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The Problem

Multi-objective Optimization Problems (MOPs)
Multiple objectives should be fulfilled simultaneously

minv o(v) = (o1(v), . . . ,om(v))

subject to

{
v ∈ D ⊆ Rr

o ∈ Q ⊆ Rm

A trade-off between objectives: Pareto dominance relation
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Our Approach

Multi-objective estimation of distribution algorithms
(MOEDAs)

Multi-objective evolutionary algorithms (MOEAs) based on
nature-inspired operators to evolve a population of
candidate solutions
Estimation of distribution algorithms (EDAs) generate new
candidate solutions from a probabilistic graphical model
(Bayesian network) learnt at each generation from a set of
promising solutions
Multi-objective estimation of distribution algorithms
(MOEDAs): MOPs approaches based on EDAs
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Our Approach

In this talk
A new type of MOEDAs where the structure of the
Bayesian network facilitates the approximation to the MOP
structure
Discover the relationships among:

Objectives (minimum set of objectives)
Variables
Objectives and variables (which variables have more
importance in a concrete objective)

Experimental results showing the scalability of the
approach on the number of objectives, and its
competitiveness with respect to state of the art
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EDAs. A Toy Example

max O(x) =
6∑

i=1

xi

with xi = 0,1
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EDAs. A Toy Example

max O(x) =
6∑

i=1

xi

with xi = 0,1

X1 X2 X3 X4 X5 X6 O(x)
1 1 0 1 0 1 0 3
2 0 1 0 0 1 0 2
3 0 0 0 1 0 0 1
4 1 1 1 0 0 1 4
5 0 0 0 0 0 1 1
6 1 1 0 0 1 1 4
7 0 1 1 1 1 1 5
8 0 0 0 1 0 0 1
9 1 1 0 1 0 0 3
10 1 0 1 0 0 0 2
11 1 0 0 1 1 1 4
12 1 1 0 0 0 1 3
13 1 0 1 0 0 0 2
14 0 0 0 0 1 1 2
15 0 1 1 1 1 1 5
16 0 0 0 1 0 0 1
17 1 1 1 1 1 0 5
18 0 1 0 1 1 0 3
19 1 0 1 1 1 1 5
20 1 0 1 1 0 0 3
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EDAs. A Toy Example

Learning the probability distribution from the selected
individuals

X1 X2 X3 X4 X5 X6
1 1 0 1 0 1 0
4 1 1 1 0 0 1
6 1 1 0 0 1 1
7 0 1 1 1 1 1
11 1 0 0 1 1 1
12 1 1 0 0 0 1
15 0 1 1 1 1 1
17 1 1 1 1 1 0
18 0 1 0 1 1 0
19 1 0 1 1 1 1
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EDAs. A Toy Example

Learning the probability distribution from the selected
individuals

X1 X2 X3 X4 X5 X6
1 1 0 1 0 1 0
4 1 1 1 0 0 1
6 1 1 0 0 1 1
7 0 1 1 1 1 1
11 1 0 0 1 1 1
12 1 1 0 0 0 1
15 0 1 1 1 1 1
17 1 1 1 1 1 0
18 0 1 0 1 1 0
19 1 0 1 1 1 1

p(x) = p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4)p(x5)p(x6)

P. Larrañaga MOPs with EDAs



Introduction EDAs Our Proposal Results Conclusions Example Scheme BNs GBNs Simulation

EDAs. A Toy Example

Learning the probability distribution from the selected
individuals

X1 X2 X3 X4 X5 X6
1 1 0 1 0 1 0
4 1 1 1 0 0 1
6 1 1 0 0 1 1
7 0 1 1 1 1 1
11 1 0 0 1 1 1
12 1 1 0 0 0 1
15 0 1 1 1 1 1
17 1 1 1 1 1 0
18 0 1 0 1 1 0
19 1 0 1 1 1 1

p(x) = p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4)p(x5)p(x6)

p(X1 = 1) = 7
10
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EDAs. A Toy Example

