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Abstract
Neurons are sensitive to correlations among synaptic inputs. However, analytical models that
explicitly include correlations are hard to solve analytically, so their influence on a neuron's
response has been difficult to ascertain. To gain some intuition on this problem, we studied the
firing times of two simple integrate-and-fire model neurons driven by a correlated binary variable
that represents the total input current. Analytic expressions were obtained for the average firing
rate and coefficient of variation (a measure of spike-train variability) as functions of the mean,
variance, and correlation time of the stochastic input. The results of computer simulations were in
excellent agreement with these expressions. In these models, an increase in correlation time in
general produces an increase in both the average firing rate and the variability of the output spike
trains. However, the magnitude of the changes depends differentially on the relative values of the
input mean and variance: the increase in firing rate is higher when the variance is large relative to
the mean, whereas the increase in variability is higher when the variance is relatively small. In
addition, the firing rate always tends to a finite limit value as the correlation time increases toward
infinity, whereas the coefficient of variation typically diverges. These results suggest that temporal
correlations may play a major role in determining the variability as well as the intensity of
neuronal spike trains.

1 Introduction
Cortical neurons are driven by thousands of synaptic inputs (Braitenberg & Schüz, 1997).
Therefore, one way to understand the integration properties of a typical cortical neuron is to
consider its total input as a stochastic variable with given statistical properties and calculate
the statistics of the response (Gerstein & Mandelbrot, 1964; Ricciardi, 1977, 1995;
Tuckwell, 1988, 1989; Smith, 1992; Shinomoto, Sakai, & Funahashi, 1999; Tiesinga, José,
& Sejnowski, 2000). A common practice is to assume that the total input has a gaussian
distribution with given mean and variance and that samples taken at different times are
uncorrelated. Input correlations make the statistics of the output spike trains quite difficult to
calculate, even for simple model neurons. Ignoring the correlations may actually be a
reasonable approximation if their timescale is much smaller than the average time interval
between output spikes. However, in cortical neurons, factors like synaptic and membrane
time constants, as well as synchrony in the input spike trains (see, for example, Nelson,
Salin, Munk, Arzi, & Bullier, 1992; Steinmetz et al., 2000), give rise to a certain input
correlation time τcorr (Svirskis & Rinzel, 2000), and this may be of the same order of
magnitude as the mean interspike interval of the evoked response. Therefore, the impact of
temporal correlations needs to be characterized, at least to a first-order approximation. Some
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advances in this direction have been made from somewhat different points of view (Feng &
Brown, 2000; Salinas & Sejnowski, 2000; Svirskis & Rinzel, 2000).

Here we first consider a simple integrate-and-fire model without a leak current in which the
voltage is driven by a stochastic input until a threshold is exceeded, triggering a spike. The
origins of this model go back to the work of Gerstein and Mandelbrot (1964), who studied a
similar problem—without input correlations—and solved it, in the sense that they
determined the probability density function for the interspike intervals (the times between
consecutive action potentials). Our approach is similar in spirit, but the models differ in two
important aspects. First, in their theoretical model, Gerstein and Mandelbrot did not impose
a lower bound on the model neuron's voltage, so in principle it could become infinitely
negative (note, however, that they did use a lower bound in their simulations). Second, they
used an uncorrelated gaussian input with a given mean and variance, where the mean had to
be positive; otherwise, the expected time between spikes became infinite. In contrast, we use
a correlated binary input and impose a hard lower bound on the voltage of the model neuron,
which roughly corresponds to an inhibitory reversal potential; we call it the barrier. When
the barrier is set at a finite distance from the threshold, solving for the full probability
density distribution of the firing time becomes difficult, but such a barrier has two
advantages: the moments of the firing time may be calculated explicitly with correlated
input, and the mean of the input may be arbitrary.

We also investigate the responses of the more common integrate-and-fire model that
includes a leak current (Tuckwell, 1988; Troyer & Miller, 1997; Salinas & Sejnowski, 2000;
Dayan & Abbott, 2001), driven by the same correlated stochastic input. In this case,
however, the solutions for the moments of the firing time are obtained in terms of series
expansions.

We calculate the response of these model neurons to a stochastic input with certain
correlation time τcorr. The underlying problem that we seek to capture and understand is
this. The many inputs that drive a neuron may be correlated with one another; for example,
they may exhibit some synchrony. The synchrony patterns may change dynamically
(Steinmetz et al., 2000; Fries, Reynolds, Rorie, & Desimone, 2001; Salinas & Sejnowski,
2001), so the question is how these changes affect the response of a postsynaptic neuron.
This problem is of considerable interest in the field (Maršálek, Koch, & Maunsell, 1997;
Burkitt & Clark, 1999; Diesmann, Gewaltig, & Aertsen, 1999; Kisley & Gerstein, 1999;
Feng & Brown, 2000; Salinas & Sejnowski, 2000, 2001). We look at this problem by
collapsing all separate input streams into a single stochastic input with a given correlation
time, which depends on the synchrony or correlation structure among those streams. Thus,
the stochastic input that we consider is meant to reflect, in a simplified way, the total
summed effect of the original input streams, taking into account their correlation structure.
The precise mapping between these streams and the parameters of the stochastic input
(mean, variance, and correlation time) are difficult to calculate analytically but qualitatively,
one may expect higher synchrony to produce higher input variance (Salinas & Sejnowski,
2000, 2001; Feng & Brown, 2000) and longer correlation times between streams to produce
larger values of τcorr.

The methods applied here are related to random walk and diffusion models in physics
(Feynman, Leighton, & Sands, 1963; Van Kampen, 1981; Gardiner, 1985; Berg, 1993) and
are similar to those used earlier (Gerstein & Mandelbrot, 1964; Ricciardi, 1977, 1995;
Shinomoto et al., 1999) to study the firing statistics of simple neuronal models in response to
a temporally uncorrelated stochastic input (see Tuckwell, 1988, 1989; Smith, 1992, for
reviews). Similar approaches have also been used recently to study neural populations
(Nykamp & Tranchina, 2000; Haskell, Nykamp, & Tranchina, 2001). Here we extend such
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methods to the case of a correlated binary input. What we find is that an increase in τcorr
typically increases both the mean firing rate and the variability of the output spike trains, but
the strength of these effects depends differentially on the relative values of the input mean
and variance. In addition, the behaviors obtained as τcorr becomes large are also different:
the rate saturates, whereas the variability may diverge. Thus, neural responses may be
strongly modulated through changes in the temporal correlations of their driving input.

2 The Nonleaky Integrate-and-Fire Model
This model neuron has a voltage V that changes according to the input that impinges on it,
such that

(2.1)

where μ0 and τ are constants. The first term on the right, μ0, corresponds to a mean or
steady component of the input—the drift—whereas the second term corresponds to the
variable or stochastic component, which has zero mean. We refer to X as the fluctuating
current, or simply the current. In this model, an action potential, or spike, is produced when
V exceeds a threshold Vθ . After this, V is reset to an initial value Vreset, and the integration
process continues evolving according to equation 2.1. This model is related to the leaky
integrate-and-fire model (Tuckwell, 1988; Troyer & Miller, 1997; Salinas & Sejnowski,
2000; Dayan & Abbott, 2001) and to the Ornstein-Uhlenbeck process (Uhlenbeck &
Ornstein, 1930; Ricciardi, 1977, 1995; Shinomoto et al., 1999), but is different because it
lacks a term proportional to −V in the right-hand side of equation 2.1 (see below). An
additional and crucial constraint is that V cannot fall below a preset value, which acts as a
barrier. This barrier is set at V = 0. This is a matter of convenience; the actual value makes
no difference in the results. Thus, only positive values of V are allowed. Except for the
barrier, this model neuron acts as a perfect integrator: it accumulates input samples in a way
that is mostly independent of the value of V itself, where τ is the time constant of
integration.

We examine the time T that it takes for V to go from reset to threshold; T is known as the
first passage time and is the quantity whose statistics we wish to determine.

3 Stochastic Input
To complete the description of the model, we need to specify the statistics of the input X.
We will consider two cases: one in which X is uncorrelated gaussian noise, so X(t) and X(t
+ Δt) are independent, and another where X is correlated noise, so X(t) and X(t + Δt) tend to
be similar. The former is the traditional approach; the latter is novel and is probably a more
accurate model of real input currents.

