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Abstract
Number fields and their rings of integers, which generalize
the rational numbers and the integers, are foundational ob-
jects in number theory. There are several computer algebra
systems and databases concerned with the computational
aspects of these. In particular, computing the ring of integers
of a given number field is one of the main tasks of compu-
tational algebraic number theory. In this paper, we describe
a formalization in Lean 4 for certifying such computations.
In order to accomplish this, we developed several data types
amenable to computation. Moreover, many other underly-
ing mathematical concepts and results had to be formalized,
most of which are also of independent interest. These include
resultants and discriminants, as well as methods for prov-
ing irreducibility of univariate polynomials over finite fields
and over the rational numbers. To illustrate the feasibility of
our strategy, we formally verified entries from the Number
fields section of the L-functions and modular forms database
(LMFDB). These concern, for several number fields, the ex-
plicitly given integral basis of the ring of integers and the
discriminant. To accomplish this, we wrote SageMath code
that computes the corresponding certificates and outputs a
Lean proof of the statement to be verified.

CCS Concepts: • Security and privacy→ Logic and veri-
fication; • Mathematics of computing →Mathematical
software.

Keywords: formalized mathematics, algebraic number the-
ory, tactics, Lean, Mathlib
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1 Introduction
There are many fundamental concepts in mathematics that
are, in principle, amenable to computation. Focusing on num-
ber theory, and more particularly algebraic number theory
(i.e. the theory of algebraic numbers), such concepts include
the rings of integers of a number field. Number fields general-
ize the field of rational numbers Q (in the sense that they are
finite degree field extensions thereof) and each contains a
ring of integers, which can be seen as generalizing how the
(ordinary) integers Z are contained in the number fieldQ; see
Section 2 for more details. Rings of integers are thereby key
to the arithmetic properties of their number fields, and both
are essential to number theory from the 19th century to the
modern day. Their basic definitions and properties (amongst
other concepts) were formalized in [6], on which we build.
From a computational direction, number fields of degree 2
and their rings of integers were considered in [5]. This paper
can be seen as a far reaching generalization of such formally
verified computations. In order to work with rings of integers
inside a proof assistant —Lean 4 in our case— we opted for
a certification approach. Given a ring of integers, concretely
represented by giving an integral basis (i.e. a Z-basis) for it,
as e.g. computed by an external Computer Algebra System
(CAS) or extracted from some database, we let SageMath [42]
compute a certificate which is checked in Lean to certify the
correctness of the ring of integers. In fact, our SageMath code
outputs a complete proof which Lean can readily check.
The isomorphism class of a number field can be repre-

sented explicitly, for example by a polynomial with integer
coefficients and leading coefficient 1 that is irreducible over
Z (and hence Q). This is also a basic way to define number
fields in Computer Algebra Systems such as PARI/GP [41],
SageMath [42], and Magma [7] (perhaps relaxing to ratio-
nal coefficients). Given the prime factorization of the dis-
criminant of the defining polynomial, there exist efficient
algorithms to determine the ring of integers, e.g. [17, Al-
gorithm 6.1.8], [24, Chapter III], and implementations are
available in various Computer Algebra Systems, including
those mentioned before. However, these algorithms are quite
involved, which is one reason why we opted for a certifi-
cation approach for rings of integers. This is described in
Section 5, the technical heart of this paper.

To show the feasibility of our approach, we formally veri-
fied several entries in the well known L-functions and modu-
lar forms database (LMFDB) [34]. For various number fields,
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we verified in Lean the ring of integers, as given by an ex-
plicit integral basis, as well as the discriminant (an integer
valued invariant); see Section 7.

In Section 3, we provide an overview of the different no-
tions of Lean computation used. In order for everything to
function, we needed to formalize much underlying theory
and computational methods, most of which are interesting
independently. Notable topics include irreducibility of poly-
nomials over Q and finite fields (see Section 4), as well as
resultants and discriminants (see Section 6).
We conclude the paper with a brief discussion (in Sec-

tion 8), including related and future work. Full source code
of our formalization and SageMath scripts are available.1

2 Preliminaries
In this paper, we assume some familiarity with basic ring
and field theory, as can be found e.g. in the undergraduate
textbooks [21, 31]. For sake of self-containedness, we will
discuss in this section some basics concerning number fields
and their rings of integers; the following paragraph essen-
tially follows the exposition (with very little modification)
from [5, Section 2].

A number field 𝐾 is a finite extension of the field Q. It is a
finite dimensional vector space over Q, and its dimension is
called the degree of 𝐾 (over Q). Examples of number fields
are Q itself (of degree 1), Q(

⌋︂
3) = {𝑎 + 𝑏

⌋︂
3 ∶ 𝑎,𝑏 ∈ Q} and

Q(
⌋︂
−3) = {𝑎 + 𝑏

⌋︂
−3 ∶ 𝑎,𝑏 ∈ Q} (both of degree 2), and

Q(𝛼) = {𝑎 + 𝑏𝛼 + 𝑐𝛼2 ∶ 𝑎,𝑏, 𝑐 ∈ Q} where 𝛼 is any (complex)
root of the polynomial 𝑥3 − 3𝑥 − 10. This latter example
generalizes as follows. For any polynomial of degree 𝑛 that is
irreducible overQ, adjoining any one of its (complex) roots 𝛽
to Q will yield the degree 𝑛 number field Q(𝛽) = {𝑎0 +𝑎1𝛽 +
. . . + 𝑎𝑛−1𝛽

𝑛−1 ∶ 𝑎0, 𝑎1, . . . , 𝑎𝑛−1 ∈ Q} (the 𝑛 different choices
of 𝛽 will all yield isomorphic fields). Conversely, any number
field of degree 𝑛 will be isomorphic to such a field Q(𝛽).
From an algebraic and arithmetic perspective, the (rational)
integers Z constitute a particularly ‘nice’ subring of its field
of fractions, the rational numbersQ. Upon generalizing from
Q to an arbitrary number field 𝐾 , the analogue of Z is the
ring of integers of𝐾 , denoted𝒪𝐾 . It is defined as the integral
closure of Z in 𝐾 :

𝒪𝐾 ∶= {𝑥 ∈ 𝐾 ∶ ∃𝑓 ∈ Z(︀𝑥⌋︀ monic ∶ 𝑓 (𝑥) = 0}

where we recall that a (univariate) polynomial is calledmonic
if its leading coefficient is equal to 1. The fact that 𝒪𝐾 is
indeed a ring follows for instance from general properties of
integral closures ([37, Section I.2]).

