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Abstract
Outside the laboratory, human movement typically involves redundant effector systems. How the
nervous system selects among the task-equivalent solutions may provide insights into how
movement is controlled. We propose a process model of movement generation that accounts for
the kinematics of goal-directed pointing movements performed with a redundant arm. The key
element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives
input from a neuronal timer that paces end-effector motion along its path. Within this dynamics,
virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity
vectors that do not. Moreover, the sensed real joint configuration is coupled back into this
neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations
from the dynamic movement plan. Experimental data from participants who perform in the same
task setting as the model are compared in detail to the model predictions. We discover that joint
velocities contain a substantial amount of self-motion that does not move the end effector. This is
caused by the low impedance of muscle joint systems and by coupling among muscle joint
systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We
establish a link between the amount of self-motion and how curved the end-effector path is. We
show that models in which an inverse dynamics cancels interaction torques predict too little self-
motion and too straight end-effector paths.

1 Introduction
Understanding how organisms generate voluntary, goal-directed movements is one of the
most difficult problems in theoretical neuroscience and remains largely unsolved. At the
core of the problem is the fact that movement necessarily involves multiple levels of neural
control, which are tightly interrelated and none of which can easily be neglected. Minimally,
understanding how the nervous system moves an effector toward a target entails
understanding how movements are prepared, timed, and controlled. That movements are
prepared, in part at least, before they are initiated is reflected in the fact that the time to
movement initiation varies with the amount of information available about an upcoming
movement (Rosenbaum, 1980; Ghez et al., 1997). Movement trajectories reflect global
properties of the movement task from the very beginning, for instance, in that the end
effector moves in the direction of the target from the start of the movement. At the neuronal
level, activity in motor, premotor, and parietal cortex precedes movement initiation and
depends on movement parameters such as the direction and extent of end-effector motion
(Moran & Schwartz, 1999; Georgopoulos, 1995; Sergio & Kalaska, 1998; Cohen &
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Andersen, 2002). Movement plans may, however, be updated anytime before movement
initiation, as well as during the movement (Goodale, Pélisson, & Prablanc, 1986). This
occurs involuntarily with a delay of about 100 ms when movement targets are spatially
displaced. Even relatively abstract codes for movement goals may be updated at longer
delays (Pisella et al., 2000). Movements are timed in the sense that the effector is at the right
location at the right time (Schöner, 2002; Warren, 2006). Timing is central to coordination,
in which the trajectories of different effectors are kept aligned temporally. Interlimb
coordination is important for both rhythmic (Turvey, 1990; Kelso, 1995) and temporally
discrete motor acts (Kelso, Southard, & Goodman, 1979; Kelso, Tuller, Vatikiotis-Bateson,
& Fowler, 1984; Gracco & Abbs, 1986). Finally, physically moving an effector entails
generating forces and torques, which accelerate and decelerate effectors. Movements are
controlled in the sense that muscles and joints are harnessed to generate the desired physical
trajectory of the effector system. This entails dealing with constraints internal to the
biomechanical system such as inertia, interaction torques, and Coriolis forces, but also to
external factors such as gravity or external force fields (Jordan, 1990).

A central difficulty to understanding movement generation comes from the fact that
movement preparation, timing, and control are closely and mutually coupled. Changes in a
movement task typically imply changes of the values of movement parameters, changes to
the timing of the movement, and changes to the torques encountered during execution of the
movement. Exposing an effector to an external force field induces adjustments not only at
the control level, but also of movement timing and movement parameters (Gribble & Ostry,
2000). No single perturbation of a movement exists that would only affect one of the three
aspects of movement generation. A mechanical perturbation, for instance, not only triggers
control action but may also reset the timing of the movement (phase resetting; see
Yamanishi, Kawato, & Suzuki, 1979) and lead to updated movement parameters, generating
corrective actions. Theories of movement generation must therefore address integration
across these different levels of motor control.

The integrative nature of movement generation is reflected in the tight coupling of the
associated neuronal processes, which are distributed across many neuronal structures. The
timing of motor acts is, for instance, affected by feedback loops through the motor cortex
and the cerebellum, as well by spinal pattern generators and feedback loops back to the
motor cortex (Houk & Wise, 1995; Barto, Fagg, Sitkoff, & Houk, 1999; Graziano, 2006;
Desmurget & Turner, 2008). Parietal, premotor, and motor cortex are all involved in
extracting movement parameter values, including their updating when sensory information
about target locations or current hand position changes (Georgopoulos, Kettner, & Schwartz,
1988; Georgopoulos, Taira, & Lukashin, 1993; Schwartz, 1993, 1994). Control in the face of
external force fields implicates both the cerebellum and motor cortex (Wolpert, Miall, &
Kawato, 1998).

Dynamical systems ideas seem particularly well suited to deal with such rich internal
coupling. Dynamical field theory, which is based on the dynamics of neuronal populations
in cortical and subcortical structures (Erlhagen, Bastian, Jancke, Riehle, & Schöner, 1999),
has provided an account of how movements are prepared and updated (Kopecz & Schöner,
1995; Erlhagen & Schöner, 2002). The same framework has been successfully used to
understand the processes governing the initiation and termination of movements (Kopecz,
1995; Trappenberg, Dorris, Munoz, & Klein, 2001; Wilimzig, Schneider, & Schöner, 2006).
The timing and coordination of movements can be understood in terms of coupling among
the neuronal dynamics controlling individual degrees of freedom (Schöner & Kelso, 1988;
Kelso, 1995; Grossberg, Pribe, & Cohen, 1997; Schöner, 2002). The level of control is
naturally described in the language of dynamical systems. While much work on control
remains at an abstract, computational level (Todorov & Jordan, 2002), the perspective exists
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to link this language to neuronal structures (Scott, 2004; Shadmehr & Krakauer, 2008).
Detailed neuronal grounding has been provided only for the simplest impedance properties
of individual joint muscle systems (Feldman, 1966; Mussa-Ivaldi, Hogan, & Bizzi, 1985;
Feldman, Adamovich, Ostry, & Flanagan, 1990).

Our strategy in this letter is to remove from movement systems the artificial constraints that
induce unique relationships between the different levels of movement generation. The vast
majority of experiments on human movement have made use of nonredundant effectors, in
which a unique solution exists for the given motor goal. In most real-life movement tasks,
however, the human movement system is kinematically redundant, that is, there are more,
sometimes many more, mechanical degrees of freedom than task variables. For instance,
reaching to a 3D position to point or position the hand requires only three degrees of
freedom (or six if the hand is to be oriented in specific ways). But the upper arm alone
contains seven degrees of freedom. Natural movement involves the shoulder blade and
portions of the upper body, leading to 10 or more degrees of freedom (Yang & Scholz,
2005; Tseng, Scholz, & Hotchkiss, 2003). Similarly, in upright stance, only the Cartesian
position of the center of mass is critical to remaining mechanically stable, but many joint
angles contribute to setting that position (Hsu, Scholz, Schöner, Jeka, & Kiemel, 2007).

Only recently have movement scientists begun to systematically exploit the inherent
redundancy of the movement apparatus to analyze how movement is controlled (Scholz, &
Schöner, 1999; Scholz, Schöner, & Latash, 2000; Admiraal, Medendorp, & Gielen, 2002;
Tseng, Scholz, Schöner, & Hotchkiss, 2003; Todorov & Jordan, 2002, 2003; Torres &
Zipser, 2004). (For precursors to this work, see, e.g., Ivaldi, Morasso, & Zaccaria, 1988;
Cruse, Bruwer, & Dean, 1993; Haggard, Hutchinson, & Stein, 1995.) Our strategy in this
work is to make use of the inherent redundancy of effector systems to give the central
nervous system some freedom for how to realize a given movement task. The idea is to learn
from the decisions of the nervous system, from its choices to stabilize some variables and
not others, and from the correlations and trade-offs induced by such choices (Schöner,
1995).

The goal of this letter is to develop a key element of an integrative theory of movement
generation that addresses how multiple degrees of freedom are harnessed to achieve a motor
task. The theory is framed within dynamical systems thinking; it is process oriented and
consistent with physiological principles. Choosing the simplest redundant system accessible
in both experiment and theory, we report experimental data on pointing movements in a
two-dimensional end-effector plane with a four-degree-of-freedom arm. A neuronal
dynamics forms the core of our theoretical model, from which we will derive kinematic
features, including the end-effector paths and trajectories, the joint velocities, and, in
particular, self-motion (the component of the joint velocity vector that does not move the
end effector), and compare these to the experimental data. We will selectively manipulate
our model to examine the contributions of different theoretical assumptions to the observed
movement features. Finally, we will implement a number of alternative theoretical accounts,
including models with inverse dynamics, and will show how these alternatives fail to
explain the observed kinematic features of redundant arm movement. In a separate work, we
will study movement variability and correlation, including the uncontrolled manifold
structure of the variance of joint motion (Martin, Schöner, & Scholz, 2007).