Learning the probability distribution from the selected
individuals

X1 X2 X3 X4 X5 X6
1 1 0 1 0 1 0
4 1 1 1 0 0 1
6 1 1 0 0 1 1
7 0 1 1 1 1 1
11 1 0 0 1 1 1
12 1 1 0 0 0 1
15 0 1 1 1 1 1
17 1 1 1 1 1 0
18 0 1 0 1 1 0
19 1 0 1 1 1 1

p(x) = p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4)p(x5)p(x6)

p(X1 = 1) = 7
10 p(X2 = 1) = 7

10 p(X3 = 1) = 6
10

p(X4 = 1) = 6
10 p(X5 = 1) = 8

10 p(X6 = 1) = 7
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EDAs. A Toy Example
Obtaining the new population by sampling from the probability distribution

p(X1 = 1) =
7
10

; p(X2 = 1) =
7

10
; p(X3 = 1) =

6
10

p(X4 = 1) =
6
10

; p(X5 = 1) =
8

10
; p(X6 = 1) =

7
10

p(x) = p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4)p(x5)p(x6)

0.23 p(X1 = 1) = 7
10 > 0.23 −→ 1

0.65 p(X2 = 1) = 7
10 > 0.65 −→ 1

0.89 p(X3 = 1) = 6
10 < 0.89 −→ 0

0.12 p(X4 = 1) = 6
10 > 0.12 −→ 1

0.48 p(X5 = 1) = 8
10 > 0.48 −→ 1

0.54 p(X6 = 1) = 7
10 > 0.54 −→ 1
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EDAs. A Toy Example
Obtaining the new population by sampling from the probability distribution

X1 X2 X3 X4 X5 X6 O(x)
1 1 1 0 1 1 1 5
2 1 0 1 0 1 1 4
3 1 1 1 1 1 0 5
4 0 1 0 1 1 1 4
5 1 1 1 1 0 1 5
6 1 0 0 1 1 1 4
7 0 1 0 1 1 0 3
8 1 1 1 0 1 0 4
9 1 1 1 0 0 1 4

10 1 0 0 1 1 1 4
11 1 1 0 0 1 1 4
12 1 0 1 1 1 0 4
13 0 1 1 0 1 1 4
14 0 1 1 1 1 0 4
15 1 1 1 1 1 1 6
16 0 1 1 0 1 1 4
17 1 1 1 1 1 0 5
18 0 1 0 0 1 0 2
19 0 0 1 1 0 1 3
20 1 1 0 1 1 1 5
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Graphical Representation of EDAs
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Directed Probabilistic Graphical Models in EDAs
Univariate EDAs: Univariate Marginal Distribution Algorithm (UMDA). Mühlenbein and Paaß, 1996)

Probabilistic model: pl (x) =
∏n

i=1 pl (xi )

Structural learning: not necessary

Bivariate EDAs: Mutual Information Maximization for Input Clustering (MIMIC). De Bonet et al., 1997)

Probabilistic model:
pπl (x) = pl (xi1

| xi2
)pl (xi2

| xi3
) · · · pl (xin−1

| xin )pl (xin )

Structural learning: best permutation (factorization closest to the
empirical distribution in the sense of Kullback-Leibler divergence)

Multivariate EDAs: (Etxeberria and Larrañaga, 1999) (EBNA); (Pelikan et al., 1999) (BOA); (Harik et al., 1999)
(EcGA); (Mühlenbein and Mahnig, 1999) (LFDA)

Probabilistic model: pl (x) =
∏n

i=1 pl (xi |pai )

Structural learning: directed acyclic graph

EDAs in continuous domains: Assuming Gaussianity

Univariate: (Larrañaga et al., 2000) (UMDAG
c )

Bivariate: (Larrañaga et al., 2000) (MIMICG
c )

Multivariate: (Larrañaga et al., 2000) (EMNAG
global , EMNAG

ee , EGNAG )
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Univariate: (Larrañaga et al., 2000) (UMDAG
c )
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Directed Probabilistic Graphical Models

Qualitative + quantitative parts

A directed probabilistic graphical model, M = (S,θS), (Pearl, 1988; Koller and
Friedman, 2009) for X = (X1, . . . ,Xn) consists of two components:

A structure S for X is a directed acyclic graph (DAG) that represents a set of
conditional (in)dependences between triplets of variables

A set of local probability distributions θS = (θ1, . . . ,θn)

