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ABSTRACT 
This paper proposes efficient encoding techniques for 
decreasing power dissipation on global buses. The best target for 
these techniques is a wide and highly capacitive memory bus. 
Building on T0 and Offset-Xor encoding techniques, we present 
three irredundant bus-encoding techniques. Our methods 
decrease switching activity up to 83% without the need for 
redundant bus lines. The power dissipation of encoder and 
decoder circuitry has also been calculated and shown to be small 
in comparison with the power savings on the memory address 
bus itself. 

1 INTRODUCTION 
With the increasing number of transistors on a chip and the 
rising operation frequencies, the total power dissipation of VLSI 
circuits is rapidly increasing, causing high temperatures on the 
chip surface that can lead to a variety of reliability problems.  
Thus low power design methodologies are receiving more 
attention. Meanwhile, many systems are becoming portable and 
wireless, functioning on the power provided by a battery pack 
with a limited energy supply.  Again, low power design 
techniques are innovated to help increase the operation time of 
such systems before their battery pack needs to be refurbished or 
recharged.  

The major building blocks of a computer system include the 
CPU, the memory controller, the memory chips, and the 
communication channels dedicated to providing the means for 
data transfer between the CPU and the memory. These channels 
tend to support heavy traffic and often constitute the 
performance bottleneck in many systems. At the same time, the 
energy dissipation per memory bus access is quite high, which 
in turn limits the power efficiency of the overall system. In a 
computer system, the bus can be an on-chip bus, a local bus 
between the CPU and the memory controller, or a memory bus 
between the memory controller (which may be on-chip or off-
chip) and the memory devices. The bus may be used for 
addresses or data. The emphasis of this paper is on encoding 
techniques for the memory address bus that minimize the 
switched capacitance of the bus.  

The remainder of this paper is organized as follows. In section 2 
we provide a review of previous memory bus encoding 

techniques. In section 3.1 the T0-C method, which is an 
optimized version of T0, will be presented. In section 3.2 
another method, called Offset-Xor-SM (an optimized version of 
Offset-Xor), will be introduced. In section 3.3, Offset-Xor-SMC, 
which is an extension of Offset-Xor-SM will be discussed. In 
section 4 all of the above methods are implemented to compare 
their effectiveness with regard to the previous methods. The 
encoder blocks have also been designed and synthesized to 
estimate the overhead of the encoding hardware.  Concluding 
remarks are given in the last section. 1 

2 PREVIOUS WORK 
In this section we examine previous work in low power bus 
encoding and compare various encoding techniques. We first 
introduce the terminology and notation that will be used 
throughout this paper: 

b(t): Address value to be sent on the bus at time t (source word 
at time t). 
B(t): Encoded value on the bus lines at time t (code word at 
time t). 
S: Stride value, which is the difference between consecutive 
addresses in a sequential addressing mode. 

A number of encoding techniques rely on introducing 
redundancy to save power. More precisely, these techniques add 
one or more extra bits to the original bus. However, the extra 
bus lines cannot be tolerated in many systems because the extra 
bits require hardware changes and often cause incompatibility 
with standard bus interfaces. Consequently, a great deal of effort 
has been spent in finding irredundant encoding techniques that 
reduce the switched capacitance on the bus while preserving 
compatibility with existing bus interfaces and the rest of the 
system. In the following paragraphs, we review a number of 
related works on bus encoding. This is not a comprehensive 
review and only includes work that is directly related to our 
proposed encoding techniques. 
In [1] Stan and Burleson proposed the Bus-Invert method, which 
is explained next. Consider an N-bit  (non-multiplexed) bus.  
The idea is that if the Hamming distance between two 
consecutive patterns is larger than N/2, then the second pattern 
can be inverted so as to reduce the inter-pattern Hamming 
distance to below N/2. One redundant bit is needed to 
distinguish between the original and inverted patterns on the 
bus. The Bus-Invert method tends to perform well when sending 
random patterns, which is often the case on data busses. 
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However, this method is largely ineffective on address buses, 
which tend to exhibit a high degree of sequentiality. 

