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Learning CPG-based
Biped Locomotion with a
Policy Gradient Method:
Application to a
Humanoid Robot

Abstract

In this paper we describe a learning framework for a central pattern
generator (CPG)-based biped locomotion controller using a policy
gradient method. Our goals in this study are to achieve CPG-based
biped walking with a 3D hardware humanoid and to develop an
efficient learning algorithm with CPG by reducing the dimensional-
ity of the state space used for learning. We demonstrate that an ap-
propriate feedback controller can be acquired within a few thousand
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trials by numerical simulations and the controller obtained in numer-
ical simulation achieves stable walking with a physical robot in the
real world. Numerical simulations and hardware experiments eval-
uate the walking velocity and stability. The results suggest that the
learning algorithm is capable of adapting to environmental changes.
Furthermore, we present an online learning scheme with an initial
policy for a hardware robot to improve the controller within 200 iter-
ations.

KEY WORDS—humanoid robots, reinforcement learning,
bipedal locomotion, central pattern generator
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1. Introduction

Humanoid research and development has made remarkable
progress over the past ten years (Hirai et al. 1998� Nishiwaki et
al. 2000� Kuroki et al. 2001� Hirukawa et al. 2004� Park et al.
2005). Many of the successful humanoids utilize a pre-planned
nominal trajectory designed in a typically known environment.
Despite our best effort, it seems difficult to consider every pos-
sible situation in advance when designing such complex con-
trollers. For a broad range of applications working within un-
known environments, equipping humanoid robots with a learn-
ing capability provides a promising avenue of research. In this
paper, we present a learning framework for bipedal locomotion
for a humanoid robot.

Learning a biped walking pattern for a humanoid robot is
a challenging task, owing to the large-scale problem involved
in dealing with the real world. Unlike resolving simple tasks
with robots with fewer degrees of freedom, we cannot directly
apply conventional learning methods to humanoid robots, ow-
ing to the dimensionality explosion that is bound to occur. Our
goals in this paper are to acquire a successful walking pattern
through learning and to achieve robust walking with a hard-
ware 3D full-body humanoid robot (Kuroki et al. 2001). See
Figure 1.

While many attempts have been made to investigate learn-
ing algorithms for simulated biped walking, there are only a
few successful implementations on real hardware, for example
Benbrahim and Franklin (1997), Tedrake et al. (2004) and Mo-
rimoto et al. (2005). To the best of our knowledge, Tedrake et
al. (2004) have given the only example of an implementation
of a learning algorithm on a 3D hardware robot. They devel-
oped a simple physical 3D biped robot with specially designed
round soles, possessing the basic properties of a passive dy-
namic walker (McGeer 1990). They implemented a learning
algorithm on the hardware robot and successfully obtained an
appropriate feedback controller for ankle roll joints via online

Fig. 1. The hardware platform of the full-body humanoid ro-
bot: joint configuration and its specification.

learning. With the help of their specific mechanical design that
enabled them to embed an intrinsic walking pattern possessing
passive dynamics, the state space for learning was drastically
reduced from 18 to 2 in spite of the complexity of the 3D biped
model, which usually suffers from a dimensionality explosion.

The question is whether we can easily extend their approach
to a general humanoid robot. They used the desired state on the
return map taken from the gait of the robot walking down on
a slope without actuation in order to define the reward func-
tion for reinforcement learning. Their learning algorithm owes
much to the intrinsic passive dynamical characteristics of the
robot that can walk down a slope without actuation. Although,
humans also have passive dynamic properties in their joints
and muscles, it is extremely difficult with the current hardware
technology to design general humanoid robots that have both
passive dynamic properties and high-power joint actuation for
various tasks. Therefore, their approach cannot be directly ap-
plied to general humanoid robots that are not mechanically
designed with specific dynamical characteristics for walking.
Moreover, developing a specific humanoid hardware with uni-
functionality, for example walking, may lose other important
features of the humanoid robot such as versatility and the ca-
pability to achieve various tasks.

Therefore, instead of gait implementation by mechanical
design, we introduce the idea of using a central pattern gen-
erator (CPG), which has been hypothesized to exist in the cen-
tral nervous system of animals (McMahon 1984� Orlovsky et
al. 1999� Cohen 2003). It is known that during locomotion a
feed-forward excitation to the muscles exists that can be in-
dependent of sensory feedback and brain input (Grillner et al.
1995). The feed-forward muscle activation is generated by a
CPG within the spinal cord. The most interesting property of
the CPG is that the basic pattern produced by intrinsic oscil-
lation can interact with feedback signals. The intrinsic oscilla-
tion of CPG synchronizes the oscillation of feedback signals.
This phenomenon is known as “entrainment”.

It can be demonstrated with numerical simulations that
CPG can generate a robust biped walking pattern with appro-
priate feedback signals even in an unpredictable environment,
owing to the entrainment property of the CPG (Taga 1995�
Miyakoshi et al. 1998). However, designing appropriate feed-
back pathways in neural oscillators often requires much effort
to manually tune the parameters of the oscillator. Thus, a ge-
netic algorithm (Hase and Yamazaki 1998) and reinforcement
learning (Mori et al. 2004) have been proposed to optimize the
open parameters of the CPG for biped locomotion. However,
these methods often require a large number of iterations to ob-
tain a solution owing to the large dimensionality of the state
space used for optimization.

Our primary goals are to achieve biped walking with learn-
ing for a 3D full-body humanoid robot, which is not designed
for a specific walking purpose, and to develop an efficient
learning algorithm that can be implemented on a hardware ro-
bot with additional online learning capability to improve the
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controller. In a physical robot, we cannot accurately observe all
states of the system owing to the limited number of equipped
sensors and measurement noise in practice. Thus, we find it
natural to postulate the learning problem as a partially observ-
able Markov decision problem (POMDP).

In this paper, we use a policy gradient method which can be
applied to POMDP (Kimura and Kobayashi 1998). In POMDP,
it is generally known that a large number of iterations would be
required for learning compared with learning in Markov deci-
sion problem (MDP), owing to the lack of information, which
yields large variances in the estimated gradient of expected re-
ward with respect to the policy parameters (Sutton et al. 2000�
Konda and Tsitsiklis 2003). However, in the proposed frame-
work, when the CPG and the mechanical system of the robot
converge to a periodic trajectory owing to entrainment, the in-
ternal states of the CPG and the states of the robot will be
synchronized. Thus, by using the state space that is only com-
posed of the observables, thus reducing the number of states,
efficient learning can achieve steady periodic biped locomo-
tion even in the POMDP.