Conditional (in)dependences between triplets of variables

Given three disjoints sets of variables, Y ,Z ,W , we say that Y is conditionally
independent of Z given W if, for any y , z,w , we have p(y | z,w) = p(y | w)

Factorization of the joint probability distribution

p(x | θS) =
∏n

i=1 p(xi | paS
i ,θi )
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Bayesian Networks
Definition

Xi discrete variable with |Ωi | = ri for all i = 1, ..., n

Local distributions: p(x i
k | paj,S

i , θi ) = θ
xk
i |paj

i
≡ θijk

pa1,S
i , . . . , pa

qi ,S
i denotes the values of PaS

i with qi =
∏

Xg∈Pai
rg

Example
Model structure

X
1

X
2

X
3

Model parameters and local probability distributions
θ1 = (θ1-1, θ1-2) p(x1

1 | θ1), p(x2
1 | θ1)

θ2 = (θ2-1, θ2-2) p(x1
2 | θ2), p(x2

2 | θ2)

θ3 = (θ311, θ312) p(x1
3 | x1

1 , x1
2 , θ3), p(x2

3 | x1
1 , x1

2 , θ3)

(θ321, θ322) p(x1
3 | x1

1 , x2
2 , θ3), p(x2

3 | x1
1 , x2

2 , θ3)

(θ331, θ332) p(x1
3 | x2

1 , x1
2 , θ3), p(x2

3 | x2
1 , x1

2 , θ3)

(θ341, θ342) p(x1
3 | x2

1 , x2
2 , θ3), p(x2

3 | x2
1 , x2

2 , θ3)

Factorization of the joint probability distribution
p(x | θS ) = p(x1 | θ1)p(x2 | θ2)p(x3 | x1, x2, θ3)
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Learning Bayesian Networks

Learning structure and parameters
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Learning Bayesian Networks

Learning parameters
Given a data set of cases D = {x(1), ..., x(N)} drawn at random from a joint probability
distribution p(x1, ..., xn)

Maximum likelihood estimation: θ̂ijk = p(Xi = xk
i |Pai = paj

i ) =
Nijk
Nij

Bayesian estimation:

It is assumed a prior knowledge expressed by means of a prior joint
distribution over the parameters:
p(θij1, θij2, ..., θij ri

) Dir(θij1, ..., θij ri
;α1, ..., αri ) =

Γ(
∑r

w=1 αw )∏ri
w=1 Γ(αw )

θ
α1−1
ij1 ...θ

αri−1
ijri

For a multinomial distribution, if the prior is Dir(θij1, ..., θij ri ;α1, ..., αri ),
then the posterior is Dir(θij1, ..., θij ri ;α1 + Nij1, ..., αr + Nijri )

θ̂ijk = p(Xi = xk
i |Pai = paj

i ) =
Nijk +αk

Nij +
∑ri

w=1 αw
, where

∑ri
w=1 αw is called the

equivalent sample size (the virtually observed sample)

P. Larrañaga MOPs with EDAs
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Learning Bayesian Networks

Learning structures
Finding the best network according to some criterion even with the constraint that each
node has no more than K parents is NP-hard (Chickering et al., 1994)

Based on detecting conditional independencies

First: carry out a study of the dependence and independence relationships
between the variables by means of statistical tests
Second: try to find the structure (or structures) that represents the most (or
all) of these relationships

Based on score + search

They try to find the structure that best “fits” the data
They need:

A score (metric or evaluation function) in order to measure the
fitness of each candidate structure
A search method (heuristic) to explore in an intelligent manner the
space of possible solutions
Several types of spaces can be considered

P. Larrañaga MOPs with EDAs
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Learning Bayesian Networks
Learning structures (score + search)

Score: Penalized log-likelihood

Log-likelihood of the data: log p(D|S, θ̂) =
∑n

i=1
∑qi

j=1
∑ri

k=1 Nijk log
Nijk
Nij

Penalizing the complexity:
∑n

i=1
∑qi

j=1
∑ri

k=1 Nijk log
Nijk
Nij
− dim(S)pen(N)

dim(S) =
∑n

i=1 qi (ri − 1) model dimension
pen(N) non negative penalization function

pen(N) = 1: Akaike’s information criterion (AIC)
pen(N) = 1

2 log N: Bayesian information criterion (BIC) or the
minimum description length (MDL) criterion
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Learning Bayesian Networks
Learning structures (score + search)

Score: Bayesian scores

Ŝ = arg maxSp(S|D) ≡ arg maxSp(D|S)p(S) where p(D|S) denotes the
marginal likelihood and p(S) the prior distribution over structures. If p(S) is uniform,
Ŝ = arg maxSp(D|S)

K2 score: Assuming that p(θ|S) is uniform, it is possible to obtain a closed
formula for p(D|S) (Cooper and Herskovits, 1992):

p(D|S) =
n∏

i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk !

