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Abstract
We address the problem of shaping deformable plastic materials using non-prehensile actions. Shaping plastic objects
is challenging, since they are difficult to model and to track visually. We study this problem, by using kinetic sand, a
plastic toy material which mimics the physical properties of wet sand. Inspired by a pilot study where humans shape
kinetic sand, we define two types of actions: pushing the material from the sides and tapping from above. The chosen
actions are executed with a robotic arm using image-based visual servoing. From the current and desired view of the
material, we define states based on visual features such as the outer contour shape and the pixel luminosity values.
These are mapped to actions, which are repeated iteratively to reduce the image error until convergence is reached.
For pushing, we propose three methods for mapping the visual state to an action. These include heuristic methods and
a neural network, trained from human actions. We show that it is possible to obtain simple shapes with the kinetic sand,
without explicitly modeling the material. Our approach is limited in the types of shapes it can achieve. A richer set of
action types and multi-step reasoning is needed to achieve more sophisticated shapes.
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1 Introduction

Many tasks such as cooking, folding clothes and gardening
require the manipulation of soft objects and deformable
materials. The same applies to industrial tasks such as
inserting cables, packaging food and excavating soil and to
medical ones such as injection, physiotherapy and surgery.
Some of these tasks involve the manipulation of granular
materials such as dough, sand, soil and salt. The capability of
manipulating such materials would enable robots to perform
a plethora of new applications that could increasingly help
and substantially assist humans with their chores.

Despite the potential impact of successful manipulation
of deformable materials, decades of robotics research have
focused primarily on rigid objects. The reason behind this
is the task difficulty. Adding to the inherent complexity of
physical interaction with deformable materials are additional
challenges, such as modeling the deformations. A direct
consequence is that visual tracking of deformable materials
is usually very demanding. Visual features of rigid objects
can be consistently detected and tracked by exploiting a
prior 3D model of the object. In contrast, features on
deformable materials change over time and that can mislead
both model-based or feature-based visual trackers. Feedback
from force and tactile sensors could be beneficial, although
this also requires deformation and contact models that map
force/tactile signals to the corresponding displacements of
the object surface. This mapping is commonly complicated
to obtain.

With reference to the taxonomy given in the recent
survey by Sanchez et al. (2018), our focus is on solid or
volumetric objects, i.e., objects with the three dimensions
having comparable length. Sponges, plush toys, and food

products fall in this category. In particular, a deformation
occurs when an external force applied to an object changes
its shape and appearance. Depending on the response of the
object once the external force is removed, the deformation
can be plastic, elastic, or elasto-plastic. Precisely, a plastic
deformation entails a permanent deformation, that is, an
object maintains the shape caused by the applied force even
when that force is removed.

Humans often use non-prehensile actions, such as pushing
or tapping, to move objects or modify the environment
(see the work of Bullock and Dollar (2011)). Such actions
become even more common when the object of interest is
plastic. For instance, the manipulation of clay or dough is
typically non-prehensile. These observations motivated us to
target non-prehensile actions.

In this work, we address the problem of shape servoing
plastic materials (see the works of Smolen and Patriciu
(2009) and of Navarro-Alarcon et al. (2014)). Our goal is
to find a sequence of non-prehensile actions a robot has to
perform using a tool to bring plastic materials from an initial
to a desired shape. This problem is illustrated in Fig. 1.
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Figure 1. Illustration of the shape servoing problem that we
address in this paper. Our goal is to find a sequence of
non-prehensile manipulation actions a robot has to perform with
a tool (blue in the figure) to mold a plastic material from an initial
shape (top left) to a desired shape (top right). The bottom image
shows the robot in action while it molds the material.

To study plastic deformation, we use kinetic sand∗,
a toy material which mimics the physical properties of
wet sand. It is made out of 98% regular sand and 2%
polydimethylsiloxane (a viscoelastic silicone) and it can be
molded into any desired shape. Kinetic sand does not stick to
any materials other than itself and does not dry out.

The paper is organized as follows. After reviewing the
related literature (Sect. 2) and presenting our contribution
(Sect. 3), we provide the results of a pilot study performed
to understand how humans manipulate plastic materials
(Sect. 4). Then, in Sect. 5 we define the shape servoing
problem. Section 6 describes our method, which is validated
in the experiments of Sections 7 and 8. We conclude and
propose directions for future work in Sect. 9.

2 Related Work
In this section, we review the literature on the manipulation
of deformable objects, which is not as common as that
of rigid objects. We also briefly review the literature on
two tools needed in our work: visual servoing and action
selection.

As observed in the survey on manipulating deformable
objects by Sanchez et al. (2018), much of the body of work
focuses on 1D and 2D objects. Here, we mainly review
works on solid 3D objects, as these are the ones addressed

in our work. We first review shape estimation and tracking
of deformable objects in Sect. 2.1, then shape control with
and without a deformation model respectively in Sections 2.2
and 2.3. Then, since in this paper we draw inspiration from
Visual Servoing, we briefly recall the main works in this field
(Sect. 2.4). Finally, we review methods on action selection
(Sect. 2.5).

2.1 Shape Estimation/Tracking of deformable
objects

The works that estimate and track deformable objects shape
can be classified in three categories: those that require a
model (generally mechanical), the data-driven ones (model-
free) and the ones that combine the two.

Mechanical model-based trackers use a priori knowledge
of the object’s physical model. In one of the earliest papers
on vision-based deformable shape estimation by Sarata et al.
(2004), stereo vision is used to obtain the 3D volumetric
model of a pile for robotic scooping. Petit et al. (2017)
use a Finite Element Method (FEM) for mesh-fitting. The
goal is to track the shape of a pizza dough in real time. A
volumetric FEM model is also used by Frank et al. (2014).
An object is probed and the error between observed and
simulated deformation is minimized to estimate its Young’s
modulus and Poisson ratio. Guler et al. (2015) estimate
the deformations of elastic materials using optical flow and
mesh-less shape matching.

Data-driven shape estimation methods rely on data
gathered by sensors. Khalil et al. (2010) track the surface
of an object to be grasped by a robot using tactile and
visual data. Cretu et al. (2010) address a similar application,
by extracting the foreground before detecting the object
contour. Staffa et al. (2015) train a neural network for visual
segmentation of non-rigid deformable objects (a pizza dough
in their work).

Some approaches combine mechanical (model-based) and
data-driven (model-free) estimation methods. Caccamo et al.
(2016) use tactile and RGB-D data to create a mapping
of how the surface is deformed, using Gaussian Processes.
Arriola-Rios and Wyatt (2017) propose a generative model
that uses force and vision to predict not only the object
deformation, but also the parameters of a spring-mass
model that represents it. Recently, some researchers have
addressed the problem of updating the deformable object
model while the camera is in motion (instead of fixed, as
in the above works). This requires solving an unprecedented
non-rigid SLAM (Simultaneous Localization and Mapping)
problem, as in the pioneer work of Newcombe et al.
(2015). The authors’s framework – namely, DynamicFusion
– produces increasingly denoised, detailed, and complete
reconstructions as more RGB-D measurements are fused,
and displays the updated model in real time. Yu et al. (2015)
solve a similar problem using as input a single RGB video
(without depth). Finally, Song et al. (2018) present a real-
time dense stereoscopic SLAM system, to be applied in
minimal invasive surgery.

∗https://en.m.wikipedia.org/wiki/Kinetic Sand
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2.2 Model-based Deformation Control
Some approaches take advantage of the deformable object’s
physical model, whenever it is available. Howard and
Bekey (2000) train a neural network on a physics-based
model to extract the minimum force required for 3D object
manipulation. Gopalakrishnan and Goldberg (2005) focus
on 2D objects and use a mesh model with linear elastic
polygons. Their approach, called “deform closure” is an
adaptation of “form closure”, a well-known method for rigid
object grasping. Das and Sarkar (2011) use a mass-spring-
damper model to simulate a planar object so that its shape,
described by a curve, can be changed into another desired
shape. Their method, however, requires a significant number
of actuation points (over 100), and is only validated in
simulations. Higashimori et al. (2010) use a four-element
model and present a two-step approach where the elastic
parameters are estimated by force sensing, and then the
force required to reach the desired shape is calculated based
on the plastic response. Cretu et al. (2012) monitor shape
deformation by tracking lines that form a grid on the object.
A feed-forward neural network is used to segment and
monitor the deformation. Arriola-Rios and Wyatt (2017)
predict the object behavior by first classifying the material,
then using force and computer vision to estimate its plastic
and elastic deformations. In Ficuciello et al. (2018), a method
for dexterous in-hand manipulation of 3D soft objects for
real-time deformation control is presented, relying on Finite
Element Modeling. However, the authors assume the object
to be purely elastic.

2.3 Model-free Deformation Control
Some approaches explored deformable object manipulation
without explicitly modelling the deformations. In their
pioneering work, Wada et al. (2001) designed a PID
controller that can manipulate 2D objects in the absence of
a prior model. Smolen and Patriciu (2009) use a mesh-less
model of the object where a set of points are controlled on
the surface. A Jacobian transform is derived and used to
control the robot motion. Berenson (2013) uses the concept
of diminishing rigidity to compute an approximate Jacobian
of the deformable object. In his work, human and robot
simultaneously manipulate the object (a 2D cloth).

