
Irredundant Address Bus Encoding for Low Power
Yazdan Aghaghiri

University of Southern California
3740 McClintock Ave

Los Angeles, CA 90089
yazdan@sahand.usc.edu

Farzan Fallah
Fujitsu Laboratories of America

595 Lawrence Expressway
Sunnyvale, CA 94086
farzan@fla.fujitsu.com

Massoud Pedram
University of Southern California

3740 McClintock Ave
Los Angeles, CA 90089
pedram@ceng.usc.edu

ABSTRACT
This paper proposes efficient encoding techniques for
decreasing power dissipation on global buses. The best target for
these techniques is a wide and highly capacitive memory bus.
Building on T0 and Offset-Xor encoding techniques, we present
three irredundant bus-encoding techniques. Our methods
decrease switching activity up to 83% without the need for
redundant bus lines. The power dissipation of encoder and
decoder circuitry has also been calculated and shown to be small
in comparison with the power savings on the memory address
bus itself.

1 INTRODUCTION
With the increasing number of transistors on a chip and the
rising operation frequencies, the total power dissipation of VLSI
circuits is rapidly increasing, causing high temperatures on the
chip surface that can lead to a variety of reliability problems.
Thus low power design methodologies are receiving more
attention. Meanwhile, many systems are becoming portable and
wireless, functioning on the power provided by a battery pack
with a limited energy supply. Again, low power design
techniques are innovated to help increase the operation time of
such systems before their battery pack needs to be refurbished or
recharged.

The major building blocks of a computer system include the
CPU, the memory controller, the memory chips, and the
communication channels dedicated to providing the means for
data transfer between the CPU and the memory. These channels
tend to support heavy traffic and often constitute the
performance bottleneck in many systems. At the same time, the
energy dissipation per memory bus access is quite high, which
in turn limits the power efficiency of the overall system. In a
computer system, the bus can be an on-chip bus, a local bus
between the CPU and the memory controller, or a memory bus
between the memory controller (which may be on-chip or off-
chip) and the memory devices. The bus may be used for
addresses or data. The emphasis of this paper is on encoding
techniques for the memory address bus that minimize the
switched capacitance of the bus.

The remainder of this paper is organized as follows. In section 2
we provide a review of previous memory bus encoding

techniques. In section 3.1 the T0-C method, which is an
optimized version of T0, will be presented. In section 3.2
another method, called Offset-Xor-SM (an optimized version of
Offset-Xor), will be introduced. In section 3.3, Offset-Xor-SMC,
which is an extension of Offset-Xor-SM will be discussed. In
section 4 all of the above methods are implemented to compare
their effectiveness with regard to the previous methods. The
encoder blocks have also been designed and synthesized to
estimate the overhead of the encoding hardware. Concluding
remarks are given in the last section. 1

2 PREVIOUS WORK
In this section we examine previous work in low power bus
encoding and compare various encoding techniques. We first
introduce the terminology and notation that will be used
throughout this paper:

b(t): Address value to be sent on the bus at time t (source word
at time t).
B(t): Encoded value on the bus lines at time t (code word at
time t).
S: Stride value, which is the difference between consecutive
addresses in a sequential addressing mode.

A number of encoding techniques rely on introducing
redundancy to save power. More precisely, these techniques add
one or more extra bits to the original bus. However, the extra
bus lines cannot be tolerated in many systems because the extra
bits require hardware changes and often cause incompatibility
with standard bus interfaces. Consequently, a great deal of effort
has been spent in finding irredundant encoding techniques that
reduce the switched capacitance on the bus while preserving
compatibility with existing bus interfaces and the rest of the
system. In the following paragraphs, we review a number of
related works on bus encoding. This is not a comprehensive
review and only includes work that is directly related to our
proposed encoding techniques.
In [1] Stan and Burleson proposed the Bus-Invert method, which
is explained next. Consider an N-bit (non-multiplexed) bus.
The idea is that if the Hamming distance between two
consecutive patterns is larger than N/2, then the second pattern
can be inverted so as to reduce the inter-pattern Hamming
distance to below N/2. One redundant bit is needed to
distinguish between the original and inverted patterns on the
bus. The Bus-Invert method tends to perform well when sending
random patterns, which is often the case on data busses.