The ring of integers for the four explicit examples of num-
ber fields above, are 𝒪Q = Z (indeed), 𝒪Q(

⌋︂

3) = Z(︀
⌋︂

3⌋︀ =
{𝑎 + 𝑏

⌋︂
3 ∶ 𝑎,𝑏 ∈ Z}, 𝒪Q(

⌋︂

−3) = Z(︀(1 +
⌋︂
−3)⇑2⌋︀ = {𝑎 +

𝑏(1 +
⌋︂
−3)⇑2 ∶ 𝑎,𝑏 ∈ Z}, and 𝒪Q(𝛼) = {𝑎 + 𝑏𝛼 + 𝑐(𝛼 −

1https://github.com/alainchmt/RingOfIntegersProject

𝛼2)⇑2 ∶ 𝑎,𝑏, 𝑐 ∈ Z}. For the third example, note that indeed
(1 +

⌋︂
−3)⇑2 ∈ 𝒪Q(

⌋︂

−3) as it is a root of the monic polyno-
mial 𝑥2 − 𝑥 + 1.
The last (cubic) example shows that the ring of integers

can become complicated very quickly. In this case 𝒪Q(𝛼)
cannot bewritten in the formZ(︀𝛾⌋︀ for any element𝛾 ∈ 𝒪Q(𝛼),
which is phrased as 𝒪Q(𝛼) being not monogenic. Note that
any number field (say of degree 𝑛) is monogenic, as it can
be generated by a single element 𝛽 over Q, which yields
{1, 𝛽, 𝛽2, . . . , 𝛽𝑛−1} as a basis for the corresponding Q-vector
space, called a power basis. Observe that the ring of integers
𝒪𝐾 of a number field 𝐾 is a Z-module. Recall that in general
an 𝑅-module is just a vector space if 𝑅 is a (skew) field, but
the same standard defining axioms make sense in the more
general case that the scalars 𝑅 are only assumed to form a
ring. While the Z-module 𝒪𝐾 might not have a power basis
(as it may not be monogenic), it always has some basis, called
a Z-basis or integral basis. E.g. in the cubic example, a Z-basis
is given by {1, 𝛼, (𝛼 − 𝛼2)⇑2}, as any element of 𝒪Q(𝛼) can
be expressed uniquely as a Z-linear combination of these
three basis elements. Finally, if we have a subring 𝒪 of a
number field 𝐾 , which as a Z-module has a basis that also
forms a Q-basis for 𝐾 , then 𝒪 is actually contained in 𝒪𝐾 .

3 Forms of Computation in Lean
This section provides an overview of the different notions of
computation that we had to deal with.

Lean has a built-in notion of computation through reduc-
tion: this is a primitive relation between two terms reflecting
the computational content of the Calculus of Inductive Con-
structions [13]. Reduction is invoked as part of definitional
equality checking, and allows Lean to verify equalities such
as 2 + 2 = 1 + 3 through computing that either side evaluates
to 4. Definitionally equal terms are indistinguishable for the
type theory, and therefore a proof of 2 + 2 = 1 + 3 can be
given by the reflexivity principle of equality, rfl. In Lean 4,
reduction also applies to literals of primitive types: natural
numbers and strings. Reduction is implemented as part of
the trusted codebase in the Lean kernel.

Lean as a programming language additionally possesses a
notion of computation for definitions which can be compiled
into executable code and evaluated. Evaluation is somewhat
orthogonal to reduction in that it is not part of the logic
of Lean, and not all definitions that can be evaluated will
reduce, and vice versa. In particular, Lean includes –and
Mathlib makes consistent use of– the axiom of choice, re-
sulting in noncomputable definitions that cannot be eval-
uated. The user can additionally override with arbitrary
code the computational meaning of a definition, using the
@[implemented_by] attribute.

Evaluation is the notion of computation powering the tac-
tic framework. Broadly speaking, tactics are evaluated Lean
code that operate directly on the term level. Tactics can also

https://github.com/alainchmt/RingOfIntegersProject
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be said to perform computation, by taking in a term t and
producing a new term t′ alongside a proof term of type t = t′.
The norm_num tactic for computing with numerical expres-
sions is an example of this design. Often, a tactic works by
reflecting a given term into a data structure internal to the
tactic, using computation on internal data to construct a
proof term. Since tactics can choose the internal represen-
tation of the data structures, they reimbue noncomputable
terms with computational meaning. An example is the ring
tactic of Mathlib which computes on polynomial expressions
although the ring structure of the type Polynomial itself is
marked noncomputable.
If a tactic returns rfl as the proof term for the equality

t = t′, verifying the definitional equality of the terms t and t′
can invoke reduction: this principle of computational reflec-
tion [9] saves the need to go through the computation twice,
once on the tactic-internal data structure and once on the
constructed proof term. The tactic decide is an example of a
reflective tactic in Lean, proving a given goal P by finding a
corresponding decision procedure d such that d = true if and
only if P, and then verifying that d = true holds. This tactic
has two variants: decide first computes whether d = true in
the elaborator, before submitting the same computation to
the kernel, while decide! directly invokes kernel reduction
and thus can unfold every definition.

Efficiency is an important consideration in the use of com-
putation in Lean. In the highest generality, evaluation is
faster than reduction since evaluation does not rely on the
abstraction of terms that must be constructed and matched
for each reduction step. The higher efficiency of evaluation
comes at the cost of being separated from the logic: proof
checking can only invoke reduction. Lean provides an escape
hatch in the form of the native_decide tactic: unlike decide,
this allows a proof whenever a decision procedure evaluates
to true. Use of native_decide not only means that the entire
evaluation mechanism has to be added to the trusted code-
base, in addition the correctness of all @[implemented_by]
attributes must be trusted. Use of native_decide is therefore
a tradeoff between efficiency and certainty. See Section 7 for
some performance measurements in our project.

4 Irreducibility
For a primitive polynomial 𝑓 in Z(︀𝑋 ⌋︀ – a polynomial whose
coefficients have greatest common divisor equal to 1– prov-
ing that Q(︀𝑋 ⌋︀⇑∐︀𝑓 ̃︀ is a number field is equivalent to proving
that 𝑓 is irreducible over Z(︀𝑋 ⌋︀. Thus, generating an irre-
ducibility proof for polynomials over the integers in Lean is
crucial for our purposes.

