
Fitness Probability Distribution of Bit-Flip Mutation

Francisco Chicano1, Andrew M. Sutton2,
L. Darrell Whitley2 and Enrique Alba1

1University of Málaga, Málaga, Spain
2Colorado State University, CO, USA

Abstract
Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to opti-

mize functions over binary strings. In this paper, we develop results from the theory of landscapes
and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a
binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can
be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polyno-
mials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard
problem, MAX-SAT. We also discuss some implications of the results for runtime analysis.

1 Introduction

Evolutionary algorithms that operate on binary string representations commonly employ the bit-flip
mutation operator. This operator acts independently on each bit in a solution and changes the value
of the bit (from 0 to 1 and vice versa) with probability p, where p is a parameter of the operator. The
most commonly recommended value for this parameter is p = 1/n where n is the length of the binary
string. For linear functions, this rate is provably optimal (Witt, 2013). However, in the general case,
very little is currently understood about the mutation operator and its influence on the optimization
process.

In this paper we study the operator from the point of view of landscape theory. Using this ap-
proach, we provide closed-form formulas for the fitness probability distribution of the solutions ob-
tained after the application of bit-flip mutation to a particular solution. Up to the best of our knowl-
edge, these kind of general and closed-form formulas have not been presented before. We can find,
however, some works in which mathematical expressions are provided for this probability distribu-
tion in the case of particular problems like Onemax (Garnier et al., 1999). In this paper we want to
be more general and provide a mathematical expression for the probability distribution that separate
two elements: the mathematical entity related to the problem, F and another one related to the op-
erator Λ. This approach yields a general framework that provides an expression that is valid for any
problem as far as we can provide the problem-dependent entity F .

Sutton et al. (2011b) and Chicano and Alba (2011), used landscape theory to provide a closed-form
formula for the expectation after a bit-flip mutation (we repeat this result in Section 3.1). In this work
we generalize these results and the one by Sutton et al. (2011a), providing closed-form formulas to
compute the fitness probability distribution. The new result provides a deeper understanding of the
behavior of the mutation operator. We illustrate the approach by providing concrete expressions for
the moments of the probability distribution for two well-known problems: Onemax and MAX-SAT.

Many results coming from the field of fitness landscape analysis provide exact results for the
expected fitness of solutions undergoing uniform transformations by evolutionary operators. How-
ever, they often cannot say anything about selection operators because the framework does not easily
handle the probability of obtaining an improving mutation. This quantity is much harder to derive
because it always depends on some instance-dependent structure that is ignored in such analyses. In
this paper, we work out how to address the problem of selection by separating the instance-dependent

1

ar
X

iv
:1

30
9.

29
79

v1
 [

cs
.D

M
]

 1
1

Se
p

20
13

structure from the instance-independent structure. This separation allows us to derive initial results
on the probability of producing an improving offspring. As a consequence, we illustrate a way to use
the theory of landscapes to derive the expected runtime of a (1+λ) EA without crossover on Onemax.

The remainder of the paper is organized as follows. In the next section the mathematical tools
required to understand the rest of the paper are presented. In Section 3 we present our main contri-
bution of this work: the landscape analysis of bit-flip mutation and the closed-form formulas for the
fitness probability distribution. Section 4 provides particular results for two well-known problems in
the domain of combinatorial optimization: Onemax and MAX-SAT. Section 5 proves the connection
between the results in this paper and the runtime analysis of a (1 + λ) EA. Finally, Section 6 presents
the conclusions and future work.

2 Background

In this section we present some fundamental results of landscape theory. We will only focus on the
relevant information required to understand the rest of the paper. We refer the reader interested in a
deeper exposition of this topic to the survey by Reidys and Stadler (2002).

A landscape for a combinatorial optimization problem is a triple (X,N, f), where X is a finite or
countable solution set, f : X → R defines the objective function and N is a neighborhood function that
maps any solution x ∈ X to the set N(x) of points reachable from x. If y ∈ N(x) then y is a neighbor
of x. The pair (X,N) is called configuration space and can be represented using a graph G = (X,E) in
which X is the set of vertices and a directed edge (x, y) exists in E if y ∈ N(x) (Biyikoglu et al., 2007).
We can represent the neighborhood operator by its adjacency matrix

Ax,y =

{
1 if y ∈ N(x),
0 otherwise. (1)

Any discrete function, f , defined over the set of candidate solutions can be characterized as a
vector in R|X|. Any |X| × |X| matrix can be interpreted as a linear map that acts on vectors in R|X|.
For example, the adjacency matrixA acts on function f as follows

A f =


∑
y∈N(x1)

f(y)∑
y∈N(x2)

f(y)
...∑

y∈N(x|X|)
f(y)

 . (2)

The component x of this matrix-vector product can thus be written as:

(A f)(x) =
∑

y∈N(x)

f(y), (3)

which is the sum of the function value of all the neighbors of x. In the case of binary strings, the
minimal-change neighborhood at a point x is the set of Hamming neighbors of x. The Hamming
neighborhood induces a regular, connected graph G = (X,E), meaning that G is connected and
|N(x)| = d > 0 for a constant d, for all x ∈ X . When a neighborhood is regular, the so-called Laplacian
matrix is defined as ∆ = A−dI . This corresponds to the Laplacian of the graphG. Stadler defines the
class of elementary landscapes where the function f is an eigenvector (or eigenfunction) of the Laplacian
up to an additive constant (Stadler, 1995). Formally, we have the following.

Definition 1. Let (X,N, f) be a landscape and ∆ be the Laplacian matrix of the configuration space graph.
The landscape is said to be elementary if there exists a constant b that we call the offset, and an eigenvalue λ of
−∆ such that (−∆)(f − b) = λ(f − b).

We use eigenvalues of −∆ instead of ∆ to have positive eigenvalues (Biyikoglu et al., 2007). In
connected neighborhoods like the Hamming neighborhood, the offset b is the average value of the

2

function f evaluated over the entire search space: b = f̄ . In elementary landscapes, the average value
f̄ can be usually computed in a very efficient way using the problem data. That is, it is not required
to do a complete enumeration over the search space. For a concrete example on the TSP the reader is
referred to Whitley et al. (2008).

Suppose (X,N, f) is elementary with eigenvalue λ. For any scalars a and b, define the function
g : X → R as g(x) = af(x) + b. Clearly, (X,N, g) is also elementary with the same eigenvalue λ.
Furthermore, in regular neighborhoods, if g is an eigenfunction of −∆ with eigenvalue λ then g is
also an eigenfunction ofA (the adjacency matrix of the configuration space graph G) with eigenvalue
d − λ. The average value of the fitness function in the neighborhood of a solution can be computed
using the expression:

avg{f(y)}
y∈N(x)

=
1

d
(A f)(x). (4)

If (X,N, f) is elementary with eigenvalue λ, then the average over the neighborhood is computed as:

avg{f(y)}
y∈N(x)

= avg
y∈N(x)

{f(y)− f̄}+ f̄

=
1

d
(A (f − f̄))(x) + f̄ =

d− λ
d

(f(x)− f̄) + f̄

= f(x) +
λ

d
(f̄ − f(x)), (5)

which is sometimes referred to as Grover’s wave equation (Grover, 1992). In the previous expression
we used the fact that f − f̄ is an eigenfunction ofAwith eigenvalue d− λ.

The wave equation makes it possible to compute the average value of the fitness function f evalu-
ated over all of the neighbors of x using only the value f(x). The previous average can be interpreted
as the expected value of the objective function when a random neighbor of x is selected using a uni-
form distribution. This is exactly the behavior of the so-called 1-bit-flip mutation (Garnier et al., 1999).

A landscape (X,N, f) is not always elementary, but even in this case it is possible to characterize
the function f as the sum of elementary landscapes, called elementary components of the landscape.
The interested reader can find examples of elementary landscapes in Whitley et al. (2008); Whitley
and Sutton (2009) and can find more on the elementary landscape decomposition in Chicano et al.
(2011).

2.1 Binary Hypercube

The previous definitions are general concepts of landscape theory. Let us focus now on the binary
configuration spaces with the Hamming neighborhood, the so-called binary hypercubes, which are the
configuration spaces we need in the analysis of bit-flip mutation. Let us first present the notation.
In these spaces the solution set X is the set of all binary strings of size n, formally, Zn2 = Bn. The
solution set form an Abelian group with the component-wise sum in Z2 (exclusive OR), denoted
with ⊕. Given an element z ∈ Bn, we will denote with |z| the number of ones of z. Given a set of
binary strings W and a binary string u we denote with W ∧ u the set of binary strings that can be
computed as the bitwise AND of a string in W and u, that is, W ∧ u = {w ∧ u|w ∈ W}. For example,
B4 ∧ 0101 = {0000, 0001, 0100, 0101}. We will denote with i the binary string with position i set to 1
(starting from the leftmost position) and the rest set to 0. We omit the length of the string n in the
notation, but it will be clear from the context. For example, if we are considering binary strings in B4

we have 1 = 1000 and 3 = 0010.
It is convenient to characterize the neighborhood by a set of group elements S = {s1, s2, . . . , sd}

that generate the entire group. Here S is called a generating set. The neighborhood of a solution x is
just the setN(x) = x⊕S = {x⊕s|s ∈ S}. In the binary hypercube, two solutions x and y are neighbors
if one can be obtained from the other by flipping a single bit, that is, if the Hamming distance between
the solutions, |x⊕ y|, is 1. Thus, the generating set is composed of every binary string with a single 1:
S1 = {s ∈ Bn | |s| = 1}.

3

We define the sphere of radius r around a solution x as the set of all solutions lying at Hamming
distance r from x (Sutton et al., 2010). We are also interested in these spheres since the probability
of reaching a solution y from a solution x using the bit-flip mutation operator is the same for all the
solutions in a sphere around x. Now we can observe that the solutions in a sphere of radius r around
x can be thought as the neighborhood Nr of x generated by an appropriate generating set Sr. The
generating set is composed of all the solutions having exactly r 1s: Sr = {s ∈ Bn | |s| = r}. The
notation S1 used before was selected to be a particular case of this more general neighborhood. We
will use the notation Nr(x) = x ⊕ Sr. Another particular case is the one of S0 = {0} that generates
the identity neighborhood N0(x) = {x}. Each neighborhood has its corresponding adjacency matrix
denoted withA(r).