2 Model
2.1 Survey of the Model and Its Neuronal Embedding

To model the generation of discrete goal-directed movements, we need to specify the
processes of movement preparation, movement initiation, timing, virtual joint trajectory
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formation, and the muscle joint and biomechanical dynamics. Our strategy is to use as much
as possible available models for those parts of movement generation that have been studied
previously and to thus limit innovation to the core problem of organizing the redundant
degrees of freedom. Figure 1 provides a survey of the model, together with its
neurophysiological embedding. The neuronal substrate for the processes governing
movement generation is highly distributed, and many components of the neural systems
have overlapping function. Because the mapping of motor function onto neuronal structures
is not one-to-one, the figure provides only a first rough sketch, which we will elaborate on
below.

Reaching requires information about the scene, which typically comes from the visual
system and includes information about both the identity of objects (ventral stream) and
about the pose and position of objects (dorsal stream) (Milner & Goodale, 1995). Pose
information must be transformed from visual coordinates into body-related coordinates, a
task achieved by neural populations in the parietal cortex (Andersen, Snyder, Bradley, &
Xing, 1997). The parietal cortex is also involved in using visual and pro-prioceptive
information to estimate the spatial position of the hand (Gréa et al., 2002). The neural
processes underlying these transformations remain outside the scope of the present model
(see Simmering, Schutte, & Spencer, 2008, for a dynamic field account of such spatial
representations). The outcome of these processes is modeled simply by assuming that
estimates of the spatial coordinates of movement targets as well of the initial spatial position
of the end effector are continuously available.

Preparing a goal-directed movement involves extracting from such spatial information the
values of the movement parameters, most prominently direction and extent. In the presence
of multiple possible movement targets, movement preparation also involves selection of one
particular movement and suppression of the neuronal activation representing distracter
targets. Premotor and motor cortex are involved in both of these aspects of movement
preparation (Georgopoulos, Schwartz, & Kettner, 1986; Cisek & Kalaska, 2005), as well as
in integrating prior information about upcoming movements (Bastian, Riehle, Erlhagen, &
Schöner, 1998; Bastian, Schöner, & Riehle, 2003). The model does not address the
processes of movement preparation, which has been treated in previous work using the same
theoretical framework (Kopecz & Schöner, 1995; Erlhagen & Schöner, 2002). Instead, the
values of movement parameters’ direction and extent, as well as the desired movement time,
are assumed given.

Movement initiation and termination involves a wide array of brain areas, as observed, for
instance, when brain activity during discrete movement is contrasted with brain activity
during rhythmic movement of the same effector (Schaal, Sternad, Osu, & Kawato, 2004). A
comparatively precise understanding of initiation and termination has been achieved for
saccadic eye movements in terms of the interaction between neural populations responsible
for fixation and populations responsible for generating visually induced saccades (Dorris,
Pare, & Munoz, 1997). Goal-directed pointing movements show some of the same
signatures, suggesting similar mechanisms (Bekkering, Pratt, & Abrams, 1996). Theoretical
accounts for this mechanism have been provided in the language of neuronal dynamical
fields in terms of inhibitory interactions among the two relevant neuronal populations
(Kopecz, 1995; Trappenberg et al., 2001; Wilimzig et al., 2006). As the processes of
initiation and termination of a discrete movement are not the main focus of this letter, we
model these processes through a simplified version of these accounts, in which the two
populations responsible for fixation and movement are described by two competing
dynamical activation variables.
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Motor and premotor cortex are involved not only in the specification of movement
parameters, but also in the generation of the time courses of goal-directed movements
(Graziano, Taylor, Moore, & Cooke, 2002; Hatsopoulos, Xu, & Amit, 2007). The precise
manner in which this happens is still largely unknown. What is clear is that a closely
coupled ensemble of neural populations in motor cortex and the cerebellum with thalamus as
a way station are involved, the basal ganglia playing a regulatory role as well (Houk &
Wise, 1995). Motor cortex also interacts with spinal pattern generators (Drew, Kalaska, &
Krouchev, 2008; Poppele & Bosco, 2003). The importance of the cerebellum for the timing
of voluntary movements is clear from neuropsychological studies (Ivry, 1997). In fact, one
account for cerebellar function conceives of the cerebellum as a neuronal mechanisms for
the precise measurement of time (Braitenberg, Heck, & Sultan, 1997). Another view is that
the cerebellum is a predictor of the sensory consequences of motor commands, a form of
forward model (Wolpert et al., 1998). This conception is not necessarily in conflict with the
former view, as predicting the time course of movements is what a forward model is
essentially about. Much of the evidence about internal models derives from studies of how
movement generation adapts to unknown force fields. Because we do not address such
adaptation, we can use a simplified model of movement timing. Our functional description
of these distributed but closely coupled populations of neurons takes the form of a neuronal
oscillator, which can be started and stopped by the initiation system (Schöner, 2002). The
critical assumption is that the oscillator generates and predicts the time course of end-
effector motion along its movement path. Evidence that movement timing resides at the task
level comes, for instance, from studies in which the spatial pattern of coordination between
end effectors, not the pattern of joint motions, determines the stability of relative timing
(Mechsner, Kerzel, Knoblich, & Prinz, 2001).

The specific joint configuration used to realize a goal-directed movement is reflected in
motor cortical activation (Scott & Kalaska, 1995). We believe that a core function of motor
cortex is to transduce the neuronal trajectory that predicts task-level motion into joint-level
activation patterns, although reciprocal coupling with downstream structures is likely to play
an important role as well (Graziano, 2006). The core of our model describes this
transduction as a neuronal dynamics of a virtual joint configuration vector, which is driven
by the virtual end-effector trajectory generated by the timing system. Two central
assumptions structure this system. First, we postulate that within this neuronal dynamics of
joint configurations, task-relevant combinations of degrees of freedom that affect the end
effector are decoupled from task-irrelevant combinations of degrees of freedom that do not
affect the end effector. Second, estimates of the real joint configuration are assumed to
couple into this neuronal dynamics within the subspace of task-irrelevant combinations of
degrees of freedom. We refer to this input as back-coupling from the effector level. It
updates the trajectory of the virtual joint configuration within the null-space of end-effector
motion, enabling the neuronal dynamics to yield to changes of joint configuration that do not
affect the real end-effector path. The neurophysiological basis for such back-coupling may
come from proprioceptive coupling into spinal networks mediated by Ia-interneurons and
Renshaw cells (see, e.g., a similar mechanism proposed by Latash, Shim, Smilga, &
Zatsiorsky, 2005) as well from transcortical loops that remap the functional relationship
between cortical and spinal networks (Graziano, 2006).

Any theory of movement generation must take into account that the ensemble of muscles
that converge on a joint, together with local spinal as well as transcortical feedback loops,
endows joints with impedance properties that have an impact on how effector systems
respond to motor commands (Asatryan & Feldman, 1965; Feldman, 1966; Hogan, 1985;
Mussa-Ivaldi et al., 1985; Feldman & Levin, 1995; Ostry & Feldman, 2003). We model the
active generation of torques by these distributed neural systems of joint muscle control using
a simplified version of an established model (Gribble, Ostry, Sanguineti, & Laboissière,
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1998). All muscles acting on a joint are lumped together and controlled by the associated
virtual joint position and velocity. Multiarticular muscles are modeled by coupling among
joint torques. Finally, the kinetics and kinematics of the arm are modeled using standard
techniques.

2.2 Task Setting
Both model and experiment involve the task of moving a pointer tip (end effector) from a
start location to a target location at a comfortable speed. Start and target locations lie in a
two-dimensional horizontal plane. Configurations of the arm are also restricted to that plane,
so that effectively only four degrees of freedom are available. In principle, each associated
joint angle (sternoclavicular joint, shoulder, elbow, and wrist) can be moved individually,
although these degrees of freedom are effectively coupled both mechanically and at the level
of neural control. In this task, the effector system is redundant because only two degrees of
freedom are required to achieve a particular location of the end effector in the plane (see
Figure 2). Four different end-effector paths defined between three different starting locations
and two different target locations sample the work space coarsely. In addition, two of the
movements were performed with two different initial arm configurations, leading to six
different movement conditions (experimental details are provided in section 3).

2.3 Movement Parameters
Based on this task setting, we assume that estimates of the movement parameters are
available. The initial position of the end effector and the target location determine the
amplitude of end-effector motion, Ui, along the two Cartesian directions i = 1, 2. The desired
movement time, T, is also assumed given.