4.1 Polynomials as Lists
In Mathlib, the underlying representation of polynomials
is implemented in such a way that polynomial arithmetic
is noncomputable. Therefore, we work with an alternative
representation of polynomials as lists.

For a semiring 𝑅 with decidable equality, we define a map
Polynomial.ofList : List R → R[X] that converts a list of coef-
ficients (︀𝑎0, . . . , 𝑎𝑛⌋︀ into the polynomial 𝑎0+𝑎1𝑋 + . . .+𝑎𝑛𝑋𝑛 .
We then define computable operations on List R that corre-
spond to operations on polynomials, such as addition and
multiplication. This translation of polynomial arithmetic
into list arithmetic will be our general strategy for dealing
with polynomial computations. For example, to prove that
ofList 𝑙1 ∗ ofList 𝑙2 = ofList 𝑙3, we show:
(𝑙2 ∗ 𝑙2).dropTrailingZeros = 𝑙3.dropTrailingZeros

This equality can be proven using the rfl and decide tactics.
Here, dropTrailingZeros removes the trailing zeros of a list.

We note that this approach to polynomial computation re-
lies on the input polynomials being provided in the list-based
format, as the standard way to define polynomials in Mathlib
is noncomputable. Alternatively, one could consider using
the Mathlib representation of polynomials along with tactics
such as ring [4] (which is partly based on the Coq tactic [26])
and norm_num extensions like reduce_mod_char to prove
equalities involving additions and multiplications. However,
this method proved too slow for our purposes, which led us
to adopt the list-based approach instead.
In addition to Polynomial.ofList and the arithmetic oper-

ations on lists, we defined ComputablePolynomial R as the
subtype of lists 𝑙 over R such that l = l.dropTrailingZeros, and
proved that it is isomorphic to Mathlib polynomials. The al-
gebraic structure of ComputablePolynomial R, namely, that
it is a ring when R is a ring, is pulled from the corresponding
instance in Mathlib polynomials. This representation is sim-
ilar to the one in Coq’s Mathematical Components library
[36], which uses lists with a non-zero last entry to define
polynomials, though our approach does not assume that 𝑅
is nontrivial.
Having multiple encodings for the same mathematical

object, one better suited for proving theoretical properties
and another for computation, has been explored in previous
formalization efforts of algebraic algorithms [20]. While we
do not employ a proof transfer framework such as Trocq [16],
this could potentially be explored to automate translations
between equivalent data structures.

4.2 Over Finite Fields
In this section, we describe a way to prove irreducibility of
polynomials over a finite field, which will aid us in proving
irreducibility in Z(︀𝑋 ⌋︀. We then present a certificate for this
irreducibility and its implementation in Lean.
A finite field is a field with finite cardinality. This cardi-

nality is necessarily a prime power and two finite fields of
equal cardinality are always isomorphic. Thus, we may speak
of the finite field of cardinality 𝑞, which we denote by F𝑞 .
Remarkably, the irreducible factors of 𝑋𝑞

𝑛 −𝑋 in F𝑞(︀𝑋 ⌋︀ are
precisely the irreducible polynomials in F𝑞(︀𝑋 ⌋︀ that have de-
gree dividing 𝑛. This gives rise to an irreducibility test due to
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Rabin [39], which forms the basis to our formal irreducibility
proofs.

Theorem 4.1 (Rabin’s test). Let 𝑓 be a polynomial over F𝑞
of degree 𝑛 > 0. Then 𝑓 is irreducible if and only if:

1. 𝑓 divides 𝑋𝑞
𝑛 −𝑋

2. gcd(𝑓 ,𝑋𝑞𝑛⇑𝑡 −𝑋) = 1 for every prime 𝑡 dividing 𝑛.

In Lean, to talk about a finite field, we follow the practice
in Mathlib and endow (F : Type∗) with instances [Field F]
[Fintype F]. The instance [Fintype F] carries data: a finite set
containing all elements of F. We use it rather than [Finite F],
which merely asserts that F is in bijection with Fin n, the
canonical type with n elements, for some natural number n.
The previous statement –which we formalized– reads:
theorem irreducible_iff_dvd_X_pow_sub_X′ (f : F[X])
(hd : 0 < f.natDegree) : Irreducible f↔

f ⋃︀ (X ^ ((Fintype.card F) ^ f.natDegree) − X) ∧
∀ (p : N), Nat.Prime p → p ⋃︀ f.natDegree →
IsCoprime f (X ^ (Fintype.card F ^ (f.natDegree / p)) − X)

The term Fintype.card F is the cardinality of the finite set of
all elements of F coming from the [Fintype F] instance.

Currently, automatic computations in finite fields can only
be carried out in Lean for fields of prime order (our work on
irreducible polynomials can contribute to extending this to
higher degree extensions), therefore we focus on the case
𝑞 = 𝑝 , with 𝑝 a prime number. In Lean, the integers modulo
𝑝 are represented as ZMod p, which has decidable equality,
allowing us to solve identity goals simply with the decide tac-
tic. Furthermore, if we have the instance Fact (Nat.Prime p)
available, then Lean infers that ZMod p is a field.
Rabin’s test starts by proving 𝑓 ⋃︀ 𝑋𝑝𝑛 −𝑋 , where 𝑛 is the

degree of the polynomial 𝑓 in F𝑝(︀𝑋 ⌋︀. The obvious way to do
this is to provide the factor 𝑠 such that 𝑋𝑝

𝑛 −𝑋 = 𝑓 ∗ 𝑠 and
verify the equality. There is, however, a problem. In general,
𝑠 will not be sparse and it will be of huge degree equal to
𝑝𝑛−𝑛. This makes storing it and verifying the corresponding
identity infeasible. The standard approach taken in computer
algebra [44] is instead to show that 𝑋𝑝

𝑛 ≡ 𝑋 (mod 𝑓 ) using
a square-and-multiply algorithm, reducing modulo 𝑓 at each
step by performing polynomial division with remainder. We
currently do not have an effective implementation of poly-
nomial division with remainder in Lean. However, with our
implementation of polynomials as lists, we can quickly ver-
ify multiplications. This suggest a certificate for 𝑓 ⋃︀ 𝑋𝑝𝑛 −𝑋
based on the square-and-multiply algorithm.

