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Abstract

Although of great practical importance in sports training and motor rehabilitation after brain 

injury, it is unclear how to schedule multiple tasks in motor learning to maximize long-term 

retention of performance. We propose here a novel theoretical approach that uses optimal control 

theory and computational models of motor adaptation to determine schedules that maximize long-

term retention predictively. Using Pontryagin’s maximum principle, we derived a control law that 

determines the trial-by-trial task choice that maximizes overall delayed retention for all tasks, as 

predicted by the state-space model. Simulations of a single-session of adaptation with two tasks 

show that, when task interference is high, there exists a threshold in relative tasks difficulty below 

which the alternating schedule is optimal. Only for large differences in task difficulties, optimal 

schedules assign more trials to the harder task. However, over the parameter range tested, 

alternating schedules yield long-term retention performance that is only inferior to performance 

given by the true optimal schedules. Our results thus predict that in a large number of learning 

situations wherein tasks interfere, inter-mixing tasks with equal number of trials is an effective 

strategy in enhancing long-term retention.

Introduction

The need for effective scheduling of multiple motor tasks is ubiquitous in activities such as 

sports, music, professional skill development, and motor rehabilitation after brain injury. 

However, how should the coach or the therapist schedule multiple tasks? Let us consider the 

case in which two tasks need to be practiced in a single session. Given the negatively 

accelerated shape of performance improvement as a function of practice, e.g., (Liu, Mayer-

Kress, & Newell, 2003), a simple possibility would be to practice one task until it reaches 
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some performance criterion and then practice the other task. There is robust evidence, 

however, that such “blocked schedules” are detrimental to long term retention (Schmidt & 

Lee, 2005). In contrast, inter-mixing the two tasks reduces initial learning speed, but 

enhances long-term retention (Schmidt & Lee, 2005; Schweighofer et al., 2011). But, if one 

task is more “difficult” than the other (we will propose an operationalized definition of 

difficulty below, but let us assume for the moment that difficulty is measured by the initial 

rate of change in performance), or if the learner has prior experience with one of the two 

tasks, trial-by-trial gains in the easier task will soon plateau. This “labor in vain” will 

possibly yield overall poorer retention because of insufficient training on the second task. 

The more difficult task should therefore receive a greater number of trials. However, adding 

trials to one task will increase the length of “trial blocks” for this task, and such blocked 

schedules may decrease long-term retention.

How then can we resolve the conundrum of increasing the number of trials for the more 

difficult task while also minimizing the deleterious effect of long blocks of same-task trials 

that must inevitably arise in the schedule? One possibility is to select the task at each trial 

based on predicted performance on the next trials (see, Huang, Shadmehr, & Diedrichsen, 

2008, (Simon, Cullen, & Lee, 2002). Unfortunately, current performance is known to be a 

poor predictor of long-term retention, e.g. (Joiner & Smith, 2008). Task selection must 

therefore be based on long-term retention. We previously showed that adaptive schedules 

based on performance measured on delayed retention tests substantially improves learning 

compared to scheduling based on current performance (Choi, Qi, Gordon, & Schweighofer, 

2008). In that previous study, however, scheduling was based on heuristics and was 

determined “postdictively”, that is, after performance on long-term retention test was 

available. To further enhance retention, it would thus be desirable to schedule the tasks 

predictively, i.e., early in training and without the need to wait for long-term retention data 

to be available. Determining such schedules must therefore be based on predictions of long-

term retention generated by computational models of motor memory.

Here, because of the availability of sound computational models, we use motor adaptation as 

a proxy for motor learning. Motor adaptation is defined as changes in motor performance 

that allow the motor system to regain its former capabilities in altered circumstances. 

Previous computational models suggest that motor adaptation occurs at multiple time scales. 

