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Abstract

We propose a new method for clustering based on the localmzation of the~-
divergence, which we call the spontaneous clustering. Thatgst advantage of the
proposed method is that it automatically detects the nurmbeusters that adequately
reflect the data structure. In contrast, exiting methodh asé& -means, fuzzy-means,

and model based clustering need to prescribe the numbensibcs. We detect all the
local minimum points of the-divergence, which are defined as the centers of clusters.
A necessary and sufficient condition for thelivergence to have the local minimum
points is also derived in a simple setting. A simulation gtadd a real data analysis

are performed to compare our proposal with existing methods

1 Introduction

Cluster analysis is a common procedure for grouping sinoitgects in unsupervised

learning (Jain et all, 1999; Xu and Wunsch, 2005; HastielgP@D9). The procedure

stably produces a classification, and is frequently used@g@ocessing before su-

pervised learning. Cluster analysis has wide applicatoves many disciplines in ex-

ploratory data analysis. See, for example, Jin et al. (2@ht) Wu et al.|(2011) for

recent developments. There are mainly two approaches steclanalysis. One is the
hierarchical approach which describes a tree structutedcdendrogram. The other is

the approach of data space partition suclkasieans algorithm. This paper focuses on
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the latter approach from a view point of statistical patt&tognition.
We propose what we call the spontaneous clustering. Itsstath finding cen-
ters of clusters in a data set. For this purpose, we employa flanction derived

from the power entropy with the power index It is referred to they-loss function

Fujisawa and Egudhi, 2008; Eguchi and Kato, 2010). Herenmavational example

for the proposal of the spontaneous clustering. Considemptbblem of estimating
Gaussian mean paramejer The maximum likelihood estimator (MLE) qf is given
by the arithmetic mean of the data set as the unique maximuimhgfdhe log likelihood
function. It is known that the MLE poorly behaves in variolutsigtions where Gaus-
sianity assumption is inappropriate. For example, theikagihood function suggests
rather a misleading summary as seen in panel (a) of Figurdtérnatively, they-loss
function properly reflects the data shape. For the same datia ganel (a) of Figure 1,
panel (b) shows that the-loss function has two local minimum points corresponding
to the two normal distributions. We will propose to deterenihe centers of clusters by
such local minimum points.

Almost all procedures via data space partition need the euwiclusters a priori.

The selection of the number of clusters is a major challengduister analysis. A lot of

methods have been proposed in the literature (Xu and Wu ). Our clustering

method can find the number of clusters automatically as Isrthevalue ofy is prop-
erly fixed. The name of the spontaneous clustering comes tin@property. Instead
of the number of clusters, the value of power indeghould be determined. We will
propose two methods to accomplish this aim. One is a heudstice ofy that merely

relies on the range of the data, and the other is a more sogattest method based on



Akaike Information Criterion (AIC).

This paper is organized as follows. Section 2 describeslgwithm of the spon-
taneous clustering and selection procedure of the valye bf section 3 the existence
of the local minimum points is discussed. Section 4 inveséig the numerical proper-
ties of the spontaneous clustering. In section 5 a real detlysis is given. Further a

discussion is presented in section 6.

2 Spontaneous Clustering

We begin with a statistical formulation of cluster analys$&ippose the-dimensional
density function of the population distribution is given by
K K
g(x):Zkak’(x)vZTkzlv Tk>07k:17"'7K7 (1)
k=1 k=1
where f;(x) is a density function. Lefz,,...,x,} be a data set generated frgm
We apply they-estimation method to this data set. Tidoss function for the normal

distribution with the identity covariance matrix is given b

1 — ol
Ly(p) = — ZGXP <—§||$z' - M||2) ; (2)
1=1
apart from a constant, wheyeand || - | denote the mean vector and the Euclidean

norm, respectively. In the remainder of the paper, we omitrestant term that does not
affect the optimization. In panel (b) of Figuré L, (x) is illustrated. See appendix B
for a general introduction to theloss function. It is expected that theloss function

L.,(p) has K local minimum points corresponding @ mean vectors with respect

to f1,..., fx. Then we expect that the local minimum points can help us fme&e



the centers of clusters and to build< clusters in a similar way to thé&-means
algorithm. The covariance structure of the data set is takEnconsideration in a

subsequent discussion.