This well-known algorithm performs fast exponentiation
on any monoid. When applied to the ring F𝑝(︀𝑋 ⌋︀⇑∐︀𝑓 ̃︀, the
underlying proposition looks like this:

Proposition 4.2. Let 𝑓 and 𝑔 in F𝑝(︀𝑋 ⌋︀ and let𝑚 be a non-
negative integer. Let (𝛽𝑖)𝑠𝑖=0 be the binary digits of𝑚 so that
𝑚 = ∑𝑠𝑖=0 𝛽𝑖2𝑖 . Set 𝑦𝑠 ≡ 𝑔𝛽𝑠 (mod 𝑓 ) and 𝑦𝑖 ≡ 𝑦2

𝑖+1 ∗ 𝑔𝛽𝑖
(mod 𝑓 ) for 𝑖 = 𝑠 − 1, . . . , 0. Then 𝑦0 ≡ 𝑔𝑚 (mod 𝑓 ).

Computing 𝑔𝑚 (mod 𝑓 ) this way requires significantly
fewer operations than repeated multiplication. The polyno-
mials 𝑦𝑖 can be chosen with degrees less than 𝑛. Note that,
when 𝑎 and 𝑏 do not have very large degree, we can certify
𝑎 ≡ 𝑏 (mod 𝑓 ) in the obvious way.

The second step in Rabin’s test asks us to prove gcd(𝑓 ,
𝑋𝑝

𝑚 − 𝑋) = 1 for divisors𝑚 of 𝑛. This also involves poly-
nomials of large degree. However, by certifying 𝑋𝑝

𝑚 ≡ ℎ𝑚
(mod 𝑓 ) for 1 ≤𝑚 ≤ 𝑛, with ℎ𝑚 of degree less than 𝑛, we can
instead prove gcd(𝑓 ,ℎ𝑚−𝑋) = 1. This can be done by provid-
ing polynomials 𝑎𝑚 and 𝑏𝑚 –computed using the extended
Euclidean algorithm– such that 𝑎𝑚 ∗ 𝑓 + 𝑏𝑚 ∗ (ℎ𝑚 −𝑋) = 1.
Putting it all together, we get a certificate which can be

verified using only polynomial addition and multiplication.

Certificate. Let 𝑓 in F𝑝(︀𝑋 ⌋︀ of degree 𝑛 > 0, let (𝛽𝑖)𝑠𝑖=0 be
the binary digits of 𝑝 , so 𝑝 = ∑𝑠𝑖=0 𝛽𝑖2𝑖 . A certificate for the
irreducibility of 𝑓 consists of the following data:

● An (𝑛 + 1)-tuple (ℎ0, . . . , ℎ𝑛) over F𝑝(︀𝑋 ⌋︀.
● An 𝑛 × 𝑠 matrix (𝑔𝑖 𝑗) over F𝑝(︀𝑋 ⌋︀.
● An 𝑛 × (𝑠 + 1) matrix (ℎ′𝑖 𝑗) over F𝑝(︀𝑋 ⌋︀.
● 𝑛-tuples (𝑎0, . . . , 𝑎𝑛−1) and (𝑏0, . . . , 𝑏𝑛−1) over F𝑝(︀𝑋 ⌋︀.

The verification proceeds by checking the following state-
ments:

(i) For all 0 ≤ 𝑖 < 𝑛, ℎ′𝑖𝑠 = ℎ
𝛽𝑠
𝑖 and ℎ′𝑖0 = ℎ𝑖+1.

(ii) For all 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 𝑠 ,
𝑓 ∗𝑔𝑖 𝑗 = ℎ′𝑖(𝑗+1)

2 ∗ℎ𝛽 𝑗𝑖 −ℎ′𝑖 𝑗 .
(iii) ℎ0 = 𝑋 and ℎ𝑛 = 𝑋 .
(iv) 𝑎𝑛⇑𝑡 ∗ 𝑓 + 𝑏𝑛⇑𝑡 ∗ (ℎ𝑛⇑𝑡 −𝑋) = 1 for every prime 𝑡 ⋃︀ 𝑛.

The first two statements in the verification imply that ℎ𝑝𝑖 ≡
ℎ𝑖+1 (mod 𝑓 ) for all 0 ≤ 𝑖 < 𝑛. Together with ℎ0 = 𝑋 , we
get that 𝑋𝑝

𝑖 ≡ ℎ𝑖 (mod 𝑓 ) for every 0 ≤ 𝑖 ≤ 𝑛. Since ℎ𝑛 = 𝑋 ,
the first part of Rabin’s test is shown. The fourth statement
proves the second part of the test. Note that in this last
statement, only some entries 𝑎𝑖 and 𝑏𝑖 , with 𝑖 dividing 𝑛, are
used. Consequently, the rest of the entries in these 𝑛-tuples,
which are included solely to simplify the indexing, can be
set to zero.
For our formalization, we use the following strategy re-

peatedly: given a certification scheme, we define a structure
in Lean where the fields include both the certifying data and
the proofs of the verification statements. Often, we include
more fields than what the informal description may suggest
since some implicit assumptions require formal proof.
For the above irreducibility certificate, we use our list-

based approach to handle polynomial arithmetic. We bundle
the certifying data and proofs of the verification statements
into the structure:
structure CertificateIrreducibleZModOfList′ (p n t s : N)

[Fact (Nat.Prime p)] [NeZero n] (L : List (ZMod p))

It is parametrized over 𝑝 , 𝑛 and 𝑠 as before. Here, L is
the list of coefficients of the polynomial 𝑓 . The parameter
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𝑡 allows flexibility in choosing a base for the square-and-
multiply-type approach. We have described the method us-
ing the typical 𝑡 = 2. However, choosing 𝑡 = 𝑝 might be
advantageous in some cases because computing 𝑝-powers
in F𝑝(︀𝑋 ⌋︀ is easy, although the 𝑔𝑖 𝑗 will have larger degree.
As part of the fields in this structure, we include the fac-

torization data for the degree 𝑛, which is used in (iv):
m : N
P : Fin m → N
exp : Fin m → N
hneq :∏ i : Fin m, (P i) ^ (exp i) = n
hP : ∀ i, Nat.Prime (P i)

If the prime factors of 𝑛 are small (one or two digits), then
a proof hP can be obtained automatically using the decide
tactic (we say more about primality proofs in Section 4.4).
The tuples (𝑎𝑖)𝑛−1

𝑖=0 , (𝑏𝑖)𝑛−1
𝑖=0 are also fields in the structure:

a : Fin n → List (ZMod p)
b : Fin n → List (ZMod p)

Aswell as a proof of the fourth verification statement, written
in terms of list arithmetic:
hgcd : ∀ (i : Fin m),
(a ↑(n / P i) ∗ L + b ↑(n / P i) ∗ (h ↑(n / P i) − [0, 1]))
.dropTrailingZeros = 1

The rest of the certifying data together with proofs of the
verification statements is included in the structure in this
way. Once a term of this type has been constructed, we get
a proof that the polynomial ofList L is irreducible.