In the two-state model (Smith, Ghazizadeh, & Shadmehr, 2006), a fast learning process 

(FLP) contributes to fast initial learning, but also forgets quickly. A slow learning process 

(SLP) contributes to long-term retention (Joiner & Smith, 2008), but learns slowly. Each 

process has a single state to store the accumulated adaptation. Such two-state models cannot 

explain dual- or multiple-task adaptation, however, because sufficient adaptation to a new 

task overrides adaptation of a previous task. When given contextual cues and sufficient trials, 

humans can simultaneously adapt to two visuomotor rotations (Choi et al., 2008; Imamizu et 

al., 2007; Lee & Schweighofer, 2009) two saccadic gains (Shelhamer, Aboukhalil, & 

Clendaniel, 2005), and in some conditions, two opposite force fields (Hirashima & Nozaki, 

2012; Osu, Hirai, Yoshioka, & Kawato, 2004). The MOdular Selection and Identification for 

Control (MOSAIC) model (Wolpert & Kawato, 1998) naturally accounts for dual or multiple 

adaptations, via nonlinear switching among multiple parallel internal models based on 

“responsibility signals,” which estimate the extent to which each model should act to capture 
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the behavior in the current situational context. The responsibility signals have the property 

that they lie between 0 and 1, and their sum over the models is exactly 1. In previous work 

(Lee & Schweighofer, 2009), we proposed a model with a fast process that contains a single 

state arranged in parallel with multiple slow processes switched via contextual cues. We now 

extend that model to include responsibility signals that control learning within multiple 

adaptive systems.

Computational models of motor adaptation allow us to predict long-term retention 

performance for a task given a specific training schedule, and therefore enable us to compare 

the effectiveness of different schedules. Then, how can we find schedules that maximize 

long-term retention? A naïve approach would be to select the best schedule after comparison 

of all possible schedules. This approach becomes rapidly intractable, however, as the number 

of trials grows. For instance, for 2 tasks and 100 total trials, the number of possible 

schedules is 2100 > 1030: even if we could evaluate a billion schedules per second, finding 

the optimal schedule would take longer than a thousand times the age of the universe! Thus, 

a brute-force search is clearly impossible for schedules longer than short schedules.

Here, we propose a novel theoretical and computationally tractable method to determine 

training schedules that maximize long-term retention. Our method uses a combined 

approached of computational models of motor adaptation and optimal control theory. 

Optimal control theory deals with the problem of finding a control law for a given system to 

achieve an optimality criterion. In our example of single-session adaptation training for two 

tasks, the optimality criterion is to maximize the predicted slow processes of both tasks at 

the end of training [we made this choice because the slow process, but not the fast process 

nor the overall level of adaptation, correlates with long-term retention (Joiner & Smith, 

2008)]. The optimal control law then determines the choice of the task to be presented at 

every trial. We validate our method in simulations of a single-session of adaptation with two 

tasks, with various lengths of training, and with various relative task difficulty levels. We 

compared the results with those of a genetic algorithm (GA) optimization method and, for 

the specific case of a small schedule with 20 trials, with those of a brute-force search.

Materials and Methods

The purpose of this study is to combine computational models of motor adaptation and 

analysis techniques from optimal control theory to identify multi-task training schedules that 

maximize long-term retention of learning. In this section, we first describe possible models 

of motor adaptation and a formulation of the problem to be solved, then the optimal control 

method to determine the schedules, and finally our simulation setup. Note that while the 

approach we describe is not tied to any particular computational model, the models of 

adaptation dynamics used here are linear with respect to trials [i.e., discretized time; cf. 

(Scheidt, Dingwell, & Mussa-Ivaldi, 2001) and (Judkins & Scheidt, 2014)].

Modeling multi-task motor learning

Whereas the conceptual MOSAIC model of (Wolpert & Kawato, 1998) accounts for 

multiple adaptations by switching among multiple parallel and independent internal models 
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(see related multiple parallel model in Figure 1A), experimental results from a recent study 

requiring dual task learning support a refined model with a single fast adaptive state 

arranged in parallel with multiple slow processes switched on the basis of contextual cues 

(Lee & Schweighofer, 2009). Here, we extend this 1FnS model to accommodate different 

learning and forgetting rates for the different tasks while also allowing the task-dependent 

modules to compete in determining behavior.

Consider the special case of an adaptation paradigm with two tasks, and therefore employ an 

adaptation model having one common fast state and two slow states, each specific one task 

(i.e., a 1F2S model). The learning dynamics for the 1F2S model are described by Equations 