More recent model-free approaches rely on machine
learning. Gemici and Saxena (2014) learn haptic properties
such as plasticity and tensile strength of food objects. Other
researchers propose to predict the next state given the current
state and a proposed action. For instance, Elliott and Cakmak
(2018) use some defined primitive tool action for rearranging
dirt and Schenck et al. (2017) present a Convolutional Neural
Network for scooping and dumping granular materials. Li
et al. (2018) propose to learn a particle-based simulator for
complex control tasks. This enables the simulator to quickly
adapt to new environments or to unknown dynamics within
a few observations.

2.4 Visual servoing
Visual servoing is a technique which uses visual features
(e.g., points, lines, circles, etc.) extracted from a camera to
control the motion of a robot. Visual servoing methods are
commonly used in robot manipulation and can be classified

as position-based or image-based. In position-based visual
servoing, the feature is reprojected in the 3D space and
the robot is controlled in Cartesian coordinates as done
by Drummond and Cipolla (1999). Instead, the image-based
approach regulates an error defined in the image space. This
is done via the interaction matrix, which relates the dynamics
of the camera (i.e., its velocity) to those of the visual feature
to be controlled, as explained by Chaumette and Hutchinson
(2006). Image-based visual servoing is robust to calibration
errors as shown by Hutchinson et al. (1996). It can be used
with various features, including image moments as done
by Tahri and Chaumette (2005), and mutual information
by Shannon (1948), as done by Dame and Marchand (2011).
The interested reader can refer to the works of Kragic et al.
(2002) for a detailed survey, and to those of Chaumette and
Hutchinson (2006, 2007) and Hutchinson et al. (1996) for
tutorials on visual servoing.

Visual servoing can also be used for deformation control.
For instance, Navarro-Alarcon et al. (2013, 2014) actively
deform compliant objects using a novel visual servoing
scheme that explicitly deals with elastic deformations,
by estimating online the interaction matrix relating tool
velocities and optical flow. Their controller is model-free,
but focuses mainly on shape control, i.e., on manipulating
the object to a desired configuration, without dealing with
its global deformation over a long time window. The
latest approach by Navarro-Alarcon and Liu (2018) uses a
Fourier series as visual feature for representing the object
contour. Zhu et al. (2018) use a similar feature for dual arm
shaping of flexible cables.

2.5 Action selection methods
When manipulation requires various types of actions (as is
often the case with deformable objects) an automatic action
selection method is needed. Although we did not implement
any of these methods (in our work, the operator manually
selects the action at each iteration), it is worth reviewing
them, as they could be integrated in our framework. Such
methods are often based on machine learning or on motion
planning.

Learning-based methods are frequently used for choosing
within a finite number of actions. An example is deep
reinforcement learning (see the works of Dulac-Arnold et al.
(2015) and of Isele et al. (2018)), which relies on the Markov
Decision Process (MDP) formulation (refer to Puterman
(2014)). Laskey et al. (2017) learn a policy for choosing
actions to manipulate cloth using imitation learning.

Moll and Kavraki (2006) present a planning method for
finding intermediate states and transitioning between these
states to shape a flexible wire. Similarly, Zhu et al. (2020)
plan the sequence of actions for shaping a cable using
environmental contacts.

3 Contributions
Our approach is model-free, because we do not model the
deformations of the plastic material, like some of the other
work reviewed in Sect. 2. We instead focus on altering the
visible characteristics of the material as in Navarro-Alarcon
and Liu (2018). Differently from the cited work, we make use
of the data collected from humans for both the heuristic and
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Figure 2. Human plastic material shaping study. Left: setup for the user study: an RGB-D camera (RealSense) is fixed above the
sandbox, where participants mold the kinetic sand into a desired shape; first with one, then with two hands and third, using one of
two provided tools. Center: four different shapes formed by the participants of our user study. Right: eight images (top: RGB,
bottom: depth) acquired while a user is shaping the kinetic sand using both hands.

learning-based algorithms explored in this paper. Most works
in the field focus on a single deformation action, whereas
our algorithmic choices are driven by the sequential nature
of the task – typically a sequence of non-prehensile actions
are required to achieve a given desired shape. We also have a
particular emphasis on the real-world implementation.

In our previous work (see Cherubini et al. (2018)) we
ran a user study on kinetic sand manipulation, presented
the corresponding image dataset and designed an image
processing algorithm for extracting features from the
dataset. We also proposed an optimization-based algorithm
for controlling the robot, along with a neural network
architecture for mapping the state of the material to
the pushing action to be applied. There were no robot
experiments in that paper.

The first three points (user study, dataset and image pro-
cessing algorithm) constitute the foundations of the present
work (see Sections 4 and 6.4.1). Nevertheless, Cherubini
et al. (2018) did not address real experiments. As soon as
we implemented them, the proposed tools/methods were
confronted to their limitations. First, the user dataset was
inappropriate for transferring manipulation capabilities from
humans to robots, and we had to enrich it with extra data
(see Sect. 4.3, point (c)). Second, we had to completely
redesign the problem statement and method (see Sect. 5).
For instance, we had to address the pushing problem locally
(see Sect. 6.4.2), since the global method failed. Third,
we modified the neural network architecture, and, given its
limitations, compared it with two other strategies (maximum
and average) which were not present in the previous work.
Finally, we realized a series of unprecedented robotic exper-
iments on shape servoing of plastic materials.

In summary, the contributions of this work are:

1. We exploit the human demonstration data to compen-
sate for the lack of a physical material model. The
human data is utilized to design a local strategy for
robotic kinetic sand manipulation and also to train a
machine learning-based action model.

2. We propose two classes of non-prehensile actions
to reduce the complexity of the deformable object
manipulation problem: pushing to modify the outer
contours, and tapping to adjust the kinetic sand height.

3. We report experiments where a robot manipulator
successfully molds the kinetic sand into various
desired shapes. In the experiments, we compare

various approaches for realizing the pushing and
tapping actions.

In a nutshell, while Sections 4 and 6.4.1 had been presented
in our previous work (see Cherubini et al. (2018)), the rest of
the present paper reports unpublished, original research.

4 User study

4.1 Materials and methods
To understand how humans manipulate plastic materials, we
ran a pilot user study with 9 volunteers (age range: 20-40; 6
male, 3 female). Each participant was asked to shape kinetic
sand in a sandbox, while being recorded with a fixed RGB-
D camera (Intel RealSense SR300, resolution 640× 480).
We opted for such a low cost and easily available sensor to
make the setup reproducible and inexpensive. The RealSense
was pointing at the sandbox from above, with its optical axis
perpendicular to it, as shown in Fig. 2 (left).

Each participant was requested to produce a shape of their
own choice, repeating the task three times: a) using both
hands, b) using only one hand and finally c) using one of
the two provided tools (Fig. 2, left). Four examples of shapes
formed by the participants are shown in Fig. 2 (center).
Figure 2 (right) shows some of the images acquired while
a user was shaping the kinetic sand with both hands.

All participants gave their consent to be recorded. We
obtained ethics clearance to make the dataset (almost 214000
RGB and depth images) publicly available†. Afterwards, the
participants filled out a questionnaire, to help us infer their
“sculpting strategy”. None of the participants had previous
direct experience with sculpting, although 5 declared to have
previously manipulated deformable objects such as dough or
clay.

4.2 Results
Six participants stated that they had performed a clear
sequence of different actions while using their hands, while
the number raised to eight when using the tool. In particular,
the participants clearly identified pushing as an action type.
In our opinion, this is due to the fact that pushing has a very
clear outcome (the kinetic sand moving and consequently

†https://cloudstor.aarnet.edu.au/plus/s/Vii90T72WFM8Qwp (password:
sandman)

Prepared using sagej.cls

https://cloudstor.aarnet.edu.au/plus/s/Vii90T72WFM8Qwp


Cherubini et al. – Model-free vision-based shaping of deformable plastic materials 5

changing its outer contours). Two other actions commonly
identified were tapping and incising.

The questionnaire included the following four questions:

• “How much did you rely on vision while hand
modeling? grade between 1 (very little) and 5 (very
much)”
• “How much did you rely on haptic feedback while

hand modeling? grade between 1 (very little) and 5
(very much)”
• “How much did you rely on vision while sculpting

with the tool? grade between 1 (very little) and 5 (very
much)”
• “How much did you rely on haptic feedback while

sculpting with the tool? grade between 1 (very little)
and 5 (very much)”

All of the participants, whether using their hands or the
tool, reported having relied on vision either “very much”
or “much”. Haptic feedback was only partially important
during the trials (7 participants reported having relied “little”
on haptic feedback). This result led us to believe that
– although the kinetic sand offers some force resistance
while sculpting – haptics is not as valuable a feedback
as vision. In our opinion, it is more natural to rely on
visual feedback as a measure of how distant the current
shape is from the imagined/desired shape. Haptic feedback
is valuable locally in understanding the force required to
overcome the kinetic sand resistance, but offers little global
information on which action to perform next, to obtain the
desired shape. In summary, visual and haptic feedback are
complementary. To further investigate the importance of
haptics, one could blindfold the participants (so they cannot
rely on vision) or have them teleoperate a molding robot
without haptic feedback (so they can only rely on vision).
These experiments could be the object of future work.