2.1 ~-lossFunction for the Normal Distribution

We consider they-loss function for the normal distribution with mean vecioand

covariance matrix;,

Ly (1, %) = = det 57705 3 exp (=2 (@i = 1) TS = ).

1=1

An iteration algorithm to find the local minimum points &f (4, Y) is proposed in

Fujisawa and Eguchi (2008) and Eguchi and Kato (2010). Ibtaioed by differentiat-

ing L., (1, ) with respect tg: andX ! and setting the derivatives to The algorithm is

a concave-convex procedure (CCCP) (Yuille and Ranmrla@), so that it is guar-

anteed to decrease thdoss function monotonically as the iteration stépcreases. It

is described as follows.
Step 1 Set appropriat@g, andX:, as initial values.

Step 2 Giveny, andX, calculateu,,; andy,; by the following update formula,
L wa(zia [ 24) T, 3)
=1

Y1 = (1+7) Zwv(ﬂfz’»#t» So) (i — preg) (T3 — psr) | (4)
=1

where




Step 3 For a sufficiently small number, repeat Step 2 while

[perr = el + [ Be1 — Zele <,
where| - || denotes the Frobenius norm.

If v = 0, then the right hand sides of equationis (3) dnid (4) are equlaétsample mean
vector and covariance matrix, respectively, which are imgtbut the MLEs. If our aim
is to obtain the local minimum points @, (), then we only have to updatg and fix
Y to be the identity matrixX. Similarly if our aim is to obtain the local minimum points

of L, (u, ) with fixed ., then we only have to updat& and fix; = p.

2.2 Algorithm of the Spontaneous Clustering

In general, the spontaneous clustering based on a densittiduo f(x, #) with param-

eterd is defined as follows.
Spontaneous Clustering

Step 1 Find the local minimum points df. (6), denoted by, , . . ., x, whereL. (6) is

the~-loss function forf(z, ).
Step 2 Considerk clusters according tél, . ,éK, and assign the data to the clusters.

In a special case, the spontaneous clustering based onrthalrdistribution is defined
as follows. We se®, and©, », are the empty sets at the start of the algorithm. The

algorithm of subsection 2.1 is employed in the spontanelussaring below.

Spontaneous Clustering Based on the Normal Distribution



Step 1-1 If ©, is the empty set, choos# initial valueszyy, ...,z in the data
set{xy,...,x,} at random. Otherwise, choose initial valuegin, ..., z,} as

follows: z(y, ..., () are M maximum points ofi(-,©,), where

A(w.©,) = min [l — .

Step 1-2 Apply the algorithm in subsectidn 2.1 to the data&ktimes with each initial
valuez;,7 = 1,..., M tofind the local minimum points of, (). Then add the

obtained local minimum points 1®,,.
Step 1-3 Repeat Step 1-1 and 1-2 until the number of elements,idoes notincrease.

Step 1-4 For each local minimum point € ©,,, obtain a minimum point of., (1, )
with respect taz, denoted by:, with the algorithm in subsectidn 2.1. Then add

(ﬂ, ﬁ:) to @(MZ).

Step 2 Write ©(,, 5y by { (fk, ik)},f:l and assign each observatioro thek-th cluster

with

AT —

k = argmin(z; — fiz,) X (g — fug).

In the algorithm of the spontaneous clustering, we de(f,ﬂ}eik), k=1,...,Kasthe
centers and the covariance matrices of clusters. In theingiereof this paper, we focus

on the spontaneous clustering based on the normal distribut

2.3 Selection Procedurefor

The value of power index plays a key role in the spontaneous clustering, because
affects the number of clusters obtained by the spontandositedng. We propose two
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methods to select the value of One is a heuristic choice of that depends on the
range of the data. Our proposalis= 72/R?, whereR is defined by the maximum

range:

wherex; = (x;,...,z;,) . The outline of the derivation dfis as follows. Suppose the
data set is generated from the mixture of two normal distidims centered ai; and,
with the identity covariance matrix and the same mixing prtipn, respectively. Our
simulation result suggests that|jif; — p2)/2|| = 3v/2/2 = 2.12, then the value of
~ needs to be more than or equal to 1 for two local minimum pants, (1) to exist.
Propositiori 3.1 tells that if all the data are multiplied bycalara and the spontaneous
clustering is applied to the transformed data, then theevafy needs to be more than
or equal toa~? to guarantee the existence of two local minimum pointd ofi:). If