1 through 4 below. Specifically, the update equation for the shared fast state is given by:

xk + 1
f = a f · xk

f + b f · ek (1)

where xk
f  corresponds to the fast state on trial k, constants af and bf correspond to the state 

retention and error gain parameters, respectively, and ek corresponds to the performance 

error on trial k. The update equations for the slow states are given by:

xk + 1
s1 = as1 · xk

s1 + bs1 · uk
s1 · ek

xk + 1
s2 = as2 · xk

s2 + bs2 · uk
s2 · ek

(2)

where the variables uk
s1 and uk

s2 are mutually exclusive task selection variables that determine 

which task influences performance on trial k, and which slow state is to be updated based on 

the performance error. In our model, uk
s1 and uk

s2 are determined by contextual cues. As 

described below, the value of uk
s1 and uk

s2 reflect the result of a competition between 

responsibility signals rk
s1 and rk

s2 associated with the slow state components of the adaptation 

model. Performance on trial k is given by:

yk = xk
f + xk

s1 · uk
s1 + xk

s2 · uk
s2 (3)

whereas performance error is given by:

ek = ys1 − yk · uk
s1 + ys2 − yk · uk

s2 . (4)

where ŷs1 and ŷs2 correspond to the desired motor outputs for tasks 1 and 2, respectively. 

For the special case of two tasks, it is possible to define a single task selection variable uk 

(no superscript) as uk = uk
s1 such that uk

s2 = 1 − uk (that is, uk
s1 and uk

s2 sum to 1). To enforce 
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the exclusivity condition such that only one model is selected on any given trial, we further 

constrain the task selection variables such that uk
s1 · uk

s2 = 0, or equivalently,

C uk = uk 1 − uk = 0. (5)

Schedules that maximize long-term retention in multi-task motor learning

To derive the optimal schedule, it is necessary to specify an optimality criterion or “cost 

function” Jk, typically defined as the sum of path costs [i.e., the cost rate l(middot;)] and 

final costs [i.e., boundary costs h(middot;)] (c.f., Bryson and Ho, 1969). This cost function is 

subject to dynamic constraints described by Equations 1–3 and a constraint on the task 

selection variable described by Equation 5.

Our goal is to maximize long-term retention of performance for both tasks. Long-term 

retention for any given task depends on the final state of the slow process for that task, as 

current performance itself is not a good indicator of long-term retention (Joiner & Smith, 

2008). The intermediate cost rate l(middot;) is therefore zero, and we define the final cost as 

the average mean square difference between the desired performance and the slow process 

for each task at the end of training. The cost function J is therefore:

J x = hL = h xL
s1, xL

s2 = εL
s1 2 + εL

s2 2 2 (6)

where we define the slow state errors εk
s1 = xk

s1 − ys1  and εk
s2 = xk

s2 − ys2  and L as the total 

number of trials in the training sequence. Thus, the scheduling problem is solved by 

minimizing the difference between the values of the slow state memories and their desired 

values at the end of the training schedule. That is, the optimal training schedule u1:L
∗  is the 

one that minimizes Equation 6 over all possible training schedules, thereby maximizing 

long-term retention driven by task-specific, slowly decaying, motor memories:

u1:L
∗ = arg min

u1:L
J (7)

Deriving optimal schedules via Pontryagin’s maximum principle

We used Pontryagin’s maximum principle (Kirk, 1992) and the 1F2S model to determine the 

optimal schedule for the two-task adaptation paradigm. Pontryagin’s maximum principle 

allows a difficult optimization problem over many time steps (e.g., Equation 7) to be reduced 

to a series of simpler optimization problems over single time-steps (see below). To do so, 

one can define an augmented Hamiltonian function H(·) (Kirk, 1992) as a weighted sum of 

the cost function J(·) and additional costs associated with the dynamic and control 

constraints:
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Hk xk, uk, λk + 1, γk + 1 = J x + f xk, uk
T · λk + 1 + C uk · γk + 1 (8)

where xk = xk
f , εk

s1, εk
s2 T

 is the state vector, f(xk, uk) represents the system dynamics 

corresponding to equations 1–2, λ is the Lagrange multiplier vector whose elements are the 

costates associated with the state constraints, and γ is the costate associated with the control 

constraint. When the Hamiltonian is minimized with respect to small changes in the state 

and control variables, three desirable conditions are satisfied: the final cost is minimized, the 

state transition dynamics are enforced, and the control constraint is enforced. We use the 

Hamiltonian to identify the training schedule that satisfies Equation 7 while also satisfying 

the constraings imposed by the system dynamics and control constraint.