In [2] Benini et al. proposed the T0 code, which exploits data 
sequentiality to reduce the switching activity on the address bus. 
The observation is that addresses are sequential except when 
control flow instructions are encountered or exceptions occur. 
T0 adds a redundant bus line, called INC. If the addresses are 
sequential, the sender freezes the value on the bus and sets the 
INC line. Otherwise, INC is de-asserted and the original address 
is sent. On average 60% reduction in address bus switching 
activity is achieved by T0 coding [9]. In this paper, we propose a 
T0-like encoding technique for an address bus, which does not 
require any redundant lines.  We call this new encoding 
technique, T0-Concise or T0-C for short. 

Several methods that are basically combinations of the Bus-
Invert and T0 encodings were proposed in [3]. For instance, one 
of the introduced methods, called T0-BI, adds two redundant 
bits, named INV and INC, to the bus. If the addresses are 
sequential, T0 coding is applied and the bus is frozen, otherwise 
the new address, which is not sequential, is encoded based on 
the Bus-Invert coding. INC and INV bits are used to correctly 
decode the bus value on the receiver side.  The major drawback 
of the coding methods introduced in this work is that they 
introduce redundant bits.  At the same time, the best reported 
result shows only a 40% reduction in the switching activity for 
the instruction address bus. 

In [4] a new coding technique called the Beach Solution was 
proposed. In this method, the address trace of software is 
profiled, and possible correlation between different signals of 
the profiled trace is extracted. This information is subsequently 
used to define encoding functions that reduce the total switching 
activity. However, this method is only applicable to systems 
where the application programs are fixed and known a priori 
since the encoding technique needs exact knowledge of the 
address bus trace.  The power savings is reported as 42%. 

In [5] Musoll et al. proposed an address bus encoding method 
that works based on the fact that, at any time during execution, a 
software program uses a limited number of working zones in the 
address space. Thus, instead of sending the address, its offset 
with regards to the previous reference in the same zone along 
with the zone identifier is sent. One extra bit is required to notify 
the receiver whether this coding is in effect or the address itself 
is being sent.  

In [6], Ikeda et al. proposed using codebooks in the sender and 
the receiver. For every address, the code with the minimum 
Hamming distance to the address is found in the codebook. 
Subsequently, the selected code identifier along with the 
Hamming distance between the address and the selected code is 
sent over the bus. The authors improved their method by using 
an adaptive codebook in [7]. Thus the codes in the codebook are 
replaced on the fly. As the program execution proceeds, only 
codes whose nearby addresses are accessed by the program, 
remain in the codebook.   

There is another class of encoding techniques that avoid the use 
of redundant bits. These techniques make use of the 

decorrelating characteristic of the Exclusive-Or (Xor) function 
as follows. Since, when using Xor, the code words are 
transition-signaled over the bus, in every position where there is 
a 1 in the code word, the bus will toggle and a switching will 
occur. This observation can be used to cast the low power 
encoding problem to that of finding code words with the 
smallest average number of 1’s in them. The most efficient one 
of these codes is the T0-Xor code, which was proposed by 
Fornaciari et al. in [9]. The encoder works as follows: 

B(t) = b(t) ⊕ (b(t-1) + S) ⊕ B(t-1) 

It can be easily seen that when the addresses are sequential, no 
switching activity occurs (similar to the case of T0 code). In the 
same work, the authors proposed another encoding technique, 
which is called Offset-Xor code. The encoder works as follows: 

 B(t) = (b(t) - b(t-1)) ⊕ B(t-1) 

Although not stated in [9], this encoding will become much 
more effective if the coding algorithm is modified as follows 
(resulting in a code that we will call Offset-Xor with Stride or 
Offset-Xor-S for short): 

B(t) = (b(t) - b(t-1) - S) ⊕ B(t-1)  

The reason for Offset-Xor-S improvement over Offset-Xor is 
that it avoids switching activity when sequential addresses are 
encoded. One important point to notice is that sometimes, even 
if the difference between b(t) and b(t-1) + S  is small, their 
Hamming distance may be quite large. This usually occurs for 
source words b(t) and b(t-1)  that are located at opposite sides 
of 2N, e.g., 61 and 69 are located at the two sides of 64. In these 
cases, although the offset is small, b(t) ⊕ (b(t-1) + S)  
contains many ones and thus causes many transitions on the bus 
when it is Exclusive-Or’ed with the value on the bus. We refer 
to this problem as the “consecutive source word Xor problem”. 
Later on we will look at a similar case that degrades the 
performance of Offset-Xor-S. 