(1 — p2)/2|| = r, thena = r/(3v/2/2). Hence we propose to use the valueyof

-2
N r 9
() - K

The value of- can be estimated by the range of the data.2gbe the range of thg-th

defined as

variable. If there ard( disjoint clusters lying side by side on a line parallel to #xés

of the j-th variable, then we can estimatdy R;/(2K) as is just illustrated in Figure

[2. There are variables, s@ directions have to be considered simultaneously. We use
the maximum rangé?, and estimate by R/(2K). The value ofK can be determined
from our prior knowledge about the possible number of chgstéf X' = 2, we have

4 = 72/ R?. We observe that this rule works well in several empiricatiss although

the discussion does not completely have the theoretic&ignaond.
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We also propose a more sophisticated method based on AlGealie ofy which
minimizes AIC is recommended as the optimal selection.oket K, be the number
of clusters and /iy, ivk), k =1,..., K, be the centers and the covariance matrices
of clusters resulting from the spontaneous clustering. d(et i, ) be the density
function of the normal distribution with mean vectorand covariance matriX. Then
O(x, fly, i,yk) is used as a density estimator of mixture compongt) in (). The

result of the spontaneous clustering implies the mixturaarfnal distributions as an

estimator of the density function of the population disitibn g in (D),

K"/
g'y(x) = Z kaqb(x, :&'yka Z’yk)v
k=1
wheref,;, is an estimator of mixing proportion, defined as the proportion of the ob-

servations assigned to theth cluster. The AIC based aj, is defined as follows.

AIC, = -2 log g, (z:) +2 {Kvp(p; 3 K, - 1} .

i=1

The value ofy minimizing AIC, is proposed as the optimal selectiomof

3 Behavior of the y-loss Function

We provide a justification for the spontaneous clusteringe®ploring its theoretical
aspects. The key fact is that thdoss functionZ, (x) hasK local minimum points if

the data set consists &f cluster groups.

3.1 Nonconvexity

We consider the reason why thdoss function has local minimum points as illustrated
in panel (b) of Figuréll. The optimization problem for a nomgex function which is
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expressed as difference of two convex functions has beesidzmed in Yuille and Rangara

2003) and_An and Tao (2005). Effective algorithms such a€E@nd DCA have

been developed. Actually, a monotonic transformation ef+Hoss function can be
expressed as difference of two convex functions, and thpsession gives the reason

why the~y-loss function has local minimum points. Rewrite(y) as

1 n
Ly(n) = —— exp [10g {; exp (vx:u - %xT:c> } - %uTu] -
The local minimum points of,(x) are equal to local maximum points of (1) =

08 (1) — T8 (1), where

L) (1) = log {Z exp (Wu - 55@%) } TG = 2T
=1
ThenT'\? () is obviously a convex function and has a constant Hessiarixmaith

positive diagonal elements, which means the surface(®fy) is curved. T\ (u) is

also a convex function because its Hessian matrix is given by

r\(u) T

W Zw (@i, p, 1) (@5 = Tps) (5 = T) (6)
wherez.,,, = > "  w.(x;, 1, [)x;, and the Hessian matrix is obviously positive defi-
nite. However, the Hessian matrix Eﬂ)(u) varies depending on the data gmdand
becomes close to the zero matrix in a neighborhood wherengigens are concen-
trated. This fact is clear from the form of the Hessian mafjxand means the surface
of I'"'(11) is almost flat in such a neighborhood. Difference betweerflghesurface
and the curved surface causes local maximum poinis Qf). Figure[3 illustrates such
a phenomenon, where the red, green, and blue lines Eﬁé(/yu), ng)(u), andl', (),
respectively, with dimensiop = 1 andy = 3. The graphs ofgl)(u) andI',(u) are
shifted to take O at. = 0.
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3.2 Existenceof Local Minimum Points

We consider a condition for the existence of local minimurmfsof L, (). As we
discussed in subsection 2.2, the local minimum points.@f:) are defined as the cen-
ters of clusters, so it is important to know when th#ss function has local minimum
points.