More specifically, taking the partial derivative of the Hamiltonian with respect to the λ 
costates and the γ costate yields the constraints (Equations 1–2 and 5, respectively). Taking 

the partial derivative of the Hamiltonian with respect to the states xk yields the costate 

update equations for our minimization problem:

λk
1 = ∂H

∂x f = a f − b f · λk + 1
1 − bs1 · rk · λk + 1

2 − bs2 · 1 − rk · λk + 1
3 (9)

λk
2 = ∂H

∂εs1 = − b f · rk · λk + 1
1 + as1 − bs1 · rk · λk + 1

2 + · εk
s1 (10)

λk
3 = ∂H

∂εs2 = − b f · 1 − rk · λk + 1
1 + as2 − bs2 · 1 − rk · λk + 1

3 + · εk
s2 (11)

γk = ∂H
∂r = −b f · εk

s1 + b f · εk
s2 · λk + 1

1 + −bs1 · xk
f − bs1 · εk

s1 · λk + 1
2 + …

+ −bs2 · xk
f − bs2 · εk

s2 · λk + 1
3 + 1 − 2rk · γk + 1

(12)

Here, we have defined a differentiable “responsibility signal” rk, which corresponds to the 

discrete task selection variable uk with its exclusivity constraint relaxed. This step is 

necessary so that the partial derivative of the Hamiltonian with respect to variations in the 

task selection sequence be non-singular, as per Equation 12. Responsibility signals in multi-

module adaptive systems have the properties that they lie between 0 and 1, and sum to one 

over all contributing models (Wolpert and Kawato, 1998). Hence, the responsibility signal 

represents the extent to which each model accounts for the behavior of the system (Task 1: 

rk; Task 2: 1-rk).
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The optimal control sequence can be determined using an approach based on (Todorov, 

2007): (1) Given an arbitrary initial sequence of responsibilities r1:L, generate the task-

exclusive sequence uk by enforcing a winner-take-all competition on rk (e.g., by rounding up 

or down to 1 or 0). Iterate the system dynamics forward in time (i.e., trial-by-trial) to obtain 

a candidate sequence of states. (2) With the resulting responsibility and state sequences 

defined, iterate Equations 9 through 12 backwards in time to obtain the costate sequences. 

At each time step (trial), improve the candidate responsibility sequence via gradient descent 

of the Hamiltonian:

rk = rk − α · drk (13)

where α is a small update rate, and

drk = ∂H
∂r (14)

These two steps are repeated until rk has converged to r1:L
∗ .

Comparison with genetic algorithm and brute force search methods

Although the deterministic Pontryagin’s maximum principle yields the true optimal result in 

theory, our simulation results are not guaranteed to always return the true optimal. This is 

because the result depends on the initial schedule, and iteration stops when incremental 

reduction in cost becomes smaller than a given threshold (e.g., 10−10), which conceivably 

could settle into a local, rather than global, minimum. In order verify the validity of our 

theoretical methods, we applied a genetic algorithm (GA) method to determine optimal 

schedules, and then compared the results with those from Pontryagin’s maximum principle. 

The GA is a stochastic optimization algorithm: a pool of schedules (i.e. genes) in each 

“generation” of the simulation can exchange a random portion of the schedule (genetic 

crossover), and can randomly change bits of the schedule (genetic mutation). Only those 

schedules with better performance, i.e. those schedules that minimize the cost of equation 

(6), survive to the next generation (i.e. eliticism).

In addition, for a small number of total trials K = 20, we performed a brute-force search to 

calculate costs of all possible 220 binary schedules (See Appendix 2). We then compared the 

optimal schedule obtained via the Pontryagin’s maximum principle method with the true 

optimal schedule from the brute-force search.

Simulations

We first computed optimal schedules in simulations of a single-session adaptation paradigm 

with two tasks, in which we varied both the relative task difficulties between the two tasks 

and the total number of training trials (20, 40, and 80 trials). Although difference in task 

difficulty is commonly experienced in actual motor learning, it is unclear how to 
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operationalize it. Is a task difficult because initial progress is slow, later progress is slow, or 

final performance is low? Alternatively, is it because of all of the above? Here, to simplify, 

we modeled task difficulty with a single difficulty parameter that simultaneously affects 

initial change in performance, later change in performance, and final performance. 

Specifically, we defined relative task difficulty of the second task compared to the first task 

with a difficulty parameter d that affects both fast and slow process learning rates:

b f 2 = b f 1 d; bs2 = bs1 d (13)

Note that we used two different fast learning rates (bf1 and bf2) to update the common fast 

process motor memory. For example, if the more difficult task is twice as difficult as the 

easier task, the same error results in only half the increase of the fast process. While fixing 

the learning rates of one task (“the easy task”), we increased task difficulty of the other task 

(“the difficult task”) from d=1.0 to d=5.0 as steps of 0.1. To simplify, the two tasks were 

assumed to have opposite signs with the same magnitude, such that ŷs1 = 1 and ŷs2 = −1. 