Since we focus on non-prehensile kinetic sand manipu-
lation with a robotic tool, within the dataset we manually
labeled only the images where participants used either tool.
Within these, we only labeled the RGB images, since the
RealSense depth image quality is insufficient for feature
extraction (see Fig. 2, bottom right). Among the 53,100 RGB
images of tool shaping, 13.3% were labeled as “pushing”,
9.3% as “tapping” and 8.7% as “incising”. The other images
were left unlabeled (68.7%), as they present: retreating
actions, transitions between actions, occlusions (i.e., the
tool was not visible), simultaneous “push-and-tap” actions
(the participant modifies the contour, while also yielding a
smoothing effect on the surface) and unclear actions.

4.3 Discussion
The results of the user study motivated us to adopt the
following choices for transferring shape servoing capabilities
from humans to robots:

a) The importance of visual feedback prompts us to use a
camera as the only source of feedback. This choice also
enables us to use Image-Based Visual Servoing (IBVS,
see the works of Hutchinson et al. (1996) and Chaumette
and Hutchinson (2006, 2007)) to control the robot
directly in the image space, even with possibly coarse
camera calibration.

b) The results highlight that participants commonly rely on –
and can clearly recognize – a finite set of actions to model
the kinetic sand. This motivates us to implement the two
actions that are most heavily identified and chosen in the
user study: pushing and tapping. Pushing shapes the outer
contours of the kinetic sand, whereas tapping regularizes
the surface by leveling it. Both are tool motions along a
vector going towards the kinetic sand from the free space.
For pushing, the vector is parallel to the sandbox plane,
whereas for tapping it is orthogonal to the sandbox plane
and pointing down. We discarded incising, since it is the
least popular among users. In our opinion, incising can
be achieved by tracking a desired trajectory (the incision)
with the tool.

c) The user dataset is inappropriate for transferring the
mentioned pushing and tapping capabilities from humans
to robots. Only 12,000 labeled images (22.6% of those in
the tool dataset) are available. This quantity is insufficient
for learning such complex actions. Hence, we decided to
enrich the dataset with ad-hoc trials where participants
performed only one of the two actions at a time. In
each trial, the participant performed a sequence of
“clean” (without occlusions and with clear movements)
pushing or tapping actions. This simplified the image
processing steps needed to produce the training dataset.
In the following, we denote the complete collection of
pushing and tapping images as the PT-Dataset. The
dataset contains 24,000 images (12,000 from the users
and 12,000 from these ad-hoc trials), of which 14,900
labeled as “pushing” and 9,100 as “tapping”.

5 Problem Statement

In this section, we define the shape servoing task and the
work assumptions. The variables defined in this section are
shown in Fig. 3.

5.1 The shape servoing task
We consider the same setup as in the user study (Sect. 4):
a camera points at the object (here, the kinetic sand) from
above, with a vertical optical axis. Given a desired image I∗

(e.g., one of those in Fig. 2, center), the shape servoing task
consists of shaping the kinetic sand until it appears as in I∗.

We model the robot and object shape as a discrete-time
system. The robot tool center point (TCP) can be moved in
the workspace to modify the object shape. At each iteration
k ∈ [1,K] ⊂ IN , the robot observes the shape in image Ik
(of width w and height h), and then modifies it by moving its
TCP to perform some action ak.

Definition: shape servoing task. We define ek (Ik, I
∗) ≥ 0

as a scalar function that measures the image error between
Ik and I∗, so that ek = 0 ⇐⇒ Ik = I∗. Then, the task of
shaping an object to I∗ with an accuracy ē ≥ 0, consists in
applying a finite sequence of actions a1, . . . ,aK such that
after K iterations: eK ≤ ē. We tolerate such an upper bound
on the accuracy, since even a human would be incapable
of perfectly reproducing (eK = 0) a given image with the
kinetic sand. Nevertheless, the sequence of actions should
make eK decrease. More formally, it must be possible to

Prepared using sagej.cls



6 Journal Title XX(X)

Ik 

Ik+1 
!"

Ik+1 

Ik 
!"

Figure 3. The two non-prehensile actions that we use and their
effect on the kinetic sand. Top: the pushing action
p = [uS vS uE vE ]> modifies the outer contours (yellow) from
xP
k (on image Ik) to xP

k+1 (on image Ik+1). Bottom: the tapping
action t = [uT vT ]> adjusts the height and compactness of the
kinetic sand; it also affects the resampled images Ĩk and Ĩk+1

at the pixel T where the tapping action is applied.

apply, at each iteration k, an action

ak = a (Ik, I
∗) (1)

that will reduce ek:
ek+1 < ek. (2)

Inspired by the results of the user study, we consider a set
of two actions, defined below.

Definition: set of actions. The robot can execute one of
two actions, namely pushing or tapping:

a = {p, t} , (3)

and each action is parameterized within a parameter set: p ∈
AP , t ∈ AT . We define the pushing action p as a translation
of the TCP between two points on the sandbox base. Indeed,
if the contact between TCP and material is approximated by
a point or by a sphere, the effect of pushing will be invariant
to the tool orientation. Since the sandbox base is parallel to
the image plane, p can be defined via the image coordinates
(u, v) ∈ [0, w]× [0, h] of the start and end pixels (denoted S
and E, see top of Fig. 3) of the TCP motion:

p = [uS vS uE vE ]
>
,

AP ∈ [0, w]× [0, h]× [0, w]× [0, h] .
(4)

Similarly, we define the tapping action t as a vertical
translation of the TCP, perpendicular to the sandbox base,
between 2 points. Since the heights of these points are fixed,
t can be parameterized only by the final position of the TCP
in the sandbox plane, which corresponds to a pixel T (see
bottom of Fig. 3) in the image:

t = [uT vT ]
>
,

AT ∈ [0, w]× [0, h] .
(5)

Other setups – with the camera optical axis not perpendicular
to the sandbox – would require different representations.

5.2 Assumptions
In accordance with the user study (Sect. 4.3), we make the
following hypotheses.

Hypothesis 1: specialised actions. Each action type a =
{p, t} regulates only some features of image Ik. This
hypothesis follows from the user study, where the effects of

the pushing and tapping actions were separate and distinct.
Users push the object to shape its outer contour. In our setup,
this feature is observable, since its perspective projection is
also a contour, visible in the image and outlined in yellow
in the top of Fig. 3. Then, the push-controlled feature is the
list of image coordinates of the N pixels sampled along the
shape’s outer contour:

xPk = [u1 v1 . . . uN vN ]
>
k . (6)

Similarly, when tapping, the users smooth and flatten the
kinetic sand surface. This could be interpreted as regulating
its height, a feature that is not measurable without accurate
3D sensing. To observe the effect of tapping on a monocular
image, we draw inspiration from Sun et al. (2015), where a
robot flattens cloth by closing a feedback loop on the cloth
wrinkles. Similarly, we measure the effect of tapping directly
on image Ik. We account for the tool resolution (i.e., the size
of its contacting surface) by scaling Ik to a smaller Ĩk, with
pixels having the size of the tool’s image when it contacts the
kinetic sand: wt × ht pixels (of the original image). The tap-
controlled feature will correspond to this image Ĩk (shown
in the bottom of Fig. 3) which can be obtained by linearly
sampling Ik to a reduced size w/wt × h/ht.

Hypothesis 1 is a useful – albeit strong – simplification. In
practice, pushing will also affect the height, tapping will also
affect the contour and in general, any action a will affect the
whole image I. However, to design a so that it regulates I to
I∗ as in (1), one should invert the very complex model which
maps the applied action a to the dynamics of I. Instead, under
Hypothesis 1, we can design a based on the visual feature
that it affects, rather than on the whole image, making the
control design tractable.

Hypothesis 2: feasible shape. Given the initial image I1,
the desired image I∗, and the set of actions defined in (3),
there exists at least one sequence of actions that solve
the shape servoing problem defined above. Practically, this
hypothesis means that the desired shape can be realized using
the set of actions defined in (3), e.g., matter cannot be added
nor pulled, etc.

Even if a solution exists, finding the best sequence of
actions a∗k that verifies (2) requires solving – at each iteration
k – two subproblems. First, one must find the best action
within the set {p, t} and then, for the chosen action a, one
must find the best parameters within the action’s parameter
set – either AP or AT .

Hypothesis 3: action type pre-selected at each iteration.
In this work, we only address the second subproblem: we
assume that at each iteration either a cognition layer or a
human operator has selected the best action type (push or
tap), and we focus on finding the best parameters for that
selected action (where to push or tap).

Despite these hypotheses, two non-trivial issues are still to
be addressed: the choice of image error measure ek and the
visual control strategy for defining ak = a (Ik, I

∗). These
choices will be the discussed in the next Section.

6 Proposed method

6.1 Image error
Since images Ik and I∗ are spatially aligned into the same
geometric base, we can design image error ek using a global
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similarity measure (see Mitchell (2010)). These measures
include mean square error, mean absolute error, cross-
correlation, and mutual information (defined by Shannon
(1948)). Among the four, the latter is best in terms of
robustness to light variations and occlusions. The mutual
information between images Ik and I∗ is:

MIk = MI (Ik, I
∗) =

∑
ik,i∗

p (ik, i
∗) log

(
p (ik, i

∗)

p (ik) p (i∗)

)
,

(7)
with:

• ik and i∗ the possible pixel values in images Ik and I∗

(e.g., in the case of 8-bit grayscale images these are the
luminances and (ik, i

∗) ∈ [0, 255]× [0, 255]),
• p (ik) and p (i∗) the probabilities of value ik in Ik and
i∗ in I∗ (respectively),
• p (ik, i

∗) the joint probability of ik and i∗ computed
by normalization of the joint histogram of the images.