In our previous work, we demonstrated a learning frame-
work for a CPG-based biped locomotion with a policy gradient
method on a two-dimensional planar biped robot (Matsubara
et al. 2006). The robot had four leg joints and the control ar-
chitecture of the robot consisted of a CPG-based controller for
two hip joints and a state-machine controller for the two knee
joints. Appropriate sensory feedback for the CPG to perform
steady walking could be learned within a few hundred trials in
simulations and we applied the controllers acquired from nu-
merical simulations to a physical five-link biped robot. We em-
pirically verified that the robot was able to successfully walk
in a real environment.

In this paper, we extend our previous approach to a 3D
full-body humanoid robot and present that the policy gradient
method can acquire a steady walking pattern for a general 3D
full-body humanoid. As a 3D full-body humanoid robot has
many degrees of freedom, the dynamics of the 3D humanoid
is much more complicated than a 2D system. Thus, we pro-
pose the idea of allocating CPGs in a task space coordinate
system, while exploiting symmetry to simplify the control ar-
chitecture. In this paper, we demonstrate that an appropriate
feedback controller for a 3D full-body humanoid can be ac-
quired by using a policy gradient method and the obtained con-
troller in numerical simulation can achieve stable walking with
a physical robot in the real world. Moreover, we discuss a turn-
ing walk with a desired turning radius and an online learning
scheme with initial policy for a hardware robot to improve the
controller.

2. CPG Control Architecture

In this section we describe the basic framework of our CPG
control architecture. Our goals are to generate a steady straight
walking pattern and a steady circular walking pattern with

Fig. 2. Basic framework of CPG control architecture. It con-
sists of three parts: CPG controller, robot and CPG feedback
controller. The CPG controller generates the leg trajectory us-
ing a neural oscillator with a feedback signal. The leg trajec-
tory is converted into joint torques via inverse kinematic calcu-
lation and PD servo. Then the robot interacts with the environ-
ment. The CPG feedback controller drives a feedback signal to
CPG using incoming sensory information. The following nota-
tion is used: a j is a feedback signal to CPG and q j is the output
of a neural oscillator� Rdesired is a parameter that specifies the
turning radius� pl�r indicates left/right leg position with respect
to the body-fixed Cartesian coordinates� �� roll� ��pitch are the an-
gular velocity of the body in the roll and pitch direction, re-
spectively� � roll is inclination angle in the direction of roll with
respect to world coordinates� and f l�r

z is the vertical reaction
force of left/right leg.

variable turning radius. Figure 2 shows the basic framework of
the CPG control architecture. We introduce a neural oscillator
to model a CPG and the oscillator output q j is transformed into
leg position with respect to body-fixed Cartesian coordinate
system. We also introduce Rdesired, a parameter that specifies a
turning radius defined on the ground to generate circular walk-
ing. Rdesired modulates leg position, pl�r, based on geometrical
constraints to walk along a specified circular walking trajec-
tory. Then, the desired joint position for the joint PD servo is
obtained through inverse kinematics and is used to control an
actuator.

The CPG feedback controller generates the feedback sig-
nal to the CPG, a j , using sensory information from the robot.
The CPG feedback controller consists of reinforcement learn-
ing for the oscillator allocated for the X (forward) direction
and biologically inspired feedback arranged for the Z (verti-
cal) direction. Finally, a j is fed back to the neural oscillator
which automatically adjusts its output due to the entrainment
property.

This framework provides us with an inherent rhythmic
walking pattern modulated by the CPG feedback controller
using sensory information from the environment. We discuss
the above-mentioned framework in detail in the following sec-
tions.
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2.1. Neural Oscillator Model

There are several ways to model a CPG. It can be mathemat-
ically modeled with a non-linear oscillator, such as a Van der
Pol oscillator, phase oscillator or neural oscillator. One recent
example is the work of Aoi and Tsuchiya (2005), who ap-
plied non-linear oscillators to the control of a small walking
humanoid robot, utilizing the foot-contact to reset the phase
of the oscillators to increase the stability of the system. Their
results demonstrated one successful application of phase oscil-
lators to humanoid locomotion.

In the learning framework we present in this paper, we pro-
pose to change the modulation of the phase as well as the
trajectories of the walking patterns of the robot to attain suc-
cessful and robust locomotion. Our focus, in particular, is on a
coupled neural oscillator model proposed by Matsuoka (1985).
The Matsuoka oscillator has a number of beneficial proper-
ties, most notably, it allows modulations of sensory feedback
for adaptation to the environment and control of the amplitude
with a single scale factor. These are some of the well-studied
aspects of the Matsuoka oscillator, making it suitable for our
investigation.

The oscillator dynamics of j th neural unit are

�CPG �z j � �z j �
n�

k�1

� jkqk � � z�j � c � a j � (1)

� �CPG
�z� j � �z j � q j � (2)

q j � max�0� z j �� (3)

where n is the number of neurons. The model represents the
firing rate of a neuron by a continuous variable q j with time.
Here Z j represents mean membrane potential and Z �j is a vari-
able which represents the self-inhibition effect. Adaptation is
modeled by the dynamics of Z �j in (2) and the influence of the
degree of adaptation on Z j is represented by a constant para-
meter � . We use �CPG and � �CPG to denote the time constants
of the mean membrane potential Z j and adaptation effect of
the j th neuron, respectively. We also use � jk to denote an in-
hibitory synaptic weight from the kth neuron to the j th neuron,
c to denote a tonic input with a constant rate and a j to denote
a feedback signal.

Figure 3 shows a schematic of a coupled oscillator where
two neural units are connected by mutual inhibitions. The cir-
cles with numbers represent neural units whose dynamics are
defined by (1)–(3). Lines ending with black or white circles in-
dicate inhibitory or excitory neural connections, respectively.

The properties of the Matsuoka neural oscillator model
have been explored numerically, signifying the relationship
between the parameters and the oscillator output (Williamson
1998). For example, the two time constants �CPG and � �CPG de-
termine the frequency and shape of the output, and if the ratio
�CPG��

�
CPG is kept constant, the natural frequency of the oscil-

lator is proportional to 1��CPG. The tonic input c controls the

Fig. 3. Schematic of a coupled neural oscillator: two neural
units have mutual inhibition� a1�2 and q1�2 are input/output sig-
nals, respectively. Lines ending with black or white circles
indicate inhibitory or excitory neural connections, respecti-
vely.