BDe score: Assuming that p(θ|S) follows a Dirichlet distribution, it is possible to
obtain a closed formula for p(D|S) (Heckerman et al., 1995):

p(D|S) =
n∏

i=1

qi∏
j=1

Γ(αij )

Γ(αij + Nij )

ri∏
k=1

Γ(αijk + Nijk )

Γ(αijk )

This score is called Bayesian Dirichlet equivalence metric because it
verifies the score equivalence property (two DAGs representing the same
set of conditional independencies score the same)
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Learning Bayesian Networks

Learning structures (score + search)
Search: Space of DAGs

Cardinality of the search space (Robinson, 1977):
S(n) =

∑n
i=1(−1)i+1(n

i )2i(n−i)S(n − i); S(0) = 1; S(1) = 1

Search algorithms:

K2 algorithm (Cooper and Herskovits, 1992):

A total ordering between the nodes and an upper bound is set on
the number of parents for any node are assumed
At each step K2 incrementally adds the parent whose addition
provides the best value for g(Xi ,Pai ) =

∏qi
j=1

(ri−1)!
(Nij +ri−1)!

∏ri
k=1 Nijk !

K2 stops when adding a single parent to any node cannot increase
g(Xi ,Pai )

B algorithm (Buntine, 1991): insert, delete and invert an arc
Tabu search (Bouckaert, 1995)
Simulated annealing (Heckerman et al., 1995)
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EDAs based on Bayesian Networks
EBNA, BOA, LFDA

EBNA (Estimation of Bayesian Networks Algorithm) (Etxeberria and Larrañaga,
1999). II Symposium on Artificial Intelligence)

Detecting conditional independencies: EBNAPC
Score: penalized likelihood (EBNABIC and EBNAK 2)
Search: greedy search starting from the previous generation

BOA (Bayesian Optimization Algorithm) (Pelikan et al., 1999). GECCO)

Score: marginal likelihood
Search: greedy search starting from scratch at each generation

LFDA (Learning Factorized Distribution Algorithm) (Mühlenbein and Mahnig,
1999). Evolutionary Computation)

Score: BIC
Search: greedy search starting from scratch at each generation
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EDAs based on Multivariate Normal Densities

Multivariate normal density

f (x) = 1
(2π)n/2|Σ|1/2 exp

[
− 1

2 (x − µ)tΣ−1(x − µ)
]

x , n dimensional column vector
µ, n dimensional mean vector
Σ, n × n variance-covariance matrix

Estimation of Multivariate Normal Algorithm (EMNAglobal )

Larrañaga et al. (2000). GECCO

Structure of EMNAglobal in all generations

P. Larrañaga MOPs with EDAs



Introduction EDAs Our Proposal Results Conclusions Example Scheme BNs GBNs Simulation

EDAs based on Sparse Multivariate Normal Densities

Estimation of Multivariate Normal Algorithm by Edge Exclusion (EMNAee)

Larrañaga et al. (2000). GECCO

Based on detecting independencies between pairs of variables

The learning is carried out by means of
(

n
2

)
tests for arc exclusion

Xi and Xj are independent iff the following null hypothesis is accepted
(Smith and Whittaker, 1998) H0 : wij = 0 null hypothesis

HA : wij 6= 0 alternative hypothesis

with wij elements of the precision matrix W = Σ−1

Likelihood ratio test:

Tlik = −n log(1− r2
ij|rest ) with rij|rest = −ŵij (ŵii ŵjj )

−1/2
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Gaussian Bayesian Networks