MIk is maximal and unitary when Ik ≡ I∗: MI (I∗, I∗) = 1.
Then, to obtain ek = 0 for Ik = I∗ and ek monotonically
increasing with the image dissimilarity, we should set:

ek = MI (I∗, I∗)−MIk = 1−MIk. (8)

In the following, we denote this expression of ek as the
mutual information error.

6.2 Image-based control
Having chosen ek, the second issue is the definition of a
robot control input a (Ik, I

∗) that ensures (2) when ek =
MIk. Dame and Marchand (2011) address such problem
(Mutual Information-based visual servoing) by applying
Levenberg-Marquardt optimization to maximize MI. Yet,
they can derive analytic expressions of both the Gradient and
Hessian of MI with respect to a, since in their work a is the
pose of the camera looking at a photography (the image).
Conversely, in our application we do not have an accurate
model of the dynamics of the scene, which evolves, is not
rigid and cannot be assumed Lambertian, as in the work
of Dame and Marchand (2011). Hence, we cannot derive an
analytic relationship between the applied action a and the
corresponding dynamics of MI and therefore find some a∗

that guarantees (2). Thus, while MI is an objective metric for
assessing the controller convergence, it is not straightforward
to use in the design of a.

Instead, based on Hypothesis 1, we design a based on the
visual feature that it affects, rather than on the whole image
I. At each iteration k, we will apply

pk = p
(
xPk ,x

P∗) or tk = t
(
Ĩk, Ĩ

∗
)
, (9)

depending on the pre-selected (Hypothesis 3) action type
(push or tap). In (9), xP∗ and Ĩ∗ respectively indicate feature
xP and Ĩ, extracted from the desired image I∗. Since the
visual features are related to the image I, the dependency
of a from I in (1) is maintained. Note however that since the
relationship between features and image is not bijective (e.g.,
different images may have the same shape’s outer contour),
different images may lead to the same action.

The design of (9) is inspired by classic IBVS, where a
feature vector xk is regulated to x∗ by applying action

ak = λL†k (x∗ − xk) (10)

with λ a positive scalar gain and Lk the interaction matrix,
i.e., the matrix such that: xk+1 − xk = Lkak.

Even if we apply (10), there is no guarantee that ek
will decrease as indicated in (2). First, the relationship L
between dynamics of the feature x and the action a must
be known and invertible, as in (10). Second, even if this was
the case, (10) would only guarantee convergence of feature
x to x∗, which by no means implies convergence of I to I∗

(since the mapping between x and I is not bijective).
Therefore, model-based approach (10) seems inappropri-

ate for defining (9) to solve our problem. In the rest of this
section, we examine various alternative design choices for
defining (9) for both tapping and pushing actions, without
knowledge of the interaction matrix L. In the experimental
section, we will compare these design choices through the
evolution of the mutual information when the actions are
applied sequentially to realize a desired shape I∗.

6.3 Tapping
The design of the tapping action is simpler than that of the
pushing action. The reason is that we have assumed (see
Sect. 5.2) that each tapping action t levels a well-defined
portion of the kinetic sand surface, without affecting the
other areas. More specifically, since we rescale I to a smaller
Ĩ, with pixels having the same size wt × ht as the tool, each
t should change only one pixel of Ĩ.

Since by Hypothesis 2 we assume that the shape is feasible
and that we can only lower (not raise) the kinetic sand level
with the tool, the height of the desired shape is lower or
equal than that of the current shape. Then, at each pixel,
the difference between the image luminosities should be a
monotonically increasing function of the difference between
the shape heights.

Therefore, we decide to apply the tapping action on the
spot (in resampled image Ĩ) where the image difference is
the highest. This breaks down to writing (9) as:

t
(
Ĩk, Ĩ

∗
)

=

[
uT
vT

]
=

[
wt 0
0 ht

]
argmax
(u,v)∈Ĩk

∥∥∥Ĩk − Ĩ∗
∥∥∥ . (11)

If
∥∥∥Ĩk − Ĩ∗

∥∥∥ has multiple maxima, we randomly choose one.
Eventually – at the following iterations – the other maxima
will be selected.

6.4 Pushing
In contrast with tapping, in the case of pushing, the affected
contours do not always have the same size and the state-
action mapping is not as clear as for tapping. This has
motivated us to devise a more complex strategy, which was
based on the human data recorded in the PT-Dataset. In the
following, we explain the various steps of this strategy.
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Figure 4. Left to right: image processing steps for extracting state-action triplets from the PT-Dataset. The “pushing” images are
loaded sequentially for each user. On each image, we compute the tool position and velocity. At changes in the tool velocity, we
break the sequence into smaller sets. Each set corresponds to a clear tool motion (either pushing the kinetic sand or retiring from
it). Using the initial and final images of these sets, we detect the kinetic sand contour on each image. Finally, we form state-action
triplets, that are characterized by a sufficiently large change in both the contours and tool positions.

6.4.1 Extracting ground truth state-action triplets from
the PT-Dataset The first step in designing the pushing
actions from (9) is to represent the relationship where a push
action pmn causes the kinetic sand contour shape xPm to
become xPn . For this, we define push state-action triplets of
the form: {

pmn,x
P
m,x

P
n

}
. (12)

We extract these triplets from the PT-Dataset images (see
Sect. 4.3). We have two motivations in using these triplets.
First, they can help design a local control strategy – inspired
by humans – which we will explain in Section 6.4.2. Second,
we can use them to train a neural network to estimate – at
each iterationm – the pushing action pmn required to change
the kinetic sand contour from xPm to xPn .

To extract the triplets (12) from the PT-Dataset, we look
for all the kinetic sand contours that have been obtained
after a “sufficiently large” change in both contour and tool
positions. Between images Im and In, we define the change
in contour as

∥∥xPn − xPm
∥∥ and the change in tool position as√

(un − um)
2

+ (vn − vm)
2, with (ui, vi) ∈ [0, w]× [0, h]

the image coordinates of the tool centroid in image Ii, i =
{m,n}. Therefore, we take all state-action triplets such that:

n > m√
(un − um)

2
+ (vn − vm)

2
> τu∥∥xPn − xPm

∥∥ > τx.

(13)

where τu and τx are constant, hand-tuned thresholds. Higher
values of these thresholds will make criterion (13) more
selective, requiring bigger changes between the two images.

Let us now detail the image processing pipeline that we
use to extract triplets (12) from the PT-Dataset images. We
process images in the HSV space since it facilitates object
segmentation (the tool tip is blue, the users wear black
gloves and black long sleeved shirts, the kinetic sand is light
brown and the sandbox is black). Among the 14,900 images
“pushing” images in the PT-Dataset, we choose 3,976 (from
four users) where the action and its effect on the kinetic sand
are clear.

The pipeline, shown in Fig. 4, is as follows (left to right):

1. The 3,976 images are loaded sequentially for each of
the users.

2. For each image I, we perform a tool detection, that
yields the tool position as the centroid of a blue
blob, segmented in the HSV space. We discard images
where the tool is not detected, and output tool position
(u, v) for all other images.

3. After processing all images, the tool positions are first
smoothened (we apply a weighed centered average
filter of size 3 and weights [1 2 1]) and then
differentiated to obtain the tool velocity on image I:
(u̇, v̇).

4. The original image sequence is reduced and broken
into smaller sets, each corresponding to a clear tool
motion. This is done by detecting images where the
tool has either stopped (velocity norm

√
u̇2 + v̇2 <

1 pixel/image) or changed direction (negative scalar
product between consecutive velocities). We use these
images as breakpoints to split the sequence into
smaller sets. Within each of these sets, the tool velocity
does not change direction. We also discard images
where the tool has stopped. At the end of this step,
we obtain 139 sets of images.

5. Each of these 139 sets is processed by a contour
detection algorithm. First, we subtract final (Ifin)
from initial (Iin) image in each set, to generate a
difference image. In the luminosity channel of this
image, lighter pixels correspond to higher differences.
Then, we segment the largest blob of gray pixels in
this image, and find its enclosing rectangular bounding
box. This defines a ROI (Region of Interest) wherein
the kinetic sand configuration has changed the most.
Within this ROI, we detect on each image I of the set
the kinetic sand contour. This is done via the border
following algorithm proposed by Suzuki et al. (1985),

Prepared using sagej.cls



Cherubini et al. – Model-free vision-based shaping of deformable plastic materials 9

and implemented in the OpenCV findContours
function. We then sample the kinetic sand contour with
constant N (here, N = 10), to obtain xP as in (6). We
discard images where the contour is not detected.