In both cases, we will make use of a binary random variable Z(t), such that

(3.1)

The relationship between Z and X depends on whether X represents uncorrelated or
correlated noise; this will be specified below. At this point, however, it is useful to describe
the properties of Z.

The overall probabilities of observing a positive or a negative Z are the same and equal to
1/2, which means that the random variable has zero mean and unit variance:
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(3.2)

(3.3)

Here, the bar indicates an average over samples, or expectation. This, together with the
correlation function, defines the statistics of Z. When input current X is uncorrelated
gaussian noise, the Z variable is also uncorrelated, so

(3.4)

where δ is the Dirac delta function. Expression 3.4 means that any two samples observed at
different times are independent. When input current X represents correlated noise, the Z
variable is temporally correlated, in which case

(3.5)

Equation 3.5 means that the correlation between subsequent Z samples falls off
exponentially with a time constant τcorr. In this case, although the probabilities for positive
and negative Z are equal, the conditional probabilities given prior observations are not. That
is exactly what the correlation function expresses: samples taken close together in time tend
to be more similar to each other than expected by chance, so the probability that the sample
Z(t + Δt) is positive is greater if the sample Z(t) was positive than if it was negative.

In equation 3.5, a single quantity parameterizes the degree of correlation, τcorr. This
correlation time can also be expressed as a function of a single probability Pc, which is the
probability that the sign of the next sample, Z(t + Δt), is different from the sign of the
previous one, Z(t). The probability that the next sample has the same sign as the previous
one is termed Ps and is equal to 1 − Pc. For small Δt, the relationship between τcorr and Pc is

(3.6)

This can be seen as follows. First, calculate the correlation between consecutive Z samples
directly in terms of Pc:

(3.7)

The first term in the sum, for instance, corresponds to Z(t) 1 and Z(t + Δt = −1; since the
probability that Z(t) = 1 is 1/2 and the probability that the next sample has a different sign is
Pc, the product (1)(−1) has a probability (1/2)Pc. Similar calculations apply to the other three
terms. Now calculate the same average by expanding equation 3.5 in a Taylor series, using t
= Δt. The resulting expression must be analogous to the equation above, and this leads to
equation 3.6.

Finally, notice that as the correlation time becomes shorter and approaches Δt, Ps → 1/2 and
Z values separated by a fixed time interval tend to become independent. On the other hand,
Ps → 1 corresponds to a long correlation time, in which case the sequence of binary input
samples consists of long stretches in which all samples are equal to +1 or −1. Using the
binary variable Z makes it possible to include correlations in the integrator model, and these
can be varied by adjusting the value of Pc or, equivalently, τcorr.
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3.1 Discretizing Noise
The noisy current X(t) is a continuous variable, but in order to proceed, it needs to be
discretized. This is a subtle technical point, because the discretization depends on whether
the noise is correlated.

Gaussian white noise can be approximated by setting X at time step j equal to

(3.8)

with equal probabilities for positive and negative values and with consecutive Z samples
being independent. Here, the constant σ0 measures the strength of the fluctuating current. In
contrast, correlated noise can be approximated by setting X at time step j equal to

(3.9)

where, in this case, consecutive Z values are not independent: the probability of the next Z
changing sign is equal to Pc. The latter expression is relatively straightforward, but the
former includes a  factor that may seem odd. The rationale for this is as follows.

The variance of the integral of X from 0 to t should be proportional to t; that is an essential
property of noise. For gaussian white noise, when time is a continuous variable, this
property follows immediately from the fact that the correlation between X samples is a delta
function (as in equation 3.4). With discretized time, we should be able to approximate the

integral with a sum over consecutive samples, , where t = NΔt. For gaussian white
noise, the variance of this sum is

(3.10)

Here, c is a constant and δij is equal to 1 whenever i = j and to 0 otherwise. The δij appears
because X samples are independent. To make this variance proportional to t and independent
of the time step, the proportionality constant c should be divided by , as in equation 3.8.
Note also that as Δt → 0, the sum approaches a gaussian random variable even if individual
terms are binary, as a result of the central limit theorem.

On the other hand, when the noise is correlated, the analogous calculation involves a
correlation function with a finite amplitude. As a consequence, the variance of the sum of X
samples ends up being independent of Δt without the need of an additional factor. With an

exponential correlation function, the variance of  is equal to

(3.11)

which is proportional to τcorr. Details of the calculation are omitted. The key point is that it
uses equation 3.9 with an exponential correlation function, equation 3.5, and does not
require an extra .

Appendixes A and B describe how random numbers with these properties can be generated
in practice.
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4 The Moments of T of the Nonleaky Neuron Driven by Uncorrelated Noise
First, we briefly review the formalism used to characterize the statistics of the first passage
time when the input current is described by uncorrelated gaussian noise. Then we generalize
these derivations to the case of correlated input, which is presented further below.

The quantity of interest is the random variable T, the time that it takes for the voltage V to
go from reset to threshold. Its characterization depends on the probability density function f
(T, V), where Δtf(T, V), is the probability that, starting from a voltage V, threshold is
reached between T and T + Δt time units later. The fluctuating input current in this case is
described by gaussian white noise. To compute the density function f, equation 2.1 needs to
be discretized first, so that time runs in steps of size Δt.

As shown above, when time is discretized, gaussian white noise can be approximated by

setting X in each time step equal to . Thus, for an uncorrelated gaussian current,
the discretized version of equation 2.1 is

(4.1)

where Z = ±1 and consecutive samples are uncorrelated. Also, we have defined

(4.2)

Figure 1 shows examples of spike trains produced by the model when the input is binary and
uncorrelated. When there is no drift (μ = 0), as in Figures 1a through 1c, firing is irregular;
the probability distribution of the times between spikes is close to an exponential (see Figure
1b), as for a Poisson process. Something different happens when there is a strong drift, as in
Figures 1d through 1f: the evoked spike train is fairly regular, and the times between spikes
cluster around a mean value (see Figure 1e). Thus, as observed before (Troyer & Miller,
1997; Salinas & Sejnowski, 2000), there are two regimes: one in which the drift provides the
main drive and firing is regular, and another in which the variance provides the main drive
and firing is irregular. The quantitative dependence of the mean firing rate and variability on
the input parameters μ, σ , and Pc is derived below.

4.1 Equations for the Moments of T
Now we proceed with the derivation of f (T, V). The fundamental relationship that this
function obeys is

(4.3)

Here, as above, the bar indicates averaging over the input ensemble, or expectation. This
equation describes how the probability of reaching threshold changes after a single time
step: if at time t the voltage is V and T time units remain until threshold, then at time t + Δt,
the voltage will have shifted to a new value V(t + Δt) and, on average, threshold will be
reached one Δt sooner. To proceed, substitute equation 4.1 into the above expression and
average by including the probabilities for positive and negative input samples to obtain

(4.4)
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Here V(t) is just V, and to simplify the next step we also made the shift T → T + Δt. Next,
expand each of the three f terms in Taylor series around f(T, V). This gives rise to a partial
derivative with respect to T on the left-hand side and to partial derivatives with respect to V
on the right. In the latter case, second-order derivatives are needed to avoid cancelling of all
the terms with σ . After simplifying the resulting expression, take the limit Δt → 0 to obtain

(4.5)

This has the general form of the Fokker-Planck equation that arises in the study of Brownian
motion and diffusion processes (Van Kampen, 1981; Gardiner, 1985; Risken, 1996). In this
case, it should satisfy the following boundary conditions. First,

(4.6)

which corresponds to the presence of the barrier at V = 0. Second,

(4.7)

which means that once threshold is reached, it is certain that a spike will occur with no
further delay.

From equation 4.5 and these boundary conditions, expressions for the mean, variance, and
higher moments of T may be obtained. To do this, multiply equation 4.5 by Tq and integrate
each term over T. The result is an equation for the moment of T of order q:

(4.8)

where the angle brackets denote averaging over the probability distribution of T, that is,

(4.9)

The first equality above indicates that the moments of T are, in general, functions of V,
although in some instances the explicit dependence will be omitted for brevity. The equation
for the mean first passage time 〈T〉 is obtained when q = 1:

(4.10)

Similarly, the differential equation for the second moment follows by setting q = 2 in
equation 4.8:

(4.11)

Notice that to solve this equation, 〈T〉 needs to be computed first. Knowing the second
moment of T is useful in quantifying the variability of the spike-train produced by the model
neuron. One measure that is commonly used to evaluate spike-train variability is the
coefficient of variation CVISI, which is equal to the standard deviation of the interspike
intervals (the times between successive spikes) divided by their mean. Since the interspike
interval is simply T,
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(4.12)

For comparison, it is helpful to keep in mind that the CVISI of a Poisson process equals 1.