The default parameter set, estimated in a previous visuomotor rotation experiment (Lee, 

2011), was taken as: af = 0.965, as = 0.993 and bf = 0.597, bs = 0.114. To extend the validity 

of our results to other types of adaptation, we performed a sensitivity analysis for these 

parameters (Appendix 1).

We also compared the costs of the two tasks after optimal, alternating, and blocked 

schedules. We set the initial schedule as the alternating schedule, because this schedule 

maximizes long-term retention in the case of equal task difficulties in the 1FnS model 

(Schweighofer et al., 2011). Starting with the alternating schedule, Pontryagin’s algorithm 

was repeated until the cost reduction became smaller than 10−10 from one iteration to the 

next with the update rate α = 0.05.

After we obtained the simulated optimal schedule (as a series of 0s and 1s, with 1 coding for 

presentation of the easy task, and 0 for presentation of the difficult task), we computed the 

switching index and the percentage of trials for the difficult task. The switching index is the 

number of task switches divided by the maximum possible number of switches. Thus, for the 

initial alternating schedule, the percentage of trials for the difficult task is 50% and the 

switching index is 1. For the blocked schedules, the percentage of trials for the difficult task 

is still 50%, but the switching index is low and equal to 1/(total trial number − 1). In order to 

discount computational “boundary effects” deriving from the unavoidable arbitrary 

assignment of the costate values at trial L+1 (see Equations 9–12), the last two simulated 

trials were excluded from calculations of switching index and percentage of scheduled trials 

for the more difficult task.

For the GA simulations, we set the rate of crossover at 0.8 and the rates of mutation and 

eliticism at 0.03. We repeated this algorithm running through 1000 generations, starting 

from a population of 1000 random schedules. We finally chose the schedule in the last 

generation that minimizes the cost of equation (6). We then compared the schedules and cost 

obtained via GA and those obtained via the Pontryagin’s maximum principle method.
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Results

We first simulated optimal schedules for the 1F2S model with increasing values of the task 

difficulty parameter d and for 20, 40, and 80 total trials (Figure 2). We chose these trial 

numbers because they typically span the number of trials needed for asymptotic performance 

in visuo-motor adaptation experiments. When both tasks were of similar difficulty, the 

alternating schedule was the optimal schedule, with half the total trials assigned to each task. 

As difficulty of the second task increased, the general trend was that more trials were 

assigned to the difficult task (black boxes in Figure 2). The resulting small trial blocks had 

the tendency to be distributed evenly throughout the training sequence.

Figure 3A shows the switching index (upper row) and the percentage of trials for the 

difficult task (lower row) as a function of relative task difficulty. There were relatively large 

thresholds of task difficulty below which the alternating schedule was optimal. These 

thresholds were 2.5, 2.1, and 1.8 for the total trial number 20, 40, and 80, respectively. As 

task difficulty increased further, the switching index decreased with several plateaus. For the 

simulated range of task difficulties, the final plateau of the switching index was around 0.53, 

0.51, and 0.51 for training sequence lengths of 20, 40, and 80 trials, respectively. A similar 

trend can be seen in the increase in the percentage of trials for the difficult task (Figure 3B), 

with a high (negative) correlation between the 2 quantities. This high correlation arose 

because the optimal schedules comprised small blocks of trials of the difficult task evenly 

separated by a single trial of the easy task, as was illustrated in Figure 2. The final plateau 

for the percentage of the difficult task was around 72%, 74%, and 76% for the total trial 

number 20, 40, and 80, respectively. Overall, this indicates that three times more trials were 

assigned to the difficult task than the easy task when the tasks different in difficulty by a 

factor of 5.

Updates of the slow and fast processes during training for optimal and alternating schedules 

are shown in Figure 4 for relative task difficulty d = 5.0 and 40 training trials. The combined 

final values of the slow process states (i.e., the quadratic mean of the two slow processes) 

following the alternating schedule was 94% that of the optimal schedule (100% and 85% for 

the easy and difficult task, respectively). Therefore, the optimal schedule achieved not only 

better overall final retention, but also better balance between the two tasks compared to the 

alternating schedule. However, these differences are relatively small, even for large 

difference in task difficulty as in this example.