Generally speaking, encodings that use transition signaling 
perform poorly when the code word includes many 1’s. In this 
paper, we present a new code, called Offset-Xor with Stride and 
Mapped-offset or Offset-Xor-SM for short, which addresses this 
shortcoming by applying a mapping function to the offsets in 
Offset-Xor-S code.  

3 LOW POWER CODES 
3.1 T0-C Code 
The proposed code is an extension of T0 code. It improves T0 
code in a number of important ways. First of all, it eliminates the 
redundant bit. Second, it results in higher power saving on the 
bus. Similar to T0 code, the basic saving happens as a result of 
freezing the bus when addresses are sequential.  

Suppose that we suppress the redundant bit in T0 code. In other 
words, when b(t) and b(t-1) are sequential addresses, we 
simply freeze the bus, and in all other cases, we  send the 
original source word on the bus. This simple scheme would fail, 
for example, when we encounter backward branches where the 
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branch target address is the same as the current (frozen) bus 
value. Consider the following simple example: 

b(t) B(t) 
39 39 
40 39 
41 39 
39 39 ? 

As it can be seen, when we reach the last row of the table, no 
valid code word can be generated for source word 39.  If we use 
39 as the code word, the receiver (decoder) cannot determine 
whether the source word was 39 (backward jump) or 42 (next 
sequential address). So the problem occurs when the data on the 
bus is equal to the branch target itself. That is why spatial 
redundancy was originally introduced into the T0 code. 
However, there is a better way to resolve this problem. To 
correctly handle backward branches with target addresses equal 
to the current bus value, a special pattern has to be sent to the 
receiver. However, this cannot be a fixed pattern because we 
assume that jumps to any and all addresses are allowed (picking 
any fixed pattern to designate this case may create a potentially 
large activity on the bus, and at the same time, requires that the 
fixed pattern not be used as a regular jump address).  

In T0-C when such a case occurs, we set the code word to b(t-
1) + S. The reason is that this is the only pattern that the 
receiver should not expect from the sender. Notice that when the 
receiver sees a value of b(t-1) + S, it knows that the 
sequential addressing has been stopped because the bus value 
has changed. On the other hand, when it computes the new jump 
address, it recognizes that this jump address is the same as the 
next sequential address. Therefore, if in fact a special case were 
not encountered, there would be no need for the sender to 
unfreeze the bus value. This special case is, of course, when the 
target of the backward jump is the same as the current value on 
the bus. The decoder is aware of this, and the ambiguity is 
resolved! To-C encoder works as follows: 

if {b(t) == b(t-1) + S} 

      B(t) = B(t-1) 

else if {B(t-1) != b(t)}  

      B(t) = b(t) 
else  
      B(t) = b(t-1) + S 

On the receiver side, when the b(t-1) + S value is received, 
the previous value on the bus is regarded as the branch target. 
For the previous example we will have: 

b(t) B(t) 
39 39 
40 39 
41 39 
39 42 
40  42 

Now to make sure that this scheme works in all cases, let us 
consider the case when {b(t) = b(t-1)}.  This is a jump 
instruction where the branch target is the branching instruction 
itself, that is, the instruction is waiting for an external event. 
Obviously,  the first time this instruction iterates,  B(t-1) is not  

equal to b(t). Therefore, because we have a simple jump in this 
case, we simply send b(t). The next time this instruction 
executes, the encoder recognizes it as the special case and will 
thus send b(t-1) + S on the bus. This case is illustrated 
below. 

b(t) B(t) 
39 39 
39 40 
39 39 
39 40 

The T0-C code decreases switching activity on an address bus 
about 14% more than T0 code. 