Boundary conditions for the moments of T are also necessary, but these can be obtained by
the same procedure just described: multiply equations 4.6 and 4.7 by Tq and integrate over
T. The result is

(4.13)

4.2 General Solutions (μ ≠ 0)
The solution to equation 4.10 may be found by standard methods. Taking into account the
boundary conditions above with q = 1, we obtain

(4.14)

To obtain the mean time from reset to threshold, evaluate equations 4.14 at V = Vreset. After
inserting these expressions into the right-hand side of equation 4.11 and imposing the
corresponding boundary conditions, the solution for 〈T2〉 becomes

(4.15)

where φ1 is the function defined in equations 4.14.

4.3 Solutions for Zero Drift (μ = 0)
The above expressions for 〈T〉 and 〈T2〉 are valid when μ is different from zero. When μ is
exactly zero, the corresponding differential equations 4.10 and 4.11 become simpler, but the
functional forms of the solutions change. In this case, the solution for 〈T〉 is

(4.16)

A very similar expression has been discussed before (Salinas & Sejnowski, 2000; see also
Berg, 1993). In turn, the solution for 〈T2〉 becomes

(4.17)

These special solutions can also be obtained from the general expressions 4.14 and 4.15 by
using a series representation for the exponentials and then taking the limit μ → 0.

Figures 2 and 3 compare these analytical solutions with computer simulations for a variety
of values of σ and μ (see appendix C for details). The continuous lines in these figures
correspond to analytic solutions. Equations 4.16 and 4.17 were used in Figure 2b, and
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equations 4.14 and 4.15 were used in the rest of the panels (as mentioned above, the
expressions were evaluated at V = Vreset). The bottom rows in these figures plot the CVISI as
defined in equation 4.12, and the top rows plot the mean firing rate r in spikes per second,
where r = 1/〈T〉. The dots in the graphs are the results of simulations. Each dot was obtained
by first setting the values of μ and σ and then running the simulation until 1,000 spikes had
been emitted; then 〈T〉 and 〈T2〉 were computed from the corresponding 1,000 values of T.
The agreement between simulation and analytic results is very good for all combinations of
μ and σ.

The results in Figures 2 and 3 confirm that firing in this model can be driven either by a
continuous drift, in which case firing is regular, like a clock, or by the purely stochastic
component of the input, in which case firing is irregular, like radioactive decay. For
example, in Figure 3a, the mean rate rises steadily as a function of μ almost exactly along
the line given by r = μ/(Vθ − Vreset), which is the solution for r when σ = 0 (see equation
4.14). The corresponding CVISI values stay very low, except when μ gets close to zero, in
which case σ becomes relatively large. It is easy to see from equations 4.14 and 4.15 that
when σ = 0, the CVISI becomes zero as well. In contrast, Figure 2b shows that when there is
no drift and firing is driven by a purely stochastic input, the resulting spike train is much
more irregular, with a CVISI slightly below one. Figure 2c shows an interesting intermediate
case. As σ increases above zero, the firing rate changes little at first, but then, after a certain
point around σ = 0.1, it increases steadily. In contrast, the CVISI increases most sharply
precisely within the range of values at which the rate stays approximately constant, starting
to saturate just as the firing rate starts to rise.

5 The Moments of T of the Nonleaky Neuron Driven by Correlated Noise
Correlated noise can also be approximated using a binary description. When there are
correlations, changes in the sign of X(t) occur randomly but with a characteristic timescale
τcorr (recall that X has zero mean). In this case, the key to approximate X with a binary
variable is to capture the statistics of the transitions between positive and negative values.
Intuitively, this may be thought as follows. A sample X is observed, and it is positive. On
average, it will remain positive for another τcorr time units approximately. Therefore, in a
time interval Δt longer than τcorr, one would expect to see Δt/(2τcorr) sign changes; for
instance, in a period of length 2τcorr, one should see, on average, a single sign change. Thus,
the probability that X(t) and X(t + Δt) have different signs, for small Δt, should be equal to
Δt/(2τcorr). This is the quantity we called Pc above. A random process that changes states in
this way gives rise to a correlation function described by an exponential, as in equation 3.5
(see appendix A), and has a finite variance.

For a correlated random current, the discretized version of equation 2.1 is

(5.1)

, where Z = ±1. Now, however, Z has an exponential correlation function, and although +1
and −1 are equally probable overall, the transitions between +1 and −1 do not have identical
probabilities, as described earlier. As before, we have rescaled the mean and variance of the
input:

(5.2)

However, we use σ1 instead of σ0 to note that the two quantities correspond to different
noise models, correlated and uncorrelated, respectively. There is a subtle difference between
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them: the  factor is needed to discretize gaussian white noise but not correlated noise, so
σ1 and σ0 end up having different units (see above).

Figures 4 and 5 show examples of spike trains produced by the model when the input is
binary and temporally correlated. In Figure 4, the model has a negative drift, so firing is
driven by the random fluctuations only. In Figures 4a and 4c, the correlation time is τcorr = 1
ms, and, as expected, on average the input changes sign every 2 ms (see Figure 4a, lower
trace). When τcorr is increased to 5 ms, the changes in sign occur approximately every 10 ms
(see Figure 4d, lower trace). This gives rise to a large increase in mean firing rate and a
smaller increase in CVISI, as can be seen by comparing the spike trains in Figures 4c and 4f.
Note that μ and σ are the same for all panels. Figure 5 shows the effect of an identical
change in correlation time on a model neuron that has a large positive drift. When τcorr = 1
ms, firing is regular (see Figure 5c). When τcorr increases to 5 ms, there is no change in the
mean firing rate, but the interspike intervals become much more variable (see Figure 5f). In
both figures, long correlation times give rise to a sharp peak in the distribution of interspike
intervals (see Figures 4e and 5e), which corresponds to a short interspike interval that
appears very frequently. This short interval results when the input stays positive for a
relatively long time, as illustrated by the two spikes in the voltage trace in Figure 4d. This
interval is equal to (Vθ − Vreset)/(μ + σ), which is the minimum separation between spikes
in the model given μ and σ. As the correlation time increases, a larger proportion of spikes
separated by this interval is observed. For instance, for the parameters in Figures 4f and 5f,
the minimum interval accounts approximately for 48% and 28%, respectively, of all
interspike intervals.

Analytic solutions for the mean firing rate and the CVISI of the nonleaky model driven by
correlated noise are derived in the following sections.

5.1 Equations for the Moments of T
In the case of correlated input, the probability that threshold is reached in T time units
depends not only on the value of V(t) but also on the value of Z(t). If Z(t) is, say, positive,
then it is more likely that Z(t+Δt) will also be positive, so we should expect threshold to be
reached sooner when Z(t) is positive than when it is negative. This means that now, instead
of the single probability distribution f used before, two functions should be considered: f+(T,
V), which stands for the probability distribution of T given that the last measurement of the
input Z was positive, and f−(T, V), which stands for the probability distribution of T given
that the last measurement of Z was negative. Therefore, Δt f+(T, V) is the probability that
starting from a voltage V(t) and given that Z(t) was positive, threshold is reached between T
and T + Δt time units later. In turn, using the proper discretiztion for this case (see equation
5.1), the same reasoning that previously led to equation 4.4 now leads to a set of two
coupled equations:

(5.3)

(5.4)

The first equation follows when Z(t) is positive, so Z(t + Δt) can either stay positive, with
probability 1 − Pc, or change to negative, with probability Pc; similarly, the second equation
means that when the current Z at time t is negative, at time t + Δt it can either become
positive, with probability Pc, or stay negative, with probability 1 − Pc. At this point, one may
proceed as in the case of uncorrelated noise: expand each term in a Taylor series, which in
this case only needs to be of first order, substitute Pc for Δt/2τcorr, simplify terms, and take
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the limit Δt → 0. The result is a pair of coupled differential equations for f+ and f−
analogous to equation 4.5 when input samples are independent:

(5.5)

These equations may be multiplied by Tq and integrated, as was done in the previous
section. The two equations that result describe how the moments of T change with voltage.
These equations are:

(5.6)

Notice that there are two sets of moments, not just one, because there are two conditional
distributions, f+ and f− . We should point out that for the most part, 〈T+〉 is the crucial
quantity. It corresponds to the average time required to reach threshold starting at voltage V
and given that the last value of the current was positive; similarly, 〈T−〉 is the expected time
required to reach threshold starting at voltage V but given that the last value of Z was
negative. However, notice that in a spike train a new excursion from reset to threshold is
initiated immediately after each spike, and all spikes must be preceded by an increase in
voltage. With one exception, this always corresponds to Z > 0, in which case the quantities

of interest are 〈T+〉,  and so on. The exception is when μ is positive and larger than σ; in
this case, V never decreases because the total input is always positive, and therefore
threshold can be reached even after a negative value of Z.