6. At this stage, we have obtained 2,749 sample images I
distributed over 139 sets. The number has diminished
from the original 3,976 since we have removed all
images where the contour is not detected, or where
the tool is not moving. For each I, we now have
the tool position (u v) (from step 2) and contour
xP (from step 5). Each set is now explored to find
all pairs (2-combinations) of images (Im, In) with
sufficient contour and tool change, i.e, pairs that
comply with (13). To this end, we must first match
the sample points in xPn to those in xPm; we do this
by reordering the points in xPn , so that the sum of
distances between matched pixel pairs (in xPm and xPn )
is minimal. After this, we can check if pair (Im, In)
complies with (13). The output of this last step is the
set T of triplets of the form (12). As mentioned above,
each of the 139 sets corresponds to a clear tool motion,
roughly 50% of which are pushing actions and the rest
‘retiring’ actions (the user moves the tool away from
the kinetic sand between one push and the next). By
checking the contour change in (13), we discard the
images of all these ‘retiring’ actions. By checking the
tool position change on all combinations of pairs Im,
In (n > m) in (13) we augment the data: from a single
human pushing action between Iin and Ifin (i.e.,
one triplet), we can generate many consistent pushes.
Ideally (i.e., if the three conditions (13) are always
met) for a set containing Np images, we will generate

Np!
2!(Np−2)! , instead of just 1 triplet. For instance from
Np = 50 images, we can generate 1,225 triplets. On
the other hand, this is an ideal case, since consecutive
images generally are too similar to meet (13). Using
τu = 5 and τx = 3 pixels in (13), from the original 139
sets, we obtain T , with dim (T ) = 3,539 triplets.

Finally, we derive two important statistical metrics from
the set of triplets T . These are useful to characterize the
users’ actions, and therefore design the local shaping strategy
that will be outlined in Sect. 6.4.2.

The first metric is the mean of the distance between pairs
of pixels matched on all contours. For a pair of contours xPm
and xPn , the distance is:

d
(
xPm,x

P
n

)
=

1

N

N∑
i=1

√
(ui,n − ui,m)

2
+ (vi,n − vi,m)

2
.

(14)
Considering all pairs

{
xPm,x

P
n

}
∈ T , its mean is:

µ (d) =
1

dim (T )

∑
xP
m,x

P
n∈T

d
(
xPm,x

P
n

)
. (15)

We obtain µ (d) = 42 pixels, with standard deviation σ (d) =
10 pixels.

The second metric is the height (dimension along the
image v-axis) of the smallest bounding box enclosing both
contours xPm and xPn , averaged over all contours in T . For a

a) b) 

Ik 

I* 

c) 

e) Steps of the IBVS control scheme for pushing the kinetic 
sand (here, using the maximum method): 

-  from home point (H), move behind start point (B) 
-  move to start point (S) 
-  move to end point (E) 
-  move up (U) 
-  return to the home point (H) 

H 

B S 

E 

H 

U 

Figure 5. Local strategy for realizing the pushing action, given
the current (Ik) and desired (I∗) images. a) Indentification of the
rectangular ROI (blue) where the robot should act on the kinetic
sand. This is obtained from the subtraction of current and
desired images. b) Selection of a random ROI of lower height,
resized according to the users dataset (green) and detection of
sampled contours within this ROI. The contours are detected
and sampled on both current (blue) and desired (red) images. c)
Interpolation between current (blue) and desired (red) contours
according to the users dataset, to obtain the near contour xP?

(yellow).

pair of contours xPm and xPn , this height is:

∆v
(
xPm,x

P
n

)
= max{vm,1 . . . , vm,N , vn,1 . . . , vn,N}−
−min{vm,1 . . . , vm,N , vn,1 . . . , vn,N}.

(16)
Considering all pairs

{
xPm,x

P
n

}
∈ T , its mean is:

µ (∆v) =
1

dim (T )

∑
xP
m,x

P
n∈T

∆v
(
xPm,x

P
n

)
. (17)

We obtain µ (∆v) = 100 pixels, with standard deviation
σ (∆v) = 22 pixels.

6.4.2 From global to local shaping: As mentioned above,
we restrict the pushing actions to be along a line segment
in the image plane. Although this choice limits the action
space, there are still many possible choices as to where on
the kinetic sand to start acting. An algorithmic approach is
needed to choose the parts of the contour where to push.

Since plastic deformations of the kinetic sand are local, we
opt for a local strategy. Instead of defining the push action pk
as a function of the desired contour xP∗ (i.e., a function of
the desired image I∗) as indicated in (9), we focus on local
areas of the image, by reducing the workspace along both
the u and v axes of the image, to define an alternative desired
contour xP?.

This is done through the following steps (see Fig. 5):

1. ROI Indentification: This step consists in identifying
a rectangular ROI (blue in Fig. 5a) where the robot
should modify the most the kinetic sand. First, we
subtract desired (I∗) from current (Ik) images. The
following operations (blob segmentation and bounding
box derivation) are identical to those presented in step
5 of the pipeline of Sect. 6.4.1, to identify a ROI on
images in the user dataset.

2. ROI Clipping: Especially at the beginning of shape
servoing, since images I and I∗ (and therefore features
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x and x∗) are most likely very different, the state
error can be very large. In other words, it is unlikely
that a single action would lead to the desired shape,
jeopardizing convergence. Our approach is to operate
in a local window by limiting the maximum ROI
height (i.e., its dimension along the image v-axis).
Clipping the ROI limits the state space – the possible
combinations of current and desired contours – hence
makes it easier to find an action. To determine the
size of the clipped ROI, we draw inspiration from the
human behavior (the PT-Dataset). From the original
ROI, we define the set of all smaller rectangular ROIs
which have the same width as the original ROI, but
height equal to that of the average bounding box in the
dataset, µ (∆v) = 100 (see Section 6.4.1). If the ROI
v-axis size is smaller than this threshold, we do not
clip the ROI. An example of clipped ROI is shown in
green in Fig. 5b.

3. ROI random selection: The natural question that arises
from the previous step is which of the clipped ROIs
should be selected. Our user study did not indicate
any clear preference in humans as to how they choose
where to apply the push actions. This means that
there seems to be no clear predefined or preferred
strategy as to where they start pushing, given multiple
options. Moreover, in general it is safe to assume
that there is more than one sequence of actions that
brings the material to the desired shape. Given these
observations, we decided to randomly choose the ROI
within the set of clipped ROIs output at the previous
step. The randomization strategy also has the benefit
of getting the algorithm out of local minima. We
noticed that if a fixed heuristic strategy is used here
(for example always choosing the topmost among all
clipped ROIs), then the same action is likely to be
repeated indefinitely, without inducing much change
in the kinetic sand shape. ROI randomization also
helps the robot exit situations where some actions do
not induce progress, e.g., due to servoing or actuation
errors.

4. Contour detection: The selected clipped ROI is
applied to both the current image Ik and the desired
image I∗, to detect – once again using the OpenCV
findContours function – the kinetic sand contour
in both images: xPk and xP∗ (with the same number
of sample points, N = 10 as used for processing the
dataset). These contours are respectively blue and red
in Figure 5.

5. Contour interpolation: Although the ROI has been
reduced by clipping, the difference in contours can still
be large, especially at the start of shape servoing. This
makes it hard or impossible to reach the desired kinetic
sand shape with a single push. We therefore scale the
distances between contour samples by interpolating
between the current and desired contours. If the
distance between xk and x∗ is higher than the dataset
average distance µ (d) = 42 pixels (see Sect. 6.4.1),
we scale it to obtain the near desired kinetic sand

maximum average learning - based 

Figure 6. Alternative strategies for defining the push action (red
arrow) given the current (blue) and near (yellow) contours. Left
to right: maximum, average, and learning-based strategies.

contour:

xP? =

{
xP∗ if d

(
xPk ,x

P∗) ≤ µ (d) ,

xPk + µ(d)

d(xP
k ,x

P∗)

(
xP∗ − xPk

)
otherwise.

(18)
Contour xP? is shown in yellow in Fig. 5c. In our
work, there is no easy way for the robot to bring the
kinetic sand back if the applied push is deeper than
intended. A shorter push has the advantage of reducing
the uncertainty on the successive kinetic sand shape
after the push is applied. This design choice, however,
comes at the cost of execution time: the robot will need
to apply more pushing actions since the maximum
push distance is limited.

The interpolated contours xP? that are extracted from the
clipped and randomized ROIs are used as input to the three
different pushing strategies explained in the next section.

6.4.3 Strategies We devise three methods to design the
pushing action based on xPk and xP?:

pk = p
(
xPk ,x

P?
)
. (19)

The three methods (shown in Fig. 6) are:

1. Maximum: Given the sampled contours xPk and xP?,
the pushing action starts and ends at the pair of
matched pixels that are the farthest (have highest
Euclidean distance, among all matched pairs), on the
two contours. In a nutshell, the maximum method
pushes in the location where the current and desired
sampled contours are the farthest. More formally, the
push action is defined as

pk
(
xPk ,x

P?
)

=


uj,k
vj,k
uj,?
vj,?

 such that

j = argmax
i=1...N

√
(ui,k − ui,?)2 + (vi,k − vi,?)2

(20)

If
√

(ui,k − ui,?)2 + (vi,k − vi,?)2 has multiple max-
ima, we randomly choose one.

2. Average: While the previous method is greedy and
aims at acting on the farthest contour points, with the
Average method the robot pushes along the contours’
centroids. Thus, the push action is defined as
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Figure 7. Experimental setup. 1) Kinova MICO robotic arm. 2) Intel RealSense camera looking downward at the workspace. 3)
Workspace: a black sandbox containing the kinetic sand to be shaped. Considering its kinematics and workspace, the robot can
access and manipulate only a portion, the hatched area. 4) Foam support that makes the sandbox comply and not break in case of
abrupt robot motion. 5) The custom 3D-printed tool, designed to perform both pushing and tapping.

pk
(
xPk ,x

P?
)

=
1

N

N∑
i=1


ui,k
vi,k
ui,?
vi,?