Fig. 4. Entrainment property of a neural oscillator: a sinusoid
input is fed into the oscillator at 4.1 s for 10 s. The dashed,
a1, and solid, �q1 � q2�, lines are the input and output sig-
nal of the neural oscillator, respectively. The parameters are
�CPG � 0	224, � �CPG � 0	280, 
12 � 
21 � 2	0, � � 2	5,
c � 2	36, where the natural frequency of the oscillator and
the amplitude are 0	775 and 1	0, respectively. The frequency
of the input sinusoid is 0.4 and the amplitude is also 0.4.

amplitude of the output of the oscillator. It is demonstrated that
the phase difference between the periodic input signal a j and
the output q j is tightly locked through entrainment when the
amplitude of a j is large enough and its frequency is close to
the oscillator’s natural frequency.

Figure 4 shows a time course of the oscillator output where
a sinusoid input a1 �� �a2� is fed into the oscillator at 4.1 s
for 10 s. The frequency of the oscillator output is immediately
entrained to the frequency of the input sinusoid and phase dif-
ference between the input and the output becomes constant.
Figure 4 demonstrates that a neural oscillator has inherent dy-
namics which can be modulated by a input signal. The key
issues to perform robust biped walking are how to allocate the
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neural oscillator to control biped walking and how to derive in-
put signals a j to exploit the entrainment property of the neural
oscillator. We discuss them in the following section.

2.2. CPG Arrangement and Leg Trajectory

In many of the previous applications of neural-oscillator-based
locomotion studies, an oscillator is allocated at each joint and
its output is used as a joint torque command to the robot (Taga
1995� Hase and Yamazaki 1997� Ishiguro et al. 2003). How-
ever, it is difficult to obtain appropriate feedback pathways
for all of the oscillators to achieve the desired behavior with
the increase in the number of degrees of freedom of the robot
because neural oscillators are intrinsically non-linear. More-
over, the realization of precise torque control of each joint is
also difficult for a hardware robot in practice. Thus, to sim-
plify the problem, we have proposed a new oscillator arrange-
ment with respect to the position of the tip of the leg in the
Cartesian coordinate system, which can be reasonably consid-
ered as the task coordinates for walking (Endo et al. 2005b).
We allocate only six neural units exploiting symmetry of the
walking pattern between the legs. We decompose overall walk-
ing motion into stepping motion in place produced in the
frontal plane and propulsive motion generated in the sagittal
plane. The effectiveness of this decomposition has been empir-
ically demonstrated in our previous studies (Endo et al. 2004,
2005b).

Figure 5 illustrates the proposed neural arrangement for the
stepping motion in place in the frontal plane. We employ a
coupled oscillator with mutual inhibitions (�12 � �21 � 2	0)
and allocate it to control the position of both legs pl

z , pr
z along

the Z (vertical) direction in a symmetrical manner with a � rad
phase difference:

pl
z � Z0 � Az�q1 � q2�� (4)

pr
z � Z0 � Az�q1 � q2�� (5)

where Z0 is a position offset and Az is the amplitude scaling
factor.

For propulsive motion in the sagittal plane, we introduce
a quad-element neural oscillator to produce coordinated leg
movements with a stepping motion based on the following ob-
servation: as illustrated in Figure 6, when the robot is walk-
ing forward, the leg trajectory with respect to the body coor-
dinates in the sagittal plane can be roughly approximated with
the shape of an ellipsoid. Suppose that the output trajectories of
the oscillators can be approximated as pl

x � Ax cos�
t � �x�
and pl

z � Az cos�
t � �z�, respectively. Then, to form the
ellipsoidal trajectory on the X–Z plane, pl

x and pl
z need to sat-

isfy the relationship pl
x � Ax cos
 and pl

z � Az sin
, where

 is the angle defined in Figure 6. Thus, the desired phase dif-
ference between vertical and horizontal oscillation should be
�x � �z � ��2. To embed this phase difference as an intrinsic

Fig. 5. Neural oscillator allocation and biologically inspired
feedback pathways for a stepping motion in place. The neural
oscillator output, �q1�q2�, symmetrically controls the left and
right leg position in the vertical direction Z with respect to
the body-fixed coordinates Rbody where Z0� Ax are an initial
offset and a gain, respectively. The reaction force information
in the Z direction, f l�r

Z , is used as the extensor response and
the posture inclination in the roll direction, �Roll, is used as the
vestibulospinal reflex. Here a1�2 are feedback signals derived
from (14).

property, we install a quad-element neural oscillator with uni-
directional circular inhibitions (�34 � �43 � �56 � �65 �
2	0, �35 � �63 � �46 � �54 � 0	5). It generates an inher-
ent phase difference of ��2 between two coupled oscillators,
(q3 � q4) and (q5 � q6) (see Matsuoka (1985)). Therefore, if
(q3�q4) is entrained to the vertical leg movements, then an ap-
propriate horizontal oscillation with desired phase difference is
achieved by (q5 � q6)1.

Similar to the Z direction, the neural output (q5 � q6) is
allocated to control the position of both legs pl

x , pr
x along the

X (forward) direction in the sagittal plane:

pl
x � X0 � Ax�q5 � q6�� (6)

pr
x � X0 � Ax�q5 � q6�� (7)

where X0 is an offset and Ax is the amplitude scaling factor.

1. At the beginning of the investigation, we directly used (q1� q2) for a quad-
element oscillator. However, the oscillator dynamics of the stepping motion
interfered with the dynamics of propulsive motion via uni-directional circular
inhibitions. As a result, the biologically inspired feedback signal, which was
derived for a coupled oscillator, was not suf�ciently effective to produce robust
stepping motion in place. Thus, in order to clearly divide stepping motion and
propulsive motion, we introduce duplicated neural units (q3� q4) for a quad-
element oscillator to produce behavior similar to (q1� q2).
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Fig. 6. A quad-element neural oscillator for propulsive mo-
tion in the sagittal plane. A schematic of a quad-element
neural oscillator is shown on the left-hand side and an ellip-
soidal leg trajectory in the X–Z plane is shown on the right-
hand side. The propulsive leg trajectory can be estimated with
the shape of an ellipsoid. The ellipsoid can be expressed as
pr

x � X0 � Ax cos
, pr
z � Z0 � Az sin
, where 
 is a para-

meter shown in this figure. Thus, oscillatory movements in the
X direction and Z direction needs a phase difference of ��2.
A quad-element neural oscillator consists of two coupled os-
cillators with a uni-directional circular inhibitory neural con-
nection. The oscillator output �q5 � q6� has an inherent phase
difference of ��2 with respect to the output �q3�q4�. As dupli-
cated feedback from the stepping motion is fed into the neural
units �3� 4�, the oscillator output �q5 � q6� tends to keep the
phase difference of ��2. The output �q5 � q6� is used to move
the left/right leg symmetrically in the X direction.