2.4 Movement Initiation and Termination
Two activation variables represent the movement state (um) and the resting or fixation state
(ur). These variables evolve as described by a competitive neuronal dynamics:

(2.1)

Here, h is a negative resting level of neural activation. Inputs Im and Ir bias the system
toward initiating movement or resting. These inputs depend on the predicted state of the end
effector, and this dependence turns the movement state off at the end of the movement (see
appendix D for details). Inhibitory coupling between these two activation variables,
mediated by a sigmoidal nonlinearity, σ (u) = 1/(1 + exp[−ar u]), makes that only one of the
two variables can be activated at the same time.

2.5 Timing
We model the distributed neural networks that generate the time course of the end effector
along its path by a single, lumped neuronal oscillator. The two-dimensional timing signal,
u(t) = (u1, u2), determines the virtual end-effector velocity, v(t) = (v1, v2), through

(2.2)

so that the virtual end-effector velocity tracks the timing signal. The indices refer to the two
Cartesian components of the end effector, and βv is a positive constant. Although it is not
neuronally realistic, we use the Hopf normal form (Perko, 1991) as the simplest
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mathematical representation of a stable limit cycle oscillator that stands for a class of
neuronal dynamics that exhibit this type of solution (Schöner, 2002). For each (“excitatory”)
component, u, the Hopf equation contains a second (“inhibitory”) component, z:

(2.3)

Herein, the Hopf equation,

(2.4)

generates a stable limit cycle solution with cycle time, T = 2π/ωh, relaxation time, 1/2αh, and
amplitude, Ui. This oscillator is active while the initiation system is in the movement state (σ
(um) = 1). When the resting state is activated (σ (ur) = 1), the timing signal has a stable fixed
point at u = 0.

2.6 Neural Dynamics of the Virtual Joint Configuration
In this core module of our model, the timing signal, u(t), is transformed into a virtual joint
trajectory, λ (t). This requires inversion of the Jacobian equation,

(2.5)

where J[λ(t)] is the Jacobian matrix built from the partial derivatives of the kinematic model
(see appendix A). Because the effector is redundant, the equation is not invertible, however.
To understand the implications of redundancy, it is useful to visualize the kinematic model
of the effector around a given virtual joint configuration, λ. Figure 2 illustrates how the same
end-effector position can be achieved by multiple joint configurations. The ensemble of joint
configurations that leads to the same end-effector position forms a manifold, sketched in
Figure 2 on the right. This is the “uncontrolled manifold” (Schöner, 1995), shown in earlier
work to structure the variance of multijoint movement (Scholz, & Schöner, 1999; Scholz et
al., 2000). Any change of joint configuration along this manifold does not change the
position of the end effector, while configuration changes away from the manifold do change
the end-effector position.

Instantaneous joint velocity vectors that are tangential to the manifold generate so-called
self-motions, that is, internal motions of the joint configuration that leave the end-effector
position unchanged. At a given joint configuration, λ, the linear space spanned by vectors
tangent to the manifold is the null-space of the Jacobian, J(λ) (see Figure 2, right). Basis
vectors of the null-space are nontrivial solutions of J · λ ̇ = 0. In the present case, v is two-
dimensional and λ ̇ is four-dimensional, so that the null-space is two-dimensional (except at
singularities of the effector). Two basis vectors that span the null-space can be determined as
the columns of the matrix, E, which solves J · E = 0. The null-space and its orthogonal
complement, the range space of the Jacobian, divide the space of virtual joint velocities into
two subspaces (see Figure 3, left). Note that these subspaces depend on the joint
configuration at which the Jacobian is computed.

Given the virtual joint velocity, λ ̇, the associated self-motion is
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(2.6)

This equation can be joined to the Jacobian equation 2.5 to form an augmented Jacobian
equation,

(2.7)

in which an explicit description of self-motion, s, is added to the virtual end-effector
velocity, v. This augmented Jacobian equation is invertible:

(2.8)

where the matrix, J+, is the Moore-Penrose pseudoinverse (see, e.g., Murray, Li, & Sastry,
1994). This equation decomposes the joint configuration velocity, λ ̇, into two components:
J+ · v is the range-space and E · s the null-space component (see the left panel of Figure 3).

The key idea of our model is to use this inversion to derive a dynamical system from which
the virtual joint trajectory emerges as a solution. The appropriate equation,

(2.9)

is obtained by taking the time derivative of equation 2.7. In this formulation, the dynamics
in the two subspaces of range-space and null-space motion are decoupled! The range-space
dynamics generates motion that tracks the timing signal via equation 2.5. The vector field is
assumed to be much weaker within the uncontrolled manifold (see the right panel of Figure
3), leading to reduced stability of joint configurations that lead to the same end-effector
state. We test different hypotheses for this component of the dynamics. The most radical
formulation of “uncontrol” is that ṡ = 0, so that virtual self-motion is not stabilized at all.
Any initial self-motion will continue undamped. This is clearly not realistic (joint
configurations could reach joint limits, for instance) but is nevertheless a useful limit case.
The more general hypothesis may be formulated mathematically as

(2.10)

This hypothesis says that when the estimated real joint configuration, θ d, deviates from the
virtual joint configuration, λ, this leads to an update of the virtual joint configuration within
the null-space of the Jacobian (brought about by projecting the difference onto the basis
vectors of the null-space, ET). The same kind of mechanism may occur at the level of joint
velocities (second term). The real joint configuration must be sensed and estimated, leading
to processing delays (index d; see appendix D for details). This form of back-coupling of the
real into the virtual joint configuration dynamics implies both stabilization of the joint
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configuration within the uncontrolled manifold (through the terms dependent on λ and λ ̇)
and driving virtual self-motion (when the terms (λ – θd) and (λ ̇ – θ ̇d) are different from
zero). The projection of the back-coupling term onto the null-space ensures that the
dynamics within the space of self-motion depends on only the components of λ and λ ̇ within
that subspace, so that the range-space and null-space remain decoupled.

That this neuronal dynamics is a closed description in the space of the virtual joint
configuration λ and velocity λ ̇ is seen by replacing all references to the end-effector velocity,
v, and the self-motion velocity, s, by virtual joint velocities using equations 2.5 and 2.6:

(2.11)

To implement the model, the matrices J(λ), E(λ), J̇( λ), and ĖT(λ) are computed
analytically.

2.7 Muscle-Joint Model
The virtual joint configuration λ and velocity λ ̇ drive the muscle joint systems. These are
modeled by reducing a detailed, nonlinear muscle model (Gribble et al., 1998) to its
essentials, limiting the number of parameters. First, we fuse all muscles acting onto a given
joint into an effective muscle joint model that covers both agonist and antagonist activity. As
a result, the descending commands are condensed into the virtual joint angle, λ(t), and
virtual joint velocity, λ ̇ (t). The state-dependent generation of muscle torques at a given
joint, i, can then be characterized by a single function,

(2.12)

(listed in appendix C), where θ(t) and θ ̇(t) are the real joint angle and velocity. At rest and in
the absence of external forces, the muscle joint system is at equilibrium at T = 0 and θ = λ.
Depending on the time course of the virtual joint trajectory, λ(t) and on the biomechanics of
the arm, the realized joint trajectory may deviate significantly from the virtual trajectory.
This is why taking into account the nonlinear dependence of muscle force generation on
muscle state is important (Gribble et al., 1998).

Approximations consist of neglecting the time-delaying effect on force generation of the
muscle calcium kinetics and rewriting the velocity-dependent function (damping), which led
us to characterize the muscle active state directly by λ and λ ̇ following Lussanet, Smeets, &
Brenner (2002). Our muscle model accounts for the dependence of active torque on the joint
velocity (θ ̇) as in Gribble et al. (1998) and Hogan (1984). Because the damping effect of
muscles is proportionally larger at low velocities than at high velocities (Gielen, Houk,
Marcus, & Miller, 1984; Houk, Fagg, & Barto, 2002), a nonlinear velocity-dependent
function is added. The main constraint for modeling damping is its role in leading to a
smooth transition to rest at the end of the movement, which is not critical for our results.

The different muscle joint systems at every joint are not independent of each other due to
multiarticular muscles, which generate torques at multiple joints. Multiarticular muscles
enable the central nervous system to manipulate end-effector stiffness and are thus
functionally significant for the control of the end-effector (Hogan, 1985). This
biomechanical property is reflected in the experimentally measured stiffness values that we
use to approximate realistic parameters for the model (Tsuji, Morasso, Goto, & Ito, 1995;
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Gomi & Osu, 1998; see appendix E). To capture the co-change of torques induced by
multiarticular muscle activity, we introduce a coupling matrix, Z, between the physical
torques at all joints, Tm, and the vector of muscle joint torques, (T1, … T4),

(2.13)

The matrix, Z, is listed in appendix C.