For this same reason, the cases μ < σ and μ > σ will require different boundary conditions.
When σ is larger than μ, the sign of the corresponding change in voltage is equal to the sign
of Z (this is not true if μ is negative and |μ| > σ , but then the voltage cannot increase and no
spikes are ever produced, so we disregard this case). The first boundary condition is then

(5.7)

which corresponds to the presence of the barrier at V 0. It involves the function f− because
the barrier can be reached only after

(5.8)

This is the condition on the threshold, which can be reached only after a positive value of Z;
hence, the use of f+. In terms of the moments of T, these conditions become

(5.9)

When μ is positive and larger than σ , the change in voltage in one time step is always
positive. In this case, the barrier is never reached, so there is no boundary condition at that
point. Threshold, however, can be reached with either positive or negative Z values, so the
two conditions are
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(5.10)

and for the moments of T, this gives

(5.11)

5.2 Solutions for σ ≥ μ
Ordinary differential equations for the mean first passage time are obtained by setting q = 1
in equations 5.6. The solutions to these equations are

(5.12)

where we have defined

(5.13)

These expressions satisfy the boundary conditions 5.9 for the threshold and the barrier.
Ordinary differential equations for the second moments of the first passage time are obtained
by setting q = 2 in equations 5.6 and inserting the above expressions for 〈T+〉 and 〈T−〉. The
solutions to the second moment equations are

(5.14)

These also satisfy boundary conditions 5.9, with q = 2. As explained above, the relevant

quantities in this case are 〈T+〉 and  because threshold is always reached following a
positive value of Z. Thus, 〈T+〉 should be equal to the mean first passage time calculated
from simulated spike trains.

What is the behavior of these solutions as τcorr increases? Consider the firing rate r of the
model neuron under these conditions. As correlations become longer, the stretches of time
during which input samples have the same sign also become longer (compare the lower
traces in Figures 4a and 4d), although on average it is still true that positive and negative
samples are equally likely. During a stretch of consecutive negative samples, the firing rate
is zero, whereas during a long stretch of consecutive positive samples, it must be equal to

(5.15)

which is just the rate we would obtain if the total input were constant and equal to μ + σ (see
equation 4.14). Therefore, the mean rate for large τcorr should be approximately equal to
one-half of r+. Indeed, in the above expression for 〈T+〉, one may expand the exponential in
a Taylor series and take the limit τcorr → ∞; the result is that, in the limit, the firing rate is
equal to r+/2.

Salinas and Sejnowski Page 12

Neural Comput. Author manuscript; available in PMC 2010 October 01.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



On the other hand, longer correlation times give rise to longer stretches in which no spikes
appear, that is, longer interspike intervals. Thus, in contrast to the mean, the variance in the
interspike interval distribution should keep increasing. This can be seen from the above

expression for  again, expand the exponentials in Taylor series, but note that this time,

the co-efficient of the final term in V includes τcorr, so  will keep increasing with the

correlation time. Because the CVISI is a function of  the variability of the spike
trains generated by the model will diverge correlation time increases.

Another interesting limit case is obtained when σ = μ,or c = 1. Here, the total input is zero
every time that Z equals −1; this means that half the time, V does not change, whereas the
rest of the time, V changes by 2μ in each time step. On average, this gives a time to
threshold 〈T+〉 equal (Vσ – Vreset)/μ, which is precisely the result from equation 5.12.
Notice that this quantity does not depend on the correlation time. In contrast, the second
moment 〈T+〉 does depend on τcorr. For this case, c = 1, the expression for the CVISI is
particularly simple:

(5.16)

Thus, again the variability diverges as τcorr increases, but the mean rate does not.

5.3 Solutions for Zero Drift (μ = 0)
When the drift is exactly zero, the model neuron is driven by the zero-mean input only.
Equations for the moments of the first passage time are obtained as above, using the proper
values of q in equations 5.6, but μ = 0 must also be set in these expressions. With these
considerations, the solutions for the mean first passage time in the case of correlated noise
with zero drift are

(5.17)

Notice that these expressions can also be obtained from the solutions to the case σ > μ by
expanding the exponentials in equations 5.12 in Taylor series, cancelling terms, and then
taking the limit μ → 0.

For the second moment,

(5.18)

The boundary conditions satisfied by these solutions are those given by equations 5.9, as in

the previous case. Also, it is 〈T+〉 and  that are important, because spikes are always
triggered by positive values of the fluctuating input.

The asymptotic behavior of these solutions for increasing τcorr is similar to that in the
previous case. In the limit, the mean rate is again given by r+/2 (with μ = 0), and it is clear

from the expression for  that  will diverge of the leading term 4xτcorr/σ.
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5.4 Solutions for σ < μ
When σ is smaller than μ, the same differential equations discussed above (equations 5.6
with the appropriate values of q) need to be solved, but the boundary conditions are
different. In this case, equations 5.11 should be satisfied. The solutions for the first moment
that do so are

(5.19)

In contrast to the previous two situations, now threshold can be reached after a positive or a
negative value of Z. Overall, these are equally probable, but the relative numbers of spikes
triggered by Z = +1 and Z = −1 need not be, so determining the observed mean first passage
time becomes more difficult. The following approximation works quite well.

Consider the case where τcorr is large. The interspike interval during a long stretch of
positive samples is still equal to (Vθ − Vreset)/(μ + σ), but spikes are also produced during a
long stretch of negative samples, with an interspike interval equal to (Vθ − Vreset)/(μ − σ).
This suggests that the number of excursions to threshold that start after Z = +1 during a
given period of time should be proportional to μ + σ, whereas those that start after Z = −1 in
the same period should be proportional to μ − σ. Using these quantities as weighting
coefficients for 〈T+〉 and 〈T−〉 gives

(5.20)

where the second equality is obtained by using equations 5.19. This average should
approximate the mean time between spikes produced by the model. According to this
derivation, when σ < μ, the mean first passage time should be constant as a function of the
correlation time (as was found when c = 1).

Obtaining an expression for the second moment of the first passage time requires a similar
averaging procedure. First, using equations 5.19 on the left-hand side, solutions to equations
5.6 for q = 2 are found; these are

(5.21)

where

(5.22)

These solutions satisfy boundary conditions 5.11. Second, again considering that the relative
frequencies of spikes triggered by Z = +1 and Z = −1 should be proportional to μ + σ and μ
− σ, respectively, one obtains

(5.23)

Recall that the quantities α and c are defined in equation 5.13 and apply to all solutions.
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In this case, the asymptotic behavior of the solutions as functions of τcorr is different from
the previous cases. As noted above, the mean first passage time is independent of τcorr so, as
in the case σ ≥ μ, it remains finite as τcorr increases. The variability, however, does not
diverge in this case, as it does when σ ≥ μ. In the limit when τcorr → ∞, the second moment
tends to a finite value; this is not obvious from equation 5.23, but expanding the
exponentials, one finds that all terms with τcorr in the numerator cancel out. Intuitively, this
makes sense: as the correlation time increases, the value of most interspike intervals tends to
be either (Vθ − Vreset)/(μ − σ) or (Vθ − Vreset)/(μ+σ), so the variance in the interspike
interval distribution tends to a constant. The CVISI in this limit case is also given by a simple
expression, which is

(5.24)

Plots of the solutions just presented are shown in Figures 6 and 7. The format of these
figures is the same as in Figures 2 and 3: dots and continuous lines correspond to computer
simulations and analytic solutions, respectively. Here, however, three sets of curves and dots
appear in each panel; these correspond to τcorr equal to 1, 3, and 10 ms, where higher
correlation times give rise to higher values of the mean rate and CVISI. As in the case of
independent input samples, their agreement is excellent. It is evident from these figures that
the correlation time increases both the firing rate and the variability of the responses for any
fixed combination of μ and σ .