This framework provides us with a basic walking pattern
which can be modulated by feedback signals a j .

2.3. Turning Controller

We introduce an additional mechanism to control the walking
direction by modulating the right and left step length as well
as the yaw rotation of both legs. In this controller, we focus on
kinematic constraints to walk along a specified desired circular
radius, Rdesired, defined in the horizontal walking surface. The
desired circular radius Rdesired modulates the mapping from a
CPG output q j to leg position pl�r.

As illustrated in Figure 7, we assume that the origin of
body-fixed coordinates moves with constant velocity along a
particular circular arc defined by Rdesired (Rdesired � 0, when
the robot makes a right turn), and left and right stance legs also
move along the concentric circular arcs defined by Rdesired�Y l

0

and Rdesired � Y r
0, where Y l�r

0 is leg position offset in the lat-
eral direction. In order to satisfy kinematic constraints without

Fig. 7. Foot prints captured in double support phase during a
turning walk. Step length and leg yaw rotation are modulated
with respect to a desired circular radius, Rdesired. We assume
that the origin of body-fixed coordinates moves along the de-
sired circular arc (dashed arc). We use 2Ax to denote the step
length for a straight walk and 2Al

x , 2Ar
x are modulated step

lengths in order to satisfy kinematic constraints without slip-
page due to lateral leg position offset Y l

0, Y r
0, respectively. Here

�pl�r
yaw indicates the angle of necessary yaw rotation.

slippage of the stance leg, the inner step length should be de-
creased while the outer step length should be increased due to
leg position offset Y l�r

0 ��Y l�r
0 � � �Rdesired��:

Al�r
x �

Rdesired � Y l�r
0

Rdesired
� Ax � (8)

where Ax is the nominal step length in the case of straight
walking and Al�r

x are modulated step lengths of the left and
right legs. Thus, (6) and (7) are rewritten as follows:

pl
x � X0 � Al

x � �q5 � q6�� (9)

pr
x � X0 � Ar

x � �q5 � q6�	 (10)

The yaw rotation and Y position of the legs, pl�r
yaw, pl�r

y , are also
controlled to satisfy kinematic constraints to keep constant an-
gular velocity around the center of turning as follows:

pl�r
yaw � � pl�r

x � X0

Rdesired � Y l�r
0

� (11)

pl�r
y � Y l�r

0 � �1� cos�pl�r
yaw�� � �Rdesired � Y l�r

0 �	 (12)

Considering only kinematic constraints is not sufficient to
achieve an executable walking motion because it neglects the
effect of dynamics. As demonstrated, the proposed framework
possesses an entrainment property that to some extent could
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better cope with the effect of dynamics. In addition, the learn-
ing algorithm is capable of adjusting the basic walking pattern
via CPG feedback signals. Therefore, in our case, we can con-
ceive that kinematic constraints can be adequate to generate
a turning motion. The advantage of this turning controller is
that we can continuously vary the walking direction by only
adjusting a single parameter, Rdesired.

2.4. Sensory Feedback

In biological systems, several reflexes have been found that
generate recovery momentum according to the inclination of
the body by adjusting the leg length. For example, a decere-
brate cat stomps stronger when vertical perturbation force is
applied to its planter during extensor muscle activation. This
reflex is called an extensor response (Cohen and Boothe 1999).
It is generally known that the vestibular system measures the
body’s inclination and activates contralateral muscles to keep
upper body stabilized. This is one of the basic posture con-
trols in humans and is called the vestibulospinal reflex. The
effectiveness of these feedback pathways was experimentally
demonstrated with a hardware quadruped robot (Kimura et al.
2007) to maintain the balance of the body when walking over
unknown terrain.

As a first step in this study, we focus on acquiring the feed-
back controller (a5) for the propulsive leg movement in the X
direction (as illustrated in Figure 5). The explicitly designed
sensory feedback pathways for stepping motion in place (a1)
are strongly motivated by biological observations (Figure 5).

Based on the assumption of symmetric leg movements gen-
erated by the coupled oscillator, we introduce symmetrical
feedback signals to the oscillator as follows:

a2m � �a2m�1� �m � 1� 2� 3�	 (13)

We then introduce the extensor response and vestibu-
lospinal reflex by adjusting the leg length according to the ver-
tical reaction force or the inclination of the body as follows:

a1 � hER� f r
z � f l

z ��mg � hVSR� roll� (14)

where � f r
z � f l

z � are the right/left vertical reaction force dif-
ferences normalized by total body weight mg and hER, hVSR

are scaling factors. The extensor response, the first term of the
right-hand side of (14), extends the leg length when the ver-
tical reaction force is applied. This motion moves the center
of pressure of the robot to the opposite side. Thus, repetitive
stepping constructs a negative feedback loop to keep the cen-
ter of pressure between two feet. The vestibulospinal reflex,
the second term of the right-hand side of (14), also extends the
leg length according to the inclination of the body. This reflex
also constructs a negative feedback loop to maintain the up-
right posture. The extensor response and vestibulospinal reflex
construct redundant feedback pathways which are tolerant of

failure of sensing in a hardware system and they can be com-
bined nicely by adjusting scaling factors. A dominant feed-
back pathway to increase robustness against perturbation can
change on a case-by-case basis, depending on the perturba-
tions. We have demonstrated the robustness of stepping mo-
tion against perturbation experimentally (Endo et al. 2005b).
We investigated scaling factors empirically using the hard-
ware robot by applying various perturbations and determined
hER � 0	4, hVSR � 1	8.

The same feedback signal is fed back to the quad-element
neural oscillator for the propulsive motion, a3 � a1, to in-
duce cooperative leg movements with ��2 phase difference
between the Z and X direction (Figure 6).