1 This work is supported by DARPA PAC/C program under

contract award number DAAB07-00-C-L516.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00.

172182

However, this method is largely ineffective on address buses,
which tend to exhibit a high degree of sequentiality.

In [2] Benini et al. proposed the T0 code, which exploits data
sequentiality to reduce the switching activity on the address bus.
The observation is that addresses are sequential except when
control flow instructions are encountered or exceptions occur.
T0 adds a redundant bus line, called INC. If the addresses are
sequential, the sender freezes the value on the bus and sets the
INC line. Otherwise, INC is de-asserted and the original address
is sent. On average 60% reduction in address bus switching
activity is achieved by T0 coding [9]. In this paper, we propose a
T0-like encoding technique for an address bus, which does not
require any redundant lines. We call this new encoding
technique, T0-Concise or T0-C for short.

Several methods that are basically combinations of the Bus-
Invert and T0 encodings were proposed in [3]. For instance, one
of the introduced methods, called T0-BI, adds two redundant
bits, named INV and INC, to the bus. If the addresses are
sequential, T0 coding is applied and the bus is frozen, otherwise
the new address, which is not sequential, is encoded based on
the Bus-Invert coding. INC and INV bits are used to correctly
decode the bus value on the receiver side. The major drawback
of the coding methods introduced in this work is that they
introduce redundant bits. At the same time, the best reported
result shows only a 40% reduction in the switching activity for
the instruction address bus.

In [4] a new coding technique called the Beach Solution was
proposed. In this method, the address trace of software is
profiled, and possible correlation between different signals of
the profiled trace is extracted. This information is subsequently
used to define encoding functions that reduce the total switching
activity. However, this method is only applicable to systems
where the application programs are fixed and known a priori
since the encoding technique needs exact knowledge of the
address bus trace. The power savings is reported as 42%.

In [5] Musoll et al. proposed an address bus encoding method
that works based on the fact that, at any time during execution, a
software program uses a limited number of working zones in the
address space. Thus, instead of sending the address, its offset
with regards to the previous reference in the same zone along
with the zone identifier is sent. One extra bit is required to notify
the receiver whether this coding is in effect or the address itself
is being sent.

In [6], Ikeda et al. proposed using codebooks in the sender and
the receiver. For every address, the code with the minimum
Hamming distance to the address is found in the codebook.
Subsequently, the selected code identifier along with the
Hamming distance between the address and the selected code is
sent over the bus. The authors improved their method by using
an adaptive codebook in [7]. Thus the codes in the codebook are
replaced on the fly. As the program execution proceeds, only
codes whose nearby addresses are accessed by the program,
remain in the codebook.

There is another class of encoding techniques that avoid the use
of redundant bits. These techniques make use of the

decorrelating characteristic of the Exclusive-Or (Xor) function
as follows. Since, when using Xor, the code words are
transition-signaled over the bus, in every position where there is
a 1 in the code word, the bus will toggle and a switching will
occur. This observation can be used to cast the low power
encoding problem to that of finding code words with the
smallest average number of 1’s in them. The most efficient one
of these codes is the T0-Xor code, which was proposed by
Fornaciari et al. in [9]. The encoder works as follows:

B(t) = b(t) ⊕ (b(t-1) + S) ⊕ B(t-1)

It can be easily seen that when the addresses are sequential, no
switching activity occurs (similar to the case of T0 code). In the
same work, the authors proposed another encoding technique,
which is called Offset-Xor code. The encoder works as follows:

 B(t) = (b(t) - b(t-1)) ⊕ B(t-1)