2.8 Arm Kinematics and Kinetics
The kinematic model of the arm links the end-effector position in a Cartesian coordinate
system, x = (x, y), to the joint configuration, θ = (θ1, θ2, θ3, θ4)T:

(2.14)

(the upper index T indicates the transpose, so that the joint configuration is a column vector;
the equations are listed in appendix A). The model is derived assuming an articulated rigid
body with four revolute joints whose axes of rotation are perpendicular to the two-
dimensional plane of motion.

The equations of motion of the arm are derived from the Lagrangian equations within the
Screw theory framework (Murray et al., 1994). The general form of these equations is

(2.15)

where M(θ) is the inertial matrix of the rigid body, H(θ, θ ̇) is the vector of interaction
torques (coriolis and centrifugal forces), and Tm is the vector of active torques generated at
the skeleton joints by muscle forces (all terms are listed in appendix B).

2.9 Simulations
The model was implemented in Matlab version 13 (2002) using the numerical Euler method
to solve the differential equation. Appendixes E and C list the parameter values of the model
used for all movements anywhere in the work space.

3 Experimental Methods and Analysis
Participants in the experiments were three healthy individuals from the University of
Delaware community, 21 to 35 years of age. Participants gave informed consent before
participation. All participants were right-handed and reached with their right arms to the
targets.

3.1 Procedure
Participants sat on chair with a high backrest. Their trunk movements were restrained by a
harness about their chest that was attached to the chair. They wore a hand splint with a
stylus, the tip of which was aligned with the position of an extended index finger. Reflective
spherical markers (1.5 cm in diameter) were placed on bony landmarks of the participants:
(1) the sternoclavicular joint, (2) just below the lateral tip of the acromion, (3) the lateral
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epicondyle of the humerus, (4) the radial styloid process of the wrist, and (5) the tip of stylus
fixed to the hand brace. Markers were also placed at the centers of the targets. All markers
lay in the same horizontal plane.

There were six conditions involving two target locations, positioned at 90% of each
subject’s arm length. The right target was located at an angle of 40 degrees to the right of a
line passing forward through the right acromion process. The left target was positioned 40
degrees to the left of this line, requiring the participants to reach across their body. Two
starting pointer locations were used in which the stylus marker was 7.8 cm anterior to either
the sternum marker or the right acromion. The third starting location was selected to be at 20
degrees to the left and at 50% of each subject’s arm length.

The table height was set so that the right arm rested on it in the horizontal plane when in the
starting position. When the pointer was in the right-most and left-most starting position, two
different initial joint configurations were used in separate conditions. Movement time (MT)
was kept constant by using a Lafayette Instrument time that provided feedback after every
trial. Subjects were asked to reach as quickly and accurately as possible. The movement
time was determined during test trials, and that time was maintained for the actual
experiments. Trials for which participants deviated by more than 5% from the target MT
were repeated. The participants were instructed to reach the target with the tip of the stylus.
Emphasis was on both spatial accuracy (“try to touch the center of the target”) and temporal
accuracy (“try to reach the target in the designated time”). Additionally, they were instructed
to perform the reaching with one continuous movement, with no intentional pauses during
the movement.

Before the actual data collection session, participants were given a practice session with
verbal feedback provided by the experimenters on spatial as well as temporal accuracies of
reaching. In the actual data collection session, kinematic data of the markers were collected
by the VICON-370 motion measurement system at a sampling frequency of 120 Hz. The
collected data were then filtered in both directions using a fourth-order Butterworth low-
pass filter with a cut-off frequency of 5 Hz. Each participant performed 25 reaching
movements for each experimental condition.

In order to compute the mean end-effector trajectories and self-motion in experiments,
movements must be matched in time from one trial to the next (see also Figure 6). The
beginning of the movement was defined as the time when end-effector velocity first reached
1% of its peak value. The end of the movement was defined as the time when end-effector
velocity fell below 3% of its peak. Trajectories are time-warped to match the mean
movement time in both experiment and simulated data.

3.2 Self-Motion Analysis
Self-motion, S, is the component of the joint velocity vector within the null-space of the
Jacobian. It was computed by projecting velocity vectors, θ ̇, onto the basis vectors e1 and e2
(that form the columns of E) at each time sample, t, and for each trial, n:

(3.1)

The associated range space component is
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(3.2)

The amount of self-motion and range-space motion was computed by taking the mean across
trials of the lengths of these vectors. No normalization relative to the number of degrees of
freedom was needed, as both subspaces have the same dimensionality of two.

4 Results
To compare experiment and theory, we look at features of end-effector paths, end-effector
trajectories, and joint trajectories with particular emphasis on self-motion. In each case, we
present experimental data from all participants to illustrate reproducible patterns. In addition
to presenting reasonable fits of these data at one constant plausible set of parameter values
of the model, we examine the role of different components of the model by making targeted
changes to demonstrate how these affect simulated patterns of movements. These
manipulations include, for instance, introducing a component that mimics perfect inverse
dynamics or setting high-impedance value for the muscles.

4.1 End-Effector Paths
The end-effector paths observed in experiment (left three panels in the top row of Figure 4)
deviate from idealized straight line paths (Morasso, 1981). For most of the movements, the
end-effector paths are slightly but consistently curved. This curvature depends on the
position in the work space and is qualitatively reproducible across participants. Only
movement 4 has an almost straight end-effector path. The variability from trial to trial for
each participant is considerable, but does not wash out the consistent pattern, so that end-
effector path curvature is a robust feature of these pointing movements. The model (see the
top right panel of Figure 4) generates curved paths that qualitatively match the observed
pattern in experiment except for movement 6, for which our parameter setting for impedance
was too far off (see Figure 10 below, where increased impedance removes the problem).
Recall that the simulations use a single reference parameter set (see appendix E), which was
determined to be consistent with physiological values and to achieve a rough match of the
experimental data. We did not explicitly fit data for every movement and every subject
independently and thus neglected that impedance values may vary in space and time (Tsuji
et al., 1995; Gomi & Osu, 1998) or across subjects. Note also that the model does not show
constant terminal errors, as movement planning is not addressed (but see Erlhagen &
Schöner, 2002).

In the model, the virtual end-effector path can be computed from the virtual-joint path, λi(t),
on the basis of the kinematic model of the effector. The virtual paths are straight line
segments whatever the position in the work space. This demonstrates that the work space
dependence of the curvature of the real end-effector path is not a consequence of movement
planning in the model. Conversely, the virtual end-effector paths are not isomorphic with the
real end-effector paths. In the model, the curved end-effector paths come from the relatively
sluggish control at the muscle joint level that results when physiologically realistic
parameter values for the muscle model are chosen. This is demonstrated in Figure 10B in
which an increase of muscle impedance by a factor of 10 leads to unrealistically straight
end-effector paths. We come back to this issue below.

The curved end-effector paths are thus signatures of imperfect control, that is, of a failure to
realize the straight virtual end-effector path. Given sluggish muscle joint systems, two
factors may contribute to this deviation from the plan: biomechanical coupling among the
joints through interaction torques and muscular coupling among joints through multiarticular
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muscles. Manipulating these factors leads to characteristic changes also at the level of the
joint trajectories, so we return to their role later in this section, around Figure 10. The upshot
will be that perfect compensation of interaction torques and reduction of muscular coupling
leads to straight end-effector paths invariantly within the work space and contrary to the
experimental data.

How does redundancy play into the end-effector path? A given end-effector path can be
realized by a multitude of task-equivalent joint configurations. The biomechanics of the arm,
including the interaction torques, as well as the contributions of biarticular muscles, depend
on joint angles, speed, and accelerations. The control problem is thus different for different
arm configurations. Given the imperfections of the muscle joint control system, we may
expect that such differences may lead to differences in the end-effector paths as well.

This hypothesis was tested in the experiments and in the model by imposing two different
sets of initial arm configurations with identical end-effector position. In experiment, the
starting joint configurations were chosen so that they could be reproducibly imposed and
were comfortable for the participants, which limited the range of joint angle variation. Table
1 lists the mean joint angles for the starting configurations for the two pairs of movements
considered. The model made use of these values as initial conditions for the joint angles.
Note that the end-effector location was nearly identical for the two initial postures.