For an irreducible polynomial over F𝑝 , a certificate of this
form always exists. The function CertificateIrrModpFFP,
implemented in SageMath, computes the certifying data –
including the decomposition of the degree into prime factors–
and writes the corresponding term in Lean. For small degrees
(usually 𝑛 ≤ 12) all of the proofs included as fields in this
structure can be solved automatically either by using the rfl
or the decide tactic. For higher degrees, the computationmay
exceed Lean’s preset maximum recursion depth or heartbeats
limits. A variety of approaches could be used to deal with
this timeout issue: it might be possible to develop better
decision procedures for use with decide, or we might use
(a custom extension to) the norm_num tactic that performs
this computation.

4.3 Degree Analysis
Here, we describe a certificate for the irreducibility of polyno-
mials in Z(︀𝑋 ⌋︀, constructed by combining information from
the factorization of the polynomial modulo distinct primes.
Let 𝑓 in Z(︀𝑋 ⌋︀ of degree 𝑛 and 𝑝 a prime number not di-

viding lc(𝑓 ), the leading coefficient of 𝑓 . Let 𝑓 = 𝑓 (mod 𝑝)
be the polynomial over F𝑝 obtained by reducing the coeffi-
cients of 𝑓 modulo 𝑝 . Write 𝑓 =∏𝑚𝑖=1𝑔𝑖 , with 𝑔𝑖 irreducible
in F𝑝(︀𝑋 ⌋︀. Consider the tuple 𝐷𝑝 = (deg(𝑔𝑖))𝑖 and let 𝑆(𝐷𝑝)
be the set of all possible subset sums of 𝐷𝑝 . It is not hard to

see that if 𝑎 divides 𝑓 , then deg𝑎 ∈ 𝑆(𝐷𝑝). Computing 𝑆(𝐷𝑝)
for different primes 𝑝 will thus give us refined information
on the degree of the factors of 𝑓 . In particular:

Proposition 4.3. Let 𝑓 in Z(︀𝑋 ⌋︀ be primitive and 𝑝1, . . . , 𝑝𝑚
a collection of distinct primes not dividing lc(𝑓 ). Let

𝑑 = min (⋂𝑚𝑖=1 𝑆(𝐷𝑝𝑖 ) ∖ {0}).
If 𝑎 ∈ Z(︀𝑋 ⌋︀ divides 𝑓 and is neither 1 or −1, then 𝑑 ≤ deg𝑎.

It follows that if 𝑑 = deg 𝑓 , then 𝑓 is irreducible. This gives
an irreducibility certification scheme, whichwe formalized as
the structure IrreducibleCertificateIntPolynomial. As parts
of its fields, it includes data on the irreducible factors of 𝑓
(mod 𝑝) for different primes 𝑝 . The proofs of irreducibility
are handled using the certifying structure from Section 4.2.
A certificate based on degree analysis, when it exists, is

not unique. It is advisable to prioritize smaller primes that
produce factors of small degrees for faster verification. Most
polynomials (in an asymptotic sense) will have a certificate
of this form, depending on their Galois group [40]. However,
there are cases where such a certificate does not exist.

4.4 LPFW Certificate
This section describes an alternative certificate for irreducibil-
ity of polynomials in Z(︀𝑋 ⌋︀ which is more widely applicable.
We discuss its formalization in Lean, and a script that can
automatically generate a Lean proof of irreducibility based
on these certificates.
There is a way of reducing irreducibility testing in Z(︀𝑋 ⌋︀

to primality testing in Z: if a ‘large enough’ integer 𝑚 is
found such that ⋃︀𝑓 (𝑚)⋃︀ is prime, then 𝑓 can be shown to
be irreducible. This test was proposed by Brillhart in [10].
Abbott [1], using a refined calculation that incorporates a
known lower bound on the degrees of 𝑓 ’s factors, introduced
the large prime factor witness (LPFW) certificate, which is
similar to Brillhart’s, but works for a larger number of cases
and often produces smaller prime witnesses. It relies on the
following proposition, which we have formalized.

Proposition 4.4. Let 𝑓 be a non-constant polynomial inZ(︀𝑋 ⌋︀.
Suppose that 𝑑 ∈ Z≥1 is a known lower bound for the degree of
the (non-unit) factors of 𝑓 . Let 𝜌 in R be such that ⋃︀𝛼 ⋃︀ ≤ 𝜌 for
every root 𝛼 ∈ C of 𝑓 . If there exists𝑚 ∈ Z such that ⋃︀𝑚⋃︀ ≥ 𝜌 +1
and ⋃︀𝑓 (𝑚)⋃︀ = 𝑠𝑃 with an integer 𝑠 < (⋃︀𝑚⋃︀ − 𝜌)𝑑 and 𝑃 ∈ Z
prime, then 𝑓 is irreducible.

If a conjecture stated by Bouniakovsky [8] is true, then
there will always exist an LPFW certificate for any irre-
ducible polynomial 𝑓 in Z(︀𝑋 ⌋︀. Ideally, the prime witness 𝑃
should be as small as possible so its primality can be quickly
verified. The higher the lower bound 𝑑 for the degree of the
factors of 𝑓 , the more flexibility we have in finding such
𝑃 . Note that 𝑑 can be obtained using Proposition 4.3. This
leads us to combine the degree analysis techniques from the
previous section with the aforementioned Proposition.