For the propulsive leg movements in the X direction, the
feedback signal a j is represented with a policy gradient:

a j �t� � amax
j g�� j �t��� (15)

where the function g is a saturation function defined by

g�� j �t�� � 2

�
arctan

��
2
� j �t�

�
�

and amax
j is the maximum value of the feedback signal. The

output of the feedback controller � j is sampled from a sto-
chastic policy which locally maximizes expected total return
(the accumulated reward, which is defined in the following
section). The stochastic policy is estimated with a probability
distribution �wa �x� � j � � P�� j � x	 wa�:

�wa �x� � j � � 1

2�� j �w� �

exp

�
��� j � � j �x	 w���2

2� 2
j �w� �

�
� (16)

where x denotes partial states of the robot, and wa � [�w��T,
�w� �T] is the parameter vector of the policy. We can equiva-
lently represent � j by

� j �t� � � j �x�t�	 w��� � j �w� �n j �t�� (17)

where, n j �t� � N�0� 1�. Here N�0� 1� is a normal distribu-
tion which has a mean � � 0 and a variance � 2 � 1. In the
next section, we discuss the learning algorithm that we use to
acquire a feedback controller a j�5 for the propulsive motion.

3. Learning the Sensory Feedback Controller

Promising results have been demonstrated in applications of
the policy gradient technique to POMDP biped walking loco-
motion (Tedrake et al. 2004� Endo et al. 2005a). In our pre-
vious work (Matsubara et al. 2006), we compared the policy
gradient method with a conventional value-function-based re-
inforcement learning scheme on a 2D biped walking task. The
policy gradient method could acquire steady walking with a
smaller number of trials, suggesting that the policy gradient
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method is suitable for POMDPs. In this paper, we use the same
learning algorithm for the acquisition of a policy for the sen-
sory feedback controller of the neural oscillator model in the
X direction.

Humanoid robots have many degrees of freedom with a
large number of equipped sensors within a single hardware
system� therefore, it is not feasible to use all states of the ro-
bot for learning. Thus, we have to select a reasonable number
of state variables for learning. To describe the representative
motion of the robot, we focus on the states of the pelvis of the
robot. The position of the pelvis can roughly approximates the
location of the center of mass (COM) of the system. We chose
the pelvis angular velocity x � � �� roll� ��pitch�

T as the input state
to the learning algorithm, and �� roll, ��pitch are measured with
gyro sensors located on the pelvis of the hardware. Therefore,
the other states of the robot, such as inclinations of the pelvis,
the linear velocity with respect to world coordinates, and the
position and velocity of each joint are considered hidden vari-
ables for the learning algorithm.

The learning framework of the policy gradient method for
our CPG control architecture is illustrated Figure 8. First, the
CPG controller generates leg trajectory in the X direction, al-
lowing the robot to interact with the physical environment. The
partial states of the robot and reward information are sent to
the learning agent. A critic tries to estimate the value using the
temporal difference (TD) error, represented in continuous time
and space. Then, an actor generates a CPG feedback signal for
the leg trajectory in the X direction based on a stochastic pol-
icy defined by a probability distribution with parameter vectors
w. Both the value function and the policy are updated using a
TD error and eligibility trace according to Kimura’s update
rule (see Section 3.2 for further details).

In the following sections, we introduce the definition of the
value function in continuous time and space to derive the TD
error (Doya 2000). Then, we discuss the learning method of a
policy for the sensory feedback controller. We use a normal-
ized Gaussian network (NGnet) to approximate both the value
function and the policy (see the Appendix). Finally, we design
a reward function to generate steady walking.

3.1. Learning the Value Function

Consider the dynamics of the robot including the CPG defined
in continuous time and continuous states,

dxall�t�

dt
� f �xall�t�� a�t��� (18)

where xall � X 
 �
l is all of the states of the robot and the

CPG, and a � A 
 �m is the output of the feedback controller
to the CPG. We denote the immediate reward for the state and
action as

r�t� � r�xall�t�� a�t��	 (19)

Fig. 8. Schematic diagram of CPG feedback learning. Here
a j �t� is the feedback signal derived with a policy gradient
method� x is the input states used for learning, where �� roll,��pitch are the pelvis angular velocity. A critic estimates the
value Vwc �t�, where wc is the parameter of the function ap-
proximator. We use ��t� to denote a TD error in continuous
time and space, � j �t� to denote a stochastic policy defined by
a probability distribution, where w�, w� are parameter vectors
of the policy, and n j �t� to denote a normal distribution.

The value function of state xall�t� based on a policy ��xall� a�
is defined as

V � �xall�t�� � E

�� �

t
e��s�t���r�xall�s�� a�s�� ds

�����	 � (20)

where � is a time constant for discounting future rewards. The
consistency condition for the value function is given by the
time derivative of (20) as

dV ��xall�t��

dt
� 1

�
V � �xall�t��� r�t�	 (21)

We denote the current estimate of the value function as
V �xall�t�� � V �xall�t�	 wc�, where wc is the parameter of
the function approximator. If the current estimate of the value
function V is perfect, it should satisfy the consistency condi-
tion of (21). If this condition is not satisfied, the prediction
should be adjusted to decrease the inconsistency,

��t� � r�t�� 1

�
V �t�� �V �t�	 (22)

This is the continuous-time counterpart of TD error (Doya
2000).

As we consider a learning framework in POMDPs, i.e. we
only observe partial states x from all states xall, the TD er-
ror usually does not converge to zero. However, Kimura and
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Kobayashi (1998) suggested that the approximated value func-
tion can be useful to reduce the variance of the gradient esti-
mation in (25), even if the consistency condition in (21) is not
satisfied.

The parameter vector of the value function wc is updated
with TD error and an eligibility trace. The eligibility trace is
used to assign credit for the TD error backwards in time to
previously visited states. The update laws for wc and the eligi-
bility trace vector ec for wc are defined, respectively, as

�ec�t� � � 1

�c
ec�t�� �Vwc

�wc
� (23)

�wc�t� � ���t�ec�t�� (24)

where � is the learning rate and �c is the time constant of the
eligibility trace.

We manually tune � � �� �c based on the following intu-
itions. For the learning rate, �, we try to maximize the learn-
ing rate that is small enough to estimate the expectation in (20)
by averaging sample data. The time constant � corresponds to
the discount rate in a discrete time learning system. Smaller
� means that future reward is considered to yield a smaller
value than the actual value. We set a sufficiently large value
for this parameter to take into account the negative reward that
is caused when the robot falls over. The time constant �c con-
trols credit assignment of the reward to the previously visited
state. As we consider a partially observable environment, it is
important to assign the credit from an actual acquired reward,
which does not depend on the estimated value function. How-
ever, too large a �c leads to large variance in the value function
estimation. In this study, we select the learning parameters as
� � 1	0, � � 78, �c � 0	5.