Let us consider the set of all the pseudo-Boolean functions defined over Bn, RBn

. We can think of
one pseudo-Boolean function as an array of 2n real numbers, each one being the function evaluation of
a particular binary string of Bn. Each pseudo-Boolean function is, thus, a particular vector in a vector
space with 2n dimensions. Let us define the dot-product between two pseudo-Boolean functions as:

〈f, g〉 =
∑
x∈Bn

f(x)g(x). (6)

Now we introduce a set of functions that will be relevant for our purposes in the next sections:
the Walsh functions (Walsh, 1923)

Definition 2. The (non-normalized) Walsh function with parameter w ∈ Bn is a pseudo-Boolean function
defined over Bn as:

ψw(x) =

n∏
i=1

(−1)wixi = (−1)
∑n

i=1 wixi , (7)

where the subindex in wi and xi denotes the i-th component of the binary strings w and x, respectively.

We can observe that the Walsh functions map Bn to the set {−1, 1}. We define the order of a
Walsh function ψw as the value |w|. Some properties of the Walsh functions are given in the following
proposition. A proof of these properties can be found in Vose (1999).

Proposition 1. Let us consider the Walsh functions defined over Bn. The following identities hold:

ψ0 = 1, (8)
ψw⊕t = ψwψt, (9)

ψw(x⊕ y) = ψw(x)ψw(y), (10)
ψw(x) = ψx(w), (11)

ψ2
w = 1, (12)∑

x∈Bn

ψw(x) = 2nδ
|w|
0 =

{
2n if w = 0,
0 if w 6= 0, (13)

ψi(x) = (−1)xi = 1− 2xi, (14)

〈ψw, ψt〉 = 2nδtw, (15)

where δ denotes the Kronecker delta.

There exist 2n Walsh functions in Bn and according to (15) they are orthogonal, so they form a basis
of the set of pseudo-Boolean functions. Any arbitrary pseudo-Boolean function f can be expressed as
a weighted sum of Walsh functions. We can represent f in the Walsh basis in the following way:

f(x) =
∑
w∈Bn

awψw(x), (16)

where the Walsh coefficients aw are defined as:

aw =
1

2n
〈ψw, f〉 . (17)

4

The previous expression is called the Walsh expansion (or decomposition) of f . The interested reader
can refer to the text by Terras (1999) for a deeper treatment of Walsh functions and their properties.

The reason why Walsh functions are so important for the mutation analysis is because they are
eigenvectors of the adjacency matricesA(r) defined above, as the next proposition proves.

Proposition 2. In Bn, the Walsh function ψw defined in (7) is an eigenvector of the adjacency matrix A(r)

based on the generating set Sr (sphere of radius r) with eigenvalue∑
s∈Sr

ψw(s) = K(n)
r,|w|, (18)

where K(n)
r,j is the (r, j) element of the so-called n-th order Krawtchouk matrix K(n), defined as:

K(n)
r,j =

n∑
l=0

(−1)l
(
n− j
r − l

)(
j

l

)
, (19)

for 0 ≤ r, j ≤ n. We assume in the previous expression that
(
a
b

)
= 0 if b > a or b < 0.

Proof. The Walsh function ψw is an eigenvector of A(r) if A(r)ψw = λψw for some constant λ, which
is the eigenvalue. Taking into account the definition of neighborhood based on the generating set Sr
we can write:(

A(r)ψw

)
(x) =

∑
s∈Sr

ψw(x⊕ s) =
∑
s∈Sr

ψw(x)ψw(s) =

(∑
s∈Sr

ψw(s)

)
ψw(x),

where we used the property (10) and we can identify the eigenvalue with the left hand side of (18).
Let us now prove that this value is exactly K(n)

r,|w|. Using the definition of Sr we can write the series
as: ∑

s∈Sr

ψw(s) =
∑
s∈Bn
|s|=r

ψw(s) =
∑
s∈Bn
|s|=r

(−1)|w∧s|, (20)

and we can now change the index of the sum from s to l = |w ∧ s|. Written with the new index we
only need to count for each l how many binary strings s ∈ Sr have the property that |w ∧ s| = l, that
is: ∑

s∈Bn
|s|=r

(−1)|w∧s| =

n∑
l=0

(−1)l |{s ∈ Bn||s| = r and |w ∧ s| = l}| . (21)

Now we can compute the cardinality of the inner set in (21) using counting arguments. We need
to count how many ways we can distribute the r 1s in the string s such that they coincide with the 1s
of w in exactly l positions. In order to do this, first let us put l 1s in the positions where w has 1. We
can do this in

(|w|
l

)
different ways. Now, let us put the remaining r− l 1s in the positions where w has

0. We can do this in
(
n−|w|
r−l

)
ways. Multiplying both numbers we have the desired cardinality:

|{s ∈ Bn||s| = r and |w ∧ s| = l}| =
(
|w|
l

)(
n− |w|
r − l

)
. (22)

We should notice here that the cardinality is zero in some cases. This happens when l > |w|, l > r
or r − l > n− |w|. However, in these cases we defined the binomial coefficient to be zero and we can
keep the previous expression. If we use (22) in (21) and take into account the definition (19) we get
(18).

In (18) we can observe that the eigenvalue depends only on the order |w| of the Walsh function.
This means that there are at most n + 1 different eigenvalues in the considered adjacency matrices.
As a consequence, we can decompose any arbitrary function f as a sum of n + 1 functions, called
elementary components of f , where each one is an eigenvector of all the adjacency matrices.

5

Definition 3. Let f : Bn → R be a pseudo-Boolean function with Walsh expansion f =
∑
w∈Bn awψw, we

define the order-j elementary component of f as:

f[j] =
∑
w∈Bn
|w|=j

awψw, (23)

for 0 ≤ j ≤ n. As a consequence of the Walsh expansion of f we can write:

f =

n∑
j=0

f[j]. (24)

According to Proposition 2 the elementary component f[j] is an eigenvector of A(r) with eigen-
value K(n)

r,j .

2.2 Krawtchouk Matrices

Krawtchouk matrices play a relevant role in the mathematical developments of the next sections. For
this reason we present here some of their properties. The reader interested in these matrices (also
considered polynomials) can read Feinsilver and Kocik (2005). The n-th order Krawtchouk matrix is
an (n + 1) × (n + 1) integer matrix with indices between 0 and n. In (19) we provided an explicit
definition of the elements of a Krawtchouk matrix. But these elements can also be implicitly defined
with the help of the following generating function:

(1 + x)n−j(1− x)j =

n∑
r=0

xrK(n)
r,j . (25)

From (25) we deduce thatK(n)
0,j = 1. Observe thatK(n)

0,j is the constant coefficient in the polynomial.
Other properties of the Krawtchouk matrices are presented in the next proposition.

Proposition 3. We have the following identities between the elements of the Krawtchouk matrices:

K(n)
r,n−j = (−1)rK(n)

r,j , (26)

K(n)
n−r,j = (−1)jK(n)

r,j . (27)

Proof. With the help of the generating function (25) we can write:

n∑
r=0

(−x)rK(n)
r,j = (1 + (−x))n−j(1− (−x))j

= (1 + x)j(1− x)n−j =

n∑
r=0

xrK(n)
r,n−j ,

and identifying the coefficients of the first and last polynomials we have (26). In order to prove (27)
we can write:

n∑
r=0

xrK(n)
r,j = (1 + x)n−j(1− x)j = (−1)j(x+ 1)n−j(x− 1)j

= (−1)jxn(1 + 1/x)n−j(1− 1/x)j = (−1)jxn
n∑
r=0

(1/x)rK(n)
r,j

= (−1)j
n∑
r=0

xn−rK(n)
r,j = (−1)j

n∑
r=0

xrK(n)
n−r,j ,

identifying again the coefficients of the first and last polynomials we have (27).

6

Krawtchouk matrices also appear when we sum Walsh functions. The following proposition pro-
vides an important result in this line.

Proposition 4. Let t ∈ Bn be a binary string and 0 ≤ r ≤ n. Then the following two identities hold for the
sum of Walsh functions: ∑

w∈Bn∧t
|w|=r

ψw(x) = K(|t|)
r,|x∧t|, (28)

∑
w∈Bn∧t

ψw(x) = 2|t|δ
|x∧t|
0 . (29)

Proof. Given two binary strings x, t ∈ Bn, let us denote with x|t the binary string of length |t| com-
posed of all the bits of x in the positions i where ti = 1. The string t acts as a mask for x. This notation
allows us to simplify the sums in (28) and (29):∑

w∈Bn∧t
|w|=r

ψw(x) =
∑

w∈Bn∧t
|w|=r

ψw|t(x|t) =
∑

u∈B|t|
|u|=r

ψu(x|t) =
∑
u∈Sr

ψu(x|t) = K(|t|)
r,|x∧t| by (18),

∑
w∈Bn∧t

ψw(x) =
∑

w∈Bn∧t

ψw|t(x|t) =
∑
u∈B|t|

ψu(x|t) =
∑
u∈B|t|

ψx|t(u) = 2|t|δ
|x∧t|
0 by (13).

3 Analysis of the Mutation Operator

The bit-flip mutation operator transforms an arbitrary element x ∈ Bn to y ∈ Bn by changing the
value of each bit of x with probability p. In the literature it is common to use the value p = 1/n that,
in expectation, changes one bit in each solution. However, if 0 < p < 1, the mutation operator can
transform x into any element of the search space with positive probability. In the following, we denote
with Mp(x) the random variable on Bn that represents the element in Bn reached after applying the
bit-flip mutation operator with probability p to solution x.