Although not stated in [9], this encoding will become much
more effective if the coding algorithm is modified as follows
(resulting in a code that we will call Offset-Xor with Stride or
Offset-Xor-S for short):

B(t) = (b(t) - b(t-1) - S) ⊕ B(t-1)

The reason for Offset-Xor-S improvement over Offset-Xor is
that it avoids switching activity when sequential addresses are
encoded. One important point to notice is that sometimes, even
if the difference between b(t) and b(t-1) + S is small, their
Hamming distance may be quite large. This usually occurs for
source words b(t) and b(t-1) that are located at opposite sides
of 2N, e.g., 61 and 69 are located at the two sides of 64. In these
cases, although the offset is small, b(t) ⊕ (b(t-1) + S)
contains many ones and thus causes many transitions on the bus
when it is Exclusive-Or’ed with the value on the bus. We refer
to this problem as the “consecutive source word Xor problem”.
Later on we will look at a similar case that degrades the
performance of Offset-Xor-S.

Generally speaking, encodings that use transition signaling
perform poorly when the code word includes many 1’s. In this
paper, we present a new code, called Offset-Xor with Stride and
Mapped-offset or Offset-Xor-SM for short, which addresses this
shortcoming by applying a mapping function to the offsets in
Offset-Xor-S code.

3 LOW POWER CODES
3.1 T0-C Code
The proposed code is an extension of T0 code. It improves T0
code in a number of important ways. First of all, it eliminates the
redundant bit. Second, it results in higher power saving on the
bus. Similar to T0 code, the basic saving happens as a result of
freezing the bus when addresses are sequential.

Suppose that we suppress the redundant bit in T0 code. In other
words, when b(t) and b(t-1) are sequential addresses, we
simply freeze the bus, and in all other cases, we send the
original source word on the bus. This simple scheme would fail,
for example, when we encounter backward branches where the

173183

branch target address is the same as the current (frozen) bus
value. Consider the following simple example:

b(t) B(t)
39 39
40 39
41 39
39 39 ?

As it can be seen, when we reach the last row of the table, no
valid code word can be generated for source word 39. If we use
39 as the code word, the receiver (decoder) cannot determine
whether the source word was 39 (backward jump) or 42 (next
sequential address). So the problem occurs when the data on the
bus is equal to the branch target itself. That is why spatial
redundancy was originally introduced into the T0 code.
However, there is a better way to resolve this problem. To
correctly handle backward branches with target addresses equal
to the current bus value, a special pattern has to be sent to the
receiver. However, this cannot be a fixed pattern because we
assume that jumps to any and all addresses are allowed (picking
any fixed pattern to designate this case may create a potentially
large activity on the bus, and at the same time, requires that the
fixed pattern not be used as a regular jump address).

In T0-C when such a case occurs, we set the code word to b(t-
1) + S. The reason is that this is the only pattern that the
receiver should not expect from the sender. Notice that when the
receiver sees a value of b(t-1) + S, it knows that the
sequential addressing has been stopped because the bus value
has changed. On the other hand, when it computes the new jump
address, it recognizes that this jump address is the same as the
next sequential address. Therefore, if in fact a special case were
not encountered, there would be no need for the sender to
unfreeze the bus value. This special case is, of course, when the
target of the backward jump is the same as the current value on
the bus. The decoder is aware of this, and the ambiguity is
resolved! To-C encoder works as follows:

if {b(t) == b(t-1) + S}

 B(t) = B(t-1)

else if {B(t-1) != b(t)}

 B(t) = b(t)
else
 B(t) = b(t-1) + S

On the receiver side, when the b(t-1) + S value is received,
the previous value on the bus is regarded as the branch target.
For the previous example we will have:

b(t) B(t)
39 39
40 39
41 39
39 42
40 42

Now to make sure that this scheme works in all cases, let us
consider the case when {b(t) = b(t-1)}. This is a jump
instruction where the branch target is the branching instruction
itself, that is, the instruction is waiting for an external event.
Obviously, the first time this instruction iterates, B(t-1) is not

equal to b(t). Therefore, because we have a simple jump in this
case, we simply send b(t). The next time this instruction
executes, the encoder recognizes it as the special case and will
thus send b(t-1) + S on the bus. This case is illustrated
below.

b(t) B(t)
39 39
39 40
39 39
39 40

The T0-C code decreases switching activity on an address bus
about 14% more than T0 code.