3.2. Learning a Policy of the Sensory Feedback Controller

Kimura and Kobayashi (1998) presented that by using TD er-
ror ��t� and an eligibility trace vector ea�t�, it is possible to
obtain an estimate of the gradient of the expected actual re-
turn Vt with respect to the parameter vector wa in the limit of
�a � � as

�

�wa
E�Vt � �wa � � E���t�ea�t��� (25)

where

Vt �
� �

t
e��s�t���r�s� ds� (26)

wa is the parameter vector of the policy �wa � ��x� a	 wa�
and ea�t� is the eligibility trace vector for the parameter vector
wa . The parameter vector of the policy wa is updated with TD
error and the eligibility trace. The eligibility trace is used to
assign credit for the TD error backwards in time to previously

generated actions. The update laws for wa and the eligibility
trace vector ea�t� can be derived, respectively, as

�ea�t� � � 1

�a
ea�t�� � ln�wa

�wa
� (27)

�wa�t� � ���t�ea�t�� (28)

where � is the learning rate and �a is the time constant of the
eligibility trace.

In the actor–critic algorithm of Sutton et al. (2000) and
Konda and Tsitsiklis (2003), a Q-function was used to update
the parameters of the actor. In contrast, in Kimura’s approach,
the TD error is used to update the policy parameters. This is
because if the target dynamics depend on a policy parameter,
information for the proper gradient direction of the policy pa-
rameter can be acquired, because the TD error depends on the
dynamics of the environment.

The basic intuition for updating the policy with TD error
and the eligibility trace is as follows: larger TD error indicates
that the generated action gave a better result, i.e. acquired a
larger reward and/or achieved a state that has a larger estimated
value than the expected value. To increase the chances of ac-
quiring a larger reward, we can increase the policy parameters
that contribute to increasing the TD error. The eligibility traces
represent the contribution of each policy parameter.

We manually tune �� �a based on the following intuitions.
For a learning rate �, we try to maximize the learning rate
that is small enough to estimate the expectation in (25) by av-
eraging the sample data (using a small learning rate has the
same effect as averaging the sample data). The time constant
�a controls the credit assignment of the reward to the previ-
ously generated action. As we consider a partially observable
environment, it is important to assign the credit from the actual
acquired reward, which does not depend on the estimated value
function. However, too large a �a leads to a large variance in
the gradient estimation. In this study, we set the learning para-
meters to �� � �� � 195, �� � 1	0, �� � 0	1.

3.3. Rewards

We design a reward function:

r�x� � kH �h1 � h��� kS�x � (29)

where h1 is the pelvis height of the robot, h� is a threshold pa-
rameter for h1 and �x is forward velocity with respect to the
ground. The reward function is designed to keep the height of
the pelvis as the first term, while at the same time to achieve
forward progress with the second term. In this study, the para-
meters were chosen as kS in the range 0.0–10.0, kH � 10	0,
h� � 0	272, where the unit for h1 and h� is meters and for �x is
meters per second. The threshold parameter h� is determined
by a position offset Z0. The robot receives a punishment (neg-
ative reward) r � �1, if it falls over.
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4. Experiments

4.1. Dynamics Simulator

We developed a dynamics simulator for our biped robot us-
ing SD/FAST (Symbolic Dynamics Inc.). We used detailed
mass property data calculated from 3D CAD data and mass
measurement of actual parts of the robot. We introduced an
actuator model for all joints incorporating PD servo and gear
head friction. The coefficients of PD gains, Coulomb friction
and viscous friction were experimentally determined using the
hardware robot. We also introduced a sensor model with a dig-
ital filter whose coefficients were carefully tuned to match the
property of the actual sensor. To calculate reaction forces from
the environment, we assumed that each sole has four contact
points and reaction forces are obtained by a simple spring-
dumper model. The integration time step of the numerical sim-
ulator was set to 0.1 ms and the learning was performed at
16 ms interval. The total computation including learning algo-
rithm required 3.8 times longer than real time.

4.2. Simulation Results and Hardware Verifications

First, we carried out numerical experiments using the dynam-
ics simulator to acquire a feedback controller (policy) for the
CPG for biped walking. Then, we implemented the acquired
policies on the hardware robot.

We conducted a number of trials in a numerical experiment
in the following sequence. At the beginning of each trial, we
utilized a hand-designed feedback controller to initiate walk-
ing gait for several steps in order to start the learning process
with the appropriate state of the robot. Then, we switched the
feedback controller for the learning algorithm at random in or-
der to generate various initial state inputs. Each trial is ter-
minated if the immediate reward is �1 and below, or the ro-
bot walks for 20 s. We repeated the numerical experiment tri-
als and the policy was saved at every 50 trials. The learning
process is considered a success when the robot does not fall
over after 20 successive trials. We terminated the experiment
in cases where an additional 3,000 trials were done after suc-
cessful acquisition or 5,000 trials even without successfully
acquiring a policy.

As expected, at the beginning of the learning process the
robot immediately fell over within a few steps straight after
switching to the learned feedback controller. The policy grad-
ually increases the output amplitude of the feedback controller
to improve walking motion as the learning proceeded. Based
on 27 numerical experiments with various velocity rewards,
kS, walking motion was successfully acquired for 20 experi-
ments (Table 1)� we could not observe policy convergence for
seven failed experiments. The required trials are the averaged
value of each successful experiment with the same kS. Typi-
cally, it takes 20 h to run one simulation for 1,000 trials and

Fig. 9. Typical learning curve. Steady walking without falling
over is acquired after 180 trials in this example.

Table 1. Achievements in the acquisition of straight walk-
ing.

Number of achievements

Number of Simulation Hardware
kS experiments (trials) (trials)

0.0 4 1 0
(2,385) (—)

1.0 3 3 3
(528) (1,600)

2.0 3 3 1
(195) (800)

3.0 4 4 2
(464) (1,500)

4.0 3 2 2
(192) (350)

5.0 5 2 1
(1,011) (600)

10.0 5 5 5
(95) (460)

Sum 27 20 14
(average) (696) (885)

the policy was acquired on average after 696 trials. Figures 9
and 10 show a typical example of accumulated reward at each
trial and an acquired policy, respectively. Figure 10 shows that
while �� roll dominates the policy output, ��pitch does not assert
much influence. The reason is that �� roll is always being gener-
ated by the stepping motion regardless of the propulsive mo-
tion. Therefore, the policy tries to utilize �� roll to generate syn-
chronized leg movements. We also observed that ��pitch is sup-
pressed by the reward function because ��pitch lowers the pelvis
height by a pitching oscillation, which can cause falling.