Lemma 1. Given two solutions x, y ∈ Bn, the probability of obtaining y after a bit-flip mutation over x is

Pr{Mp(x) = y} = p|x⊕y|(1− p)n−|x⊕y|. (30)

Proof. The solution y can only be obtained if all the bits that differ from the solution x are mutated
and the other ones are kept unchanged. Since the number of differing bits is |x ⊕ y| and each bit is
individually changed with probability p we obtain the claimed result.

We are interested in f(Mp(x)), the objective function value after the mutation of a solution. This
value is also a random variable and we want to analyze its probability distribution. Given a particu-
lar search space, directly enumerating this distribution by evaluating every solution is not tractable.
However, the theory of landscapes provides tools for extracting information from this probability dis-
tribution in an efficient way. This information arises from the moments of the probability distribution.
In the following sections we analyze these moments.

3.1 Expectation

Let us start by computing the expected value of f(Mp(x)). The expected value is easy to compute in
the case of the elementary components of a function f . The result of the next theorem was previously
published by Chicano and Alba (2011). Sutton et al. (2011b) also studied the expected value after
mutation and found that it must be a polynomial in p. We, however, present here the result and its
proof because the notation is slightly different from the one used in the previous works.

7

Theorem 1. Let x ∈ Bn be a binary string, f : Bn → R a function, f[j] its order-j elementary component and
let us denote with Mp(x) the random variable that represents the element in Bn reached after applying the bit-
flip mutation operator with probability p to solution x. The expected value of the random variable f[j](Mp(x))
is

E{f[j](Mp(x))} = (1− 2p)jf[j](x) (31)

Proof.

E{f[j](Mp(x))} =
∑
y∈Bn

f[j](y) Pr{Mp(x) = y}

=
∑
y∈Bn

f[j](y)p|x⊕y|(1− p)n−|x⊕y| by Lemma 1

=

n∑
r=0

∑
y∈Nr(x)

f[j](y)p|x⊕y|(1− p)n−|x⊕y| dividing the search space

=

n∑
r=0

pr(1− p)n−r ∑
y∈Nr(x)

f[j](y)

 by definition of Nr

=

n∑
r=0

pr(1− p)n−r
(
A(r)f[j]

)
(x) by Proposition 2

=

(
n∑
r=0

pr(1− p)n−rK(n)
r,j

)
f[j](x). (32)

Using the generating function for Krawtchouk matrices (25) we can simplify the term within the
parentheses in the following way:

n∑
r=0

pr(1− p)n−rK(n)
r,j = (1− p)n

n∑
r=0

(
p

1− p

)r
K(n)
r,j

= (1− p)n
(

1 +
p

1− p

)n−j (
1− p

1− p

)j
= (1− p)n

(
1

1− p

)n−j (
1− 2p

1− p

)j
= (1− 2p)j . (33)

The previous development is valid if p < 1. In the case p = 1 we cannot divide by 1− p, but even
in this case the final result holds. To prove this we just have to consider that the term (1 − p)n−r is
zero except for r = n and pr is always 1. Then we can write

n∑
r=0

pr(1− p)n−rK(n)
r,j = K(n)

n,j = (−1)jK(n)
0,j = (1− 2p)j , (34)

where we used (27) and the fact that K(n)
0,j = 1. We finally obtain the claimed result for all the possible

values of p.

As a direct consequence of the previous theorem we can compute the expected value of f(Mp(x))
for an arbitrary function with the help of the decomposition of the function into elementary compo-
nents.

Corollary 1. Let x ∈ Bn be a binary string, f : Bn → R a function and Mp(x) the solution reached after
applying the bit-flip mutation operator with probability p to solution x. The expected value of the random
variable f(Mp(x)) is

E{f(Mp(x))} =

n∑
j=0

(1− 2p)jf[j](x), (35)

8

where f[j] is the order-j elementary component of f .

Proof. We can write f as the sum of its elementary components as f =
∑n
j=0 f[j]. Then, we can

compute the expected value as:

E{f(Mp(x))} =

n∑
j=0

E{f[j](Mp(x))} =

n∑
j=0

(1− 2p)jf[j](x), (36)

where we used the result of Theorem 1.

3.2 Higher Order Moments

Equation (35) can be used to compute the expected value of f(Mp(x)). We may also use it to extend
to higher order moments, as in the following theorem.

Theorem 2. Let x ∈ Bn be a binary string, f : Bn → R a function and Mp(x) the solution reached after
applying the bit-flip mutation operator with probability p to solution x. The m-th moment of the random
variable f(Mp(x)) is

µm{f(Mp(x))} =

n∑
j=0

(1− 2p)jfm[j](x), (37)

where fm[j] is the order-j elementary component of fm.1

Proof. By definition, µm{f(Mp(x))} can be expressed as the expectation of the random variable fm(Mp(x)).
Then, using (35) we can write:

µm{f(Mp(x))} = E{fm(Mp(x))} =

n∑
j=0

(1− 2p)jfm[j](x).

We define the 0-th moment µ0{f(Mp(x))} = 1. We can observe from (37) that all the higher-order
moments are polynomials in p, just like the expectation (first order moment).

Let us now introduce some new notation. Let us denote withµ{f(Mp(x))} the vector of moments,
that is, the m-th component of this vector is the m-th moment. We do not limit the number of compo-
nents of this vector, we can consider it as an infinite-dimensional vector. Later we will see that only
a finite number of elements of this vector would be required for our purposes. We define the matrix
function F (x) as Fm,j(x) = fm[j](x) where 0 ≤ j ≤ n and m ≥ 0. Let us also define the vector Λ(p) as
Λj(p) = (1− 2p)j for 0 ≤ j ≤ n.

Using the new notation we can write (37) in vector form as:

µ0{f(Mp(x))}
µ1{f(Mp(x))}

...
µm{f(Mp(x))}

...

 =



1 0 . . . 0
f[0](x) f[1](x) . . . f[n](x)

...
...

. . .
...

fm[0](x) fm[1](x) . . . fm[n](x)
...

...
. . .

...




1
1− 2p

...
(1− 2p)n

 ,

or in a compact way:
µ{f(Mp(x))} = F (x)Λ(p), (38)

where F (x) and Λ(p) are multiplied using the matrix product. This new form of writing (37) has the
property of expressing the vector of moments of f(Mp(x)) as the product of a matrix that depends

1We use this notation instead of (fm)[j] to simplify the expressions, but fm
[j]

should not be confused with f[j] to the power
of m.

9

on the objective function (and solution x) and a vector that depends on the mutation operator and its
parameter p. In some sense, we can claim that (38) decomposes the moments in a problem-dependent
part, F (x), and an operator-dependent part, Λ(p). This is the kind of equation we are looking for,
since it can be applied to different problems provided that the problem-dependent part for each one
is computed and we do not need to re-compute the operator-dependent part. In the same way, it
can also be applied to any parameter of the operator (value of p) without recomputing the problem-
dependent part.

We should notice here that the first column of matrix F (x) provides the statistical moments of
the fitness distribution in the whole search space considering a uniform random distribution. Thus,
F 1,0(x) = f[0](x) is the average value of the evaluation function in the search space, F 2,0(x) = f2[0](x)

is the second order moment, and so on. We can prove this by setting p = 1/2 in (38) because a
probability of p = 1/2 for bit-flip mutation is equivalent to a uniform random selection of a solution
in the search space. All the elements but the first in Λ(p) vanish and we get the claimed result.

3.3 Computing the Matrix Function F

The computation of the matrix function F is not efficient in general. Sutton et al. (2011c) provide an
algorithm to compute the Walsh decomposition of fm. Using this Walsh decomposition it is possible
to obtain the elementary components of fm, as required for the computation of F (x). If the Walsh
decomposition of f is:

f =
∑
w∈Bn

awψw,

then the Walsh decomposition of the m-th power fm is:

fm =

(∑
w∈Bn

awψw

)m
=

∑
∑

w∈Bn iw=m

(
m

i00...0, i00...1, . . . , i11...1

) ∏
w∈Bn

aiww ψ
iw
w .

This procedure has the advantage that it is general and can be used with any function defined
over bitstrings. The drawback, however, is its inefficiency when m is high. Thus, for each particular
problem, we should analyze the objective function in order to find an efficient way of evaluating the
matrix function F in an arbitrary solution x. In Section 4 we analyze two problems and provide an
efficient computation of this matrix function for these problems.

In some cases, the efficient (polynomial time) evaluation of F (x) can only be possible if NP = P.
This happens for example in the SAT problem as the following theorem states.

Proposition 5. Let us consider the SAT problem and an evaluation function f(x) that takes value 1 if x ∈ Bn
satisfies the propositional formula and 0 otherwise. If there exists a polynomial time algorithm for computing
f[0] then NP = P.

Proof. The value f[0] is the average value of the objective function in the whole search space. Since f
can only take values 0 and 1, if f[0] > 0 then the formula is satisfiable. Thus, if we find a polynomial
time algorithm to evaluate f[0] we can solve the decision problem in polynomial time. But, as SAT is
NP-complete then NP = P.

As a consequence of the previous proposition we cannot ensure that an efficient evaluation of the
matrix function F (x) exists in general. The complexity of computing F (x) depends on the problem.

3.4 Fitness Probability Distribution

With the help of the moments vector µ{f(Mp(x))}we can compute the probability distribution of the
values of f in a mutated solution. In order to do this we proceed in the same way as Sutton et al.
(2011a).

Let us call ξ0 < ξ1 < · · · < ξq−1 to the q possible values that the function f can take in the search
space. Since we are dealing with a finite search space, q is a finite number (perhaps very large). We

10

are interested in computing Pr{f(Mp(x)) = ξi} for 0 ≤ i < q. In order to simplify the notation in the
following we define the vector of probabilities π(f(Mp(x))) as πi(f(Mp(x))) = Pr{f(Mp(x)) = ξi}.