Two important points should be noted. First, the relative effect on the mean firing rate is
much stronger when σ is large compared to μ. This is most evident in Figure 7b (top row),
where the effect of τcorr is enormous when μ is zero or negative and becomes negligible as
μ becomes comparable to σ . This is also clear in Figure 6c where, in agreement with
equation 5.20, the firing rate remains constant for σ < μ and becomes more sensitive to τcorr
as σ increases. The higher sensitivity when σ is large is not at all surprising because
correlations do not alter the drift. Hence, when the neuron is being primarily driven by drift,
the change in rate caused by correlations is proportionally small.

The second key point is that as the correlation time is increased, the effect on the firing rate
saturates, but the effect on variability may not. For instance, in Figures 6a through 6c (top
row), the difference between the lower two and the upper two rate curves is about the same,
although the latter corresponds to a much larger increase in correlation time. In contrast, the
CVISI plots in the same figure do show larger differences between CVISI traces for larger
changes in τcorr.

Figure 8 illustrates these points more clearly. Here, the mean rate and the CVISI are plotted
as functions of the correlation time τcorr for various combinations of μ and σ . Only analytic
results are shown here, but these were confirmed by additional simulations. First, notice the
behavior of the firing rate: it increases as a function of τcorr up to a certain point, where it
saturates. The net increase in rate is larger for higher values of σ and smaller for higher
values of μ. On the other hand, the variability shows different asymptotic behaviors in the
cases σ > μ and σ < μ. In the former, the CVISI always keeps rising with longer correlation
times; in the latter, it saturates (see the thickest trace in Figure 8b, bottom). This saturation
value is in accordance with equation 5.24, which, for the parameter values used in the figure,
predicts a limit CVISI of 0.98.

In the following sections, similar analyses are presented for the integrate-and-fire model
with leak. Although the quantitative details differ somewhat, the main conclusions just
discussed remain true for this model too.
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6 The Leaky Integrate-and-Fire Neuron
The integrate-and-fire model with leak (Tuckwell, 1988; Troyer & Miller, 1997; Salinas &
Sejnowski, 2000; Dayan & Abbott, 2001) provides a more accurate description of the
voltage dynamics of a neuron while still being quite simple. When driven by a stochastic
input, the evolution equation for the voltage may be written as follows,

(6.1)

where the input terms are the same as before. The key difference is the −V term. Again, a
spike is produced when V exceeds the threshold Vθ, after which V is reset to Vreset. Note,
however, that in this case, there is no barrier. This equation can be further simplified by
defining

(6.2)

in which case only the fluctuating component of the input (with zero mean) appears in the
equation

(6.3)

The threshold and reset values need to be transformed accordingly:

(6.4)

It is easier to solve equations using v, but when the effects of μ0, σ1, and τcorr are discussed,
V is more convenient. These equations will be used to shift between V and v
representations.

It is in the form of equation 6.3 that the leaky integrate-and-fire model becomes identical to
the Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930; Ricciardi, 1977, 1995;
Shinomoto et al., 1999). Notice that in this model, v is driven toward X; if X were to remain
constant at X = X0, v would tend exponentially toward this value with a time constant τ . If
X0 were above threshold, the interspike interval would be constant and equal to

(6.5)

which results from integrating equation 6.3. This is a well-known result. Note that spikes
may be produced even if X0 is zero or negative, as long as it is above threshold. With binary
inputs, the drive X switches randomly between two values.

Although this model remains an extreme simplification of a real neuron, its analytic
treatment is more complicated than for the nonleaky model. Considerable work has been
devoted to solving the first passage time problem when the model is driven by uncorrelated
gaussian noise (Thomas, 1975; Ricciardi, 1977, 1995; Ricciardi & Sacerdote, 1979;
Ricciardi & Sato, 1988). Although closed-form expressions for the moments of T in this
case are not known, solutions in terms of series expansions have been found; these are well
described by Shinomoto et al. (1999) and will not be considered any further here.

In the remainder of the article, we investigate the responses of the leaky integrate-and-fire
model when X represents correlated binary noise, as was done for the nonleaky model. As
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before, we are interested in the time T that it takes for v to go from reset to threshold—the
first passage time, or interspike interval.

6.1 Equations for the Moments of T of the Leaky Neuron Driven by Correlated Noise
For a correlated random current, the discretized version of equation 6.3 can be written as

(6.6)

where Z = ±1 and Z has an exponential correlation function, as discussed before. Again, the
statistics of T are described by the two probability density functions f+(T, v) and f−(T, v),
where f+(T, v)Δt and f−(T, v)Δt stand for the probability that starting from a voltage v,
threshold is reached between T and T + Δt time units later; f+ is conditional on the last
measurement of Z being positive, and f− is conditional on the last measurement of Z being
negative. The derivation of these functions proceeds in exactly the same way as for the
nonleaky model; the key is that equation 6.6 has the same form as equation 5.1, except that
the −v/τ term occupies the place of μ. Because it is f+ and f− that are expanded as functions
of their arguments, all the corresponding expressions can be found by exchanging −v/τ for
μ. Starting with equation 5.4, this leads to a set of two coupled differential equations for the
moments of T analogous to equations 5.6:

(6.7)

Notice that here we use the original variable σ1 rather than the scaled one σ = σ1/τ (see
equation 5.2).

In addition to these equations, boundary conditions are required to determine the solution.
The threshold mechanism is still the same, so applying equation 5.8, we obtain

(6.8)

which means that a spike must be emitted with no delay when v reaches threshold after a
positive fluctuation. Note also that the model can produce spikes only when σ1 is larger than
the threshold value, because the maximum value that v may attain is precisely σ1.

For the second boundary condition, there are two possibilities. First, consider the case vθ <
−σ1. Since the input is binary, the voltage is driven toward either σ1 or −σ1, depending on
the value of Z. If the threshold is lower than −σ1, then both Z = +1 and Z = −1 may trigger a
spike. Therefore,

(6.9)

which means that a spike must also be emitted without delay when v reaches threshold after
a negative fluctuation. In the second case, σ1 > vθ > −σ1; when Z = −1, the voltage tends to
go below threshold, so a spike can only be triggered by Z = +1. What is the second boundary
condition then? This case is much more subtle. To obtain the new condition, first rewrite the
bottom expression in equations 6.7 as follows:
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(6.10)

Now notice that the derivative has a singularity at v = −σ1. However, the excursion toward
threshold may start at any value below it, including −σ1, so for any q, the derivative on the
left side should be a continuous function of v. In other words, the derivative should not be
allowed to diverge. Continuity requires that the limits obtained by approaching from the left
and right be the same, that is,

(6.11)

Expanding  and  in first-order Taylor series around σ1 and using the above leads to
the sought boundary condition,

(6.12)

Setting q = 1 in equations 6.7, we obtain the differential equations for the mean first passage
time,

(6.13)

with boundary conditions

(6.14)

In this case, the second boundary condition has an intuitive explanation. Suppose a spike has
just been produced—this necessarily requires Z = +1—and the voltage is reset to vreset =
−σ1. Now suppose that in the next time step, Z = −1, so the expected time until the next
spike is 〈T−〉. The voltage will not change until Z switches back to +1, because Z = − 1
drives it precisely toward −σ1. The moment Z becomes positive, the expected time to reach
threshold becomes 〈T+〉 by definition. Therefore, the expected time to reach threshold
starting from Z = −1 is equal to the expected time starting from Z = +1 plus the time one
must wait for Z to switch back to +1, which is 2τcorr; that is what the boundary condition
says. This happens only at v = −σ1 because it is only at that point that v stays constant
during the wait.