3.2 Offset-Xor-SM Code
Our objective is to improve Offset-Xor-S code by properly
encoding jumps with negative offset so as to reduce the bus
activity.

Based on statistics reported in [8], more than 95% of all the
branches in any program have offsets that need less than 8 bits
to be binary coded. If we encounter a backward jump in an
instruction trace, the resulting offset will be negative. This
negative number tends to have a small magnitude, and therefore,
when it is encoded in two’s complement form, it will contain
many 1’s.

In a typical application program, many small backward jumps
exist, and the offsets of all these jumps are small negative
numbers. Consider these offsets are to be transition-signaled
over the bus, a large number of bit switching occurs on the bus
because of them. For this reason, the performance (in terms of
the average activity on the address bus) of the Offset-Xor and
Offset-Xor-S codes is poor compared to known coding
techniques such as T0. We will refer to this problem as the
“small negative offset problem.”

In practice, although T0-Xor and Offset-Xor are very much
alike, T0-Xor code outperforms Offset-Xor code noticably [9].
This is because of the fact that the “small negative offset
problem,” which is the Achille’s Heel of Offset-Xor code,
shows up much more frequently than the “consecutive source
word Xor problem,” which is the key problem for T0-Xor code.
Indeed, as reported in [9], the switching activity reduction for
T0-Xor is 74% versus 41% for Offset-Xor.

In the following paragraphs, we describe a new coding
technique (i.e., Offset-Xor-SM) to solve the “small negative
offset problem.”

Offset-Xor-SM encoder works as follows:

B(t)= B(t-1) ⊕ LSBInv((b(t)-b(t-1))-S)

where the LSBInv(x) function inverts all bits of x except the
most significant one.

In Offset-Xor-SM code, when the offset – S is positive, it is
transition-signaled over the bus. Therefore, sequential addresses
do not cause any activity on the bus (Offset – S = 0). However,
if the Offset – S is negative, then all the bits except the MSB bit
are inverted and then transition-signaled over the bus. This
inversion will cause the following mapping for a typical 32-bit
bus.

174184

Original offset Modified offset

FFFFFFFF, (-1) 80000000
FFFFFFFE, (-2) 80000001
FFFFFFF5, (-10) 80000009

80000000 FFFFFFFF

Unlike the two’s complement representation, in Offset-Xor-SM
small negative numbers cause only a few transitions on the bus.
The extra hardware that this method imposes on Offset-Xor is
negligible. With this mapping we can achieve more than 40%
improvement over Offset-Xor code and about 5% improvement
over T0-Xor code as they are reported in [9].2

3.3 Offset-Xor-SMC Code
Using a more complex encoder and decoder can decrease bus
switching activity further. This method can be easily trimmed to
fit to a specific application. The more capacitive the external
buses are, the more complex encoding circuits can be used and
the more power will be saved. In the following, we describe a
new code called Offset-Xor with Stride, Offset-mapping and
Codebook or for short Offset-Xor-SMC that uses a fixed
codebook to reduce the number of 1’s in the code words.

The idea is to embed a K-bit to K-bit mapping function (or
codebook) in both the sender and the receiver sides. The K least
significant bits of the output of Offset-Xor-SM are used to index
into the codebook, producing a K-bit code word that will replace
the original K LSB bits of the code word. In practice, we use
K=10 because, based on [8], most of the branch displacements
of a typical program need maximum of 10 bits to be represented.
In general, K can be determined depending on the magnitude of
the most frequent jumps in a program and constraints on the size
of the codebook. In order to decrease the switching activity by
this mapping, numbers are mapped in a manner such that
smaller numbers map to numbers with few number of ones in
them. If x1 and x2 are two K-bit numbers and F(x1) and F(x2)
are the corresponding values from the codebook (i.e., the code
words of x1 and x2), then F must be defined in such a way that:

If (x1 < x2) then

 NumOnes(F(x1)) <= NumOnes(F(x2))

where NumOnes(y) denotes the number of ones in binary
representation of y.