Figure 4A illustrates why the optimal schedule generates (in most cases) small blocks of 

trials for the difficult task separated by one trial for the easy task. Separations between small 

blocks of the difficult task implement a compromise between assigning more trials to the 

difficult task and minimizing the block lengths. As a result, there is minimal update of the 

fast process throughout the optimal schedule (see the red line in Figure 4A). This results in 

increased performance errors, and allows greater update in slow process of the difficult task, 

while not being too detrimental for the easy task, and thus optimizes final retention for both 

tasks.
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We then systematically studied the difference between optimal, alternating, and blocked 

schedules. Although the alternating schedule was only optimal only up to a certain threshold 

(as was shown in Figure 3), Figure 5 shows that the alternating schedule achieved almost as 

much final retention as the optimal schedules for a wide range of task difficulties: costs of 

the alternating schedule are almost same as those of the optimal schedules up to task 

difficulty d = 3.0; and 110%, 120%, and 130% of those of the optimal schedules for 20, 40, 

and 80 total trials, respectively, at task difficulty d = 5.0. Thus, for a wide range of task 

difficulties tested for the 1F2S model, the alternating schedule is practically as effective as 

the optimal schedule in increasing the accumulated learning within the state variables of the 

slow processes.

To verify the validity of our results overall, we used two approaches. First, we adopted a 

computationally expensive genetic algorithm (GA) approach to determine optimal schedules 

“experimentally”, and compared the results with these of the Pontryagin’s maximum 

principle method for all schedule lengths. Figure 5 shows that the two methods provide 

almost identical performance results for a range of task difficulty and different total number 

of trials (less than 1% difference in performance), although the schedules found by the two 

methods could differ slightly as parameter d increased. Second, for the small schedule with 

20 total trials, we performed a brute-force search of all possible schedules for relative task 

difficulty parameter d=4 (Appendix 2). Such a search shows that the true optimal is very 

near the optima found by the maximum principles and the GA method for a range of 

difficulties (Figure 5, left). In addition, the brute search reveals how close the alternating 

schedule is to the true optimal, even with large relative difficulty between tasks (Figure S2). 

Finally, comparing the true optimal schedule from the brute-force search and the schedule 

from the maximum principles show small differences that barely affect long-term retention, 

as both schedules have very similar costs (see Figure S2, Appendix 2).

Discussion

Our study made three novel contributions. The first is a theoretical method to optimize 

multi-task motor learning. To determine the optimal schedules, we have used Pontryagin’s 

maximum principle with constraints on the system states and the command. We have 

validated the results of this deterministic method in the two-task adaptation paradigm with 

the results of a stochastic method based on genetic algorithms. Although we determined the 

schedules in motor adaptation tasks, these optimal schedules can be applied to any types 

learning (i.e. motor learning in healthy subjects, motor re-training post-stroke, associative 

learning, declarative learning, etc.) for which the state and control variables can be 

represented in differentiable form (e.g., Equations 9–12). Thus, our method can also be 

applied to motor rehabilitation to determine the schedule of multiple tasks training, as state 

space models of recovery and rehabilitation have been proposed and validated (Casadio & 

Sanguineti, 2012; Hidaka, Han, Wolf, Winstein, & Schweighofer, 2012; Scheidt & 

Stoeckmann, 2007). Similarly, at least in theory, this method could also be used to schedule 

multiple tasks in association experiments, and even in certain cognitive experiments, as long 

as state-space models are applicable e.g., ( Smith & Brown, 2003) (Kording, Tenenbaum, & 

Shadmehr, 2007).
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Second, we showed that under conditions of task interference in the fast process, there exists 

a threshold in relative task difficulty below which the alternating schedule is the true optimal 

schedule. The third contribution is that for a large range of task difficulties, we found that 

there is little difference in long-term retention following optimal and alternating schedules. 

In addition, our results shed light on well-established contextual interference (CI) effect 

(Schmidt & Lee, 2005; Shea & Morgan, 1979), in which intermixing tasks during training 

lead to enhanced retention compared to learning tasks sequentially. Our results suggest that 

the CI can be observed even for tasks of different difficulties. When interference is high, the 

alternating schedules are clearly superior to the blocked schedules.