CPP ’25, January 20–21, 2025, Denver, CO, USA Anne Baanen, Alain Chavarri Villarello, and Sander R. Dahmen

To use Proposition 4.4, we must find a root bound 𝜌 . Clas-
sical bounds are given by Lagrange [29] and Cauchy [14]. For
dense polynomials with integer coefficients, Cauchy’s bound
is typically sharper (unless ⋃︀𝑎𝑛 ⋃︀ is very large). By applying it
to 𝑓 (𝑟𝑋), with 𝑟 > 0 a real number, one gets:

Proposition 4.5. Let 𝑓 = ∑𝑛𝑖=0 𝑎𝑖𝑋
𝑖 in C(︀𝑋 ⌋︀ of degree 𝑛 > 0.

Let 𝑟 > 0 be a real number. If 𝛼 ∈ C is a root of 𝑓 , then

⋃︀𝛼 ⋃︀ ≤ 𝑟 (1 + 1
⋃︀𝑎𝑛 ⋃︀

max0≤𝑖≤𝑛−1
⋃︀𝑎𝑖 ⋃︀

𝑟𝑛−𝑖
)

By setting 𝑟 = 1, we recover the original Cauchy bound.
However, choosing the right 𝑟 can yield a sharper bound. We
formalized this (scaled) Cauchy bound and proved:
lemma polynomial_roots_le_cauchy_bound_scale
(f : Polynomial C) (z : C) (hd : f.natDegree ≠ 0)
(hr : z ∈ f.roots) (r : R) (hs : 0 < r) :
Complex.abs z ≤ cauchyBoundScaled f r := . . .

The term cauchyBoundScaled takes as parameters a complex
polynomial 𝑓 and real number 𝑟 and outputs a real number.
However, since Mathlib polynomials are noncomputable and
both complex and real numbers lack decidable equality, this
definition is not optimal for computation. Thus, we defined
a computable version, cauchyBoundScaledOfList, for poly-
nomials over Z (given as lists) using a rational scaling factor.
This allows us to prove its value by computation:
example : cauchyBoundScaledOfList [3,14,15,92,65] (1/2) =
249/130 := by decide!

Recall from Section 3 that decide! performs kernel reduction
to prove decidable propositions.

We formalized the LPFW certification scheme as:
structure CertificateIrreducibleIntOfPrimeDegreeAnalysis
(f : Polynomial Z) (L : List Z)

It takes as parameters a polynomial 𝑓 over the integers and
its coefficient list 𝐿. Similar to the certificate in the previous
section, it includes fields that certify the factorization of 𝑓
modulo a given list of primes in order to obtain a lower
bound 𝑑 on the degree of the factors of 𝑓 , as in Proposition
4.3. The structure also includes fields such as the Cauchy
bound 𝜌 –obtained using a scaling factor 𝑟–, the large prime
witness 𝑃 , the factor 𝑠 , the evaluation argument𝑚, as well
as the proofs of the corresponding verification statements.
One field in the structure is a proof of Nat.Prime P. This

is a decidable statement, and Mathlib provides the tactic
norm_num that can prove a number is prime if it is not
too large (< 7 digits). However, the prime witness 𝑃 is typi-
cally big, so an alternative primality test might be necessary.
Markus Himmel formalized Pratt certificates and a corre-
sponding tactic [27], which can be used to prove such goals.
As before, irreducibility proofs for the factors of 𝑓 mod-

ulo primes can be handled as in Section 4.2. All remaining
proofs included as fields in the above structure can be solved
automatically using decide, decide!, and/or norm_num. We

also formalized a variant with the trivial degree lower bound
𝑑 = 1, resulting in a shorter certificate.

We wrote a SageMath script that outputs a Lean proof of
the irreducibility of 𝑓 by selecting the appropriate certificate
from Section 4.3 or Section 4.4. As noted in Section 4.2, large
polynomial degrees may cause issues with recursion depth or
excesive heartbeats when checking the proofs in Lean. This
approach of generating Lean code from SageMath worked
well for our applications. However, exploring a tighter inte-
gration, such as calling SageMath directly from Lean, could
be an interesting direction for future work.
In the search for a smaller prime witness 𝑃 , it can be

helpful to transform 𝑓 . Möbius transformations [1], andmore
generally, Tschirnhaus transformation [17, Algorithm 6.3.4],
can be used. Incorporating this into our proof generator is
something we also intend to pursue in the future.

5 Verifying Rings of Integers
As stated in the introduction, our main goal is to formally
verify that a ring 𝒪, with an explicitly given basis and con-
tained inside a number field 𝐾 , equals –in the set-theoretic
sense– the ring of integers of 𝐾 . Computation in 𝒪 is key
for both our proof and future applications. This raises two
initial questions: how should we define 𝒪 in Lean, and how
can we compute in it?

5.1 Construction of the Subalgebra
The goal of this section is to describe the construction of a
ring 𝒪 ⊆ 𝐾 in Lean, given by an explicit basis.
Consider a more general setting where 𝑅 and 𝐾 are com-

mutative rings and 𝐾 is actually an 𝑅-algebra. We recall that
this means that there is a ring homomorphism 𝜙 ∶ 𝑅 → 𝐾

and as such 𝐾 carries the natural structure of an 𝑅-module
by defining the scalar multiplication 𝑟 ⋅ 𝑥 (where 𝑟 ∈ 𝑅 and
𝑥 ∈ 𝐾 ) by 𝜙(𝑟)𝑥 . An 𝑅-subalgebra 𝒪 of 𝐾 can be formalized
in multiple ways. For example, we could consider a type (𝒪
: Type∗) with instances [CommRing 𝒪] [Algebra R 𝒪 ] and
equip it with an injective 𝑅-algebra homomorphism f : 𝒪
→𝑎[R] K. However, carrying along this map through con-
structions and proofs can be rather cumbersome. A better
approach is to use the subalgebra structure in Mathlib, which
bundles together a subset of 𝐾 , the carrier set, and the proofs
that it is an 𝑅-algebra. In fact, the integral closure of 𝑅 in 𝐾
is defined in Mathlib with type Subalgebra R K, allowing us
to state our goal as ⊢ 𝒪 = integralClosure R K.