Offset-Xor-SMC works as follows:

B(t)= B(t-1) ⊕ CB(LSBInv(b(t)-b(t-1)-S))

CB(x) modifies the K LSB bits of the offset.

2 The well-known sign magnitude representation is not used to
solve the problem. The reason is that converting numbers
represented in the two’s complement to the sign-magnitude
representation requires more complex hardware compared to our
proposed scheme. Furthermore, the greatest negative number in
two’s complement form does not have any representation in the
sign-magnitude form.

In our experiment, 10 bits are mapped by the codebook. The
first code word of the codebook is 0, and the next 10 code words
are 10-bit binary numbers that only have a single 1. The next 45
entries are 10-bit numbers with exactly two 1’s, and so on. An
important point in the actual implementation of the codebook is
that if two numbers are complements of each other, their code
words will also be complements of one another. This
observation is used to divide the number of entries in our
codebook by a factor of two and thus significantly reduces the
codebook hardware overhead. Offset-Xor-SMC code yields an
extra 4% saving compared to Offset-Xor-SM code.

4 IMPLEMENTATION RESULTS
To evaluate the proposed encoding techniques, we generated
detailed address bus traces for a number of SPEC95 benchmarks
using a simulator called simplescalar [10]. The SPEC95
programs were chosen primarily because precompiled codes
were already available for them. For each test bench, more than
10 million addresses were generated by simulation. Then
different encoding techniques were applied to measure the
change in switching activity. The simulation results can be seen
in Table 1. The “base case” in Table 1 refers to the total
switching without encoding. Other columns show the
corresponding bit-level transition counts for different encoding
techniques and their percentage reduction.

For the set of programs that we used the switching activity
saving of Offset-Xor and Offset-Xor-S is less than what has
been reported in [9]. In fact as it can be seen for one of the
benchmark programs, Offset-Xor-S is actually increasing the
activity. On the other hand, Offset-Xor-SMC reduces the
switching activity on the address bus by an average of 83.1%. If
the codebook size were reduced so as to map only the 8 LSB
bits, the average saving would be 81.4%.

Figure 2, 3 and 4 show the encoders for the three proposed
encoding techniques. The decoders have not been shown
because the decoders simply do the reverse functions on the
code words to extract the source word, and therefore, are easy to
construct.

To estimate the actual overhead of the above encoders circuits,
first, we generated the net list of each encoder/decoder circuit in
Berkeley Logic Interchange Format (BLIF). The netlists were
optimized using the SIS script.rugged and mapped to a 1.5-volt,
0.18µ CMOS library using the SIS technology mapper. I/O
voltage was assumed to be 3.3v. Instruction addresses of the
benchmark programs were then fed into a gate-level logic
simulation program named sim-power to estimate the power
consumption of the encoders. The results for a 100 MHz system
clock are reported in Table 2. In Figure 1, percentage of total
power saved versus IO capacitance per line is compared for
different encoding techniques.

5 CONCLUSION
We introduced three different encoding techniques in this paper,
the first two need very simple piece of hardware, the third
method, although the most effective in decreasing the switching
activity has more hardware overhead. The idea of putting a
codebook in sender and receiver and combining this with
previous methods opens a gateway to a new class of bus
encoding techniques to be explored in future.