What is the mechanism leading to the task difficulty thresholds below which the alternating 

schedule is the true optimal schedule? In our simulation of the 1F2S model with two 

opposing tasks, presenting the other task reduces activity in the common fast process. As a 

result, overall performance gains are reduced, resulting in greater error in the next trial; this 

in turns results in greater update of the error-driven slow processes. Therefore, when task 

difficulty differs but stays below threshold, the gain from high switching probability in the 

alternating schedule is greater than the loss of update in the difficult task resulting from 

assigning equal number of trials to both tasks, hence creating the threshold.

Comparison of the results from the Pontryagin’s maximum principle and the GA method 

show very similar final costs for a broad range of relative task difficulties (see Figure 5), 

which for the special case of 20 total trials, are only slightly greater than the true optimal 

cost found by the brute-force search. As long as tasks alternate, with small blocks of the 

difficult task intercalated between single trials of the easy task, retention is very high and 

difference in cost with the optimal schedule minimal. Note that besides brute force search 

for a smaller schedule, we have used two optimization techniques, the deterministic 

Pontryagin’s maximum principle and a stochastic GA method. A third possible method, 

dynamic programming, could also be used to determine optimal schedules. We leave for 

future work the exploration of dynamic programming to determine optimal schedules in 

motor adaptation.

Our study suffers from a number of limitations that could also be addressed in future work. 

First, because this is a simulation study, our results depend on our choice of models. To 

increase the validity of our results, we have performed several sensitivity analyses whereby 

we have varyied relative task difficulty, number of trials, as well as learning and forgetting 

rates. Overall, the results show existence of a difficulty ratio threshold below which the 

alternating schedule is nearly as effective in increasing long-term retention as the optimal 

schedule.

A second limitation is that we have only studied optimal schedules for two tasks in a single 

session, in which adaptation occurs at least at two different time scales. Studies of memory 

consolidation over multiple days show that additional processes with much longer time 

scales may play important roles during long-term motor learning (Criscimagna-Hemminger 

& Shadmehr, 2008). We leave scheduling of multiple tasks and scheduling over multiple 

sessions for future work. A third limitation of our study is that we have only studied optimal 

scheduling for multiple motor adaptation tasks with no generalization between tasks. 
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Generalization effects can be implemented by adding additional parameters to the slow 

process (Tanaka, Krakauer, & Sejnowski, 2012), and optimal schedules could be determined 

with this new model.

Finally, in a practical application of our study, determination of the optimal schedule would 

largely depend on accurate parameter estimation, including learning rates, forgetting rates, 

and degree of interference between tasks. In particular, we expect that accurate parameter 

estimation would be crucial when determining schedules for tasks of vastly different 

difficulties. Extrapolating our finding suggest that for this case, the optimal schedule could 

be truly superior to the alternating schedule. However, as discussed above, in most practical 

applications with tasks of similar difficulty, our simulation results suggest that the 

alternating schedule may be a near-optimal choice for enhancing long-term retention of 

motor learning.

Our study makes three counter-intuitive yet practical predictions for a large range of tasks. 

First, therapists, coaches, and teachers should design the training schedule to include 

interfering tasks. Second, tasks should be scheduled alternatively or pseudo-randomly; the 

details of the schedules do not matter to a great extent as long as switching occurs frequently 

and more of less evenly. Finally, if only a single training session is available, trainers can 

ignore task difficulty (unless extremely different) and assign a similar number of trials for all 

tasks according to an alternating schedule.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1. Model parameter sensitivity analysis

One of the main findings on the optimal schedule with the 1F2S model was the existence of 

a threshold of task difficulty below which the alternating schedule is optimal (Figure 3). This 

result was obtained with a specific set of parameters in a visuomotor experiment. However, 

depending on the specifics experimental protocol of the task, or depending on the adaptation 

tasks (such as visuomotor rotation, saccadic adaptation, etc.), parameters will vary. Here we 

show that the existence of the threshold is a general phenomenon across a wide range of 
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learning and retention parameters. In the main text, we ran simulations based on the 

estimated set of parameters from a visuomotor rotation task:

Easy task: af = 0.965, as = 0.993, bf = 0.597, bs = 0.114

Difficult task: af = 0.965, as = 0.993, bf = 0.597/d, bs = 0.114/d,

where d > 1 defines a relative task difficulty of the more difficult task. The threshold for this 

set of a and b values was d = 2.3. In order to simplify the sensitivity analysis, we introduced 

two variables which define relative values of learning and retention parameters between fast 

and slow processes: bf/bs (the ratio of fast learning gain to slow learning gain) and log10(τs/

τf) (the logarithmic ratio of slow time constant compared to fast time constant), where the 

time constants are defined from a retention parameter, τ = 1
1 − a . In simulations, we fixed τf 

at 28.57 and bs at 0.114.