Defining𝒪 simply as the𝑅-span of a given set gives a term
of type Submodule R K. To make this into a subalgebra we
also need proofs that it is closed undermultiplication and con-
tains 1. In order to automate this construction in Lean start-
ing with an 𝑅-basis, we created the SubalgebraBuilder.
To describe how it works, let us further specialize our

setup and fix some notation. Suppose that 𝑅 is a domain,
𝑄 its fraction field, and 𝐾 the extension of 𝑄 obtained by
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adjoining a root 𝜃 of a monic polynomial𝑇 in 𝑅(︀𝑋 ⌋︀ of degree
𝑛 (e.g. 𝑅 = Z, 𝑄 = Q and 𝐾 a number field). Suppose that
{𝑤1, . . . ,𝑤𝑛} is an 𝑅-basis for a subalgebra𝒪 of 𝐾 . Since 𝐾 ≅
𝑄(︀𝑋 ⌋︀⇑∐︀𝑇 ̃︀, we can find a common denominator 𝑑 ∈ 𝑅 ∖ {0}
and polynomials 𝑏𝑖 ∈ 𝑅(︀𝑋 ⌋︀ of degree less than 𝑛 such that
𝑤𝑖 = 1

𝑑
𝑏𝑖(𝜃).

As a module,𝒪 is the 𝑅-span of {𝑤1, . . . ,𝑤𝑛}. However, as
previously remarked, in order to give it a type Subalgebra R
K instead of just Submodule R K, we need to convince Lean
that 𝒪 is closed under multiplication and contains 1. To
prove closure under multiplication it suffices to show that
𝑤𝑖 ∗ 𝑤 𝑗 is in 𝒪 for all 𝑖 and 𝑗 . A way to certify this is to
give the coefficients 𝑎𝑖 𝑗𝑘 ∈ 𝑅 such that𝑤𝑖 ∗𝑤 𝑗 = ∑𝑘 𝑎𝑖 𝑗𝑘 ⋅𝑤𝑘 .
Verifying this equality in 𝐾 is equivalent to proving that for
all 𝑖 and 𝑗 there exists a polynomial 𝑠𝑖 𝑗 ∈ 𝑅(︀𝑋 ⌋︀ such that

𝑏𝑖 ∗ 𝑏 𝑗 = 𝑑∑𝑘 𝑎𝑖 𝑗𝑘 ⋅ 𝑏𝑘 −𝑇 ∗ 𝑠𝑖 𝑗 . (1)
Thus, the elements 𝑎𝑖 𝑗𝑘 and polynomials 𝑠𝑖 𝑗 act as a certifi-

cate for the closure of 𝒪 under multiplication. In fact, they
provide a certificate for the precise representation of𝑤𝑖 ∗𝑤 𝑗

with respect to the basis {𝑤1, . . . ,𝑤𝑛}. Since multiplication
is commutative, verifying this certificate requires checking
(𝑛2 + 𝑛)⇑2 identities in 𝑅(︀𝑋 ⌋︀. Proving that 1 is in 𝒪 reduces
to a single polynomial identity check.
Besides constructing 𝒪 as a subalgebra in Lean, we also

want a basis for it, which would be a term of type Basis 𝜄 R
𝒪 (with 𝜄 some indexing type). To prove that {𝑤1, . . . ,𝑤𝑛} is
indeed a basis, we must show that it is linearly independent.
Write 𝑏 𝑗 = ∑𝑛−1

𝑖=0 𝑐𝑖 𝑗𝑋
𝑖 with 𝑐𝑖 𝑗 ∈ 𝑅, then
𝑤 𝑗 = 1

𝑑 ∑
𝑛−1
𝑖=0 𝑐𝑖 𝑗𝜃

𝑖 .

The set {𝑤1, . . . ,𝑤𝑛} is linearly independent if and only if the
determinant of the matrix 𝐵 = (𝑐𝑖 𝑗) is non-zero. To simplify
this verification, we can choose a basis where 𝐵 is upper
triangular. In that case, it suffices to check that the diagonal
entries are non-zero.
Since any matrix over a Bézout domain has an echelon

form [28], if 𝑅 is Bézout (e.g. 𝑅 = Z or 𝑅 = F𝑝(︀𝑋 ⌋︀) there is
a basis for 𝒪 with 𝐵 upper triangular. For 𝑅 = Z, a basis in
Hermite normal form [17, Theorem 4.7.3] may be used.

We incorporate all this data and proofs into the structure:
structure SubalgebraBuilderLists
(n : N) (R Q K : Type∗) [CommRing R] [IsDomain R]
[DecidableEq R] [Field Q] [CommRing K] [Algebra Q K]
[Algebra R Q] [Algebra R K] [IsScalarTower R Q K]
[IsFractionRing R Q] (T : R[X]) (L : List R)

It takes as explicit parameters𝑅,𝑄,𝐾 , the degree𝑛, the monic
polynomial 𝑇 , and the list 𝐿 of coefficients of 𝑇 . We fol-
low the practice in Mathlib to encode the structure of in-
clusion of 𝑅 into its fraction field 𝑄 , and 𝑄 into the ring
𝐾 using the Algebra and IsFractionRing typeclasses. The
transitive inclusion of 𝑅 into 𝐾 is witnessed by [Algebra
R K] [IsScalarTower R Q K] instances; the latter asserts the
triangle of inclusions 𝑅 → 𝑄 → 𝐾 commutes. Browning and

Lutz [11] explain Mathlib’s approach to extensions (of fields)
in depth, and Wieser [45] covers scalar actions in Mathlib
more generally.
The fields of the structure include the matrix 𝐵𝑇 –with

𝐵 upper triangular containing the basis coefficients 𝑐𝑖 𝑗 as
described above–, the common denominator 𝑑 , the coeffi-
cients 𝑎𝑖 𝑗𝑘 , the certifying polynomials 𝑠𝑖 𝑗 in list form, as
well as the proofs that 𝐵 is upper triangular with non-zero
elements in the diagonal, that the identities in (1) hold (us-
ing list-based arithmetic), and that 𝐾 is obtained by adjoin-
ing a root of 𝑇 . All of these proofs, except the latter, can
be solved automatically using the decide, decide!, and/or
norm_num tactics. The latter statement is conveyed with
the predicate IsAdjoinRoot K (map (algebraMap R Q) T). Its
proof will depend on the specific nature of 𝐾 . If 𝐾 is defined
as AdjoinRoot (map (algebraMap R Q) T), then this proof is
obtained for free.