Gaussian Bayesian networks

Model structure

X
1

X
2

X
3

Model parameters and local probability density functions

θ1 = (m1, -, v1) p(x1 | θ1) N (x1; m1, v1)
θ2 = (m2, -, v2) p(x2 | θ2) N (x2; m2, v2)
θ3 = (m3,b3, v3) p(x3 | x1, x2,θ3) N (x3; m3 + b13(x1 −m1) + b23(x2 −m2), v3)
b3 = (b13, b23)t

Factorization of the joint density
p(x | θS) = p(x1 | θ1)p(x2 | θ2)p(x3 | x1, x2,θ3)
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EDAs based on Gaussian Bayesian Networks

Gaussian Bayesian networks
The local density functions follow a linear regression model:

p(x i | paS
i ,θi ) ≡ N (xi ; mi +

∑
xj∈pai

bji (xj −mj ), vi )

bji strength of the relationship between Xj and Xi (bji = 0 iff there is not an arc from Xj to Xi )
vi variance of Xi conditioned to Pai
θi = (mi , bi , vi ) local parameters, bi = (b1i , . . . , bi−1i )

t

Estimation of Gaussian Network Algorithm (EGNABIC )

Larrañaga et al. (2000). GECCO

Score: penalized likelihood (BIC)

Search: greedy
First generation: a disconnected graph
The rest of generations: start with the model obtained in the previous one
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Graphical Representation of EDAs
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EDAs

Obtaining the new population by sampling with PLS
(Henrion, 1988)
Given an ancestral ordering, π, of the nodes (variables and objectives) in the directed
probabilistic graphical model (Bayesian network or Gaussian Bayesian network):

for j = 1, 2, . . . ,M

for i = 1, 2, . . . , n

xπ(i) ← generate a value from p(xπ(i)|paπ(i))

P. Larrañaga MOPs with EDAs



Introduction EDAs Our Proposal Results Conclusions Example Scheme BNs GBNs Simulation

Main scheme of the EDA approach

1 D0 ← Generate M individuals randomly
2 l = 1
3 do {
4 DSe

l−1 ← Select N ≤ M individuals from Dl−1
according to a selection method

5 pl(x) = p(x |DSe
l−1)← Estimate the joint probability

distribution of the selected individuals
6 Dl ← Sample M individuals (the new population)

from pl(x)
7 } until A stopping criterion is met

P. Larrañaga MOPs with EDAs
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MOEDAs in the literature

Previous MOEDAs
1 Thierens and Bosman (2001) in GECCO: multi-objective mixture-base iterate

density estimation evolutionary algorithm (MIDEA)
2 Laumanns and Ocenasek (2002) in PPSN: Bayesian optimization algorithm

(BMOA)
3 Costa and Minisci (2003) in EMO: Parzen based estimation of distribution

algorithm (MOPED)
4 Li el at. (2004) in ECECCO: hybrid (UMDA + local search) (MOHEDA)
5 Okabe et al. (2004) in CEC: Voronoi-based estimation of distribution algorithm

(VEDA)
6 Bosman and Thierens (2005) in IJAR journal: multi-objective mixture-base iterate

density estimation evolutionary algorithm (MIDEA)
7 Sastry et al. (2005) in CEC: multi-objective extended compact genetic algorithm

(meCGA)
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MOEDAs in the literature

Previous MOEDAs
8 Pelikan et al. (2006) chapter in a book: multiobjective hierarchical BOA (mohBOA)
9 Zhong and Li (2007) in CIS: decision trees based multi-objective estimation of

distribution algorithm (DT-MEDA)
10 Zhang et al. (2008) in IEEE TEC journal: regularity model-based multiobjective

estimation of distribution algorithms (RM-MEDA)
11 Zhang et al. (2009) in IEEE TEC journal: model-based multiobjective

evolutionary algorithm (MMEA)
12 Marti et al. (2009) in GECCO: multi-objective neural estimation of distribution

algorithm (MONEDA)
13 Gao et al. (2010) in ICMTMA: hybrid (UMDA + PSO)
14 Shim et al. (2012) in EC journal: PSO + likelihood correction + restricted

Boltzmann machines in estimation of distribution algorithms (PLREDA)
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A New MOEDA

Main characteristics
In standard EDAs the nodes in the probabilistic graphical
model structure represent the variables. No node is used
for the objective to be optimized
We propose to represent both, variables and objectives, as
nodes in the probabilistic graphical model structure
The MOEDA, in its evolution, should capture the
relationships among objectives, among variables, and also
among objectives and variables
The structure of the probabilistic graphical model structure
is a two layer graph