Figure S1 shows that the threshold is greater than 1 for a large range model of parameters. 

The threshold decreases as the slow time constant increases, and increases as bf/bs increases. 

Summarizing, the result shows that the alternating schedule is optimal unless one of the 

tasks is a lot more difficult than the other (up to thresholds), and this holds true for a wide 

range of parameters, with the thresholds depending on the ratio of fast and slow learning 

gains.

Appendix 2. Brute-force search

Our main optimization algorithm produced schedules that could have become trapped in a 

local minimum. Here, our goal is to examine how close the final cost obtained from our 

optimization algorithm is to the true global minimum cost. We performed a brute-force 

search of the optimal schedule for K = 20 total trials (for 40 and 80 trials, the brute force 

search becomes computationally prohibitive). We generated all possible 230 ≃ 106 schedules 

of K = 20, and calculated the final cost at the end of training for each of these schedules. We 

then sorted these 220 costs from the smallest to the largest. We defined ‘rank’ of each 

schedule as the order in this sorted list (rank 1 as the smallest).

Figure S2 shows the costs of all possible schedules in ascending order (with relative task 

difficulty d = 4). Circles represent the corresponding ranks and costs of our algorithm’s 

optimal schedule, alternating schedule, and blocked schedules. Ranks of these schedules 

were 0.13%, 8.62%, and 99.97% of the 220schedules, respectively. Corresponding costs 

were 0.3186, 0.3485, and 0.6422, respectively, while the true minimum cost was 0.3073. 

Thus, both ranks and cost show that the schedule determined by the optimization algorithm 

is very close to the true optimal. In addition, the alternating schedule has also both very low 

cost and rank.
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Figure 1. 
Two examples of multiple-tasks adaptation models. The n-fast n-slow model (nFnS) model 

akin to the MOSAIC model (Wolpert & Kawato, 1998): error e updates the selected pair of 

fast and slow processes corresponding to contextual cue c, which protects the unselected 

pairs of fast and slow processes from interference. B. The 1-fast n-slow model (1FnS) 

model: e updates a common fast process and one of N parallel slow processes selected by c, 

which protects the unselected slow processes from interference.
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Figure 2. 
Simulated optimal schedules for total trial numbers 20, 40 and 80. White blocks show the 

trials at which the easy task is scheduled, and the black blocks for the difficult task. Two 

optimal schedules for relative task difficulties d = 1.0 and 5.0 are shown as examples within 

the red bars. Note that for d = 1.0, the optimal schedule is the alternating schedule regardless 

of the total number of training trials.
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Figure 3. 
Non-linear characteristics of the optimal schedules as a function of relative task difficulty for 

the 1F2S model. A: Switching index, calculated as the number of switches of one task to the 

other divided by the maximum possible number of switches. B: Percentage of number of 

trials for the difficult task. For the perfect alternating schedule, switching index is 1 and the 

percentage of difficult task is 50%. Note that for task difficulty less than around 2.2, 

alternating schedules are optimal.
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Figure 4. 
Examples of updating within fast and slow process motor memories in the 1F2S model for 

task difficulty d = 5.0 and 40 total trials. A. Optimal schedule, OPT. B. Alternating schedule, 

ALT. Markers (dots) represent the trials assigned to the two tasks. Note how in OPT, 

scheduling of the easy task once every 4 trials (in most cases) keeps the fast process near 0 

at most time. This increases overall performance errors, which results in increase of the 

update of the slow process for the difficult task (and thus, overall retention performance at 

the end of training). In contrast, in the ALT schedule, the fast process has a relatively high 

(absolute) level of activity throughout.
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Figure 5. 
Costs at the end of training for K = 20, 40, and 80 total trials as a function of task difficulty 

for three different schedules: the optimal schedule (OPT), the alternating schedule (ALT), 

and the blocked schedule (BLK). Note how the alternating schedules yield similar cost as 

the optimal schedules in most cases. The five circles in each panel show costs generated by 

the genetic algorithm. The five stars in the K = 20 panel represent costs calculated from the 

true global optimum, using brute-force search.
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