Theorem 3. Let us consider the binary hypercube and let us denote with ξi the possible values that the objective
function f can take in the search space, where ξi < ξi+1 for 0 ≤ i < q − 1. Then, the vector of probabilities
π(f(Mp(x))) can be computed as:

π(f(Mp(x))) =
(
V T
)−1

F (x)︸ ︷︷ ︸
problem-dependent

Λ(p), (39)

where the matrix function F (x) is limited to the first q rows and V denotes the Vandermonde matrix for the ξi
values, that is, V i,j = ξji for 0 ≤ i, j < q.

Proof. We can compute the m-th moment µm{f(Mp(x))} using the following expression:

µm{f(Mp(x))} =

q−1∑
i=0

ξmi Pr{f(Mp(x)) = ξi} . (40)

We can write this in vector form as:

µ{f(Mp(x))} =


1 1 · · · 1
ξ10 ξ11 · · · ξ1q−1
...

...
. . .

...
ξq−10 ξq−11 · · · ξq−1q−1




Pr{f(Mp(x)) = ξ0}
Pr{f(Mp(x)) = ξ1}

...
Pr{f(Mp(x)) = ξq−1}


= V Tπ(f(Mp(x))). (41)

Using (38) we can write:

µ{f(Mp(x))} = V Tπ(f(Mp(x))) = F (x)Λ(p), (42)

and solvingπ(f(Mp(x))) we finally get (39). The determinant of the Vandermonde matrix is
∏

0≤i<j<q (ξi − ξj) (Mirsky,
1955, pp. 17-18) and the matrix is nonsingular if and only if all the ξi values are different. This is our
case, so the Vandermonde matrices we use are invertible.

Again we can observe that π(f(Mp(x))) is the product of a term that is problem-dependent and
a vector that depends on the parameter of the mutation p. From (39) it is clear that each particular
probability πi(f(Mp(x))) is a polynomial in p.

We can also compute the cumulative density function Π(f(Mp(x))) defined by:

Πi(f(Mp(x))) = Pr{f(Mp(x)) ≤ ξi} =

i∑
j=0

πj(f(Mp(x))). (43)

We can write the previous equation in vector form as:

Π(f(Mp(x))) = Lπ(f(Mp(x))). (44)

where L is the lower triangular matrix defined by

Li,j =

{
1 if i ≥ j,
0 otherwise.

We can notice again that each element of Π(f(Mp(x))) is a polynomial in p. The component
Πi(f(Mp(x))) is the probability of reaching a solution y with function value f(y) ≤ ξi after the mu-
tation with parameter p. If x has function value f(x) = ξi, then 1 −Πi(f(Mp(x))) is the probability
of improving the function value of solution x in one application of bit-flip mutation. For problems in
which the matrix F can be efficiently computed the expression 1 −Πi(f(Mp(x))) could be used as
the base for a new mutation operator that tries to maximize the probability of an improving move.

11

4 Case Studies

In this section we present the elementary landscape decomposition of two well-known problems and
their powers (the F (x) matrix). With this decomposition we can compute the probability distribution
of any solution after mutation. We start by analyzing a toy problem: Onemax. In Section 4.2 we
analyze MAX-SAT.

4.1 Onemax

Onemax is a linear pseudo-Boolean fitness function that is often used in the analysis of evolutionary
algorithms. In our case, we consider the sum of all order-1 Walsh functions, which is related to
Onemax by a simple linear transformation. That is:

f(x) =

n∑
i=1

ψi(x) = n− 2

n∑
i=1

xi = n− 2|x|. (45)

The objective function in Onemax is |x| (the number of ones in x ∈ Bn). Maximizing the number
of ones in x (original Onemax problem) is equivalent to minimizing f(x). We should notice here that
f(x) can take values in the range [−n, n] by steps of 2. That is, the range of f is the set {n − 2j|j ∈
N, 0 ≤ j ≤ n}. Although we study here the function f(x) defined in (45) for the sake of simplicity,
we will see at the end of this section that the probability distribution after mutation of the regular
Onemax function is the same as f(x).

The following lemma provides intermediate results that will be useful in the search for an expres-
sion for F (x).

Lemma 2. The sum of all the Walsh functions with the same order is related to the Krawtchouk matrices by
means of the following identity: ∑

w∈Bn
|w|=p

ψw(x) = K(n)
p,|x|. (46)

Proof. The claim follows immediately from Eq. (28) when t = 11 . . . 1.

Theorem 4. The matrix function F (x) for the objective function f(x) defined in (45) depends only on |x| and
its elements satisfy the following identity:

Fm,j(x) = Ξ
(n)
m,jK

(n)
j,|x|, (47)

where K(n) is the n-th Krawtchouk matrix and Ξ(n) is the matrix defined as:

Ξ
(n)
m,j =

1

2n

n∑
k=0

(n− 2k)mK(n)
k,j . (48)

Proof. Let us write the Walsh decomposition of fm. Given a binary string w ∈ Bn, the Walsh coeffi-
cient a(m)

w of fm is

a(m)
w =

1

2n

∑
x∈Bn

ψw(x)fm(x) =
1

2n

∑
x∈Bn

ψw(x) (n− 2|x|)m dividing the search space

=
1

2n

n∑
k=0

(n− 2k)
m
∑
x∈Bn
|x|=k

ψw(x) =
1

2n

n∑
k=0

(n− 2k)
mK(n)

k,|w| = Ξ
(n)
m,|w|, (49)

where we used the result of Lemma 2 and introduced the matrix Ξ(n) to simplify the notation. Now
we can sum together all the Walsh functions of the same order j to find the elementary component
fm[j]:

Fm,j(x) = fm[j](x) =
∑
w∈Bn
|w|=j

a(m)
w ψw(x) = Ξ

(n)
m,j

∑
w∈Bn
|w|=j

ψw(x) = Ξ
(n)
m,jK

(n)
j,|x|, (50)

12

where we used Lemma 2 in the last step.

In the following proposition we provide a property of the Ξ(n) matrix that is useful to simplify the
computation of the matrix.

Proposition 6. All the elements Ξ
(n)
m,j in which m+ j is odd are zero.

Proof. We can develop (48) to write:

2Ξ
(n)
m,j =

1

2n

n∑
k=0

(
(n− 2k)mK(n)

k,j + (n− 2k)mK(n)
k,j

)
changing k by n− k

=
1

2n

n∑
k=0

(
(n− 2k)mK(n)

k,j + (2k − n)mK(n)
n−k,j

)
=

1

2n

n∑
k=0

(n− 2k)m
(
K(n)
k,j + (−1)mK(n)

n−k,j

)
by Proposition 3, Eq. (27)

=
1

2n

n∑
k=0

(n− 2k)m
(
K(n)
k,j + (−1)m+jK(n)

k,j

)
=

1

2n

n∑
k=0

(n− 2k)mK(n)
k,j

(
1 + (−1)m+j

)
.

If m+ j is odd all the terms in the sum are zero and, thus, Ξ
(n)
m,j = 0.

Theorem 4 claims that F depends only on |x| and not on the solution itself. As a consequence,
the vector of probabilities π(f(Mp(x))) depends only on |x|. But, according to (45), |x| is related to
the fitness value of a solution by f(x) = n − 2|x|, and the vector of probabilities π depends only
on the fitness level of the solution we are evaluating. We can then build a matrix, denoted with $,
where element $i,j is the probability of generating a solution with fitness ξj using bit-flip mutation
from a solution with fitness ξi. This matrix depends on p (probability of mutation), but we omit p
in the notation to make it simpler. The expression for $i,j can be obtained using simple counting
arguments, without the need of the mathematical framework developed in Section 3. However, in
the next theorem we provide an expression for this matrix using our mathematical framework. The
purpose of this result is twofold: it proves that$i,j can be computed using our framework and, to the
best of our knowledge, it provides a previously unknown expression for$i,j involving Krawtchouk
matrices.

Theorem 5. Given the objective function defined in (45) over Bn, the probability of reaching a solution with
fitness ξj = 2j − n when bit-flip mutation with probability p is applied to a solution with fitness ξi = 2i − n
is given by:

$i,j =

n∑
l=0

K(n)
j,l (1− 2p)lK(n)

l,i , (51)

where 0 ≤ i, j ≤ n.

Proof. First, we will express the matrix Ξ(n) as a product of two other matrices.

Ξ
(n)
c,j =

1

2n

n∑
k=0

(n− 2k)cK(n)
k,j replacing k by n− k

=
1

2n

n∑
k=0

(2k − n)cK(n)
n−k,j =

1

2n

n∑
k=0

ξckK
(n)
n−k,j =

1

2n

n∑
k=0

V k,cK̃(n)
k,j

=
1

2n

(
V T K̃(n)

)
c,j
, (52)

13

where we used the Vandermonde matrix and we introduced a new matrix K̃(n). This is the Krawtchouk
matrix of order n in which the rows are reversed. Then, we have Ξ(n) = 2−nV T K̃(n). Let us now de-
fine the vector K(n)

∗,j as the j-th column of the n-th order Krawtchouk matrix. We can write the matrix
function F (x) defined in (50) in a compact way as:

F (x) = Ξ(n) diag
(
K(n)
∗,|x|

)
, (53)

where the function diag () maps a vector into a matrix having the vector in the diagonal. If we intro-
duce this compact expression of F (x) in (39) we obtain:

π(f(Mp(x))) =
(
V T
)−1

F (x)Λ(p) =
(
V T
)−1

Ξ(n) diag
(
K(n)
∗,|x|

)
Λ(p)

=
1

2n
(
V T
)−1

V T K̃(n) diag
(
K(n)
∗,|x|

)
Λ(p) =

1

2n
K̃(n) diag

(
K(n)
∗,|x|

)
Λ(p)

=
1

2n
K̃(n)(Λ(p) ◦ K(n)

∗,|x|). (54)

where the symbol ◦ denotes the Hadamard product2 of matrices and we used the fact that diag (A)B =
A ◦B.