To simplify the argument, we assume that the data set is g&tefrom the mixture

of two normal distributions with covariance matex1,
g(l’) = 71¢($7/~51702I) + TQ¢(x7M27U2I)7 1 + Ty = 17 Tk > 07 k = 17 2

For easy calculation, we consider = co. As n tends tooo, L,(u) almost surely

converges to the-cross entropy defined by

C. g, B 1)) = — / 9(2) (e, u, T)d. @)

See appendix B for the detailed discussion aboutytieeoss entropyC, (g, ¢(-, i1, 1))

becomes

Cv(9>¢('>ﬂa[)) = ZTkC’Y(QS('nuk»UZI)v¢('7M>I))

k=1,2

x =) o (u,uk, (02 + %) I) :

k=1,2

which is nothing but the minus density function of the mixtaf two normal distribu-
tions with the same covariance matfi + 1/~)I. Hence the local minimum points of
Cy(g,¢(-, 1, 1)) are equal to the modes of the density function of the normature.
Figurel4 shows-C., (g, &(-, i, I)) with dimensiorp = 2, where—C, (g, ¢(-, 1, I)) has
one or two modes depending on the valueg.Qfus, 71, 75, and~. For the univariate
case, a necessary and sufficient condition that the densityibn of the mixture of two
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normal distributions should be bimodal is giverLLn_d_e_H_etJLJG_Q)_(M). We use a simi-

lar technique as in de Helguero (1904) to obtain a necessdrguficient condition for

Cy(g,¢(-, 1, I)) to have two local minimum points.

Proposition 3.1 Letv = (u1—p2)/2andd = ||v||*—(o?+1/7). Then C., (g, (-, 1, 1))

has two local minimum pointsif and only if the following three conditions hold:

d > 0, (8)
2y ¥ 2
exp<1+702||V||\/3) e (||y||+\/&) ?: (9)
2y g 2m
() < (Ao

Especially, if 7 = 7, then (@) and (I0) hold for any d > 0. When the two local
minimum points exist, they lie on the segment between 1, and 1. One closer to 1; and
the other to 1, are denoted by i and 15, respectively. Then || — pi]| and || e — 1|

are bounded above by

vl - \/||u||2 - (02+%).

By proposition[ 3.1, for any?, if 1, and i, are distinct enough, then there exists
that guarantees the existence of two local minimum points,0#, ¢(-, 1, I)), and two
clusters are defined at the same instant. In addition, theeiceha clustey:; becomes

arbitrarily close tqu; (k = 1,2), when||u; — pe|| becomes large.

4 Simulation

The performance of the spontaneous clustering was inastighrough Monte Carlo
experiments. A comparison of the spontaneous clusteritigtive -means algorithm
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and the model based clustering (MBC) was also implemented.

4.1 Caseof Spherical Clusters

We demonstrate the performance of the spontaneous chugtarcomparison with the
K-means algorithm. In this simulation, it is supposed that ¢bvariance matrices
of clusters are known to be the identity matrix. The valueydbr the spontaneous
clustering is determined by the two methods described isettinr{ 2.B. The number
of clusters for the-means algorithm is determined by two methods describemhbel

The performance of clustering is measured by BHI defined. late

For the K-means algorithm, the method by Califski and Harabasz4(18id the

gap statistic by Tibshirani et al. (2001) were used to fix thenber of clusters. Let

B(k) and W (k) be the between- and within-cluster sums of squares kwittusters.

Calihski and Harabasz (1974) propose to select the nunfagustersi: which maxi-

mizes CHk), where CHk) is defined as

cHiy = B/

W
On the other hand, Tibshirani e JL_(Z)Ol) propose to cholsevalue ofk which

maximizes Gap(k) = E(log(Wy)) — log(Wy), whereE? denotes expectation under
a sample of size from the reference distribution.

The sample of siz200 is generated from the mixture of five standard normal distri-
butions centered &0,0) ", (3,3)7, (=3,3)7,(-=3,-3)",(3,—3)T with equal mixing
proportion. Figurél5 displays an example sample. We siradla00 runs, and com-
pared clustering results from the spontaneous clusteritigthhose from the-means
algorithm. Figuré 6 shows the value of AIC and the number aéters resulting from
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the spontaneous clustering for the sample in Figlre 5. Tleetse value ofy based on
AICis 0.7.