 . (21)

3. Learning-based: We trained an Artificial Neural
Network (ANN) using the 3,539 triplets in T (see
Sect. 6.4.1). This ANN learns the mapping in (19)
from current and desired states to the pushing action
to perform:

pk = pANN(xPk ,x
P?). (22)

The input to the network is the current contour xPk and
the target contour xP?. WithN = 10 contour samples,
the input consists of 40 scalars (the image coordinates
of the sample pixels on the two contours). The output
of the network is the action pk, which consists of 4
scalars, i.e., the pixel coordinates of the start and end
pixels, see (25).

The network architecture consists of 3 fully connected
layers with 100 hidden nodes each. Early experiments
conducted to choose the network architecture showed
small differences. However, we found that on our
particular dataset, deeper networks quickly resulted in
diminishing returns (and eventually overfitting). Thus,
we chose a network with sufficient capacity to perform
well, but not overfit. The standard ReLu activation is
used for all layers, since it is computationally efficient
while modeling non-linearities (see Glorot et al.
(2011)). We randomly split the set T of 3539 sample
triplets into training (%80), test (%10) and validation
(%10) sets. The network is trained for 25,000 episodes
where loss has converged. The training takes about

fifteen minutes, and the mean absolute testing errors
on the output variables are shown in Table 1.

As shown in the table, the testing error for all output
variables is within reasonable bounds, considering that
the tool has a size of 30× 40 pixels. Note that the
trained network predicts the tool end position much
better than the tool start position. This is a very
interesting result. Clearly, the effect of a push on
the contour is much more dependent on the tool end
position (when it is in contact with the contour) than
on its start position. The results show that the ANN
has inferred this characteristic of the pushing action
from the human dataset.

Output Mean Error (in pixels)
uS 15.4
vS 12.5
uE 3.1
vE 1.3

Table 1. Mean prediction error of the neural network trained to
output pushing actions p = [uS vS uE vE ]> given current and
desired contours.

7 Experimental Setup

7.1 Objectives
We have run a series of experiments on a robotic manipulator
to validate our methods. The robot should mold the kinetic
sand into desired shapes. At each iteration k, the molding
action is determined by comparing current and desired
images of the kinetic sand shape.

The experiments rely on the hypotheses defined in Sect. 5.
Hypothesis 1: specialised actions has been used to design
the whole methodology (presented in the previous sections)
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that the robot uses to mold the kinetic sand. The objective
of the experiments is to verify this Hypothesis, i.e., to check
whether designing the actions according to the kinetic sand
state ((11) for tapping and either (29), (30) or (22) for
pushing) is effective in shaping the kinetic sand. To deal with
Hypothesis 2, we use as desired shapes only those feasible
by the robot: matter cannot be added nor pulled, and the
kinetic sand must be in the accessible robot workspace. As
for Hypothesis 3, a human operator selects at each iteration
k the action to be executed (either pushing and tapping).

To evaluate the quality of molding, we use
mutual information error (8), which we calculate
via the MATLAB Toolbox by Peng (2007). The
software used for the experiments is available online
at: https://github.com/acosgun/sand manipulation. The
experiments are shown in the videos available here:
https://www.lirmm.fr/recherche/equipes/idh/flexbot.

7.2 Workspace and material
The experimental setup is shown in Fig. 7 and detailed
here. In all experiments, we use a Kinova Mico arm‡ with
6 degrees of freedom. The tool mounted on the robot end-
effector has been custom-designed and 3D-printed, so that
it can be used by the robot for both pushing and tapping.
We have designed the tool so that it is as similar as possible
– considering the 3D printer constraints – to the tools used
by the humans in the pilot study (see Fig. 2, left). Its
final shape is that of a poker with a connection to the
robot. The Intel RealSense camera – which points downward
at the sandbox – is the same as in the user study. We
position the camera so that it can view the whole sandbox
as well as the tool. The walls and bottom of the sandbox
are rigid (cardboard). We place a foam support under the
sandbox; this was needed to avoid breaking the sandbox in
the preliminary experiments, when the software had some
instabilities. Considering its kinematics and workspace, the
robot can access and manipulate only a portion of the kinetic
sand (highlighted in Fig. 7 as the hatched area). Thus, we
define the desired shapes only in this area of the sandbox.

We perform all computations (image processing, control
and machine learning) on the CPU (Intel i7) of a Linux
based computer, and use ROS Indigo along with the official
Kinova-ROS packages for robot communication and control.
We use OpenCV 3.0 for image processing and PyTorch to
design and run the neural network.

7.3 Robot control for pushing and tapping
We decided to control only the translational components
of the tool operational space velocity. With reference to
the robot frame shown in Fig. 7, vx and vy (the velocity
components that are parallel to the sandbox plane) are
controlled using visual servoing, while vz is controlled to
regulate the tool height along the z-axis. Since the tool can
be easily detected as the centroid of a blue blob, IBVS
provides a robust and elegant way of regulating it in the
image. Furthermore, since the image plane is parallel to the
xy plane, the formulation of the interaction matrix is simple
and the scene depth and camera focal length can be included
directly in the control gain. In a nutshell, to drive the tool
centroid from the current pixel (u, v) to the desired one

a) b) 

Ik 

I* 

c) 

e) Steps of the IBVS control scheme for pushing the kinetic 
sand (here, using the maximum method): 

-  from home point (H), move behind start point (B) 
-  move to start point (S) 
-  move to end point (E) 
-  move up (U) 
-  return to the home point (H) 

H 

B S 

E 

H 

U 

Figure 8. Steps of the IBVS control scheme for pushing the
kinetic sand, here using action p (red). The robot tool is blue
and the waypoint pixels (H, B, S, E and U) are white.

(u∗, v∗) we can simply apply:[
vx
vy

]
= vxy

̂[
−u∗ + u
v∗ − v

]
(23)

where the minus sign on the first component is due to the
orientation of image and robot frame axes (see Fig. 7),
and the ˆ symbol indicates error vector normalization.
We introduce this to avoid asymptotic convergence (in
which case the velocities become very small as the error
diminishes) and to maintain the velocity norm in the
xy plane constantly equal to pre-tuned value vxy > 0.
Simultaneously, we regulate the tool height to z∗ using:

vz = vz sign (z∗ − z). (24)

As for vx and vy , the sign function is introduced to avoid
asymptotic convergence and to maintain the velocity norm
constant and equal to pre-tuned value vz > 0.

We can apply control laws (23) and (24) on each acquired
image, until the visual error is below some threshold, at
which point the task is deemed finished.

For tapping, the desired pixel (u∗, v∗) is set to t =
(uT vT ) derived from (11). For pushing, the tool must
move sequentially first to the start pixel (uS vS), then to
the end pixel (uE vE), which are defined according to
either (29), (30) or (22).

Yet, for both actions, waypoints are needed to guarantee
that the tool does not touch the kinetic sand nor occlude the
camera view when it is not intended to. Both the pushing and
tapping motions start and end at a constant home pixel H ,
placed on the sandbox far from the kinetic sand. It is only
when the motion is finished and the tool has returned at H ,
that the acquired image is processed to determine the next
action and the iteration index k is increased. Since the tool is
atH , there is no risk of camera occlusion and the kinetic sand
has stopped moving. On the other hand, the images acquired
by the camera while the tool moves between the waypoints
are only used to drive the IBVS control scheme according
to (23)-(24), not to determine the next p or t.

For pushing, these waypoints are shown in Fig. 8. The
second waypoint B is placed on the same pixel row as the
start pixel S, but on the side opposite to the kinetic sand.
This waypoint is indispensable to avoid accidentally hitting
the kinetic sand while moving from H to S. After B, the
tool moves to S and then E (this is the actual push action p).
We move the tool along these waypoints, using only control
law (23), and setting vz = 0. Then, the tool is raised to a
waypointU placed at higher z; for this, we only apply control

‡https://www.kinovarobotics.com/en
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law (24) on vz , and set vx = vy = 0. Finally, the tool is
brought back to the home pixel, using both (23) and (24).
Similarly, to tap the kinetic sand, the tool must first rise from
H to a given height (above kinetic sand level), then translate
to a waypoint above T (defined by the tapping action t),
lower to T , rise again, and finally return to H .

8 Experimental Results
We have run a number of experiments to test the two
actions first separately, and then together. In all cases, the
human operator must press a key to launch the action at
each iteration k. He also terminates the experiment when
he considers that the performance cannot further improve.
This is a subjective choice, that we would like to avoid,
by finding an objective termination condition – related to
the image error ek – for the robot to stop autonomously.
In the experiments with both pushing and tapping together,
the human also selects – via the keyboard – which action to
perform at each iteration k, depending on the current kinetic
sand state. In all the experiments, the desired shapes I∗ are
images acquired after a human has shaped the kinetic sand
by hand, trying at best to guarantee Hypothesis 2 (feasible
shape).