According to the definition of$, it must be related to π by the following equation:

$i,j = πj(f(Mp(x))) for any x such that f(x) = ξi. (55)

Since ξi = 2i− n, f(x) = n− 2|x| = ξi if and only if |x| = n− i and using (54) we have:

$i,j = πj(f(Mp(x))) for any x with |x| = n− i

=
1

2n

(
K̃(n)(Λ(p) ◦ K(n)

∗,n−i)
)
j

=
1

2n

n∑
l=0

K̃(n)
j,l (Λ(p) ◦ K(n)

∗,n−i)l

=
1

2n

n∑
l=0

K̃(n)
j,l Λl(p)K(n)

l,n−i =
1

2n

n∑
l=0

K(n)
n−j,lΛl(p)K(n)

l,n−i by Proposition 3

=
1

2n

n∑
l=0

K(n)
j,l (−1)lΛl(p)K(n)

l,n−i =
1

2n

n∑
l=0

K(n)
j,l Λl(p)K(n)

l,i , (56)

and we get (51) just considering that Λl(p) = (1− 2p)l.

In the following proposition we provide two properties of the $ matrix that are useful to reduce
the computational complexity of its computation.

Proposition 7. The matrix$ has the following properties:(
n

i

)
$i,j =

(
n

j

)
$j,i, (57)

$n−i,n−j = $i,j , (58)

where 0 ≤ i, j ≤ n.

Proof. The first property is a consequence of an analogous property of the Krawtchouk matrices:(
n
j

)
K(n)
i,j =

(
n
i

)
K(n)
j,i (Terras, 1999, p. 179). We can write:(
n

i

)
$i,j =

1

2n

∑
l=0

K(n)
j,l Λl(p)

(
n

i

)
K(n)
l,i =

1

2n

∑
l=0

(
n

l

)
K(n)
j,l Λl(p)K(n)

i,l

=
1

2n

∑
l=0

(
n

j

)
K(n)
l,j Λl(p)K(n)

i,l =

(
n

j

)
$j,i.

2The Hadamard product of two matrices with the same dimension is the element-wise product of the matrices.

14

The second property is a consequence of Proposition 3:

$n−i,n−j =
1

2n

∑
l=0

K(n)
n−j,lΛl(p)K(n)

l,n−i =
1

2n

∑
l=0

(−1)lK(n)
j,l Λl(p)(−1)lK(n)

l,i

=
1

2n

∑
l=0

K(n)
j,l Λl(p)K(n)

l,i = $i,j .

At this point we can discuss the utility of the$ matrix. We can see$ as a practical substitute for
all the probability vectors π(Mp(f(x))) in the case of the objective function f(x) defined in (45). In
general, the components of the previous vector depend on the solution x. However, in the particular
case of the Onemax-related function (45) the components depend only on the fitness level ξi the
solution has. This way we can forget the concrete solution x and focus only on the fitness levels
ξi. Furthermore, the number of fitness levels is n + 1 and the complexity of computing any element
of $ using (51) is O(n), where we assume that the Krawtchouk matrix K(n) is precomputed3. This
means that we can compute the probabilities of reaching any fitness level from any other one after
bit-flip mutation in O(n3). That is, we obtain in polynomial time a practical piece of information
that summarizes the behavior of bit-flip mutation in this problem. We will see in Section 5 how this
information can be used.

We derived the $ matrix for only one objective function. Now we wonder if similar $ matrices
can be derived for other objectives functions. The answer to this question is not easy in general, but
the next results gives a first answer in this line. Let us first formally define the property that allows
one to compute a matrix like$.

Definition 4. Let f(x) be an objective function and let us call ξ0 < ξ1 < . . . < ξq−1 to the different values
it can take. We say that the function f has a fitness-dependent distribution for a unary operator if the
probability distribution of the objective value after applying the operator to any solution does only depend on
the objective value of the initial solution. In formal terms, if U(x) ∈ Bn is a random variable that represents
the application of the unary U operator to x, we have

∀x, y ∈ Bn, f(x) = f(y)⇒ Pr{f(U(x)) = ξj} = Pr{f(U(y)) = ξj}, (59)

for all the possible ξj values. If this happens, then we can define a matrix$ whose elements are:

$i,j = Pr{f(U(x)) = ξj |f(x) = ξi} . (60)

There is a trivial family of functions having fitness-dependent distributions for any unary oper-
ator. It is the family of injective functions. In these functions each particular solution has a unique
image and the fitness-dependency condition trivially holds. However, the probability matrix in this
case has size 2n × 2n (the size of the search space squared), what makes this treatment impractical.
Even simple linear pseudo-Boolean functions (such as BINVAL) can have this property. The next the-
orem claims that the property of having a fitness-dependent distribution can be kept even after some
simple manipulations of the fitness function.

Theorem 6. Let g(x) be an objective function having a fitness-dependent distribution for the unary operator
U and let us call$(g) the associated probability matrix, where we used the name of the function as superindex.
Then, the function f(x), which is a composition of g(x) with another function, also has a fitness-dependent
distribution for U under the following conditions:

• When f(x) = h(g(x)) for h a strictly increasing function. The probability matrix does not change:
$(f) = $(g).

• When f(x) = h(g(x)) for h a strictly decreasing function. The probability matrix flips its rows and
columns: $(f)

i,j = $
(g)
(q−1)−i,(q−1)−j .

3Krawtchouk matrix K(n) can be precomputed in O(n3) using Proposition 2.1 of Feinsilver and Kocik (2005).

15

• When f(x) = g(x ⊕ u) for u ∈ Bn and U commute with the ⊕ operator: Pr{U(x⊕ u) = y} =
Pr{U(x)⊕ u = y} ∀x, u ∈ Bn. The probability matrix does not change: $(f) = $(g).

Proof. First, we can observe that in the three cases the number of values that f can take is the same
as the number of values that g can take, |f(Bn)| = |g(Bn)| = q. Then, let us denote with ξ(g)0 < ξ

(g)
1 <

. . . < ξ
(g)
q−1 these values for the g function. We will use the notation ξ(f)i to refer to the corresponding

values of f .
Let us start with the first case: f(x) = h(g(x)) and h strictly increasing. In this case ξ(f)i = h(ξ

(g)
i)

for all 0 ≤ i < q. And the property of having a fitness-dependent distribution trivially holds for f
since if f(x) = f(y) then g(x) = g(y) and consequently Pr{g(U(x)) = ξ

(g)
j } = Pr{g(U(y)) = ξ

(g)
j },

what implies Pr{f(U(x)) = ξ
(f)
j } = Pr{f(U(y)) = ξ

(f)
j }. Regarding the probability matrix we have:

$
(f)
i,j = Pr{f(U(x)) = ξ

(f)
j |f(x) = ξ

(f)
i } by definition of f

= Pr{h(g(U(x))) = h(ξ
(g)
j)|h(g(x)) = h(ξ

(g)
i)} since h is strictly monotone

= Pr{g(U(x)) = ξ
(g)
j |g(x) = ξ

(g)
i } = $

(g)
i,j . (61)

In the second case, in which f(x) = h(g(x)) for h a strictly decreasing function, we can prove
that f has a fitness-dependent distribution with an argument similar to the first case. However, the
probability matrix is different due to the change in the order of the values ξ(f)i . Since h is strictly
decreasing we have ξ(f)i = h(ξ

(g)
(q−1)−i). Thus, the elements of the probability matrix are given by:

$
(f)
i,j = Pr{f(U(x)) = ξ

(f)
j |f(x) = ξ

(f)
i } by definition of f

= Pr{h(g(U(x))) = h(ξ
(g)
(q−1)−j)|h(g(x)) = h(ξ

(g)
(q−1)−i)} h strictly mon.

= Pr{g(U(x)) = ξ
(g)
(q−1)−j |g(x) = ξ

(g)
(q−1)−i} = $

(g)
(q−1)−i,(q−1)−j . (62)

Finally, let us prove the last case. The values that the function takes do not change, that is:
ξ
(f)
i = ξ

(g)
i . If f(x) = f(y) then g(x ⊕ u) = g(y ⊕ u), what implies Pr{g(U(x⊕ u)) = ξ

(g)
j } =

Pr{g(U(y ⊕ u)) = ξ
(g)
j } by hypothesis. But if U commutes with ⊕ then we have:

Pr{g(U(x⊕ u)) = ξ
(g)
j } = Pr{g(U(x)⊕ u) = ξ

(g)
j } = Pr{f(U(x)) = ξ

(f)
j }, (63)

where we used the definition f(x) = g(x⊕ u) in the last step and the fact that ξ(f)i = ξ
(g)
i .

As a consequence we have Pr{f(U(x)) = ξ
(f)
j } = Pr{f(U(y)) = ξ

(f)
j } and f has a fitness-dependent

distribution for U . The elements of the probability matrix are:

$
(f)
i,j = Pr{f(U(x)) = ξ

(f)
j |f(x) = ξ

(f)
i } by definition of f

= Pr{g(U(x)⊕ u) = ξ
(g)
j |g(x⊕ u) = ξ

(g)
i } by commutation of U and ⊕

= Pr{g(U(x⊕ u)) = ξ
(g)
j |g(x⊕ u) = ξ

(g)
i } = $

(g)
i,j . (64)

The only condition imposed to the unary operator in the previous theorem is the commutation
with ⊕. Fortunately, the bit-flip mutation operator commutes with ⊕. Furthermore, we provide in
the next proposition a result that generalizes that of the mutation operator.

Proposition 8. If a unary operator U has the property Pr{U(x) = y} = f(x ⊕ y) for a real function f then
it commutes with the ⊕ operation.

Proof. For any x, u, y ∈ Bn we can write:

Pr{U(x⊕ u) = y} = f(x⊕ u⊕ y) = Pr{U(x) = u⊕ y} = Pr{U(x)⊕ u = y}, (65)

and we have the commutation property.

16

The bit-flip mutation satisfies the hypothesis of the previous proposition, as Lemma 1 states.
Now, we can combine the results of Theorem 6 and Proposition 8 to provide a concrete result for
the Onemax-related functions.