3.2 Offset-Xor-SM Code 
Our objective is to improve Offset-Xor-S code by properly 
encoding jumps with negative offset so as to reduce the bus 
activity.  

Based on statistics reported in [8], more than 95% of all the 
branches in any program have offsets that need less than 8 bits 
to be binary coded. If we encounter a backward jump in an 
instruction trace, the resulting offset will be negative. This 
negative number tends to have a small magnitude, and therefore, 
when it is encoded in two’s complement form, it will contain 
many 1’s.  

In a typical application program, many small backward jumps 
exist, and the offsets of all these jumps are small negative 
numbers. Consider these offsets are to be transition-signaled 
over the bus, a large number of bit switching occurs on the bus 
because of them. For this reason, the performance (in terms of 
the average activity on the address bus) of the Offset-Xor and 
Offset-Xor-S codes is poor compared to known coding 
techniques such as T0. We will refer to this problem as the 
“small negative offset problem.” 

In practice, although T0-Xor and Offset-Xor are very much 
alike, T0-Xor code outperforms Offset-Xor code noticably [9]. 
This is because of the fact that the “small negative offset 
problem,” which is the Achille’s Heel of Offset-Xor code, 
shows up much more frequently than the  “consecutive source 
word Xor problem,” which is the key problem for T0-Xor code. 
Indeed, as reported in [9], the switching activity reduction for 
T0-Xor is 74% versus 41% for Offset-Xor.  

In the following paragraphs, we describe a new coding 
technique (i.e., Offset-Xor-SM) to solve the “small negative 
offset problem.”  

Offset-Xor-SM encoder works as follows: 

B(t)= B(t-1) ⊕ LSBInv((b(t)-b(t-1))-S)  

where the LSBInv(x) function inverts all bits of x except the 
most significant one. 

In Offset-Xor-SM code, when the offset – S is positive, it is 
transition-signaled over the bus. Therefore, sequential addresses 
do not cause any activity on the bus (Offset – S = 0). However, 
if the Offset – S is negative, then all the bits except the MSB bit 
are inverted and then transition-signaled over the bus. This 
inversion will cause the following mapping for a typical 32-bit 
bus. 
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Original offset Modified offset 

FFFFFFFF, (-1) 80000000 
FFFFFFFE, (-2) 80000001 
FFFFFFF5, (-10) 80000009 

80000000 FFFFFFFF 
 
Unlike the two’s complement representation, in Offset-Xor-SM 
small negative numbers cause only a few transitions on the bus. 
The extra hardware that this method imposes on Offset-Xor is 
negligible. With this mapping we can achieve more than 40% 
improvement over Offset-Xor code and about 5% improvement 
over T0-Xor code as they are reported in [9].2 

3.3 Offset-Xor-SMC Code 
Using a more complex encoder and decoder can decrease bus 
switching activity further. This method can be easily trimmed to 
fit to a specific application. The more capacitive the external 
buses are, the more complex encoding circuits can be used and 
the more power will be saved. In the following, we describe a 
new code called Offset-Xor with Stride, Offset-mapping and 
Codebook or for short Offset-Xor-SMC that uses a fixed 
codebook to reduce the number of 1’s in the code words.  

The idea is to embed a K-bit to K-bit mapping function (or 
codebook) in both the sender and the receiver sides. The K least 
significant bits of the output of Offset-Xor-SM are used to index 
into the codebook, producing a K-bit code word that will replace 
the original K LSB bits of the code word. In practice, we use 
K=10 because, based on [8], most of the branch displacements 
of a typical program need maximum of 10 bits to be represented. 
In general, K can be determined depending on the magnitude of 
the most frequent jumps in a program and constraints on the size 
of the codebook.  In order to decrease the switching activity by 
this mapping, numbers are mapped in a manner such that 
smaller numbers map to numbers with  few number of ones in 
them. If x1 and x2 are two K-bit numbers and F(x1) and F(x2) 
are the corresponding values from the codebook (i.e., the code 
words of x1 and x2), then F must be defined in such a way that: 

If (x1 < x2) then 

  NumOnes(F(x1)) <= NumOnes(F(x2)) 

where NumOnes(y) denotes the number of ones in binary 
representation of y. 