Table[1 displays the frequency of choosifAgclusters for each of the methods for
different values ofi. All methods except thé&'-means algorithm with Gap chose the

true number of clusters in almost every simulation run. T@asoee the performance

of the clustering, we used Biological Homogeneity Index (B ,12011), which

measures the homogeneity between the cluster {C1, ..., Ck} and the biological
category or subtyp8 = { B, ..., B},

K
BHI(C, B) = %; ﬁ 3 1BY = BY), (11)

i#7,6,J€Ck

where B ¢ B is the subtype for the observatian andn; is the number of the
observations irC;,.. This index is bounded above by 1 meaning the perfect honggen
ity between the clusters and the biological categories. kan value of BHI over
100 simulation runs for each method is shown in Table 2. Althnds except thé -
means algorithm with Gap have good clustering results. bryegimulation run, if
each method detected five clusters for a sample, we caldufa¢eEuclidean distance
between the center of a cluster and the mean vector of thespmnding normal com-
ponent of the normal mixture. The mean value of the distas@dsio shown in Table
[2, where DM1. .., DM5 represent the mean value for cluster. ., 5, respectively. In
this simulation setting, the centers obtained by the spaaas clustering vary more
than those obtained by thié-means algorithm.

To summarize, this simulation example shows that the speoitss clustering with
the range and AIC has almost the same performance a& theans algorithm with
CH, and better performance than tiemeans algorithm with Gap.
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4.2 Caseof Ellipsoidal Clusters

We demonstrate the performance of the spontaneous chigiarcomparison with the
MBC, in which the component density is normal. It is supposged the covariance
matrices of clusters are heterogeneous and unknown. The @&} for the spontaneous
clustering and the number of clusters for the MBC are deteechbased on AIC.

The sample of siz&00 is generated from the mixture of two bivariate normal dis-

tributions with mean vector@, 0) ", (3,3)", and covariance matrices

Figure[T displays an example sample, and Figuire 8 shows the @& AIC and the
number of clusters resulting from the spontaneous clusgdar the sample. Note that
we use two values; and~y, as power indexy. v, is used forL,(x) when defining
the centers of clusters, and for L, (., X) when defining the covariance matrices. The
selected values of, and~, for the sample in Figuriel 7 arg = 0.25 and~, = 0.7. We
simulated 100 runs, and compared the clustering result fr@spontaneous clustering
with that from MBC.

Table[3 displays the frequency of choosifAgclusters for each of the clustering
algorithms for different values dt’. The spontaneous clustering chose the true number
of clusters, while the MBC selected large number of clusg&f, 39 frequencies.
The mean value of BHI is shown in Tallé 4. Both clustering athms show good
performance. In every simulation run, if each clusteringhnd detected two clusters
for a sample, two measures were calculated. One is the Eadidistance between
the center of a cluster and the mean vector of the correspgntbrmal component
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of the normal mixture. The other is the Frobenius norm of theadance matrix of
a cluster minus that of the corresponding normal comporEm. mean values of the
Euclidean distance and the Frobenius norm are shown in @ablbere DV1 and DV2
represent the mean value of the Frobenius norm for clusterd12arespectively. In
this simulation setting, similar to the simulation resalsubsection 4.1, the centers and
the covariance matrices obtained by the spontaneous ghgsteary more than those
obtained by MBC.

To summarize, this simulation example reveals that thetsp@ous clustering with

AIC has almost the same performance as MBC with AIC.

5 DataAnalysis

To evaluate the practical performance of the spontaneagsering, we applied it with
the fixed identity covariance matrix to real data as well @ffhmeans algorithm. The

data set consists of the chemical composition of 45 spedrmERomano-British pot-

tery, determined by atomic absorption spectrophotomgrynine oxides|(Tubb et

1980). Figurd P shows the scatterplot matrix of data on Raniritish pottery. In

addition to the chemical composition of the specimens, timesite at which the spec-
imen was found is known. There exist five kiln sites, and theyfeom three different
regions, so that we use the three regions as class labelsai@us to partition the 45
specimens into clusters corresponding to the three cldssesing only information
about the chemical composition without knowledge aboutthss labels. The value of

~ for the spontaneous clustering is determined by the two ogstbased on the range
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of the data and AIC, respectively. The number of clustersifers-means algorithm is
determined by CH and Gap.