We transferred the acquired 20 successful learning pro-
cesses onto the robot by using a series of policies with dif-
ferent trials but the same learning process. We then used these
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Fig. 10. Typical learned policy. The gray scale shows the ac-
quired stochastic policy where the horizontal and vertical axes
are input states used for learning �� roll and ��pitch, respectively.

policies to determine the required additional iterations for the
robot to walk. The walking experiment on the hardware was
considered a success when the robot achieved steady walking
on the carpet floor for 3 m without falling over. We verified
improvements of the policy in accordance with the numbers
of trials in the numerical simulation. With the policy on the
early stage of a learning process, the robot exhibited back and
forth stepping then immediately fell over. With the policy on
the intermediate stage, the robot performed unsteady forward
walking and occasional stepping on the spot. With the policy
after substantial trials, the robot finally achieved steady walk-
ing.

We confirmed that 14 of the successful learning processes
in the numerical experiments performed successful walking on
the hardware (Table 1). Figure 11 shows snapshots of an ac-
quired walking pattern. The six policies, which could not suc-
ceed on the hardware experiment, had similar profiles to a typ-
ical policy shown in Figure 10. However, the output amplitude
was slightly smaller or significantly larger than the policy that
is applicable to the hardware. In particular, the large feedback
signal to CPG led to instantaneous leg movement when �� roll

was across zero. Consequently, the leg movement exceeded the
current limit of the actuator of the robot, which was not mod-
eled in the dynamics simulator, and the robot fell over. The
policy with slightly smaller output can be improved via online
learning, which is discussed in the following section.

In our experiments, an additional 189 trials (on average) in
numerical simulations were required for the policy to achieve
walking in the physical environment. We confirmed that the
output amplitude of the feedback signal progressively in-
creased in accordance with the number of trials. This result
suggests that the learning process gradually exploits the en-
trainment property of the CPG through iterations, and conse-
quently the policy acquires adequate robustness against per-

turbation in the real environment. We also carried out walk-
ing experiments on a slope and the acquired policy achieved
steady walking in the range of �3� to �4� inclination, sug-
gesting sufficient walking stability.

4.3. Velocity Control

To control walking velocity, the relationship between the re-
ward function and the acquired velocity was investigated.
We set the parameters in (1) and (2) to �CPG � 0	105,
� �CPG � 0	132, c � 2	08, � � 2	5 to generate an inher-
ent oscillation, where its amplitude is 1.0 and period is 0.8.
As we set Ax � 0	015 m, the expected walking velocity
with intrinsic oscillation, (step length)/(step cycle), becomes
�0	015� 1	0���0	8�2� � 0	075 m s�1.

We measured the average walking velocity both in numer-
ical simulations and hardware experiments with various kS in
the range 0.0–5.0 (Figure 12). The resultant walking velocity
in the simulation increased as we increased kS and hardware
experiments also demonstrated a similar tendency.

This result shows that the reward function works appropri-
ately to obtain a desirable feedback policy, which is difficult
for a hand-designed controller to accomplish. Thus, we be-
lieve that it would be possible to acquire different feedback
controllers with some other criteria, such as energy efficiency,
by using the same scheme.

4.4. Stability Analysis

To quantify the stability of an acquired walking controller, we
consider the periodic walking motion as discrete dynamics and
analyze the local stability around a fixed point using a return
map. We perturbed the target trajectory on (q5 � q6) to change
the step length at random timings during steady walking, and
captured the states of the robot when the left leg touched down.
We measured two steps, just after the perturbation (dn) and
the next step (dn�1). If acquired walking motion is locally sta-
ble, the absolute eigenvalue of the return map should be less
than 1.

Figure 13 shows the return map with 50 data points with
a white dot indicating a fixed point derived by averaging
100 steps without perturbation. The estimated eigenvalue is
�0	0101 calculated with a least-squares fit. The results sug-
gests that even if step length was reduced to half of the nominal
step length by perturbation, for example pushed forward, the
feedback controller quickly converges to the steady walking
pattern within one step.

4.5. Turning Walk

We carried out circular arc walking experiments using the turn-
ing controller. We set Rdesired � 0	3� 0	5� 1	0 m and Ax �
0	015 m, Y l

0 � 0	04 m, Y r
0 � �0	04 m. As pl�r

yaw is small, we
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Fig. 11. Snapshots of straight steady walking with the acquired feedback controller (Ax � 0	015 m, Az � 0	005 m, �x �
0	077 m s�1. Photos were captured every 0.1 s.)

Fig. 12. The relationship between acquired average velocity
and velocity reward kS. Each data point used different policy
and average velocity was derived by averaging steady walking
velocity for 10 s. The solid line shows linear approximation for
all data points.

can abbreviate the second term in the right-hand side of (12).
To calculate the forward walking velocity �x for the reward
in (29), we used the relative velocity of the stance leg with
respect to the pelvis in the X direction. We performed 15 ex-
periments on each Rdesired in numerical simulations, a total of
45 experiments were carried out. The numerical simulations
were performed on a PC cluster using 45 nodes with AMD
Opteron 248 CPU over three days. Note that the learning algo-
rithm itself is exactly the same for the case of straight walking,
because leg trajectory modulation by introducing the Rdesired

parameter can be regarded as an environmental change for the
learning algorithm.

The learning algorithm successfully acquired a turning
walk with 78% acquisition rate on average in numerical simu-
lations (Table 2). Figure 14 shows trajectory of the COM dur-
ing the turning walk with respect to a ground-fixed world co-
ordinate system. The simulated robot started walking at po-
sition �0� 0� in the direction of the X axis with Rdesired �
0	3� 0	5� 1	0 m. We can see that the robot followed circular

Fig. 13. Return map of the step length. We captured the step
length when the left leg touched down. Here dn and dn�1 are
the step length just after the perturbation and the next step,
respectively. The solid line indicated by an arrow is linear ap-
proximation for all data points and the diagonal linear line rep-
resents the identity map.

Table 2. Achievements of acquisition.

Number of achievements

Number of Simulation Hardware
Rdesired experiments (trials) (trials)

0.3 15 11 5
(68) (820)

0.5 15 12 7
(73) (1,529)

1.0 15 12 10
(293) (2,355)

trajectories nicely, which were explicitly specified by Rdesired

parameter.
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Fig. 14. Trajectories of COM with different Rdesired. The ro-
bot started walking at �X�Y � � �0� 0� in the direction of the
positive X axis.