Offset-Xor-SMC works as follows: 

B(t)= B(t-1) ⊕ CB(LSBInv(b(t)-b(t-1)-S))  

CB(x) modifies the K LSB bits of the offset. 

                                                 
2 The well-known sign magnitude representation is not used to 
solve the problem. The reason is that converting numbers 
represented in the two’s complement to the sign-magnitude 
representation requires more complex hardware compared to our 
proposed scheme. Furthermore, the greatest negative number in 
two’s complement form does not have any representation in the 
sign-magnitude form.  

 

In our experiment, 10 bits are mapped by the codebook. The 
first code word of the codebook is 0, and the next 10 code words 
are 10-bit binary numbers that only have a single 1. The next 45 
entries are 10-bit numbers with exactly two 1’s, and so on. An 
important point in the actual implementation of the codebook is 
that if two numbers are complements of each other, their code 
words will also be complements of one another. This 
observation is used to divide the number of entries in our 
codebook by a factor of two and thus significantly reduces the 
codebook hardware overhead. Offset-Xor-SMC code yields an 
extra 4% saving compared to Offset-Xor-SM code. 

4 IMPLEMENTATION RESULTS 
To evaluate the proposed encoding techniques, we generated 
detailed address bus traces for a number of SPEC95 benchmarks 
using a simulator called simplescalar [10]. The SPEC95 
programs were chosen primarily because precompiled codes 
were already available for them. For each test bench, more than 
10 million addresses were generated by simulation. Then 
different encoding techniques were applied to measure the 
change in switching activity. The simulation results can be seen 
in Table 1. The “base case” in Table 1 refers to the total 
switching without encoding. Other columns show the 
corresponding bit-level transition counts for different encoding 
techniques and their percentage reduction. 

For the set of programs that we used the switching activity 
saving of Offset-Xor and Offset-Xor-S is less than what has 
been reported in [9]. In fact as it can be seen for one of the 
benchmark programs, Offset-Xor-S is actually increasing the 
activity.  On the other hand, Offset-Xor-SMC reduces the 
switching activity on the address bus by an average of 83.1%. If 
the codebook size were reduced so as to map only the 8 LSB 
bits, the average saving would be 81.4%. 

Figure 2, 3 and 4 show the encoders for the three proposed 
encoding techniques. The decoders have not been shown 
because the decoders simply do the reverse functions on the 
code words to extract the source word, and therefore, are easy to 
construct. 

To estimate the actual overhead of the above encoders circuits, 
first, we generated the net list of each encoder/decoder circuit in 
Berkeley Logic Interchange Format (BLIF). The netlists were 
optimized using the SIS script.rugged and mapped to a 1.5-volt, 
0.18µ CMOS library using the SIS technology mapper. I/O 
voltage was assumed to be 3.3v. Instruction addresses of the 
benchmark programs were then fed into a gate-level logic 
simulation program named sim-power to estimate the power 
consumption of the encoders. The results for a 100 MHz system 
clock are reported in Table 2. In Figure 1, percentage of total 
power saved versus IO capacitance per line is compared for 
different encoding techniques.  

5 CONCLUSION 
We introduced three different encoding techniques in this paper, 
the first two need very simple piece of hardware, the third 
method, although the most effective in decreasing the switching 
activity has  more hardware overhead. The idea of putting a 
codebook in sender and receiver and combining this with 
previous methods opens a gateway to a new class of bus 
encoding techniques to be explored in future.  
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Table 1- Switching activity of SPEC 95 traces in millions for different codings / percentage saving 

Benchmark Base 
Case T0  T0-C Offset-Xor-S T0-Xor Offset-Xor-SM Offset-Xor-

SMC 

7.628 1.164 0.937 6.470 0.928 1.120 0.868 Compress 
0% 84.7% 87.7% 15.1% 87.8% 85.3% 88.6% 