Table[® shows the result of the spontaneous clustering. @heof AIC and the
number of clusters are shown in panel (a) of Fiqure 10. Witinwgd values ofy based
on the range and AIC, the spontaneous clustering deteets thusters corresponding
to the three regions. In particular, the clustering resylie heuristic choice of is the
most correct. The scatterplot of AD; variable suggests that the number of clusters is
two, and the maximum range is obtained from the variables hassociated with the
scenario discussed in the derivation of the heuristic nigthowhich we assume the
number of clusters is two. The values of CH and Gap are showamels (b) and (c)
of Figure[10. They increase almost monotonically as the rarmbclusters increases,
so CH and Gap do not work well for this data. As a result, we nlesthe spontaneous
clustering based on the range and AIC can detect three dysteperly and partition

the 45 specimens into clusters corresponding to the thgenms

6 Discussion

We proposed a new clustering algorithm based on the locainmzation of the~-
ross function, which we named the spontaneous clusterimghd spontaneous clus-
tering, the local minimum points of theloss function are defined as the centers and
covariance matrices of clusters. A large majority of stat# methods use the global
minimum or maximum point of objective functions and try tooal/local minimum

or maximum points. The convexity of the objective functigtagys an important role
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in statistics. For example, support vector machine has aexoloss function, and an

efficient algorithm to obtain the global minimum point is satered based on the con-

vexity (Bishop, 2006). Although nonconvexity is generafijractable, the spontaneous

clustering benefits from the nonconvexity, which makes oathrmd unique and inter-
esting. The idea to use local minimum points of thtoss function can be applied to

other statistical methods. For example, the idea is appdiedincipal component anal-

ysis M 2010) and to estimation of Gaussian tparameter (Notsu etlal.,

2012).

The spontaneous clustering does not require the informatbmut the number of
clusters a priori and can find it automatically if the valugofver indexy is properly
fixed. In contrast, existing methods such/ésneans and model based clustering de-
mand the number of clusters. Instead of the number of clystiee value ofy has to
be determined in the spontaneous clustering. Two methaodistesmine the value of
are proposed in this paper. One is a heuristic method whigard#s on the range of the
data. Our simulation research shows that it has good pesiocein many situations,
so we can usually use this heuristic method. A more sophisticchoice based on AIC
is also proposed although it requires much computatiofh@aitefn the beginning of the

research about selection¢fwe considered a cross validation technique, that is one of

the common procedures to select the optimal value of a tyrangmeter (Hastie et al.,

2009). In [.L(2010) the method using the crossdagion is proposed for

selection ofy. However, the method does not work well for the spontanelussering.
Hence we employ AIC for selection of It is demonstrated that our proposal works

well by the simulation study and the real data analysis.
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A Proof of Proposition 3.1

No generality is lost by assuming = —y;. The gradient ot (g, ¢(-, i1, I)) is given
by

aC’Y(ga ¢(7 s ]))
op

o< (s pa, (0 + 1/9) 1) (0 — pa)

+120(p, =i, (02 + /) D (p+ ). (12)

From (12), every local minimum point @f, (g, ¢(-, i, I)) should exist on the segment

between—; andy;. The Hessian matrix af’, (g, ¢(-, i1, 1)) is given by

0207(97 ¢(7 H,y I))

o =T, pu, (0 + 1/7)1) (=) (= )"

Do 1+ 0%y
—m(p, =, (0" +1/7)1)7 JO_% (4 1) (4 )"
+11 (s, (0% +1/7) T
1o (1, =, (0% +1/7) 1)1 (13)

Let u(t) = tuy. From [I3),.(¢) is a local minimum point of’., (g, ¢(-, u1, I)) if and only
if ¢is a local minimum point of’., (g, (-, 1(t), I)) with respect ta. C., (g, ¢(-, u(t), 1))

becomes
Cy(g, ¢, (1), 1)) o< =7y exp(=C(t — 1)%) — rpexp(—C(t + 1)*),

whereC'is equal to]| i1 ||*v/(2(1 4 02y)). The derivative of”, (g, ¢(-, u(t), I)) is given
by

d

709,00, u(0), 1)) o mexp(=C(t =1)*)(t = 1) + roexp(=C(t +1)°)(t + 1).
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It is possible to restrict-1 < ¢ < 1. Then

d
d_tC'Y(gvgb(v:u(t)v])) >0
2 2 (1 - t)Tl
< exp (—C’(IH— 1)+ C(t—1) ) > T n
— —4Ct+log(t+ 1) —log(l —t) — log; > 0. (14)
2