175185

Table 1- Switching activity of SPEC 95 traces in millions for different codings / percentage saving

Benchmark Base
Case T0 T0-C Offset-Xor-S T0-Xor Offset-Xor-SM Offset-Xor-

SMC

7.628 1.164 0.937 6.470 0.928 1.120 0.868 Compress
0% 84.7% 87.7% 15.1% 87.8% 85.3% 88.6%

33.576 14.118 10.217 25.959 10.249 7.964 6.681 Li
0% 57.9% 69.5% 22.6% 69.4% 76.2% 80.1%

33.480 11.934 8.779 19.102 7.930 6.194 5.146 Go
0% 64.3% 73.7% 42.9% 76.3% 81.4% 84.6%

34.868 16.729 11.816 33.806 12.523 8.527 7.195 M88ksim
0% 52.0% 66.1% 3.0% 64.0% 75.5% 79.3%

24.479 12.174 7.342 36.041 3.751 5.101 3.912 Vortex
0% 50.2% 70.0% -47% 84.6% 79.1% 84.0%

21.458 8.003 6.088 13.957 5.691 4.489 3.920 Perl
0% 62.7% 71.6% 34.9% 73.4% 79.0% 81.6%

Average saving 0% 62.0% 73.1% 11.9% 75.0% 79.4% 83.1%

Table 2- Encoder hardware synthesis and power estimation

 T0-Xor T0-C Offset-Xor-SM Offset-Xor-SMC
Number of literals 440 767 661 2693

Area of Encoder (in thousands) 334 410 399 1043
Number of gates 306 386 379 1136

Power dissipated by encoder & decoder (uW) 266 642 740 1822

Percentage of Total Powr Saved

65%

67%

69%

71%

73%

75%

77%

79%

81%

10 15 20 25 30 35 40 45 50

IO Capacitance (pF)Offset-Xor-SMC Offset-Xor-SM T0-Xor T0-C

Figure 1- Comparison of total power savings of different encoding techniques

176186

Figure 2- T0-C Encoder

Figure 3- Offset-Xor-SM Encoder

Figure 4- Offset-Xor-SMC Encoder

6 REFERENCES
1. M. R. Stan, W. P. Burleson, “Bus-Invert Coding for low-

Power I/O,” IEEE Transactions on Very Large Scale
Integration Systems, Vol.3, No. 1, pp. 49-58, Mar. 1995.

2. L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
“Asymptotic Zero-Transition Activity Encoding for
Address Buses in Low-Power Microprocessor-Based
Systems,” IEEE 7th Great Lakes Symposium on VLSI,
Urbana, IL, pp. 77-82, Mar. 1997.

3. L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C.
Silvano, “Address Bus Encoding Techniques for System-
Level Power Optimization,” Design Automation and Test in
Europe, pp. 861-866, 1998.

4. L. Benini, G. De Michelli, E. Macii, M. Poncino, and S.
Quer, “System-Level Power Optimization of Special
Purpose Applications: The Beach Solution,” IEEE
Symposium on Low Power Electronics and Design, pp. 24-
29, Aug. 1997.

5. E. Musoll , T. Lang, J. Cortadella, ”Exploiting the locality
of memory references to reduce the address bus energy,”
Int’l Symposium on Low Power Electronics and Design,
pp.202-207, 1997.

6. M. Ikeda, K. Asada, “Bus Data Coding with Zero
Suppression for Low Power Chip Interfaces”, Int’l
Workshop on Logic and Architecture Synthesis, pp.267-
274, Dec. 1996.

7. S. Komatsu, M. Ikeda, K. Asada, “ Low Power Chip
Interface based on Bus Data Encoding with Adaptive Code-
book Method”, Ninth Great Lakes Symposium, pp368-371,
1999.

8. Hennessy, Patterson, Computer Architecture, A
Quantitative Approach, Second Edition, Morgan Kaufmann
Publishers, 1996

9. W. Fornaciari, M. Polentarutti, D.Sciuto, and C. Silvano,
“Power Optimization of System-Level Address Buses
Based on Software Profiling,” CODES, pp. 29-33, 2000.

10. http://www.simplescalar.org/.

177187

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