We implemented all of the acquired policies with different
numbers of trials on the real robot (over two days of experi-
mentation). We investigated the numbers of achievements and
the required numbers of trials in numerical simulations, as in
the case of straight walking experiments. In Table 2, the num-
ber of required trials to acquire a turning walk was much less
than in the case of straight walking. A possible reason is that
the walking velocity of a turning walk is relatively smaller than
the straight walking owing to slip between the stance leg and
the ground, which is caused by modeling error of frictional
forces in the horizontal direction. As robustness for stepping
motion in place is guaranteed by (14), the robot does not fall
over even when the robot does not have forward walking ve-
locity. Thus, learning movement with lower walking velocity
can be regarded as an easier task. Therefore, the acquisition
of a turning walk becomes easier in comparison with straight
walking in numerical simulations.

Figure 15 shows typical results of the acquired CPG feed-
back policies for all Rdesired considered. As in the case of
straight walking, we could not observe policy convergence for
failed experiments. The policies, which could not succeed on
the hardware experiment, had similar profiles to a typical pol-
icy. However the output amplitude was slightly smaller or sig-
nificantly larger than the policy that is applicable to the hard-
ware.

The smaller Rdesired utilizes ��pitch more information com-
pared with the straight walking case. The reason would be that
we cannot clearly decompose a turning walk into sagittal mo-

tion and a lateral motion due to a yaw rotational movement
around the center of turning. In addition, a smaller Rdesired

would lead to larger interference between the two motions.
Thus, the learning algorithm tried to utilize both �� roll and ��pitch

information to adapt to different Rdesired, suggesting that the
learning algorithm appropriately optimized the policy to nego-
tiate with environmental changes.

We implemented the acquired 35 feedback controllers in
Table 2 on the hardware as in the case of straight walking and
confirmed that additional 2,062 trials on average in numerical
simulations were required for the policy to perform circular
walking in the physical environment. This result also suggests
the learning process gradually improves robustness against
perturbation in the physical environment. However, the rate of
successful walking in the physical system decreases accord-
ing with the decrease of Rdesired. The main reason would be
modeling error in numerical simulation, especially for ground
reaction forces. Even in these cases, we can improve the pol-
icy through online learning with the hardware system, which
is discussed in the following section.

4.6. Online Learning Based on Obtained Policy

As shown in Tables 1 and 2, several policies obtained in nu-
merical simulations could not achieve walking with the phys-
ical robot in the real environment. However, even under these
conditions, we could make use of an additional online learning
on the real hardware. This is because the computational cost of
the numerical simulation is largely due to the dynamics calcu-
lation, rather than the learning algorithm itself. Thus, online
learning can be adapted. In this section, we attempt to improve
the obtained policies of the numerical simulations that could
not originally produce steady walking in the hardware experi-
ments to an online learning scheme.

In the case of the reward function, we are required to pro-
vide forward walking velocity and body height. Therefore, it is
desirable for the robot to measure this information only by us-
ing equipped onboard sensors. We can derive the walking ve-
locity from the relative velocity of the stance leg with respect
to the pelvis. This can be an estimate with inverse kinemat-
ics and numerical differentiation of the measured joint angles
of the stance leg. We introduced a first-order low-pass filter
with a cutoff frequency of 1 Hz to smooth out the velocity es-
timation. The body height was measured by the joint angles
of the stance leg and the absolute body inclination, which was
derived from integration of an internal gyration sensor.

Despite delayed and inaccurate reward information, the on-
line learning algorithm successfully improved the initial pol-
icy and performed steady walking within 200 trials (which
took 2.5 h to perform). Figure 16 shows an example of online
learning for straight walking where kS � 4	0, kh � 10	0 and
h� � 0	275. (Note that the value of the accumulated reward dif-
fers from the simulated result in Figure 9 owing to a different
time duration 16 s for one trial.) Figure 17 shows the circular
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Fig. 15. Typical acquired policy with different Rdesired. The smaller Rdesired utilizes ��pitch more information compared with the
straight walking case.

Fig. 16. Additional online learning for straight walking. The
black and gray lines are the accumulated reward for one trial
and the running average of the accumulated reward for 20 tri-
als, respectively.

Fig. 17. Additional online learning for circular walking. The
black and gray lines are the accumulated reward for one trial
and the running average of the accumulated reward for 20 tri-
als, respectively.
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walking case where kS � 10	0, kh � 10	0 and h� � 0	275 with
a time duration of 20 s for one trial. The gray line indicates the
running average of the accumulated reward for 20 trials. These
results show the efficiency of learning speed, which is in prac-
tice applicable to the physical system.

5. Conclusion

In this paper, we have proposed an efficient learning frame-
work for CPG-based biped locomotion control using the pol-
icy gradient method. We have decomposed the walking mo-
tion into a stepping motion in place, with a propulsive mo-
tion, while the feedback pathways for the propulsive motion
were acquired through the proposed policy gradient method.
Despite the considerable number of hidden variables, the pro-
posed framework has successfully obtained a steady walking
pattern for straight walking within 1,000 trials, on average, in
the simulation. The acquired feedback controllers have been
implemented on a 3D hardware robot and demonstrated robust
walking in the physical environment. We have discussed ve-
locity control and stability for straight steady walking, as well
as an extension to circular walking. Finally, we have demon-
strated the possibility of online learning with the hardware ro-
bot.

To the best of our knowledge, our study is the first success-
ful result to acquire biped locomotion that can be applied to a
full-body hardware humanoid robot.

In this paper, we have only considered a policy gra-
dient method based on Kimura’s update rule. A compari-
son with other alternative policy search approaches such as
value-function-based reinforcement learning (Doya 2000) and
GPOMDP developed by Baxter and Bartlett (2001) will form
part of our future work.
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Appendix: Function Approximator for the Value
Function and the Policy

We use a NGnet (Doya 2000) to model the value function and
the mean of the policy. The variance of the policy is modeled
by a sigmoidal function (Kimura and Kobayashi 1998� Peters
et al. 2003). The value function is represented by the NGnet:

V �x	 wc� �
K�

k�1

� c
kbk�x�� (30)

where

bk�x� � 
k�x�
K
l�1 
l�x�

� 
k�x� � e��s
T
k �x�ck �� (31)

and k is the number of the basis functions. The vectors ck and
sk characterize the center and the size of the kth basis function,
respectively. The mean � and the variance � of the policy are
represented by the NGnet and the sigmoidal function,

� j �
K�

i�1

�
�
i j bi �x�� (32)

and

� j � 1

1� exp����j �
� (33)

respectively. We assigned basis functions 
k�x� at even in-
tervals in each dimension of the input space ��2	0 �
�� roll� ��pitch � 2	0�. We used 225 (�15 � 15) basis functions
to approximate the value function and the policy.
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