Let 2(t) be the left hand side of inequalify (14). The derivativé:.¢f) is given by

1 1
W(t)=—-4C+ —— + ——
(*) +t+1+1—t’

and

R(t)>0 <= —4C1—-t)+1—t)+(1+1)>0

1
2 —_— _—
= t (1 20) > 0.
If 1 —1/(2C") < 0, thenk/(t) > 0, andC, (g, ¢(-, u(t), 1)) has one local minimum

point. Hence, (g, ¢(-, u(t), 1)) has two local minimum points if and only if

1
1—-— h(—D h(D
-5 > 0, h(=D) >0, h(D) <0,

where D is the positive solution of equatiold(¢) = 0, thatisD = /1 —1/(2C).
Condition1 — 1/(2C') > 0 is equivalent to||u;[|> — (6% + 1/v) > 0. Condition

h(—D) > 0 is equivalent to

2y ) 5 1
€exp <1+U2VHI~01H\/HMH (U "‘7))
> = (gl = (o242 ) | 2
1+ 02y M1 Ha ~ .

and conditiom(D) < 0 is equivalent to

27 ) 5, 1
exp( 1+027||u1||\/||u1|| (0 +7)>
2
2 9 9 1 !
< — — —) ] =
— <||u1|| \/nuln (o +7)> n
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Note thatu} is on the line betwee; andy,. Similarly (—x;)* is on the line between

—p1 and—Dyy. Then

¥ 1
it = uall < (2= D)l =l ] - \/ a2 - (02 " ;).

If 77 = 7, thenh(£1) = +o0, h(0) = 0. Conditionl — 1/(2C") > 0 is equivalent
to #'(0) < 0. Hence two conditiong(—D) > 0, k(D) < 0 hold whenever condition

1—1/(2C) > 0 holds. O

B ~-divergenceand ~-loss Function

The aim of this section is to give a general introduction te {hdivergence and the

~-loss function. A more detailed discussion can be found indBg 01(2010).

B.1 ~-divergence

Suppose a random sample is generated from a populatioidigin with density func-
tion g. Let{f(-,6)} be a family of density functions indexed by parameterThe

v-cross entropy betweenandf (-, 0) is defined as

Cy(g, f(+,0)) = —r,(0) /g(x)f(x,ﬁ)”’dx,

with power indexy > 0, wherex.,(#) is the normalizing constant defined as

w0 = ([ f(w,ﬁ)”’*dx)_%

The Boltzmann-Shannon cross entropy betwgand f(-, #) is defined by

—/g(m) log f(z,0)dx.
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The~-cross entropy and the Boltzmann-Shannon cross entropgy thavfollowing re-

lation sincex.,(¢) converges to 1 ify tends taD.

i S29: FO ) +1 _/g(x) lim (M) i

v—0 Y ¥—0 Y

= —/g(x) log f(z,0)dx.

Hence the Boltzmann-Shannon cross entropy can be seen asthss entropy, and
the v-cross entropy can be regarded as an extension of the Baite®hannon cross
entropy. They-entropy ofg is defined ag?,(g) = C., (g, g); the~-divergence between

gandf(-,0)is defined as

D“f(gvf<39)) = C’Y<gvf<‘>6>> - H‘/(Q)'

Note that they-divergenceD, (g, f(-, #)) is nonnegative, anf, (g, f(-,¢)) is equal t)

if and only if 0 satisfies thag(z) = f(z, 0) almost everywhere. From these properties,
D, (g, f(-,0)) can be seen as a kind of distance betwgand (-, #) although it does
not satisfy the symmetry. When our aim is to find the closestithution tog in model
{f(-,0)} with respect to the/-divergence, we only have to find the global minimum

point of D., (g, f(-,#)) with respect td@, which is equal to that of’, (g, f (-, ¢)).