Proposition 9. All the objective functions of the form

g(x) = h(|x⊕ u|), (66)

where h is a strictly monotone function have a fitness-dependent distribution for the bit-flip mutation operator
and the probability matrix is the one defined in (51).

Proof. First, we observe that in the case of the sum of order-1 Walsh functions (45) the probability
matrix $(f) does not change even in the case in which we compose the functions with a strictly
decreasing function, since q = n + 1 and $n−i,n−j = $i,j according to Proposition 7. Then, based
on the results of Theorem 6 and Proposition 8 we only need to express g(x) as a strictly monotone
function of the objective function f defined in (45). This expression is:

g(x) = h(|x⊕ u|) = h

(
n− f(x⊕ u)

2

)
. (67)

A direct consequence of the previous result is that even although we focused in this section on the
objective function defined in (45) instead of the Onemax objective function, the probability matrix $
is valid also for the original Onemax function. Furthermore, it is also valid for any strictly monotone
function composed with the Onemax function.

4.2 MAX-SAT

The MAX-SAT problem is a well-known NP-hard problem related to the satisfiability of Boolean for-
mulas. An instance of this problem is composed of a set of clauses C. A clause is a disjunction of
literals, each one being a decision variable xi or a negated decision variable xi. The MAX-SAT prob-
lem consists in finding an assignment of Boolean values to the literals in such a way that the number
of satisfied clauses is maximum. Let us assume that there exist n Boolean decision variables. For each
clause c ∈ C we define the vectors v(c) ∈ Bn and u(c) ∈ Bn as follows (Sutton et al., 2009):

vi(c) =

{
1 if xi appears (negated or not) in c,
0 otherwise, (68)

ui(c) =

{
1 if xi appears negated in c,
0 otherwise. (69)

We will omit the argument of the vectors (the clause) when there is no confusion. According to
this definition u ∧ v = u. We should note here that the previous notation allows us to express the
empty clause, �, with v = u = 0. But it is not possible to express the top clause >. We will need a
special treatment of the top clause in the following.

The objective function of MAX-SAT is defined as

f(x) =
∑
c∈C

fc(x); where

fc(x) =

{
1 if c is satisfied with assignment x,
0 otherwise. (70)

A clause c is satisfied with x if at least one of the literals is true (we assume the usual identity
true=1 and false=0). Using the vectors v(c) and u(c) we can say that c is satisfied by x if (x∧ u)∨ (x∧
v ∧ u) 6= 0.

17

Sutton et al. (2009) provide the Walsh decomposition for the MAX-SAT problem. Let the function
fc evaluate one clause c ∈ C. The Walsh coefficients for fc are:

aw =


0 if w ∧ v̄ 6= 0,
1− 1

2|v|
if w = 0,

−1
2|v|

ψw(u) otherwise.
(71)

If the clause c is > then the only nonzero Walsh coefficient is a0 = 1.
For the sake of simplicity in the mathematical development, instead of using fc in the following,

it is better to use gc(x) = 1− fc(x). The Walsh coefficients for gc are:

aw =

{
0 if c = > or w ∧ v̄ 6= 0,
1

2|v|
ψw(u) otherwise. (72)

We will also focus on the fitness function g(x) defined as:

g(x) =
∑
c∈C

gc(x) = m− f(x). (73)

Maximizing f(x) is equivalent to minimizing g(x).
The following lemma provides the elementary landscape decomposition of gc.

Lemma 3. The j-th elementary component of gc is

gc,[j](x) = (1− δ>c)
1

2|v(c)|
K(|v(c)|)
j,|(x⊕u(c))∧v(c)|. (74)

Proof. With the help of (72) we can write

gc,[j](x) =
∑
w∈Bn
|w|=j

awψw(x) = (1− δ>c)
∑

w∈Bn∧v(c)
|w|=j

1

2|v(c)|
ψw(u(c))ψw(x) by (9)

= (1− δ>c)
∑

w∈Bn∧v(c)
|w|=j

1

2|v(c)|
ψw(x⊕ u(c)) by (28)

= (1− δ>c)
1

2|v(c)|
K(|v(c)|)
j,|(x⊕u(c))∧v(c)|. (75)

The next two lemmas provide intermediate results related to the gc functions that are required in
the proof of the main theorem in this section.

Lemma 4. The m-th power of gc for m > 0 is:

gmc (x) = gc(x). (76)

Proof. The function gc takes only values 0 and 1. If m > 0 we have gmc (x) = gc(x).

Lemma 5. Given a family of clauses c ∈ C, the product of functions gc is:∏
c∈C

gc(x) = g∨C(x), (77)

where
∨
C is the disjunction of the family of clauses. For the previous expression to be true even in the case in

which the family of clauses is empty we define g�(x) = 1.

Proof. The function gc is 0 when the clause c is satisfied. Thus, a product of gc functions will be 0
when any of the clauses is satisfied and 1 if none of the clauses is. This behavior is the same as the
function g associated with the disjunction of the clauses. This disjunction is also another clause.

18

The following theorem provides the expression for the matrix function F (x) for g(x) defined in
(73).

Theorem 7. The matrix function F (x) for the objective function g(x) defined in (73) is:

Fm,j(x) =
∑
W⊆C∨
W 6=>

1

2|v(
∨
W)|Υm,|W |K

(|v(
∨
W)|)

j,|(x⊕u(
∨
W))∧v(

∨
W)|, (78)

where the Υ matrix is defined by the following recurrence equations:

Υm,0 = 0, (79)

Υm,k = km −
k−1∑
l=0

(
k

l

)
Υm,l. (80)

Proof. Let us number the clauses in C from 1 to h and let us denote with cj the j-th clause. We can
write gm(x) as

gm(x) =

 h∑
j=1

gcj (x)

m

=
∑

i1+i2+...+ih=m

(
m

i1, i2, . . . , ih

) h∏
j=1

gijcj (x)

by Lemma 4

=
∑

i1+i2+...+ih=m

(
m

i1, i2, . . . , ih

) h∏
j=1
ij>0

gcj (x)

removing the indices that are zero we can write the sum in an alternative way

=
∑
W⊆C

∑
i1+i2+...+i|W |=m

i1,i2,...i|W |>0

(
m

i1, i2, . . . , i|W |

) ∏
c∈W

gc(x)

=
∑
W⊆C

Υm,|W |
∏
c∈W

gc(x)

by Lemma 5

=
∑
W⊆C

Υm,|W |g
∨
W (x), (81)

where we defined Υm,k as

Υm,k =
∑

i1+i2+...+ik=m
i1,i2,...ik>0

(
m

i1, i2, . . . , ik

)
. (82)

Using (81) and (74) we obtain (78).
In order to complete the proof we only need to justify the equations (79) and (80) based on the

definition (82). In the following we will use the notation [k] to denote the set of numbers from 1 to k.
When m, k > 0 the sum of the multinomial coefficients is:

km =
∑

i1+i2+...+ik=m

(
m

i1, i2, . . . , ik

)

19

which we can reorganize in the following way

=
∑
J⊆[k]
J 6=∅

∑
i1+i2+...+i|J|=m

i1,i2,...,i|J|>0

(
m

i1, i2, . . . , i|J|

)

=

k∑
l=1

∑
J⊆[k]
|J|=l

∑
i1+i2+...+i|J|=m

i1,i2,...,i|J|>0

(
m

i1, i2, . . . , i|J|

)

=

k∑
l=1

∑
J⊆[k]
|J|=l

∑
i1+i2+...+il=m

i1,i2,...,il>0

(
m

i1, i2, . . . , il

)
=

k∑
l=1

∑
J⊆[k]
|J|=l

Υm,l

=

k∑
l=1

(
k

l

)
Υm,l. (83)

In order to extend the previous sum to the value l = 0 we can just define Υm,0 = 0 as in (79) and
we obtain the recurrence equation in (80). Now we can observe that (80) is valid even in the case in
which k = 0.

By the definition of Υm,k in (82) it is clear that Υm,k = 0 if k > m. As a consequence, the sum in
(78) must consider only the subsets W of at most m elements if we are interested in the elementary
landscape decomposition of the m-th power of g(x). The computation of the v and u vectors in (78)
can be done in O(nm) at most, since we have to explore up to n bits of up to m clauses (it can be
much less in practice if the number of literals per clause is low). Thus, the complexity of computing
the elementary components of gm(x) is O(nm|C|m), where we assume that the matrices Υ and K(n)

are precomputed.

5 Connection to Runtime Analysis

The results we present in this section represent, to the best of our knowledge, the first connection
between landscape theory and runtime analysis, and this is, in fact, the reason why we think they
are relevant. They are an application of the results of Sections 3 and 4 to the computation of the first
hitting time of a (1 + λ) EA. The results themselves are not new or significant for the runtime com-
munity. We use the Markov chain framework by He and Yao (2003), which has important limitations
when the goal is to find asymptotic bounds for runtime. With this framework we are able to compute
exact expressions for the expected runtime as a function of p, the probability of flipping a bit in the
mutation, but we are not able to find asymptotic expressions or make conclusions about the runtime
when n is large, which is the main goal of the runtime analysis community.

When one is interested in computing bounds for the runtime required by an evolutionary algo-
rithm to solve an optimization problem, it is quite common to analyze the probability of improving a
solution in one iteration of the algorithm. This is the way, for example, in which an upper bound of
O(n log n) is derived for the Onemax problem solved with a (1 + 1) EA using bit-flip with probability
p = 1/n (Neumann and Witt, 2010, p. 39). These probabilities of improvement are not usually exactly
computed, but an asymptotic lower bound of the probability is used instead. Thus, an upper bound
of the expected runtime is derived instead of a precise expression.