The bottom row of Figure 4 depicts the mean end-effector paths for the three subjects for the
two movements with two initial configurations (1 and 2 are a pair, as are 4 and 5) as well as
the associated simulations. In both cases, the end-effector paths are not qualitatively
different for the two initial configurations, only small quantitative differences being
observable (for movements 4 and 5, differences are in some cases essentially due to a slight
shift of the end-effector starting position). This pattern of results is reproduced by the model
at the reference parameter set. Thus, the model accounts for the observed motor equivalence
of the two initial configurations. Apparently, although muscular control is sluggish in the
model, the differences in biomechanical and muscular conditions that can be generated by
reasonable variations of joint configuration are not sufficient to induce significant changes
in end-effector control. Note that the model does not include compensatory mechanisms for
interaction torques and muscle interjoint coupling, so in the model, motor equivalence must
ultimately break down. We have verified that end-effector paths start to deviate when the
initial joint configurations are made much more different from each other, beyond the range
reachable in humans. Thus, the observed motor equivalence is not evidence for inverse
dynamics or other forms of compensation for joint coupling. At realistic physiological
conditions and within the range of realistic joint configuration variations, sluggish control
does not lead to sizable effects on the end-effector path.

4.2 Joint and End-Effector Trajectories
In the model, kinematic invariance of end-effector path under changes of effector
configuration comes from the decoupling between joint velocity combinations that move the
end-effector and joint velocity combinations that do not (see equation 2.9). A direct
illustration of this principle is shown in Figure 5. In the left panel, the four joint trajectories
are shown as time series together with the associated virtual joint trajectories, λi(t). Only
when the real and virtual joint trajectory differ is muscular activity induced and torque
generated. The real joint trajectory therefore lags behind the virtual trajectory. The amount
of lag depends on biomechanics and muscle properties. This distance between real and
virtual joint trajectory is largest for the most proximal joint 1, which accelerates against the
largest inertial moment, while a smaller distance is sufficient to move the distal joint 4 that
encounters very little inertia. Thus, the real joint trajectories are not simply time-shifted
copies of the virtual joint trajectories.
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In the middle panel of Figure 5, an additional acceleration is inserted into the null-space
during the movement phase (ṡ = 5, s(0) = 0 in equation 2.9). This leads to different virtual
joint trajectories and consequently also to different real observed joint trajectories. Because
the virtual joint trajectories are decoupled across the two subspaces of null- and range-space,
the associated virtual end-effector trajectories are exactly identical in both conditions. This
is also true for the real end-effector trajectories shown in the right panel of Figure 5. The
overlaid traces from the two conditions are nearly in distinguishable. This is true even
though dynamical conditions differ when motion in the null-space is induced. In fact, when
unrealistically large amounts of self-motion are imposed, motor equivalence breaks down.
Within a realistic range of kinematic conditions, however, motor equivalence prevails in the
face of kinetic differences.

To examine the time courses of movements more closely, we must first address differences
in movement time that occur in experiment. The left panel of Figure 6 shows the absolute
value of end-effector velocity in time for different trials from a single participant. End-
effector velocity profiles are smooth and bell shaped, invariantly across work space and
participants (not shown). Trials differ by the total duration of the movement. The associated
velocity profiles have the same shape but are rescaled in time. To compute mean
trajectories, such differences in movement duration must be corrected by aligning and
warping individual trajectories (see section 3). The right panel illustrates typical end-effector
velocity profiles obtained from the model, which are also bell shaped and invariant across
work space and match experimental velocity profiles.

The two-dimensional end-effector velocity trajectory reflects the curved end-effector paths.
One way to look at that is to decompose the end-effector velocity into a component along
the straight line from the initial to the target position and a component perpendicular to that
direction. Figure 7 shows these two components of end-effector velocity for the three
participants in the experiments and for the model at the reference parameter set for
movements 1 and 4. The curved movement 1 has a sizable velocity component
perpendicular to the straight path, while the relatively straight movement 4 does not. Both
are captured by the model.

4.3 Self-Motion
How do joint motions generate the end-effector trajectory? In a redundant system, joint
velocity vectors can be decomposed into two components. Combinations of joint velocities
that lie in the range space of the Jacobian move the end effector. Combinations of joint
velocities that lie in the null-space of the Jacobian do not move the end effector. Arm motion
that involves only such combinations of joint velocities that lie entirely within the null space
of the Jacobian does not move the end effector at all. This amounts to a purely internal
motion of the redundant effector, also called self-motion. The observation of self-motion
provides evidence that the redundant degrees of freedom are in fact used during movement
tasks that involve the end effector.

To quantitatively assess self-motion, we decompose the observed real joint trajectories into
these two components (see section 3) and determine at every moment in time the lengths of
these two joint velocity vectors representing the amounts of range-space motion and of self-
motion. Because both subspaces are two-dimensional in the system studied here, there is no
need to normalize these values to the dimensionalities of the two subspaces. Each row in
Figure 8 shows time series of these two components of motion.

The first thing to notice is that there is a considerable amount of self-motion in all cases and
for all subjects. The relationship between the amount of self-motion and the amount of
range-space motion reaches beyond 50% in some cases and is typically above 30%. This
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discovery certainly excludes any notion that the total amount of joint velocity would be
minimized such as in the pseudo-inverse solution (which is the minimum norm solution and
thus generates zero self-motion; see, e.g., Cruse et al., 1993).

The model accounts for the pattern of self-motion observed. The small glitch in the last third
of the trajectory comes from the deactivation of the oscillatory drive of the movement and
could be smoothed out if a more gradual switching process was used.

One may be tempted to distinguish two fundamental causes of self-motion: self-motion may
either be planned or may arise out of the imperfections of the muscle joint control system.
The top two panels of Figure 9 contrast the amount of self-motion and range-space motion
observed in the model at the level of the real joint trajectory (left) and virtual joint trajectory
(right). Clearly, under these conditions, there is “planned” self-motion, although the total
amount of real self-motion is larger and the temporal evolution is different.

The distinction between “planned” self-motion and self-motion arising from imperfect
control is misleading, however, because planning may be part of the overall feedback loop
(Todorov & Jordan, 2002). In our model, the back-coupling from the real joint trajectory
into the dynamics of the virtual joint trajectory induces self-motion. This is illustrated by the
second row of Figure 9, which comes from a simulation in which this back-coupling term
was set to zero (all other parameters as in the reference parameter set). In this case, there is
no self-motion at the level of the virtual trajectory at all (right panel), while significant self-
motion remains at the level of the real joint trajectory (left panel). Thus, back-coupling
contributes to self-motion, but back-coupling is not necessary for self-motion to arise. At
model parameter settings that are physiologically plausible and fit a wide range of kinematic
characteristics, there is a component of self-motion that is caused by neuromuscular control
problems.

In the model, it is easy to explore those contributions by selectively varying model
parameters that change the properties of the control system. We vary muscle impedance to
establish the role of sluggish muscle joint systems, coupling among muscle joint systems by
biarticular muscles and the presence of an inverse dynamics model to establish the role of
interaction torques. At the reference parameter setting, the coupling among joints induced by
multiarticular muscles is not a major contribution. Setting that coupling to zero barely
changed the amount and time course of self-motion (not shown). Increasing the impedance
of the muscle joint system by a factor of 10 (see the bottom panels of Figure 9) essentially
eliminates all self-motion. Because the real trajectory then closely tracks the virtual
trajectory, this also means that the virtual trajectory is self-motion free. In fact, the back-
coupling term has no function in this limit case, because the very small deviation of the real
from the virtual trajectory sends a very weak signal back to the virtual trajectory dynamics.
Self-motion is thus caused in large part by the sluggish control exercised by the muscle-joint
system.

4.4 Link Between Self-Motion and Curved End-Effector Paths
We emphasized earlier that sluggish control leads to curved end-effector paths. The
relationship between self-motion and curved end-effector paths is explored in Figure 10,
which shows the end-effector paths associated with the two manipulations discussed above.
Eliminating virtual self-motion by suppressing back-coupling does not affect end-effector
paths much (see Figure 10A). Back-coupling is thus not necessary to obtain curved end-
effector paths. Making muscle joint systems much less sluggish by increasing their
impedance (see Figure 10B), in contrast, does straighten end-effector paths so much that
they no longer match the experimentally observed pattern.
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Given that we account for self-motion by postulating sluggish control at the muscle joint
level, what are the mechanical problems this control system must solve, and how may they
contribute to self-motion? To address this, we vary a number of factors of the biomechanical
dynamics in Figure 11. The top left shows self- and range-space motions when both the
Coriolis and centrifugal components of the interaction torques are eliminated. This is done
simply by deleting the corresponding terms from the equation (something that is, of course,
physically impossible to do in reality). The amount of self-motion is almost unchanged,
which implies that self-motion is not caused primarily by these coupling terms.

To go further, we eliminate all interaction torques, including the nondiagonal elements of
the inertial matrix (see equation D.2). This can be thought of as an emulation of a mode of
control in which a neuronally computed inverse dynamics solution is used to generate the
active torques that cancel the interaction torques. The top-right panel of Figure 11 shows
that self-motion is strongly reduced, proving that interactions torques contribute
substantially to the control problems that cause self-motion. The remaining level of self-
motion is too low in comparison to experiment.