8.1 Pushing experiments
The results of the pushing experiments are shown in
Figures 9 and 10. We used three desired shapes (reminiscent
of letters C, E and Σ) framed in green in Fig. 9. For each
shape, the robot has to mold the kinetic sand using the
three strategies: maximum (29), average (30) and learning-
based (22). In all nine experiments, we start from an initial
shape with straight contour (red framed in Fig. 9).

Figure 9 shows the sequence of images obtained after
each pushing action, using the maximum strategy. The
final shapes obtained by the robot are shown in the image
preceding the green framed ones. The differences are mainly
due to the tool resolution and to the fact that we decided not
to control the tool orientation.

In Fig. 10 we plot the mutual information error ek from (8)
at each iteration k, for each desired shape (left to right: C, E
and Σ) and each strategy (maximum in blue, average in red
and learning-based in black). This experiment is also useful
to see if it is possible to identify a termination condition
for the molding. Inspired by (2), we test the following
condition: the robot must stop when the mutual information
error increases, i.e., at iteration k + 1 such that ek+1 > ek.
The solid curves show the values of ek until this condition is
verified, whereas the dashed plots represent the error values
until manual termination by the operator§.

Let us first comment the solid curves. Note that even
for the same desired shape, since the initial image is not
identical in the three strategies, the initial values are slightly
different. Nevertheless, for all nine plots the general trend
is decreasing. We also note that the strongest slope – at
least in the initial iterations – is obtained with the learning-
based approach (black). The second best is maximum (blue),
followed by average (red). However, for shapes E and Σ,
the learning-based strategy is terminated earlier than the
maximum one, which ends up with the lowest overall error
(0.42 for E shape, and 0.27 for Σ). The reason is most

probably due to the data distribution: the neural network has
not been trained on small contour variations and is therefore
less efficient in such situations. Among the three methods,
average (red) is the worse. This could be expected, since this
heuristic is easily driven into local minima (particularly for
very convex shapes, as E and Σ).

Comparing the dashed and solid curves, it is noteworthy
that most strategies continue to reduce error ek even after
having reached the termination condition. This is probably
due to the complexity of the task, which can be seen as a
non-convex optimization problem. In brief, an action may
occasionally increase ek (for an iteration), but on a longer
time horizon the error can still diminish. This leads to
questioning the convergence condition (2), which may be too
strict for the shape servoing task.

8.2 Tapping experiments
To assess the tapping strategy we have run three experiments,
depicted in Fig. 11 from left to right. The tool size is wt ×
ht = 30× 40 pixels. The experiments are characterized by
different initial (upper row of images) and desired (middle
row) conditions on the kinetic sand height, while the
contours were kept unchanged. On the lower row of the
figure we show the images obtained by the robot after
having applied tapping strategy (11) for a few iterations. The
termination condition is given by the human operator when
he esteems that there will be no further improvements (i.e.,
after respectively 30, 19 and 24 images).

Experiments 1 and 3 have similar desired images (both
require flattening the whole accessible workspace) but differ
in the initial image. Experiment 1 starts with a pile of kinetic
sand in the upper part of the image, whereas Experiment 3
starts with two smaller piles on each side of the workspace.
Experiment 2 starts with loose kinetic sand and the desired
task consists in flattening a square in the upper part of the
image. As the final images show, in Experiments 1 and 3 the
robot manages to flatten the piles, whereas in Experiment
2 it acts over the whole workspace and not only on the
specified square. The mutual information error does not
improve during any of the three experiments. In our opinion,
this is due to two reasons indicated below.

• Even more than for pushing, because of the tool size
and of the robot characteristics, the robot cannot tap on
the kinetic sand as accurately as a human. Typically,
since the constant tool height reference z∗ is not
related to the – varying but unmeasurable – kinetic
sand height, the tool often penetrates the kinetic sand,
and leaves a footprint with a rectangular shade that
appears in the robot images, but not in the human
ones (compare bottom and middle row of images).
We also tried replacing position control with force
control along the z axis, but the Kinova embedded
force sensing is not accurate enough for this.

• Feature Ĩ is not the best feedback for this action.
Indeed, since the goal of tapping is to modify the
kinetic sand shape along directions perpendicular to
the image plane, the best feedback would rather be a

§Coincidentally, the two termination conditions are identical in the average
E-shape experiment (red curve in the center).
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(a) Desired C-shape.

(b) Desired E-shape.

(c) Desired Σ-shape.

Figure 9. Images from three experiments with only pushing actions obtained with the maximum strategy. The three images framed
in red show the initial state of the kinetic sand. The three images framed in green are the desired shapes (top to bottom: C, E and
Σ). Intermediate images show the results of each consecutive pushing action.

point cloud from a depth image. Yet, as we mentioned,
the RealSense depth image is not exploitable. The
RGB image cannot characterize directly the kinetic
sand depth, because of effects such as the material
granularity and shades. This confirms the formidable
capacity of the human sensorimotor system, which
through stereovision and experience alone, can mold
very precisely along the depth axis. Despite the
questionnaire results, probably haptic feedback also
plays a more important role here, than it does for
pushing.

Although Ĩ and generally RGB data is inappropriate for
tapping, the designed action does properly level the kinetic
sand. This is visible in Fig. 12, where we show a side view of
Experiment 1, with the desired shape (top) and a sequence of
nine consecutive snapshots during the experiment (bottom).
The figure clearly shows that the kinetic sand level is
gradually reduced where required, and that a side view such
as this one would be much more useful – as feedback signal
for tapping – than the top view used in our work.

Also note that tapping on the kinetic sand boundaries
may cause its expansion and alter the shape contours (see
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Figure 10. Evolution of the mutual information error ek at each iteration k in pushing experiments with three desired shapes. The
colors correspond to the three strategies: maximum (blue), average (red) and learning-based (black). The solid curves show ek until
ther termination condition ek+1 > ek, whereas the dashed curves show the error until manual termination by the human operator.
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Figure 11. Three tapping experiments (left to right columns)
characterized by different initial and desired images (top and
middle row). The final image obtained by the robot is shown in
the bottom row for each experiment.

the bottom row of images in Fig. 11). Nevertheless, our
framework can overcome this issue by alternating pushing
and tapping actions until convergence of the overall error. In
the next Section, we present the results of experiments where
we alternate between pushing and tapping.

8.3 Experiments requiring both pushing and
tapping

Finally, we have run three experiments requiring both
pushing and tapping actions, and depicted in Fig. 13 from
left to right. Since our framework is not yet capable
of autonomously selecting the best action type at each
iteration (Hypothesis 3), the human operator chooses it
using the keyboard. Among the pushing strategies, he can
also choose between maximum and learning-based, since
these performed better than average in the experiments
of Sect. 8.1. In short, at each iteration of these three
experiments, the operator can select from the keyboard
between: tap action, push action using maximum strategy
and push action using learning-based strategy.

The experiments are characterized by different initial
(upper row of images) and desired (middle row) conditions

on both the kinetic sand height and contours. On all initial
images the contour is a straight line and on all desired
images all the workspace kinetic sand has been flattened. The
experiments differ in the desired contour and in the initial
height: a wide and low pile of kinetic sand in Exp. PT1, loose
kinetic sand everywhere in Exp. PT2, and a thin and high pile
in Exp. PT3.

On the lower row of the figure we show the images
obtained by the robot after having applied pushing and
tapping actions for a few iterations. As the final images show,
the three experiments confirm that pushing is more effective
than tapping. In fact, we can see qualitatively that all three
final contours resemble the desired ones: by pushing, the
robot has even corrected the contour expansion effect of
tapping, mentioned in Sect. 8.2. Instead, in Exp. PT2 the
robot has not tapped the whole workspace as required. In
Fig. 14, we have plotted ek at each iteration for the three
experiments. Since the termination condition used in the
pushing experiments of Sect. 8.1 seemed too conservative,
we have decided to relax it and use ek+1 − ek > 0.005.
In practice, we tolerate a maximum increase of 0.005 in
mutual information, from one iteration to the next. We plot
the curves until this condition met. The curves confirm
the results seen in Fig. 13: in all three cases, using the
proposed termination condition, the error is reduced by
more than 0.2. Furthermore, the choice of this condition is
appropriate, because using ek+1 > ek as in Sect. 8.1 would
have interrupted the robot too early on experiments PT1
and PT2, because of the weakness of the tapping action.
Using ek+1 > ek instead of ek+1 − ek > 0.005, the robot
would have stopped: for PT1 after 7 iterations at e7 = 0.33
instead of after 15 iterations at e15 = 0.29, and for PT2
after 3 iterations at e3 = 0.48 instead of after 8 iterations at
e8 = 0.34.

8.4 Discussion

The experiments show two important limitations of our
framework: first, it cannot regulate the tool orientation during
neither pushing nor tapping; second, it is not capable of
autonomous selection of the action type to be applied at each
iteration. In the following paragraphs we propose solutions to
these two problems. We also comment on the robustness of
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Desired shape 

Figure 12. Side view of the first tapping experiment. Top: desired shape. Bottom: sequence of nine consecutive snapshots during
the experiment (the robot arm is visible in the second and fourth snapshots). Note that the kinetic sand is leveled as required.
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Figure 13. Three experiments requiring both pushing and
tapping (left to right columns) characterized by different initial
and desired images (top and middle row). The final image
obtained by the robot is shown in the bottom row for each
experiment.
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Figure 14. Evolution of the mutual information error ek at each
iteration k in experiments with both pushing and tapping, to
obtain three desired shapes.

our framework with respect to the variability of experimental
conditions.