In Section 3 we showed how we can compute the probability distribution of the objective values
after mutation. In Section 4 we found that for a family of functions that includes Onemax, the proba-
bility distribution only depends on the value of the fitness function in the current solution and, thus,
we could define a matrix$, that summarizes the behavior of the algorithm in one step. The question
we want to answer in this section is, can we use the$matrix to provide an expression of the expected
runtime of an evolutionary algorithm? In the next subsections we will show how a precise expression
for the expected runtime of a (1 + λ) EA can be derived using the$ matrix. In Algorithm 1 we show

20

the pseudocode of a (1 + λ) EA, where (abusing notation slightly) we use Mp(x) to denote a random
solution that is the result of applying the bit-flip mutation operator to x.

Algorithm 1 Pseudocode of a (1 + λ) EA.
x← RandomSolution();
while x is not a global optimum do

for i = 1 to λ do
y ←Mp(x);
if f(y) > f(x) then
x← y;

end if
end for

end while

5.1 Runtime analysis of (1 + λ)-EAs

Based on the probability matrix$, that only assumes one single application of the mutation operator,
we can define a new probability matrix $(λ) related to the generation of λ offspring using bit-flip
mutation and selecting the best one. This new probability matrix must reduce to $ when λ = 1.
The element$(λ)

i,j is the probability of obtaining a solution with fitness value ξj after applying bit-flip
mutation λ times with probability p to a solution with fitness value ξi and taking the offspring with
the highest fitness. The following proposition provides an expression for$(λ)

i,j .

Proposition 10. The probability matrix$(λ) is defined as

$
(λ)
i,j =

(
j∑
l=0

$i,l

)λ
−

(
j−1∑
l=0

$i,l

)λ
. (84)

Proof. The element$(λ)
i,j is exactly the probability of obtaining at least one solution with fitness value

ξj and no solution with a higher fitness value in the λ trials. This is exactly the probability of obtain-
ing the λ solutions with fitness value lower than or equal to ξj (first term) minus the probability of
obtaining the solutions with fitness value lower than ξj (second term).

We can observe in (84) that$(1) = $. We must recall here that$(λ) is a polynomial in p because
$ is also a polynomial in p. Now we analyze the runtime of the (1 + λ) EA with the help of the
Markov chain framework presented by He and Yao (2003). The first step is to present the transition
matrix (we assume maximization):

P
(λ)
i,j =


$

(λ)
i,j if j > i,∑j

l=0$
(λ)
i,l if i = j,

0 if j < i,
(85)

where 0 ≤ i, j < q. If the probability p of flipping a bit is 0 < p < 1, then the previous transition
matrix will have only one absorbing state that corresponds to the solutions with the highest fitness
value ξq−1.

Now we can use some results from the Markov chain theory (Iosifescu, 1980) to compute the
expected runtime of the (1 + λ) EA. The P matrix can be written in the form:(

T R
0 1

)
, (86)

where R is a column vector and T is a (q − 1) × (q − 1) submatrix with the transition probabilities
of the transient states in the Markov chain. The fundamental matrix is N = (I − T)−1, and the

21

expected runtime (number of iterations) of the (1 + λ) EA starting in a solution with fitness value ξi
and 0 ≤ i < q−1 is given by the i-th component of the vector of mean absorption times ti. This vector
is computed as t = N1. From a computational point of view, the vector can be efficiently computed
by solving the following linear equation system:

(I − T)t = 1, (87)

since I − T is an upper triangular matrix and the system can be solved in O(q2). The components of
t will be, in general, fractions of polynomials in p. The vector t has only q − 1 components indexed
by number from 0 to q − 2, but for the sake of completeness we can extend it with an additional
component tq−1 = 0, which is the expected runtime of the algorithm when the initial solution is the
global optimum.

Assuming that the algorithm starts from a random solution, the expected runtime is given by

E{τ} =

q−1∑
l=0

|Xl|
|X|

tl, (88)

where X is the set of solutions and Xl is the set of solutions with fitness f(x) = ξl.
The expected runtime (88) is not an approximation or bound, it is the exact expression of the ex-

pected runtime as a function of p, the probability of flipping a bit. However, this expression will only
be practical if 1) we can define the $ matrix in the problem we are interested and 2) the evaluations
of this matrix can be efficiently done in a computer. These conditions limit the number of problems
whose runtime can be analyzed using this approach. However, we found in Section 4.1 that for any
monotone function of Onemax we can efficiently construct and evaluate the $ matrix. In the next
subsection we focus on Onemax.

5.2 Runtime of (1 + λ) EA for Onemax

The Onemax problem has been studied in the literature on runtime analysis many times. Garnier
et al. (1999) derived an expression for the transition probability matrix of the (1 + 1) EA for the One-
max function that was later reported by He and Yao (2003). Their expression is the same as (85) for
λ = 1. Tight upper and lower bounds have been derived for the (1 + 1) EA using different muta-
tion rates. Recently, Witt (2013) proved that the (1 + 1) EA optimizes all linear functions (including
Onemax) in expected time en lnn + O(n), and the expected optimization time is polynomial as long
as p = O((log n)/n) and p = Ω(1/poly(n)). Jansen et al. (2005) proved that using a (1 + λ) EA the
expected number of iterations after reaching the global optimum is O(n log n/λ + n). In summary,
the Onemax problem is well-known and the content of this section adds not too much to the current
knowledge on this problem. The goal of this section is, thus, to obtain the same results from a dif-
ferent perspective, that of landscape analysis. The advantage of this approach is that with an exact
expression of the expected runtime we can find a precise answer to some concrete questions for some
particular instances. The disadvantage is that the expression is quite complex to analyze and we need
to use numerical methods, so it is not easy to generalize the answers obtained.

Let us first start by studying the (1 + 1) EA. Taking into account the $ matrix defined in (51) for
Onemax, the expected number of iterations can be exactly computed as a function of p, the probability
of flipping a bit. Just for illustration purposes, we present the expressions of such expectation for
n ≤ 3:

E{τ} =
1

2p
for n = 1, (89)

E{τ} =
7− 5p

4(p− 2)(p− 1)p
for n = 2, (90)

E{τ} =
26p4 − 115p3 + 202p2 − 163p+ 56

8(p− 1)2p (p2 − 3p+ 3) (2p2 − 3p+ 2)
for n = 3. (91)

We can observe how the expressions grow very fast as n increases. The factor p(p − 1) is always
present in the denominator for n > 2, what means that when p takes extreme values, p = 0 or p = 1,

22

it is not possible to reach the global optimum from any solution, since the algorithm will keep the
same solution if p = 0 or will alternate between two solutions if p = 1. However, when n = 1 the
probability p = 1 is valid, furthermore, is optimal, because if the global solution is not present at the
beginning we can reach it by alternating the only bit we have. In Figure 1 we show the expected
runtime as a function of the probability of flipping a bit for n = 1 to 7. We can observe how the
optimal probability (the one obtaining the minimum expected runtime) decreases as n increases.

n=1
n=2

n=3
n=

4

n
=

5n
=

6n
=

7

p

E
{
Τ
}

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

Figure 1: Expected runtime of the (1 + 1) EA for Onemax as a function of the probability of flipping
a bit. Each line correspond to a different value of n from 1 to 7.

Having the exact expressions we can compute the optimal mutation probability for each n by
using classical optimization methods in one variable. In particular, for n = 1 the optimal value is
p = 1 as we previously saw and for n = 2 we have to solve a cubic polynomial in order to obtain the
exact expression. The result is:

p∗2 =
1

5

6− 3

√
2

23− 5
√

21
− 3

√
23− 5

√
21

2

 ≈ 0.561215, (92)

which is slightly higher than the recommended value p = 1/n. Observe, however, that this result
does not contradict the ones in Witt (2013), since Witt’s work provides asymptotic expressions and
discards low-order terms, while we are working here with expressions for low n values. In accordance
to Witt’s work, we would expect the optimal probability of mutation p∗n to approximate the 1/n value,
and this is what happens. As we increase n, analytical responses for the optimal probability are not
possible and we have to apply numerical methods. In our case we used the Newton method in order
to find a root of the equation dE{τ}

dp = 0. Some results up to n = 100 can be found in Table 1. A
fast observation of the results reveals that the optimal probability is always a little bit higher than the
recommended p = 1/n.

Before we go further, we could question the use of an approximate method (the Newton method)
over an exact expression to find the optimal probability for mutation. In particular, as we get approx-
imate values anyway, why not directly run the (1 + λ) EA enough times to get an accurate enough

23

n p∗n E{τ} n p∗n E{τ}
1 1.00000 0.500 20 0.06133 127.453
2 0.56122 2.959 30 0.04046 222.079
3 0.38585 6.488 40 0.03009 325.900
4 0.29700 10.808 50 0.02391 436.580
5 0.24147 15.758 60 0.01981 552.734
6 0.20323 21.222 70 0.01690 673.445
7 0.17526 27.120 80 0.01473 798.059
8 0.15391 33.391 90 0.01304 926.088
9 0.13710 39.990 100 0.01170 1057.151
10 0.12352 46.882

Table 1: Optimal probability values for an (1 + 1) EA solving Onemax.

approximated value for the optimal probability? Although in both cases we end with an approx-
imated value, the approximation is done at a different level and using the Newton method, we get
higher accuracy in less time. Let us explain this in detail. First, we have to say that given a probability
of bit-flip p the computation of the first-hitting time using (88) is very fast and the result we obtain
is exact up to the machine precision. If we want to obtain the expected first-hitting time running the
algorithm we need to run it several thousand times to get a good confidence interval and the final
approximation will be coarser than using the exact formulas. Just as an illustration we run the algo-
rithm 1,000 times for n = 100, λ = 1 and p = 0.01, and it took 193 s to find an expected runtime of
1058.60 ± 21.73 with 95% confidence. On the other hand the evaluation of the exact expression was
done in 0.837 s and found an expected runtime of 1069.54 with 11 decimals precision4. Second, if we
want to obtain the optimal probability for mutation we have to apply a numerical method. Using the
exact formulas, we applied the Newton method and after several steps we obtain an approximated
optimal probability p∗. In order to get an optimal mutation probability using the completely empiri-
cal approach we need to apply again a numerical method like the false position method (the Newton
method cannot be applied now because we cannot compute derivatives). In order to evaluate each
probability p we need to run the algorithm thousands of times and, in the end we can only obtain
an approximated value for the expected runtime. As an illustration we can say that the execution of
the Newton method for n = 100 stopped after 7.7 s, which is the time required to run the (1 + 1)
EA algorithm around 40 times in our machine. However, with 40 independent runs the precision of
the expected runtime is very low. In summary, the completely empirical method requires much more
time than the Newton method applied to the exact formulas for the same precision.