First layer: objective nodes
Second layer: variables nodes
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A New MOEDA

Two Layer Probabilistic Graphical Model

p(v1, . . . , vr ,o1, . . . ,om) =
r∏

i=1

p(vi |pa(V i)) ·
m∏

j=1

p(oj |pa(Oj)),

where Pa(V i) ⊆ V ∪O \ {Vi} and Pa(Oj) ⊆ O \ {Oj}
P. Larrañaga MOPs with EDAs
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A New MOEDA

General Scheme
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A New MOEDA

Instantiation: Multidimensional Bayesian Network based EDA (MBN-EDA)

Continuous variables and objectives: Gaussian Bayesian networks

Learning of the Gaussian Bayesian network by a greedy local search with the
penalized likelihood (BIC) as score

Four ranking methods G : Q ⊆ Rm 7→ T ⊆ R
1 Weighted sum: GWS(o) =

∑m
i=1 wi oi

2 Profit of gain: GPG(o) = maxr∈Ft ,r 6=ogain(o, r)−maxr∈Ft ,r 6=ogain(r ,o)

with gain(q, r) =
∑m

i=1 max{0, ri − qi}
3 Global detriment: GGD(o) =

∑
∀r∈Ft ,r 6=o gain(r ,o)

4 Distance to best: GDB(o) = d(b, 0)
where b = (b1, . . . , bm) denotes the best objective values.
If b is known: bi = mino∈Ft {oi}
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Experimental Results

Characteristics of the Empirical Comparison

Walking Fish Group (WFG) problems: WFG1, WFG2, WFG3, WFG4, WFG5,
WFG6, WFG7, WFG8, WFG9

Number of objectives: m ∈ {3, 5, 7, 10, 15, 20}
Number of variables: r = 16

Population size: M ∈ {50, 100, 150, 200, 250, 300} (depending on m)

Selection rate: 50 %

Ranking methods: a) Weighted sum; b) Profit of gain; c) Global detriment; d)
Distance to best

The additive epsilon indicator value to measure the quality of the Pareto set
approximations is averaged over 20 runs

Algorithms to be compared:
MBN-EDA: our approach
MOEA: simulated binary crossover (Deb and Agrawal, 1995) and
polynomial mutation (Deb and Goyal, 1996)
RM-MEDA: regularity-model based multi-objective EDA (Zhang et al.,
2008)

Matlab toolbox for EDAs (MatEDA) (Santana et al., 2010)
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Experimental Results: WFG1
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Experimental Results: WFG2
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P. Larrañaga MOPs with EDAs



Introduction EDAs Our Proposal Results Conclusions

Experimental Results: WFG3
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Experimental Results: WFG4
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Experimental Results: WFG5
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Experimental Results: WFG6
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Experimental Results: WFG7
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Experimental Results: WFG8
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Experimental Results: WFG9
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Experimental Results: 5-objective WFG1 with 9 irrelevant variables
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Experimental Results: 8-objective WFG1 with three pairs of similar objectives
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Experimental Results: 5-objective WFG1 simplified version

Ability of MBN-EDA to retrieve the MOP structure. Two layer structure (most
significant arcs)

(a) Distance to best ordering (b) Profit of gain ordering

A simplified version of the 5-objective WFG1 problem

o1(v) = a + 2 · h1
(
g2(v1), g2(v2), g2(v3), g2(v4)

)
o2(v) = a + 4 · h2

(
g2(v1), g2(v2), g2(v3), g2(v4)

)
o3(v) = a + 6 · h3

(
g2(v1), g2(v2), g2(v3)

)
o4(v) = a + 8 · h4

(
g2(v1), g2(v2)

)
o5(v) = a + 10 · h5

(
g2(v1)

)
where a = g1(v5, . . . , v16)
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Conclusions

Conclusions
MOEDA based on joint modeling of variables and
objectives with a two layer structure in the probabilistic
graphical model
Able to discover the structure of the problem

Links among variables, objectives and variables and
objectives
Relevant and irrelevant variables for each of the objectives

Competitive results with state of the art MOEAs
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