With all interaction torques removed, what is causing the remaining self-motion? The
simulation shown in the bottom-left panel of Figure 11 illustrates that coupling among joints
through multiarticular muscles plays a role. Such coupling leads to systematic deviations of
the real from the virtual joint trajectory, some of which lead to self-motion. On the basis of
the reference parameter set, setting all off-diagonal elements of the coupling matrix, Z, to
zero eliminates the contributions of multiarticular muscles, which reduces self-motion
notably but not entirely. Muscular coupling among joints thus also contributes to self-
motion. Eliminating both multiarticular muscles and canceling interaction torques finally
suppresses self-motion almost completely (see the bottom-right panel of Figure 11). The
small residual self-motion comes from nonlinearities of the muscle model.

These manipulations of the mechanical properties of the control system confirm the link we
uncovered above between self-motion and curved end-effector paths. The bottom panels of
Figure 10 display end-effector paths that are obtained for two of these manipulations. When
an inverse dynamics is emulated (bottom left), paths become much straighter, to the point of
no longer being realistic. The postulate of an inverse dynamics solution for multidegree of
freedom control is thus incompatible with both the observed patterns of self-motion and the
observed curvature of end-effector paths. Interestingly the curvature for movement 6 fits
experiment better than that produced from the reference parameter set (see Figure 4). The
opposite is true for movements 1 and 3.

The small amount of curvature that remains is due to the coupling among joints by
multiarticular muscles. When that coupling is eliminated while at the same time providing
an inverse dynamics cancellation of interaction torques (bottom right panel of Figure 10),
end-effector paths become perfectly straight. This is the condition that also eliminates self-
motion completely (see the bottom right panel of Figure 11). Overall, the rule seems to be
that the less self-motion, the straighter the end-effector paths are. Note that this link between
straightness of end-effector paths and the absence of self-motion is a property of the model,
not a logical necessity: the very concept of self-motion means that it is does not itself affect
the end-effector trajectory and thus also does not affect the end-effector path.

5 Discussion
We have analyzed a process model of the control of redundant multidegree-of-freedom arm
movement that consists of five components: (1) a neural dynamics to initiate and terminate
discrete goal-directed movements, (2) a neural oscillator that generates a timing signal that
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paces the progress of the end-effector along its path, (3) a neuronal dynamics of equilibrium
points of all muscle joint systems of the redundant effector; (4) a muscle model, and (5) the
mechanical dynamics of the redundant arm. Only the third component and its reciprocal
coupling to the muscle joint system contained new assumptions. These were twofold. First,
when locally decomposing the space of virtual joint velocities into the two subspaces in
which the virtual end effector either moves (range-space) or does not move (null-space), we
assumed that the dynamics within these subspaces are uncoupled. In other words, forces
changing virtual joint velocities in the range-space do not influence virtual joint velocities in
the null-space, and vice versa. Second, within the null-space, we assumed that the system
receives input from the estimated real joint configuration in the form of a back-coupling,
which is zero when virtual and real joint configurations and velocities are identical. We
postulated that this core module of the model is largely housed in motor cortex but has
strong links through mutual coupling into the structures involved in generating the time
course of movement, including the cerebellum and the basal ganglia (Houk & Wise, 1995).
Neural support for the back-coupling of the sensed effector state exists through that network
as well as through reciprocal coupling to the spinal cord (Graziano, 2006).

We examined how this model accounts for the kinematic features of multidegree-of-freedom
movement by comparing simulations of the model to results from a behavioral experiment in
the modeled two-dimensional task setting with four degrees of freedom. Our strategy was to
use parameter values for the muscle joint system that lie within typical physiological
estimates of joint impedance and hence are relatively “sluggish.” In the light of criticism that
pure servo-control systems without an internal model that anticipates joint torques are
unable to generate the torques required to make movements at normal or fast rates (Gomi &
Kawato, 1996; Ostry & Feldman, 2003; Kistemaker, Van Soest, & Bobbert, 2006), our
assumptions put the theoretical framework of virtual joint trajectories (Feldman, 1966;
Feldman & Levin, 1995; Won & Hogan, 1995) to a serious test.

We find that end-effector paths of the redundant experimental system are consistently
curved, although the curvature varies with the location of the movement in work space. Our
model accounts for curved end-effector paths through the combined effect of the dynamical
properties of muscles and the dynamics of the virtual trajectory. Specifically, we find that
unrealistically straight trajectories result from assuming higher muscle impedance than
physiologically realistic and from assuming that the biomechanical interaction torques are
exactly cancelled. Even if we ensure that the virtual end-effector path is straight, the
sluggish muscle joint systems and the interaction torques lead to curved end-effector paths.

Our report of curved end-effector paths is in contrast to the classical approximation of nearly
straight end-effector paths in nonredundant systems in a similar geometry (Morasso, 1981).
The curvature of end-effector paths has been an intense topic of discussion over the years. It
has been investigated relative to the question of whether movements are planned and
controlled in terms of joint variables or in terms of end-effector variables (see the review in
Barreca & Guenther, 2001). Most of these studies employed, however, nonredundant
effector systems that, compared to redundant systems, face lesser control problems and thus
have lesser potential for control errors to affect the end-effector path. Osu, Uno, Koike, &
Kawato (1997), for instance, showed that participants making two-dimensional movements
using two joints could produce straighter end-effector paths if their movements were guided
by a template path to do so. Monitoring the EMG of a number of involved muscles, Osu and
colleagues excluded increased co-contraction as the control strategy that achieved straighter
paths. They conclude that participants planned curved paths. Barreca and Guenther (2001)
postulated such curved end-effector paths on other grounds as a way to minimize control
effort and avoid joint limits. Note that in our formulation, the virtual joint trajectory is not a
fixed plan but can be dynamically updated during the movement. Because back-coupling
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affects only the part of the virtual joint trajectory that does not affect the end effector, the
virtual end-effector path that emerges from this dynamics is straight. Imperfect decoupling
of the two subspaces of the virtual joint configuration space may conceivably induce curved
virtual end-effector paths as a consequence of control errors.

Wolpert, Ghahramani, and Jordan (1994) proposed perceptual distortions as another
potential source of end-effector path curvature by showing that perceptual estimates of
straightness showed similar deviations from straightness as end-effector paths. Osu et al.
(1997) showed, however, that participants spontaneously generate curved paths even where
their perceptual distortions are minimal, such as in the fronto-parallel plane, and that
participants can minimize curvature when instructed to do so. This rules out that perceptual
distortion is the primary factor producing curved end-effector paths.

Our model predicts motor equivalence in the sense that differences in initial arm
configuration do not necessarily lead to differences in end-effector paths. In principle, the
active torques needed to produce the same end-effector trajectory differ when initial
configuration varies. So one could have expected that a model like ours without inverse
dynamics would not lead to equivalent end-effector trajectories. It simply turns out that
quantitatively, such dependencies remain insignificant for the joint configurations probed in
our experiments.

Finally, we have found consistently across participants and locations in work space that the
joint velocity vectors contain a considerable amount of self-motion. Typically at least 30%
of the joint velocities do not move the end effector! One might think of self-motion as a
potential solution that the nervous system uses to avoid the well-known integrability
problem of inverse kinematics in redundant systems (for review, see Mussa-Ivaldi & Hogan,
1991). When a closed path movement of the end-effector is repeatedly performed by a
redundant arm using the Moore-Penrose pseudoin-verse (which generates no self-motion),
then the joint-configuration continues to drift from cycle to cycle, typically without bound.
Self-motion makes it possible to compensate for this drift, leading to reproducible
configurations at similar end-effector configurations. Relatedly, constraints within the space
of degrees of freedom such as Donder’s or Listings’ law may also give rise to self-motion
(Medendorp, Crawford, Henriques, Gisbergen, & Gielen, 2000). Although self-motion was
not directly addressed in the latter study, it is plausible that self-motion would be needed in
order to fulfill the observed constraints on multidegree-of-freedom movement trajectories.