Setting q = 2, we obtain the differential equations for the second moment of T,

(6.15)

with boundary conditions
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(6.16)

Figure 9 shows voltage traces and spikes produced by the model with leak driven by a
correlated binary input. The responses of the leaky integrator here are similar to those of the
nonleaky model shown on Figure 4, but note that the voltage traces are now composed of
piecewise exponential curves. In Figure 9, the neuron can spike only when Z is positive. In
Figures 9a through 9c, the correlation time is τcorr = 1 ms, and on average the input changes
sign every 2 ms (see Figure 9a, lower trace). When τcorr is increased to 5 ms, the changes in
sign occur approximately every 10 ms (see Figure 9d, lower trace), producing a large
increase in mean firing rate and a smaller increase in CVISI. As with the nonleaky model,
long correlation times generate many interspike intervals of minimum length, which in this
case is 8.5 ms. For the leaky integrator, this minimum separation between spikes is equal to
τ log((σ1 − vreset)/(σ1 − vθ)), which is just equation 6.5 with σ1 instead of X0.

Analytic solutions for the mean firing rate and the CVISI of the leaky model driven by
correlated noise can be obtained under some circumstances. These are derived below.

6.2 Solutions for vθ > −σ1

First, consider the mean of T. Solutions in a closed form are not evident, but series
expansions can be used. It may be verified by direct substitution that the following
expressions satisfy differential equations 6.13 and their corresponding boundary conditions
6.14,

(6.17)

where the coefficients a and b are given by the following recurrence relations,

(6.18)

One of the limitations of series solutions is that they are valid only within a restricted range,
known as the radius of convergence ρ. This radius can be found, for instance, by
d'Alambert's ratio test,

(6.19)

where Sk represents term k of the series (Jeffrey, 1995). The series converges for ρ < 1 and
diverges for ρ > 1. Applying this test to the series

(6.20)

we find two conditions for convergence:
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(6.21)

Note from equations 6.17 that these constraints must be satisfied for both v = vreset and v =
vθ, but in practice the limitation is on vreset. The first condition is always satisfied because
the maximum value that the voltage can reach is σ1; the second one means that the reset
value cannot be set too negative (below −3σ1). As will be discussed shortly, equations 6.17
and 6.18 provide an analytic solution that is valid within a fairly large range of parameters.

Now consider the second moment of T. The following series satisfy equations 6.15 with
boundary conditions 6.16,

(6.22)

where the coefficients c and d are given by

(6.23)

These series solutions are obviously less transparent than the closed-form solutions found
for the model without leak. However, a couple of interesting observations can be made.
First, notice the behavior of 〈T+〉 as τcorr tends to infinity: all the coefficients a become
independent of τcorr and remain finite. This means that 〈T+〉 saturates as a function of τcorr.
On the other hand, as expected, 〈T−〉 tends to infinity, because of the leading term 2τcorr in
equation 6.17. In contrast to the firing rate, the variability of the evoked spike trains does not
saturate. Again, the reason is that as τcorr increases, longer stretches of time are found during
which no spikes are produced; these are the times during which Z = −1. The divergence of
the CVISI is also apparent from the equations above: note that c1 contains a term
proportional to τcorr. This and the fact that the rate saturates make the CVISI grow without
bound.

6.3 Solutions for vθ < −σ1

When vθ is below −σ1, the neuron can fire even if Z = −1, so boundary conditions 6.8 and
6.9 should be used. Solutions in terms of series expansions can be obtained in this case too.
For the first moment of T, these have the form

(6.24)

Unfortunately, these solutions turn out to be of little use because they converge for a very
limited range of parameters. When they do converge, the firing rate is typically very high, at
which point the difference between 〈T+〉 and 〈T−〉 is minimal. The solutions for the second
moment of T have same problem. Therefore, these expressions will be omitted, along with
the corresponding recurrence relations for this case.

From the simulations, we have observed that when vθ < −σ1, the input fluctuations have a
minimal impact on the mean firing rate. In this case, the mean interspike interval 〈T〉 is well
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approximated by the interval expected just from the average drive, which is zero (or μ0 in
the V representation)— that is,

(6.25)

which is equation 6.5 with X0 = 0.

Figures 10 and 11 plot the responses of the model with leak for various combinations of μ0
and σ1, using the same formats of Figures 6 and 7. Again the three sets of curves correspond
to τcorr equal to 1, 3, and 10 ms, with longer correlation times producing higher values of the
mean rate and CVISI. In general, these figures show the same trends found for the model
without leak: correlations increase both the firing rate and the variability of the responses for
almost any fixed combination of μ and σ. The only exception occurs near the point vθ =
−σ1, which marks the transition between the two types of solution. Right below this point,
the rate drops slightly as the correlation time increases. This can be seen in Figures 11a and
11b, where the transitions occur at μ0 = 1.2 and μ0 = 1.5, respectively. Other aspects of the
responses are also slightly different for the two models, but the same kinds of regimes can
be observed. For instance, compare Figures 6c and 10c; the rate in the leaky model does not
stay constant for small values of σ , but the rise in CVISI is still quite steep. Also, in Figure
11, the firing rate is zero when μ0 + σ1 is less than 1 (which is the threshold for V), so when
the rates are low, the curves are clearly different. But notice how in Figure 11a the CVISI
decreases for large values of μ0. In this regime, the variability saturates, as for the model
without leak, because regardless of τcorr there is a minimum firing rate.

The responses of the leaky integrate-and-fire neuron as functions of τcorr are plotted in
Figure 12. Series solutions were used in all cases except for the combination σ1 = 0.3, μ0 =
1.31, for which simulation results are shown (dots). This is the case in which spikes can be
produced after positive or negative Z and where the CVISI does not diverge. Note the overall
similarity between the curves in Figures 12 and 8.

7 Discussion
We have analyzed two simple integrate-and-fire model neurons whose responses are driven
by a temporally correlated, stochastic input. Assuming that the input samples are binary and
given their mean, variance, and correlation time, we were able to find analytic solutions for
the first two moments of T, which is the time that it takes for the voltage to go from the
starting value to threshold, at which point a spike is produced. We found that when other
parameters were kept fixed, the correlation time tended to increase both the mean firing rate
of the model neurons (the inverse of T) and the variability of the output spike trains, but the
effects on these quantities differed in some respects. As the correlation time increased from
zero to infinity, the firing rates always approached a finite limit value. In contrast, the CVISI
approached a finite limit only when the input mean (or drift) was large enough; otherwise, it
increased without bound. In addition, the increase in firing rate as a function of correlation
time depended strongly on the relative values of μ and σ, with higher μ making the
difference smaller.

Key to obtaining the analytic results was the use of a binary input. It is thus reasonable to
ask whether the trends discussed above depend critically on the discrete nature of the binary
variable. Gaussian white noise can be properly approximated with a binary variable because
of the central limit theorem. As a consequence, the results for the model without leak were
identical when the input was uncorrelated and either gaussian or binary. With correlated
noise, the input current fluctuates randomly between a positive and a negative state, and the
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dwell time in each state is distributed exponentially. If instead of a binary variable a
gaussian variable is used, with identical statistics for its sign, the results differ somewhat but
are qualitatively the same for the two models: for example, the rate still increases as a
function of correlation time, and the same asymptotic behaviors are seen (data not shown).

Here, we considered the response of the model neuron as a function of the total integrated
input, but a real neuron actually responds to a set of incoming spike trains. Ideally, one
would like to determine how the statistics of the hundreds or thousands of incoming spike
trains relate to the mean, variance, and correlation time of the integrated input current, but in
general this is difficult. Methods based on a population density analysis have been applied to
similar problems (Nykamp & Tranchina, 2000; Haskell et al., 2001). These methods are also
computationally intensive, but eventually may be optimized to compute efficiently the
spiking statistics of more accurate models. In a previous study (Salinas & Sejnowski, 2000),
we investigated how the firing rates and correlations of multiple input spike trains affected
the mean and standard deviation of the total input (and ultimately the statistics of the
response), but this required certain approximations. In particular, we implicitly assumed that
the correlation time of the resulting integrated input was negligible. This is a good
approximation when the correlations between input spike trains have a timescale shorter
than the synaptic time constants, so that the latter determine the correlation time of the
integrated input (Svirskis & Rinzel, 2000). But this may not be always true, as discussed
below.