33.576 14.118 10.217 25.959 10.249 7.964 6.681 Li 
0% 57.9% 69.5% 22.6% 69.4% 76.2% 80.1% 

33.480 11.934 8.779 19.102 7.930 6.194 5.146 Go 
0% 64.3% 73.7% 42.9% 76.3% 81.4% 84.6% 

34.868 16.729 11.816 33.806 12.523 8.527 7.195 M88ksim 
0% 52.0% 66.1% 3.0% 64.0% 75.5% 79.3% 

24.479 12.174 7.342 36.041 3.751 5.101 3.912 Vortex 
0% 50.2% 70.0% -47% 84.6% 79.1% 84.0% 

21.458 8.003 6.088 13.957 5.691 4.489 3.920 Perl 
0% 62.7% 71.6% 34.9% 73.4% 79.0% 81.6% 

Average saving 0% 62.0% 73.1% 11.9% 75.0% 79.4% 83.1% 

Table 2- Encoder hardware synthesis and power estimation 

 T0-Xor T0-C Offset-Xor-SM Offset-Xor-SMC 
Number of literals 440 767 661 2693 

Area of Encoder (in thousands) 334 410 399 1043 
Number of gates 306 386 379 1136 

Power dissipated by encoder & decoder (uW) 266 642 740 1822 

Percentage of Total Powr Saved 

65%

67%

69%

71%

73%

75%

77%

79%

81%

10 15 20 25 30 35 40 45 50

IO Capacitance (pF)Offset-Xor-SMC Offset-Xor-SM T0-Xor T0-C
 

Figure 1- Comparison of total power savings of different encoding techniques 
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Figure 2- T0-C Encoder 

 

 

Figure 3- Offset-Xor-SM Encoder 

 

 
Figure 4- Offset-Xor-SMC Encoder 

6 REFERENCES 
1. M. R. Stan, W. P. Burleson, “Bus-Invert Coding for low-

Power I/O,” IEEE Transactions on Very Large Scale 
Integration Systems, Vol.3, No. 1, pp. 49-58, Mar. 1995. 

2. L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, 
“Asymptotic Zero-Transition Activity Encoding for 
Address Buses in Low-Power Microprocessor-Based 
Systems,” IEEE 7th Great Lakes Symposium on VLSI, 
Urbana, IL, pp. 77-82, Mar. 1997. 

3. L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. 
Silvano, “Address Bus Encoding Techniques for System-
Level Power Optimization,” Design Automation and Test in 
Europe, pp. 861-866, 1998. 

4. L. Benini, G. De Michelli, E. Macii, M. Poncino, and S. 
Quer, “System-Level Power Optimization of Special 
Purpose Applications: The Beach Solution,” IEEE 
Symposium on Low Power Electronics and Design, pp. 24-
29, Aug. 1997. 

5. E. Musoll , T. Lang, J. Cortadella, ”Exploiting the locality 
of memory references to reduce the address bus energy,” 
Int’l Symposium on Low Power Electronics and Design, 
pp.202-207, 1997. 

6. M. Ikeda, K. Asada, “Bus Data Coding with Zero 
Suppression for Low Power Chip Interfaces”, Int’l 
Workshop on Logic and Architecture Synthesis, pp.267-
274, Dec. 1996. 

7. S. Komatsu, M. Ikeda, K. Asada, “ Low Power Chip 
Interface based on Bus Data Encoding with Adaptive Code-
book Method”, Ninth Great Lakes Symposium, pp368-371, 
1999. 

8. Hennessy, Patterson, Computer Architecture, A 
Quantitative Approach, Second Edition, Morgan Kaufmann 
Publishers, 1996  

9. W. Fornaciari, M. Polentarutti, D.Sciuto, and C. Silvano, 
“Power Optimization of System-Level Address Buses 
Based on Software Profiling,” CODES, pp. 29-33, 2000. 

10. http://www.simplescalar.org/. 

177187


	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index