The model accounts for the observed pattern of self-motion. Within our model, we were able
to understand where self-motion comes from. One cause of self-motion is imperfect control
of the low-impedance muscle joint system. Control errors are, a priori, as likely to induce
self-motion as they are to induce end-effector relevant joint velocities. When we reduced
control errors by increasing impedance, self-motion was strongly reduced. The back-
coupling of estimated joint configurations and joint velocities into the neuronal dynamics of
the virtual joint trajectory means that self-motion induced by control errors affects the
virtual joint velocity. This is why in the model we find self-motion even at the level of the
virtual joint velocity (although clamping such “planned” self-motion to zero does not
eliminate self-motion of the real effector). We showed that an inverse dynamics model that
cancels all interaction torques and reduces the amount of control error leads to too little self-
motion compared to experiment as well as to end-effector paths that are unrealistically
straight. Another contribution to self-motion are multiarticular muscles that couple torque
generation at different joints. Eliminating such muscular coupling from the model also
reduces self-motion and makes end-effector paths straighter.
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The problem of redundant motor control has been addressed in other theoretical and
modeling efforts. We share the framework of neuronal dynamics with a series of models
(Bullock & Grossberg, 1988; Bullock, Grossberg, & Guenther, 1993, 1996; Guenther, 1994;
Guenther & Barreca, 1997). These models learn a one-to-one mapping from task-level
variables to the associated joint velocities, in effect selecting a specific solution to the
inverse kinematics problem. Feedback at the level of the task variables enables replanning
and accounts for how movement goals are reached even if degrees of freedom are blocked.
Although a variant of these models solves the nonintegrability problem mentioned above
and thus must be producing self-motion (see section 5 in Guenther & Barreca, 1997), no
systematic account for self-motion is provided. These models do not address the
biomechanical dynamics of redundant effectors and thus do not account for the role played
by interaction torques and biarticular muscles in generating the control errors that lead to
self-motion and to nonstraight end-effector paths. More recent generalizations (Bullock,
Cisek, & Grossberg, 1998; Cisek, Grossberg, & Bullock, 1998) of the VITE class of models
(Bullock & Grossberg, 1988) address the neuromuscular level in considerable detail but
have not yet been applied to redundant effector systems.

Principles of stochastic optimal control have been used to provide a very different kind of
account for redundancy in which control signals are computed by optimizing an effort
functional at each point in time during the movement (Todorov & Jordan, 2002, 2003;
Todorov, 2004). While the temporal and spatial continuity of the computation is
neurophysiologically plausible, the processes through which neuronal networks perform the
complex optimality computations in real time remain to be explored (but see Scott, 2004;
Shadmehr & Krakauer, 2008). These models have not taken into account real arm
kinematics, probably due to the difficulty of solving the optimality conditions for nonlinear
geometries, nor have they linked to muscle joint models and biomechanical dynamics (but
see Guigon, Baraduc, & Desmurget, 2007, for a first effort in this direction).

One of the limitations of our model is the restriction to two-dimensional end-effector motion
and only four joint angles. This is primarily a practical limitation dictated by the desire to
make detailed comparisons between theory and experiment, more difficult to achieve when
the number of degrees of freedom and of task dimensions increases. The empirical question
may arise, however, if there is anything specific about motion constrained to a plane that
promotes the signatures of redundancy on which we focused: self-motion and curved end-
effector paths. To demonstrate that this is not the case, we provide sample data from a
separate experimental study in which participants reached in three spatial dimensions to
point to targets using the full set of 10 degrees of freedom from scapular motion to the wrist.
Figure 12 shows the end-effector paths in three dimensions for three participants as well as
the associated joint velocities in the range-space and the null-space. In this system, the
range-space defined in reference to the three-dimensional Cartesian end-effector position is
three-dimensional, while the null-space has seven dimensions. Thus, the amount of joint
motion in these two subspaces is normalized by dividing the sum of the squared joint
velocities by the number of dimensions of each subspace. This down-weights the amount of
self-motion. Even so, there is substantial self-motion of typically about a third of the range-
space motion, quite similar to the two-dimensional data discussed earlier. The end-effector
paths are curved, also quite similar to what we reported in two dimensions. Thus,
empirically, motion in three dimensions involving many more degrees of freedom reveals
the same signature of redundancy as analyzed and modeled in this letter. We have
generalized our model to this problem and found the model compatible with these results.
Because this modeling must address a number of new issues, including the effect of
gravitational torques, a report on this generalization exceeds the scope of this letter.
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At the level of the muscle joint system, compared to much more elaborate muscle models
(Chang, Brown, & Loeb, 2000), we have made strongly simplifying assumptions motivated
by the practical goal of keeping the model simple and limiting the number of model
parameters. The strongest simplifying assumption was neglecting the modulation of stiffness
through a modulation of co-contraction during movement. This is a limitation that must be
overcome when generalizing to mechanically more challenging conditions such as lifting
loads or moving rapidly. We have not included mechanisms that would impose joint limits.
This did not become relevant in the comparison to data, as the real movements stayed far
from joint limits. The redundancy problem at the muscular level is interesting in its own
right, and it seems possible to use ideas similar to the ones discussed here at that level (see
Laboissière, Ostry, & Feldman, 1996, for a discussion that has conceptual similarity with the
uncontrolled manifold). Addressing this level is, however, beyond the scope of our
contribution.

A final major limitation of the model reported here is the absence of an account for
variability (see Goodman & Latash, 2006, for a first effort in this direction). We have
analyzed the impact of various sources of noise on the movement generated by our model
(Martin, 2005). Given the amount of detailed analysis and comparison to experiment this
requires, we have decided to discuss the stochastic properties of our theoretical account in a
forthcoming article.

At this point, what general conclusions can we draw from our analysis? One insight is
certainly that the redundant degrees-of-freedom in a given task are used. The considerable
amount of self-motion we observed shows that it is not a priority of the nervous system to
select solutions to the degrees-of-freedom problem that are unique to a given task. In the
model, this self-motion is not planned but emerges from control problems such as relatively
low impedance, interaction torques, and multiarticular muscles. More generally, however,
the degrees of freedom that are redundant with respect to one task may very well be used to
accommodate another task at the same time. The flexibility offered by allowing self-motion
may be the general principle of how the central nervous system accommodates the complex
demands on human movement that arise in the real world. This flexibility may be the most
important feature of human movement, more important than good control. We have found
consistently that a picture with relatively sluggish muscle joint systems and no specific
mechanisms to compensate for interaction torques or for muscular interjoint coupling
provides an adequate description of multidegree-of-freedom movement.
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Appendix A: Kinematic Model

(A.1)

(A.2)

with li the length of arm segment i (i = 1 … 4) numbered from proximal to distal segments,
and θi are the joint angles (i = 1 … 4 from the proximal (sternoclavicular joint) to the distal
joints (wrist)), computed in each case relative to the next proximal segment (see Figure 2).
The coordinates of the end-effector position, (x, y), are in a Cartesian coordinate system
centered at the sternoclavicular.
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Appendix B: Kinetic Model
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The biometric parameters entering the kinematics and kinetics were set based on
measurements from one participant and are listed in Table 2. The center of mass and the
inertia of the various arm segments are computed following Hanavan (1964). Data for the
scapular joint are not available and are estimated to be a quarter of the upper torso
biometrics data.

Appendix C: Muscle Model
This joint muscle system contains two components, which represent, respectively, the
groups of all agonist and all antagonist muscles. Each component is characterized by a
nonlinear function, the + sign indicating half-wave rectification, so that each component
generates torques in only one direction, negative for the agonist component and positive for
the antagonist component. The associated torques reach zero at the equilibrium lengths,

 and , which are offset from a joint equilibrium length, λi, by a
constant amount of co-contraction, Co. The combined torque, Ti, generated at joint i by the
agonist and antagonist components,

(C.1)

is at equilibrium when θi = λi (in the absence of external torques). Here, Kl is a linear and
Knl is a nonlinear stiffness factor. Two types of viscosity are taken into account: a linear
contribution to viscosity (coefficient μl) captures the physical properties of muscle tissue,
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and a nonlinear contribution (coefficient, μnl) to viscosity summarizes more complex
velocity dependent contributions to peripheral control.

The parameter values listed in Table 3 were estimated to be consistent with the results of
Gribble et al. (1998).

Appendix D: Other Model Details

D.1 Termination Phase of the Movement
The end of the movement is signaled to the neuronal dynamics, equation 2.1, by a function
that probes how close the timing variable is to its resting state: Ir = a σ (2 exp[−100 u2]
−0.9). This function is clamped to zero when the movement is initiated. The beginning of
the movement is brought about by setting Im to a large positive value for a brief moment,
which helps switch the neuronal dynamics in the movement state.

During the resting phase of the system, the virtual joint motion is actively damped (by
adding – βs σ (ur ) λ ̇ to equation 2.11). Any remaining discrepancies between the desired
end-effector location, rd and the estimated end-effector location, re are servo-controlled to
zero.

D.2 State Estimation
For the back-coupling, an estimate, θd, of the effector state, θ, is computed from

(D.1)

where τ is a time constant and the index d stands for delays.

D.3 Emulation of Inverse Dynamics
To emulate motor control with an inverse dynamic model that predicts interaction torques as
well as inertial moments, we assume that the muscle generates an additional amount of
torque that exactly cancels the interaction torques and sets the inertial tensor to one. The
biomechanical equation of motion 15 then becomes

(D.2)

which is simply θ ̈ = (1 + α)Tm.