In the cortex, correlations between input spike trains are to be expected simply because of
the well-known convergent and divergent patterns of connectivity (Braitenberg & Schüz,
1997): neurons that are interconnected or receive common input should be correlated. This
has been verified through neurophysiological experiments in which pairs of neurons are
recorded simultaneously and their cross-correlation histograms are calculated. The widths of
these measured cross-correlograms may go from a few to several hundred milliseconds, for
both neighboring neurons in a single cortical area (Gochin, Miller, Gross, & Gerstein, 1991;
Brosch & Schreiner, 1999; Steinmetz et al., 2000) and neurons in separate areas (Nelson et
al., 1992). Thus, such correlation times may be much longer than the timescales of common
AMPA and GABA-A synapses (Destexhe, Mainen, & Sejnowski, 1998). Neurons typically
fire action potentials separated by time intervals of the same orders of magnitude—a few to
hundreds of milliseconds—so under normal circumstances, there may be a large overlap
between the timescales of neuronal firing and input correlation. This is precisely the
situation in which correlations should not be ignored; if in this case the inputs to a neuron
are assumed to be independent, a crucial component of its dynamics may be overlooked.
Although not explicitly included here, concerted oscillations between inputs may have a
dramatic impact on a postsynaptic response too (Salinas & Sejnowski, 2000). This alternate
form of correlated activity is also ubiquitous among cortical circuits (Singer & Gray, 1995;
Fries et al., 2001).

The results support the idea that input correlations represent a major factor in determining
the variability of a neuron (Gur, Beylin, & Snodderly, 1997; Stevens & Zador, 1998;
Destexhe & Paré, 2000; Salinas & Sejnowski, 2000), especially in the case of a CVISI higher
than 1 (Svirskis & Rinzel, 2000). However, integrative properties (Softky & Koch, 1993;
Shadlen & Newsome, 1994) and other intrinsic cellular mechanisms (Wilbur & Rinzel,
1983; Troyer & Miller, 1997; Gutkin & Ermentrout, 1998) play important roles too.

In many respects, the model neurons used here are extremely simple: they do not include an
extended morphology or additional intrinsic, voltage-dependent currents that may greatly
expand their dynamical repertoire. However, the results may provide some intuition on the
effects produced by the correlation timescale of the input. For instance, a given firing rate
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can be obtained with either high or low output variability depending on the relative values of
μ, σ, and τcorr. This distinction between regular and irregular firing modes may be useful
even under more realistic conditions (Bell, Mainen, Tsodyks, & Sejnowski, 1995; Troyer &
Miller, 1997; Hô & Destexhe, 2000; Salinas & Sejnowski, 2000).

A challenge lying ahead is extending the techniques used here to network interactions
(Nykamp & Tranchina, 2000; Haskell et al., 2001). This requires solving coupled equations
for the firing probability densities of multiple, interconnected neurons. This problem is not
trivial mathematically or computationally, but it may lead to a better understanding of
network dynamics based on a solid statistical foundation.
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Appendix A: Generating Correlated Binary Samples
Here we describe how the correlated binary input with zero mean, unit variance, and
exponential correlation function was implemented in the simulations. The sequence of
correlated binary samples was generated through the following recipe:

(A.1)

where Zi is the sample at the ith time step, Ps = 1 − Pc = 1 − Δt/(2τcorr), and u is a random
number, independent of Z, uniformly distributed between 0 and 1 (Press, Flannery,
Teukolsky, & Vetterling, 1992). The initial value Z0 may be either +1 or −1. Note that the
probability that sign(Ps − u) is positive equals Ps; therefore,

(A.2)

because u is chosen independent of the Z samples. Assuming that P(Zi+1 = +1) = P(Zi = +1),
it follows from the above relation that P(Zi = +1) = 1/2, and therefore that the mean of the
sequence is zero. Showing that the variance of Z equals one is trivial: simply square both
sides of equation A.1 to find that Z2 is always equal to one.

Regarding the correlation function, the main result is that

(A.3)

This can be seen by induction. First compute the correlation between two consecutive
samples by multiplying equation A.1 by Zi, so that

(A.4)

The last step follows because sign(Ps−u) is positive a fraction Ps of the time. This expression
shows that equation A.3 is valid for j = 1; now assume that it is valid for indices i and j, and
compute the correlation between samples i and i + j + 1:

(A.5)
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Therefore, equation A.3 is true for all j ≥ 0. Analogous results can be obtained for j < 0 as
well. Finally, note ≥ that equation A.3 means that the correlation between Z samples is an
exponential. Furthermore,

(A.6)

because Ps = 1 − Pc and because the time lag t is equal to jΔt. In the limit when Δt → 0, the
above expression becomes an exponential function equal to equation 3.5.

Appendix B: Generating Correlated Gaussian Samples
Here we describe how a correlated gaussian input with zero mean, unit variance, and
exponential correlation function can be implemented in computer simulations. The sequence
of correlated gaussian samples was generated through the following recipe:

(B.1)

where

(B.2)

and g is a random number independent of W, drawn from a gaussian distribution with zero
mean and unit variance (Press et al., 1992). The g samples are uncorrelated. Applying
equation B.2 iteratively and setting the initial value W0 equal to ∊g0, we find

(B.3)

Averaging over the distribution of g on both sides implies that the mean of W equals zero,
because all g samples have an expected value of zero. By squaring the above equation and
then averaging, we obtain

(B.4)

In the last step, we used the fact that the g samples are uncorrelated, so that

, where δij is equal to 1 whenever i = j and is 0 otherwise. Also, we used the
standard result for the sum of N terms of a geometric series (Jeffrey, 1995).

The correlation function can be determined by induction, as in the case of binary samples.
To prove that

(B.5)

first compute the correlation between two consecutive samples by multiplying equation B.1
by Wi, so that

(B.6)
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The last step follows again because g is independent of the W samples. This shows that
equation B.5 is valid for j = 1. Now assume that it is valid for samples i and i = j, and
compute the correlation for samples i and i + j + 1:

(B.7)

Therefore, equation B.5 is true for all j ≥ 0. The analogous results for j < 0 can be obtained
similarly. Recalling the definition of ∊ and that t = jΔt, the right-hand side of equation B.5
becomes

(B.8)

Finally, note that uncorrelated samples may be produced by setting ∊ = 0 in equation B.1,
which is useful for switching between correlated and uncorrelated noise models in the
simulations.

Appendix C: Simulation Methods
Performing computer simulations of the models described in the main text is
straightforward. The key is that the discretized equations, 4.1, 5.1, and 6.6 can be included
literally in the simulation software. To run a simulation, first, values for μ0, σ0 (or σ1), τ,
and τcorr are chosen, as well as a time step Δt. At the start of each spike cycle, T is set to
zero and V is set equal to Vreset. Thereafter, on each time step, T is increased by Δt, a new
value of Z is generated according to equation A.1, and V is updated according to the
discretized equation for the model being simulated, for instance, equation 5.1 for the
nonleaky integrate-and-fire neuron driven by correlated binary noise. For models without
leak, the barrier needs to be checked on every step. If after the update V becomes negative,
then it is set to zero. The updating continues until threshold is exceeded, in which case a
spike is recorded, the value of T is saved, and a new spike cycle is started. Simulations in
which the model neuron was driven by a gaussian input proceeded exactly in the same way
as with a binary input, except that equation B.1 was used to generate correlated gaussian
numbers W, and Z in the discretized equations was replaced by W.