8.4.1 Controlling the Tool Orientation As mentioned in
Sect 5.1, if the contact between tool and material can be
approximated by a point or by a sphere, the effect of pushing
and tapping on the kinetic sand will be invariant to the tool

orientation. Since the tool we use in our setup does not fulfill
such hypothesis, its orientation will affect the kinetic sand
shape. We hereby explain how one could add tool orientation
control to our framework.

Among the three tool orientations in space, let us shortly
discuss the one around the camera optical axis, which is
the easiest to visually measure and control in our setup. For
tapping, the definition of the controlled feature Ĩ explicitly
accounts for the tool resolution and tolerates that changes
in the image Ĩ cannot be smaller than the tool size. Hence,
rotating the tool will not enhance the performances. For
pushing, orienting the tool is more interesting since it could
avoid the differences between obtained and desired images
visible, for example, in Figures 9 and 13. The orientation can
be included in p:

pk = [uk vk θk u? v? θ?]
>
. (25)

One way of designing θk and θ? is by aligning the tool with
the translational direction, i.e., setting:

θk = θ? = atan2 (u? − uk, v? − vk) . (26)

Alternatively, one can design θk and θ? independently from
the action start and end pixels. The design will differ for
each of the three pushing strategies of Sect. 6.4.3. For the
maximum strategy, the most intuitive solution is to take as
start and end orientations those of the normals to the contours
xPk and xP?, at the points where the contours are the farthest.
Naming

n
(
u, v,xP

)
∈ ]−π, π] (27)

the orientation of the normal to contour xP at pixel (u, v),
the maximum strategy would yield:

θk = n
(
uj,k, vj,k,x

P
k

)
θ? = n

(
uj,?, vj,?,x

P?
)

(28)

such that:

j = argmax
i=1...N

√
(ui,k − ui,?)2 + (vi,k − vi,?)2. (29)
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For the average strategy, one could take the average
orientation of all N normals to contours xPk and xP?:

θk = 1
N

∑N
i=1 n

(
ui,k, vi,k,x

P
k

)
θ? = 1

N

∑N
i=1 n

(
ui,?, vi,?,x

P?
) (30)

Finally, for the learning-based strategy, the start and end
orientations should be learned by the Artificial Neural
Network using the dataset. This requires extracting the tool
orientation from each image in the dataset, i.e., adding such
feature to the output of the image processing pipeline in
Sect. 6.4.1.

To make the robot rotate the tool while pushing, the
visual servoing controller in Sect. 7.3 must also be adapted.
Since the current and desired tool orientations are directly
measurable in the image, this can be done, as for the
components of v, through a feedback controller on the tool
angular velocity around the optical axis, ωz:

ωz = ω̄z sign (θ∗ − θk) . (31)

with ω̄z a pre-tuned positive scalar.

8.4.2 Action selection It could be possible to automati-
cally choose the action to be realized at each iteration k.
One way of doing this is by verifying on the current image
Ik which feature “requires the most change” to look as it
does in desired image I∗. This can be done by comparing the
Euclidean distances between current and desired push- and
tap-controlled features. Since these features (respectively
contour xP and image Ĩ) are defined in different sets and
expressed in different measurement units, we must include
some positive weight α > 0 to make the comparison con-
sistent. Note that the tuning of scalar weight α is crucial
here. Choosing a high (respectively, low) value will make
tapping (respectively, pushing) prevail more often. The value
of α could also be learned from the dataset. The described
algorithm would look as follows.

Algorithm: Automatic selection of action type ak at
iteration k

Input: Desired image I∗ and current image Ik.
Output: Action type ak (either push p or tap t).

1: Extract xPk from Ik and xP∗ from I∗

2: Resize Ik to Ĩk and I∗ to Ĩ∗

3: if
∥∥xPk − xP∗

∥∥ > α
∥∥∥Ĩk − Ĩ∗

∥∥∥ then
4: ak ← p

(
xPk ,x

P∗) # push the contours
5: else
6: ak ← t

(
Ĩk, Ĩ

∗
)

# tap the surface
7: end if
8: return ak

8.4.3 Robustness to variability of the experimental
conditions Since part of the action selection process is
randomized, and since the initial and desired images vary
from one setup the other, it is difficult to objectively
assess the performance of our framework over multiple
experiments. To this end, we have processed the results
obtained in all 9 setups (shown in Figures 9, 11 and 13).
First, since the three setups in Fig. 9 have each been tackled

Initial 
image 

Desired 
image 

Final 
image 

Exp. Tap 1 Exp. Tap 2 Exp. Tap 3 
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Figure 15. Evolution of the mean and standard deviation of ek
at each iteration k for all 9 setups and experiments.

with all three pushing strategies (see Fig. 10), for each
setup we have averaged the three values of ek (one per
strategy) at each iteration k. Now, we have 9 trends of
ek corresponding to the 9 setups: 3 for pushing obtained
by averaging as mentioned just above, 3 for tapping and
3 for pushing+tapping obtained via the experiments of
Sections 8.2 and 8.3, respectively. Then, we compute the
mean and standard deviation of ek at each iteration k of these
9 trends. We do so on the first 15 iterations, since only 5 of
the 9 experiments have lasted longer, due to the termination
conditions. The results are plotted as error bars in Fig. 15.
As the reader can see, the trend is decreasing, showing that
our framework is capable of reducing the mutual information
error despite the variability of actions and setups.

9 Conclusions and future work
In this paper, we have addressed the problem of non-
prehensile shaping of plastic materials. Inspired by our
human study, we have designed two actions, pushing and
tapping. Both are realized using image-based visual servoing
(neither force nor tactile feedback) to control a tool held
by a robot manipulator. We assume that these two actions
are specialized: pushing alters the external shape contours,
whereas tapping modifies the image.

The key issue is how to relate the parameters of these
two actions to the current and next states. While for
tapping this seems simple, since the effect is local and has
constant size (equal to the tool contact surface dimensions),
pushing requires a deeper reflection, which constitutes in
our opinion one of the main contributions of the paper. We
draw inspiration from the user dataset to derive the main
parameters – contour and action size – that humans use when
operating. Based on these parameters, we break the global
problem of regulating the current image towards the desired
one into smaller local problems – in the state space – which
can be solved more easily.

We also propose three strategies: two heuristics (maxi-
mum and average) and a neural network trained with the
dataset images. To compare the approaches, we use mutual
information – an objective metric of image similarity. The
results show that while slightly outperforming the other
strategies on the short run, the neural network quickly settles
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when the image error is small. Paradoxically, the much sim-
pler maximum strategy is more efficient afterwards (when
the error is small). This result is particularly interesting in the
light of the current euphoria that surrounds machine learning
worldwide. It turns out that for our problem, while requiring
a huge pre-processing effort (many images are unusable and
deriving push-action triplets is non-trivial, see Sect. 6.4.1)
the outcome of learning is barely better than that of a
simple heuristic, because of the curse of dimensionality. This
result per se may discourage the user from going through
the data acquisition and pre-processing steps. Nevertheless,
these steps are also necessary to infer the human parameters
mentioned in the paragraph above, which make the global
task separable into smaller local ones. Once data acquisition
and pre-processing are done, training the neural network is
straightforward, so why not use it afterwards?

All in all, the results show that our framework succeeds
in making the robot realize numerous shapes. Nevertheless,
we acknowledge the many limitations of our exploratory
work. These could be the object of future work of researchers
interested by this fascinating topic. A non-exhaustive list is
given below to conclude the paper.

• The pushing actions clearly outperform the tapping
ones. Possible reasons have been mentioned in
Sect. 8.2. The main one seems to be the choice of the
feature: an image, rather than a point cloud. Yet, with
an accurate depth image, tapping could be formulated
as pushing in any plane perpendicular to the image.
Then, our approach for pushing could be directly
applied in any depth plane and would likely succeed
in generalization.
• Many limitations are due to the hardware constraints:

tool size, design, sensed data. The use of a soft tool
or of multiple tools (e.g., fingers) could improve the
performance, while raising other interesting research
problems.
• In our approach, inspired by model-based control, we

map current and desired state to action. Alternatively,
one could map current state and action to next state.
This second paradigm is more relevant if planning
or reinforcement learning were to be applied to this
problem.
• It would be useful to integrate haptic feedback

(measured by force or tactile sensors) to vision. This
would be valuable, e.g., to control the force required
to overcome the kinetic sand resistance.
• We have trained the neural network on the user dataset.

One could speed up the learning process via self-
learning (i.e., the robot acquires new data while it
molds the material).
• A larger set of actions could be studied. For instance,

the analysis of the user dataset shows that often
humans perform hybrid actions (e.g., simultaneous
“push-and-tap”), which alter multiple features at once.
• Our user analysis is quite limited (with only nine

partakers). While being a world premiere, our public
dataset should be enriched by other researchers,
particularly cognitive scientists, who could provide
their expertise on human studies.

• Our framework is not autonomous in selecting the best
action type, given the system state. This problem is of
interest not only for deformable object manipulation,
but also for other applications that need heterogeneous
action sequencing.

• The current version of our framework does not
regulate the tool orientation. This feature could be
added in future work, by drawing inspiration from the
suggestions given in Sect. 8.4.1.
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