Appendix E: Parameter Values
There are four classes of parameters for which values must be determined. (1) Biometric
parameters are directly estimated from measurements on one participant and listed in Table
2. (2) Parameters of the muscle joint model were determined based on estimates from the
empirical literature as discussed above. These parameters are listed in Table 3. (3) A set of
model parameters describe the mechanism for initiating and terminating the movement as
well as determining the temporal shape of the movement. The values of these parameters
have very little impact on the results and are listed in Table 4. (4) A small set of model
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parameters describes the core neuronal dynamics of virtual joint trajectory formation and are
relevant for the model. These four parameters are listed in Table 5.
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Figure 1.
Structure of the model (white boxes with solid borders and arrows) with rough mapping
onto involved neuronal structures (gray boxes with dashed borders). The conceptually
innovative part is the neuronal dynamics of the virtual joint trajectory, which transforms a
virtual end-effector velocity into a virtual joint trajectory and receives back-coupling from
the effector level. The inner structure of this dynamics is characterized by decoupling
between task-relevant and task-irrelevant combinations of joint velocities.
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Figure 2.
(Left) Schematic view from above of a participant moving his or her four-joint arm in a
horizontal plane. The task consists of moving the pointer tip from a start location (Start1,
Start2, Start3) to a target location (Target1 or Target2). Two arm configurations a and b are
shown that lead to the same end-effector position. (Right) The set of joint configurations
leading to an identical position of the pointer tip forms a two-dimensional manifold (UCM)
in the four-dimensional joint space. The figure shows a one-dimensional cut through that
manifold within the three dimensions of the original joint space. The linear subspace that is
tangent to this manifold at a given joint configuration is spanned by a basis vector that forms
one column of the matrix, E (in the full four-dimensional space, a second basis vector forms
the second column of E).
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Figure 3.
(Left) Schematic illustration of how a joint velocity vector can be decomposed into its
components in the null-space and range-space of the Jacobian. Only three dimensions are
shown. (Right) How the uncontrolled manifold (UCM) in the space of virtual joint angles, λ,
structures the vector field of the neuronal dynamics of the joint configuration is illustrated
schematically: a weak vector field within the UCM provides little stabilization of the virtual
joint configurations that are redundant with respect to the planned end-effector position. In
contrast, the vector field outside the UCM provides strong restoring forces pushing the
system toward the UCM.
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Figure 4.
(Top) The left-most three panels show the end-effector paths of the three participants (S1,
S2, and S3), for the four different movements. The thin lines are the real end-effector paths
in different trials recorded in experiment. The straight lines link the starting position (filled
circles, right panel) to the target location (filled squares, right panel) as a guide to the eye.
The movements are labeled in the right-most panel, which shows the associated paths
generated by the model. (Bottom) End-effector paths from the same three participants and
the model for the four conditions are listed in Table 1. Movements 1 and 2, as well as 4 and
5, share initial and target end-effector position but differ in initial joint configuration. The
end-effector path curvature depends only very slightly on the starting effector configuration
in both experiments and the model.
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Figure 5.
Left and middle panels show the four joint trajectories (numbered from proximal to distal)
as solid lines and the associated virtual joint trajectories as dotted lines for movement 1. The
associated end-effector trajectories are shown in the right panel. These data are generated by
simulating the model under two conditions differing by the amount of internal joint motion.
The left-most panel is based on the reference parameter set (ṡ = 0, s(0) = 0). The simulation
shown in the middle has an additional acceleration inserted into the null-space of the end
effector (ṡ = 5, s(0) = 0, in equation 2.9).
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Figure 6.
The evolution in time of end-effector velocity (length of the end-effector velocity vector) is
depicted for movement 1. The left panel shows multiple trials from one participant in the
experiment. The crosses mark the initial rise and the terminal decrease of the velocity at 1%
and 3% of peak velocity, respectively. These event times are used to time-warp trajectories
and compute the mean end-effector velocity (see section 3). The velocity profiles generated
from the model are shown in the right panel.
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Figure 7.
The component of the end-effector velocity along the straight line from the starting position
to the target is shown as a function of time (solid line) together with the component
orthogonal to that direction (dotted line). The left-most three panels show results from three
participants, and the right-most shows model simulations. The top row refers to movement
1, the bottom row to movement 4 (compare to Figure 4).
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Figure 8.
The total amount of self-motion is shown as a function of time during the movement (solid
line). This is the length of the joint velocity vector in the null-space of the Jacobian. The
dashed line is the length of the orthogonal component of joint velocity lying in range-space.
The left three panels of each row are mean results for the three participants (S1, S2, and S3).
The right panel of each row shows results generated from the model at the reference
parameter set.
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Figure 9.
Causes of self-motion in the model are analyzed. The amounts of self-motion (solid line)
and range-space motion (dashed line) are plotted as time series for movement 3, computed
on the left from the real joint velocities and on the right from the virtual joint velocities. The
top row is generated at the reference parameter set. In the simulations shown in the middle
row, back-coupling from the real to the virtual joint trajectory dynamics was set to zero (ṡ =
0 with initial condition s(0) = 0). In the bottom row, the back-coupling is reinstated, but the
muscle impedance is increased by a factor of 10. Results are very similar for the other
movements.
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Figure 10.
Virtual (thin) and real (thick) end-effector paths are shown from simulations in which back-
coupling was set to zero (A) and in which the impedance of all muscles was increased
tenfold (B). In the first case, self-motion persists (see Figures 9C and 9D), and the end-
effector paths are curved (compare to Figure 4), while in the second case, self-motion is
cancelled (see Figures 9E and 9F) and the end-effector paths are straight. (C) Results of a
simulation are shown, in which an inverse dynamics was emulated by compensating for the
interaction torques. This reduces self-motion (see Figure 11B) and makes end-effector paths
too straight compared to experiment (see Figure 4). (D) Results of a simulation are shown in
which this form of inverse dynamics was combined with eliminating all multiarticular
muscles. This strongly reduces self-motion (see Figure 11D) and makes end-effector paths
perfectly straight.
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Figure 11.
Self-motion (solid) and range-space motion (dashed) for a number of different simulations
varying aspects of the control level. (A) Coriolis and centrifugal interaction torques set to
zero. (B) Inverse dynamics emulated by adding torques to the right side of the
biomechanical dynamics that exactly cancel all interaction torques. (C) Multiarticular
muscles eliminated by setting off-diagonal elements of muscle joint model to zero and the
diagonal elements to 10. (D) Conditions B and C combined.
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Figure 12.
(Top) End-effector paths in three dimensions obtained from three participants in a pointing
task performed with 10 degrees of freedom (thin lines reflect different trials). (Bottom)
Range-space and self-motion as a function of time observed while these participants
performed the pointing movements (mean across trials). Both components are normalized to
the number of dimensions of the respective subspaces.
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Table 1

Mean Initial Joint Configurations for Four Movements

Movement Designation Joint 1 Joint 2 Joint 3 Joint 4

1 −0.473 1.562 1.942 0.380

2 −0.680 1.635 2.219 −0.324

4 −0.659 1.642 2.204 −0.317

5 −0.446 1.569 1.950 0.285

Notes: Each pair of movements had the same starting and target end-effector position (movements 1 and 2, respectively, movements 4 and 5). The
joint angles are given in radians.
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Table 2

Biometric Parameters

Parameter Name Symbol Value Units

Body mass M 55 kg

First segment length l1 0.2024 m

Second segment length l2 0.3035 m

Third segment length l3 0.2586 m

Fourth segment length l4 0.1658 m
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Table 3

Muscle Parameter Values for the Reference Parameter Set

Parameter Name Symbol Value Units

Co-contraction Co π/90 rad

Impedance matrix Z

Linear stiffness Kl .4 kg m2s−2

Nonlinear stiffness gain Knl 1

Linear active viscosity μbl .3 kg m2s−1

Linear passive viscosity μrl 0.03 kg m2s−1
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Table 4

Model Parameters Controlling Movement Initiation, Termination, and Timing

Parameter Name Symbol Value Units

Oscillator limit cycle time ωh 16 Hz

Oscillator stability αh 0.05 s−1

Oscillator relaxation constant βo 15 s−1

Switching dynamic constant βr, βm 400 s−1

Switching dynamic resting state h 1

Switching dynamic constant δ 2

Stopping activity gain (Ir) a 15

Gain of sigmoid for initiation dynamics ar 100

Fine positioning constant βf 250 s−1

Virtual velocity damping constant βs 30 s−1
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Table 5

Model Parameters Controlling the Neuronal Dynamics of Virtual Joint Trajectory Formation

Parameter Name Symbol Value Units

Virtual relaxation constant βv 30 s−1

Back-coupling constant position βs1 100 s−2

Back-coupling constant velocity βs2 35 s−1

Delay constant τ 0.01 s
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