In all simulations presented here, we used τ = 10 ms, Vθ = 1, and Vreset = 1/3 (in arbitrary
units). The integration time step Δt varied between 0.1 and 0.001 ms. Average values of T
and T2 for each condition tested were computed after 1,000 spike cycles for uncorrelated
noise and 2,000 cycles for correlated noise. All interspike interval histograms shown include
about 4,500 spikes. Matlab scripts that implement the models presented here, along with
functions that evaluate the analytic solutions, may be found on-line at http://
www.cnl.salk.edu/~emilio/code.html.
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Figure 1.
Responses of the nonleaky integrate-and-fire model driven by stochastic, binary noise. Input
samples are uncorrelated, so at each time step they are equally likely to be either positive or
negative, regardless of previous values. (a) Sample voltage and input timecourses. Traces
represent 25 ms of simulation time, with Δt = 0.1 ms. The top trace shows the model
neuron's voltage V along with the spikes generated when V exceeds the threshold Vθ = 1.
After each spike, the voltage excursion restarts at Vreset = 1/3. The bottom traces show the

total input  at each time step, where Z may be either +1 or −1. The input has zero
mean, and firing is irregular. Parameters in equation 4.1 were μ = 0, σ = 0.2. (b) Frequency
histogram of interspike intervals from a sequence of approximately 4,000 spikes; bin size is
2 ms. Similar numbers were used in histograms of other figures. Here 〈T〉 = 22 ms, CVISI =
0.91. (c) Spike raster showing 6 seconds of continuous simulation time; each line represents
1 second. The same parameters were used in a through c. Panels d through f have the same
formats and scales as the respective panels above, except that μ = 0.03 and σ = 0.05. The
input has a strong positive drift, and firing is much more regular. In this case, 〈T〉 = 22 ms,
CVISI = 0.35.
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Figure 2.
Mean firing rate and coefficient of variation for the nonleaky integrate-and-fire neuron
driven by uncorrelated noise. Continuous lines are analytic expressions, and dots are results
from computer simulations using gaussian white noise. Results are shown as functions of σ
for the three values of μ indicated in the top-left corner of each panel. For each simulation
data point, 〈T〉 and 〈T2〉 were calculated from spike trains containing 1,000spikes (same in
following figure). (a, c) The continuous lines were obtained from equations 4.14 and 4.15.
(b) The continuous lines were obtained from equations 4.16 and 4.17.
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Figure 3.
As in Figure 2, but the mean firing rate and coefficient of variation are plotted as functions
of μ for the three values of σ indicated in the top-left corner of each panel. All continuous
lines were obtained from equations 4.14 and 4.15.
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Figure 4.
Responses of the nonleaky integrate-and-fire model driven by correlated, binary noise. The
input switches signs randomly, but on average the same sign is maintained for 2τcorr time
units. (a) Sample voltage and input timecourses. Traces represent 50 ms of simulation time,
with Δt = 0.1 ms. The top trace shows the model neuron's voltage V and the spikes
produced. The bottom trace shows the total input μ + Zσ at each time step, where Z may be
either +1 or −1. The input has a negative drift, and firing is irregular. Parameters in equation
5.1 were μ = −0.01, σ = 0.1; the correlation time was τcorr = 1 ms. (b) Interspike interval
histogram with 〈T〉 = 96 ms and CVISI = 1. (c) Spike raster showing 6 seconds of continuous
simulation time; each line represents 1 second. The same parameters were used in a through
c. Panels d through f have the same formats as the corresponding panels above, except that
τcorr = 5 ms; thus, changes in the sign of the input in d occur about five times less frequently
than in a. Note different x-axes for the interspike interval histograms. In e, the y-axis is
truncated; 48% of the interspike intervals fall in the bin centered at 7 ms. In this case, 〈T〉 =
27 ms, CVISI = 1.18. The increase in correlation time causes a large increase in firing rate
and a smaller but still considerable increase in variability.
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Figure 5.
As in Figure 4, except that μ = 0.02, σ = 0.03. The input has a strong positive drift, which
gives rise to much more regular responses. (a–c) τcorr = 1 ms, 〈T〉 = 33 ms, and CVISI =
0.37. (d–f) τcorr = 5 ms, 〈T〉 = 33 ms, and CVISI = 0.81. (e) Twenty-eight percent of the
interspike intervals fall in the bin centered at 13 ms, and the y-axis is truncated. In this case,
the increase in correlation time does not affect the firing rate but produces a large increase in
variability.
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Figure 6.
Mean firing rate and coefficient of variation for the nonleaky integrate-and-fire neuron
driven by correlated noise. Continuous lines are analytic expressions, and dots are results
from computer simulations using a binary input. For each simulation data point, 〈T〉 and
〈T2〉 were calculated from spike trains containing 2,000 spikes (same in following figures).
Results are shown as functions of σ for the three values of μ indicated in the top-left corner
of each panel. The three curves in each graph correspond to τcorr = 1 (lower curves), τcorr =
3 (middle curves), and τcorr = 10 ms (upper curves). (a, c) The continuous lines were
obtained from equations 5.12 through 5.14, which apply to μ < σ , except in the initial part
of c, where μ > σ and equations 5.20 and 5.23 were used. (b) The continuous lines were
obtained from equations 5.17 and 5.18. Both firing rate and variability increase with
correlation time.
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Figure 7.
As in Figure 6, but the mean firing rate and coefficient of variation are plotted as functions
of μ for the three values of σ indicated. The three curves in each graph again correspond to
τcorr = 1 (lower curves), τcorr = 3 (middle curves), and τcorr = 10 ms (upper curves). All
continuous lines were obtained from equations 5.12 through 5.14 (μ < σ), except for the last
part of a, where equations 5.20 and 5.23 were used (μ > σ).
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Figure 8.
Responses of the nonleaky integrate-and-fire neuron as functions of the correlation time
τcorr. Only analytic results are shown. Plots on the top and bottom rows show the mean
firing rate and CVISI, respectively. (a) The four curves shown in each plot correspond to
four values of σ : 0.02, 0.045, 0.07, and 0.1, with thicker lines corresponding to higher
values. For all these curves, μ = 0, as indicated. (b) The four curves shown in each plot
correspond to four values of μ: −0.02, 0, 0.025, and 0.05, with thicker lines corresponding to
higher values. For all these curves, σ = 0.035, as indicated. As the correlation time increases,
the firing rate tends to an asymptotic value. In contrast, the CVISI diverges always, except
when μ > σ ; this case corresponds to the thickest line in b.
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Figure 9.
Responses of the leaky integrate-and-fire model driven by correlated, binary noise. Same
format as in Figure 4. (a) Sample voltage and input timecourses. Note that the original
variable V (and not v) is shown. Traces represent 50 ms of simulation time. The bottom
trace shows the total input μ0 + Zσ1 at each time step, where Z may be either +1 or −1.
Parameters in equation 6.6 were μ0 = 0.5, σ1 = 1, τ = 10 ms; the correlation time was τcorr =
1 ms. (b) Interspike interval histogram, with 〈T〉 = 103 ms and CVISI = 0.94. (c) Spike raster
showing 6 seconds of continuous simulation time; each line represents 1 second. The same
parameters were used in a through c. Panels d through f have the same formats as the
corresponding panels above, except that τcorr = 5 ms. In e, the y-axis is truncated; 43% of
the interspike intervals fall in the bin centered at 8 ms. In this case, 〈T〉 = 31 ms, CVISI =
1.15. As in the model without leak, the increase in correlation time causes a large increase in
firing rate and a smaller but still considerable increase in variability.
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Figure 10.
Mean firing rate and coefficient of variation for the leaky integrate-and-fire neuron driven
by correlated noise. Continuous lines are analytic expressions, and dots are results from
computer simulations using a binary input. Results are shown as functions of σ1 for the three
values of μ0 indicated in the top-left corner of each panel. As in Figures 6 and 7, the three
curves in each graph correspond to τcorr = 1 (lower curves), τcorr = 3 (middle curves), and
τcorr = 10 ms (upper curves). The continuous lines were obtained from equations 6.17 and
6.22, which apply to |vreset| < 3σ1. This condition is not satisfied in c for σ1 below 0.23, so
the lines start above that value. Both firing rate and variability increase with correlation
time.
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Figure 11.
As in Figure 7, but the mean firing rate and coefficient of variation are plotted as functions
of μ0 for the three values of σ1 indicated. The three curves in each graph again correspond
to τcorr = 1 (lower curves), τcorr = 3 (middle curves), and τcorr = 10 ms (upper curves).
Continuous lines are drawn in b and c only and correspond to Equations 6.17 and 6.22.
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Figure 12.
Responses of the leaky integrate-and-fire neuron as functions of the correlation time τcorr.
Analytic results are shown as continuous lines; dots are from simulations. Plots on the top
and bottom rows show the mean firing rate and CVISI, respectively. (a) The four curves
shown in each plot correspond to four values of σ1: 0.55, 0.8, 1.1, and 1.4, with thicker lines
corresponding to higher values. For all these curves, μ0 = 0.5, as indicated. (b) The four
traces in each plot correspond to four values of μ0: 0.75 0.9, 1.15, and 1.31 (dots), with
thicker lines corresponding to higher values. For these curves, σ1 = 0.3, as indicated. As the
correlation time increases, the firing rate tends to an asymptotic value. In contrast, the CVISI
diverges always, except when the threshold Vθ (equal to 1) is below μ0 − σ1; this case
corresponds to the dots in b.
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