B.2 ~-lossFunction

The ~-loss function is defined by an estimator of theross entropy. Le{xy, s,
..., z,} be a random sample generated from a population distribwtitin density
functiong and{f(-,#)} be our statistical model. Theloss function forf(-, §) associ-

ated with they-divergence is given by

n

L) =~ (6) 3 fain6)"

i=1
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We extend the definition of the-cross entropy to any distributions. For any distribution

functionG, thev-cross entropy betwee® and f (-, #) is defined as

C.(G.F(.6) = ~r:(6) [ Fx.67dGz).

Note thatL. () equalsC, (G, f(-,0)) with empirical distribution function, so that

E(L,(0)) = Cy(g, f(-,0)), and L, (#) almost surely converges G, (g, f(-,6)). The

v-estimator off is defined by the global minimum point df, () ( ' o,

2010). From the definition of the-estimator, it satisfies Fisher consistency. If the

density functiory belongs to the statistical modgf (-, 6)}, then they-estimator satis-
fies asymptotic consistency and normality. Hross function and the log likelihood

function satisfy the following relation

L) +1 1<
lim =2 2§ ).
im P log f(z4,0)

y—0 Y
Hence the MLE can be regarded as thestimator and the-estimator can be seen as

an extension of the MLE.
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Figure 1: (a) Log likelihood function. (b) Minus-loss function { = 1). In panels
(a) and (b) the data of size 200 is generated from the mixtiite@ standard normal

distributions centered at 0 and 10, respectively.
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Figure 2: Example data generated from the mixture of two mbdistributions centered

at(0,0)" and(5,0) " with the identity covariance matrix, respectively.
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Figure 3: Visualization oi“ﬁ,l)(,u), Fﬂf)(u), andI',(x). In panel (a) the sample of size
100 is generated from normal mixtueeso(x, —2,0.04) + 0.5¢(x,2,0.04). In panel
(b) the sample of size 200 is generated from normal mix@eé¢(x, —5.5,0.04) +
0.25¢(x, —2,0.04) + 0.25¢(x, 2,0.04) + 0.25¢(x, 5.5, 0.04).

(a) (b)

Figure 4: lllustration of —C.(g,é(-,p, I)). In panel @)pu; = (0,0)",uy =
(2,2)", 71 =7 =05,7y= 1,02 = 1. In panel (b)u; = (0,0)7, uy = (4,4)", 71 =

7 =05,7v=10%=1.
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Figure 5: (a) Five clusters. (b) Same as (a) but colored daugto cluster.
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Figure 6: Value of AIC and number of clusters.
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Table 1: Frequencies of Choosing Clusters.

K 1 2 3 4 5

Spontaneous clustering withtherange 0 0 0 9 91
Spontaneous clustering with AIC 0 0 01 99
K-means with CH 0O 0 0 0 100

K-means with Gap 91 7 0 O 2

Table 2: Mean Value of BHI and DM1-DM5.

BHI DM1 DM2 DM3 DM4 DMS5S

Spontaneous clustering with therange 0.93 0.38 0.38 0.333 0.0.34
Spontaneous clustering with AIC 094 034 032 028 0.27 60.2
K-means with CH 095 0.25 023 021 0.21 0.21

K-means with Gap 0.22 0.16 049 023 041 0.21

Figure 7: (a) Two clusters. (b) Same as (a) but colored acugtd cluster.
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Figure 8: (a) Value of AIC. (b) Number of clusters.

Table 3: Frequencies of Choosing Clusters.

K

1

2

3456 7 8 9 10

Spontaneousclustering 0 100 0 0 0 0 0 0 O

MBC

0

61

13 3 4 4 3 4 5 3

Table 4: Mean Value of BHI and DM1, DM2, DV1, and DV2.

BHI

DM1 DM2 DVl Dv2

Spontaneous clustering 1.00 0.12 0.20 0.33 0.58

MBC

0.99

0.10 0.16 0.22 0.48
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Romano-British pottery
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Figure 9: Scatterplot matrix of data on Romano-British @ott The red, blue, and

greed circles correspond to the three regions.

Table 5: Result of the Spontaneous Clustering.

Method ~ Number of clusters BHI

Range 0.63 3 1

AIC  0.35 3 0.96
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Figure 10: (a) AIC and number of clusters. (b) CH. (c) Gap.
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