.) the ideal I on a polynomial ring K[x, y, z] of
which generator is y − x2, x− z is

I =
〈
y − x2, x− z

〉
= {p(x, y, z)(y − x2) + q(x, y, z)(x− z) |

p(x, y, z), q(x, y, z) ∈ K[x, y, z]}.

Explanation of the Terms Related to
“Elimination Theorem”

• lexicographic order: a monomial order < is a
lexicographic order if it satisfies the condition that
for two monomials u = xa11 xa22 · · ·xann and v =
xb11 x

b2
2 · · ·xbnn , u < v if at least one of the followings

holds:

– the degree of v is larger than that of u
– the degree of v is equal to that of u and the

left most non-zero element of the vector (b1 −
a1, b2 − a2, . . . , bn − an) is positive.

(e.g.) If u = x1x2x
2
3 (the degree is 4), v = x2

1x
3
2x3

(the degree is 6) then u < v with respect to the
lexicographic order since the first condition is
satisfied.
(e.g.) If u = x3

1x
3
2x

2
3 (the order is 8), v = x2

1x
3
2x

3
3(the

order is 8) then v < u with respect to the
lexicographic order. In fact, the first condition
is not satisfied and the left most non-zero element
of (a1 − b1, a2 − b2, a3 − b3) = (1, 0,−1) is positive.

• support (of a polynomial f ): a set of monomials
{u1, . . . , ut} appears in a non-zero polynomial
f = a1u1 + · · ·+ atut of K[x] where 0 6= ai ∈
K(i = 1, . . . , t).

• leading monomial (of a polynomial f ): the largest
monomial in the support of a polynomial f with
respect to a given monomial order < of a ring K[x],
which is denoted by in<(f).

• reduced Gröbner basis (of an ideal I with respect to a
given monomial order< on a polynomial ringK[x]: A
Gröbner basis {g1, . . . , gs} of an ideal I with respect
to a monomial order < is the reduced Gröbner basis if
the followings are satisfied:

– the coefficient of in<(gi) of a polynomial gi is 1
(1 ≤ i ≤ s)

– if i 6= j, monomials in the support of gi is not
divisible by in<(gi).

The reduced Gröbner basis of an ideal I on a
polynomial ring K[x] with respect to a given
monomial order is unique.
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