From previous work we know that the optimal probability is in the form c/n for a constant c. We
can use the results obtained by numerical analysis to find the value of c and check the dependency
with n. That is, using the optimal probability p∗n shown in Table 1 we can compute cn = p∗nn in order
to see what is the value of cn. In Figure 2 we plot cn as a function of n. We can observe that the
optimal probability is not p = c/n for a fixed c. The value of the constant cn is higher than 1 and
depends on n. However, we can observe a clear trend cn → 1 as n tends to∞. The maximum value
for cn is reached in n = 11 and the value is c11 = 1.23559.

It is also well-known that for this optimal probability the expected runtime is Θ(n log n). We can
also check this using numerical analysis. We used the optimal expected runtime for this computation
and found the best fit model including n and n log n terms. The result is:

E{τ} ≈ −1.51165n+ 2.62161n log n, (93)

where we can observe how the factor in front of the n log n term is near e, which is the theoretically
predicted factor for c = 1 and large values of n (Witt, 2013).

Let us now study the expected runtime for different values of λ. In this case we fix the size of the

4The experiments were done in a MacBook Pro with an Intel Core i7 processor running at 2.8 GHz and 4 GB of DDR3 RAM
memory.

24

0 20 40 60 80 100

1.14

1.16

1.18

1.20

1.22

n

c n
!
p n"
#n

Figure 2: The value of the constant c in the optimal probability p = c/n for Onemax instances from 2
to 100.

problem to n = 50 and we analyze the expected runtime using p = 1/n for λ = 1 to 50. The results
are shown in Figure 3 in both, natural scale and log-log scale.

0 10 20 30 40 50

20

40

60

80

100

Λ

E
8Τ
<

(a) Expected runtime as a function of λ

0 1 2 3 4

3.0

3.5

4.0

4.5

5.0

5.5

6.0

log Λ

lo
g

E
8Τ
<

(b) Log-log plot of the expected runtime against λ

Figure 3: The expected runtime of a (1 + 1) EA with p = 1/n and n = 50 for λ = 1 to 50.

The log-log plot is almost a straight line, what suggests that we can express the expected runtime
as a potential function of λ. The best linear regression model for the log-log plot is:

logE{τ} ≈ 5.78452− 0.746412 log λ, (94)

or equivalently:

E{τ} ≈ 325.226

λ0.746412
. (95)

However, we cannot compare this model with the result of Jansen et al. (2005) of O(n log n/λ+n).

25

Thus, we found the best fit model in the form E{τ} = A+ B
λ and we got:

E{τ} ≈ 11.1306 +
424.99

λ
. (96)

The value of the constant A is small enough to say that the expected runtime is approximately
divided by λ when we generate λ offspring.

6 Conclusions

We analyzed the bit-flip mutation operator from the point of view of landscape theory. In particu-
lar, we derived closed-form formulas for all the statistical moments of the fitness distribution of a
mutated solution. These moments can be expressed as a polynomial in p, the probability of flipping
a bit. Using the moments we derived an expression for the probability mass function of the fitness
value after applying bit-flip mutation to a given solution. The expression takes an elegant matrix
form in which we can distinguish a problem-dependent part and an operator-dependent part. The
problem-dependent part can be obtained using the elementary landscape decomposition of the ob-
jective function of the problem and their powers. The operator-dependent part depends only on the
probability p.

We also derived the problem-dependent part for two well-known problems: Onemax and MAX-
SAT. In the first case, the problem-dependent part is especially simple and efficient to compute. This
allowed us to derive the exact expression for the runtime of an (1+λ) EA for solving Onemax, finding
a connection between landscape theory and runtime analysis. Using this expression we obtained the
optimal probability for bit-flip mutation as a function of n, the number of bits.

It is possible to analyze other operators in the same way we did with bit-flip mutation. Thus, we
think that an interesting future line of research could be the application of similar ideas to find the
probability mass function of the distribution after the application of several chained operators. In
particular, recent developments in landscape theory suggest that it is possible to analyze the fitness
distribution of the offspring of two parent solutions when the uniform crossover is applied (Chicano
et al., 2012). These results together with the connection between landscape theory and runtime anal-
ysis shown in this paper could provide a natural way of introducing crossover in the runtime results.

7 Acknowledgements

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness and
FEDER under contract TIN2011-28194 (the roadME project), and by the Air Force Office of Scien-
tific Research, Air Force Materiel Command, USAF, under grant number FA9550-08-1-0422. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

The authors would also like to thank the organizers and participants of the seminars on Theory of
Evolutionary Algorithms (10361 and 13271) at Schloß Dagstuhl - Leibniz-Zentrum für Informatik.

References

Biyikoglu, T., Leyold, J., and Stadler, P. F. (2007). Laplacian Eigenvectors of Graphs. Lecture Notes in
Mathematics. Springer-Verlag.

Chicano, F. and Alba, E. (2011). Exact computation of the expectation curves of the bit-flip mutation
using landscapes theory. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, pages 2027–2034. ACM.

Chicano, F., Whitley, D., and Alba, E. (2012). Exact computation of the expectation curves for uniform
crossover. In Proceedings of the 14th annual Conference on Genetic and Evolutionary Computation, pages
1301–1308. ACM.

26

Chicano, F., Whitley, L. D., and Alba, E. (2011). A methodology to find the elementary landscape
decomposition of combinatorial optimization problems. Evolutionary Computation, 19(4):597–637.

Feinsilver, P. and Kocik, J. (2005). Krawtchouk polynomials and krawtchouk matrices. In Baeza-Yates,
R., Glaz, J., Gzyl, H., Hüsler, J., and Palacios, J., editors, Recent Advances in Applied Probability, pages
115–141. Springer US.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary mutations. Evolu-
tionary Computation, 7(2):173–203.

Grover, L. K. (1992). Local search and the local structure of NP-complete problems. Operations Research
Letters, 12:235–243.

He, J. and Yao, X. (2003). Towards an analytic framework for analysing the computation time of
evolutionary algorithms. Artificial Intelligence, 145:59 – 97.

Iosifescu, M. (1980). Finite Markov Processes and Their Applications. John Wiley & Sons.

Jansen, T., De Jong, K. A., and Wegener, I. (2005). On the choice of the offspring population size in
evolutionary algorithms. Evolutionary Computation, 13(4):413–440.

Mirsky, L. (1955). An Introduction to Linear Algebra. Clarendon Press.

Neumann, F. and Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization. Springer-
Verlag.

Reidys, C. M. and Stadler, P. F. (2002). Combinatorial landscapes. SIAM Review, 44(1):3–54.

Stadler, P. F. (1995). Toward a theory of landscapes. In López-Peña, R., Capovilla, R., Garcı́a-Pelayo,
R., H.Waelbroeck, and Zertruche, F., editors, Complex Systems and Binary Networks, pages 77–163.
Springer-Verlag.

Sutton, A. M., Howe, A. E., and Whitley, L. D. (2010). Directed plateau search for MAX-k-SAT. In
Proceedings of the 3rd Annual Symposium on Combinatorial Search, pages 90–97.

Sutton, A. M., Whitley, D., and Howe, A. E. (2011a). Approximating the distribution of fitness over
hamming regions. In Proceedings of the 11th Workshop Proceedings on Foundations of Genetic Algo-
rithms, pages 93–104. ACM.

Sutton, A. M., Whitley, D., and Howe, A. E. (2011b). Mutation rates of the (1+1)-EA on pseudo-
boolean functions of bounded epistasis. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, pages 973–980. ACM.

Sutton, A. M., Whitley, L. D., and Howe, A. E. (2009). A polynomial time computation of the exact
correlation structure of k-satisfiability landscapes. In Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, pages 365–372. ACM.

Sutton, A. M., Whitley, L. D., and Howe, A. E. (2011c). Computing the moments of k-bounded
pseudo-boolean functions over hamming spheres of arbitrary radius in polynomial time. Theo-
retical Computer Science, 425:58–74.

Terras, A. (1999). Fourier Analysis on Finite Groups and Applications, Cambridge U. Press, Cambridge.
Cambridge University Press.

Vose, M. D. (1999). The Simple Genetic Algorithm: Foundations and Theory. MIT Press.

Walsh, J. L. (1923). A closed set of normal orthogonal functions. American Journal of Mathematics,
45(1):5–24.

Whitley, D., Sutton, A. M., and Howe, A. E. (2008). Understanding elementary landscapes. In Pro-
ceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pages 585–592, New
York, NY, USA. ACM.

27

Whitley, L. D. and Sutton, A. M. (2009). Partial neighborhoods of elementary landscapes. In Proceed-
ings of the 11th Annual Conference on Genetic and Evolutionary Computation, pages 381–388. ACM.

Witt, C. (2013). Tight bounds on the optimization time of a randomized search heuristic on linear
functions. Combinatorics, Probability and Computing, 22(2):298–314.

28

	1 Introduction
	2 Background
	2.1 Binary Hypercube
	2.2 Krawtchouk Matrices

	3 Analysis of the Mutation Operator
	3.1 Expectation
	3.2 Higher Order Moments
	3.3 Computing the Matrix Function F F F F
	3.4 Fitness Probability Distribution

	4 Case Studies
	4.1 Onemax
	4.2 MAX-SAT

	5 Connection to Runtime Analysis
	5.1 Runtime analysis of (1+)-EAs
	5.2 Runtime of (1+) EA for Onemax

	6 Conclusions
	7 Acknowledgements