With 𝐴 of this type, the term
subalgebraOfBuilderLists T L A : Subalgebra R K

is the corresponding 𝑅-subalgebra 𝒪 of 𝐾 which, as a set,
is the 𝑅-span of {𝑤1, . . . ,𝑤𝑛}, specified by 𝐵. We obtain a
basis (𝑤𝑖)𝑛𝑖=1 for this subalgebra –indexed with Fin n– in
basisOfBuilderLists T L A, with𝑤𝑖 = 1

𝑑
𝑏𝑖(𝜃).

An element in𝒪 can be represented by a vector Fin n → R
using its coordinates with respect to this basis. As previously
noted, the polynomial identities in (1) prove that the coor-
dinates of𝑤𝑖 ∗𝑤 𝑗 are given by (𝑎𝑖 𝑗𝑘)𝑛𝑘=1. This information
can be collected in a times table: an 𝑛 × 𝑛 matrix where the
𝑖 𝑗-entry is the vector (𝑎𝑖 𝑗𝑘)𝑛𝑘=1 ∈ 𝑅𝑛 . This notion is more
generally formalized in Lean as a structure introduced in [5]
called TimesTable, which bundles the data of a basis and the
associated times table.
structure TimesTable ( 𝜄 R S : Type∗) [Semiring R]
[AddCommMonoid S] [Mul S] [Module R S] : Type∗

where
basis : Basis 𝜄 R S
table : 𝜄 → 𝜄 → 𝜄 → R
basis_mul_basis : ∀ i j k, basis.repr (basis i ∗ basis j) k =

table i j k

Here, basis is an 𝑅-basis for 𝑆 , and basis.repr sends an ele-
ment in 𝑆 to its vector representation. The last field states
that the product of the 𝑖-th and 𝑗-th basis elements is repre-
sented by the 𝑖 𝑗-th entry of table. The SubalgebraBuilder
contains the information to construct the times table for 𝒪.
Indeed, timesTableOfSubalgebraBuilderLists T L A has type
TimesTable (Fin n) R 𝒪.

5.2 Arithmetic in 𝒪
We discuss how we can use a times table to compute in 𝒪.

More generally, let 𝑆 be an 𝑅-algebra which is finite and
free as an 𝑅-module and has basis ℬ = {𝑤1, . . . ,𝑤𝑛}. An ele-
ment 𝑥 in 𝑆 can be uniquely written as 𝑥 = ∑𝑖 𝑐𝑖𝑤𝑖 , and thus
represented as a vector (𝑐1, . . . , 𝑐𝑛) ∈ 𝑅𝑛 . We have that 𝑆 ≅ 𝑅𝑛
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as 𝑅-modules. Furthermore, we can define a multiplication
on 𝑅𝑛 that corresponds to the multiplication in 𝑆 :

Let𝑥 = ∑𝑖 𝑐𝑖𝑤𝑖 and𝑦 = ∑𝑖 𝑑𝑖𝑤𝑖 , with 𝑐𝑖 , 𝑑𝑖 ∈ 𝑅, be elements
in 𝑆 . We have 𝑥𝑦 = ∑𝑖 ∑𝑗(𝑐𝑖𝑑 𝑗) ⋅(𝑤𝑖 ∗𝑤 𝑗). Let𝑇 be the times
table for 𝑆 with respect to ℬ, so that 𝑇𝑖 𝑗 = (𝑎𝑖 𝑗𝑘)𝑘 ∈ 𝑅𝑛 , with
𝑤𝑖 ∗𝑤 𝑗 = ∑𝑘 𝑎𝑖 𝑗𝑘𝑤𝑘 . By defining

(𝑐𝑖)𝑖 ∗ (𝑑𝑖)𝑖 ∶= ∑𝑖 ∑𝑗(𝑐𝑖𝑑 𝑗) ⋅𝑇𝑖 𝑗 (2)

in 𝑅𝑛 , we can translate arithmetic in 𝑆 to arithmetic in 𝑅𝑛
and vice versa. If we have a times table for 𝑆 , this approach
allows us to compute in 𝑆 with Lean using lists as follows:

Consider a𝑛×𝑛matrix𝑇 with entries in 𝑅𝑛 . In Lean, this is
a term T : Fin n → Fin n → Fin n → R. Using our previously
defined list arithmetic, we formalize (2) as:
def table_mul_list′ (c d : List R) : List R :=
List.sum (List.ofFn (fun i => List.sum (List.ofFn
(fun j => List.mulPointwise ((List.getD c i 0) ∗ (List.getD

d j 0)) (List.ofFn (T i j))))))
This function is meant to be used with 𝑐 and 𝑑 of length
𝑛. However, we give them type List R instead of Fin n → R
because lists offer faster computation. The term List.getD
c i 0 retrieves the 𝑖-th entry of 𝑐 , returning 0 if 𝑖 is out of
bounds. A variant where 𝑇 has type Fin n → Fin n → List R
is also defined for faster computation.
With this approach, we also recursively defined efficient

exponentiation using the square-and-multiply method. Note
that addition in 𝑆 corresponds to pointwise addition on lists.
We formally proved that, when 𝑇 is a times table for 𝑆 ,

these functions on lists correspond to the arithmetic oper-
ations in 𝑆 . Thus, identities in 𝑆 –involving additions and
multiplications– can be proven by first translating them into
their equivalent operations on lists. This method is used to
prove identities in the subalgebra 𝒪 of a number field for
which we have a times table TimesTable (Fin n) Z 𝒪. This
verification on lists of integers can be done automatically
by a tactic such as decide!. A similar strategy is used for the
F𝑝 -algebra 𝒪⇑𝑝𝒪 from Section 5.6.

5.3 Local Maximality
Here, we present a local notion of maximality which serves
as a tool to prove an equality between subalgebras.
Let 𝐾 be a number field of degree 𝑛 and 𝒪 a subalgebra

which is free and finite as a Z-module. Then 𝒪 is contained
in 𝒪𝐾 , and we can compare them by considering the index
(︀𝒪𝐾 ∶ 𝒪⌋︀, typically defined as the cardinality of the quotient
𝒪𝐾⇑𝒪. When𝒪 has rank 𝑛, then (︀𝒪𝐾 ∶ 𝒪⌋︀ is a finite integer.

If 𝑝 is a prime that does not divide (︀𝒪𝐾 ∶ 𝒪⌋︀, we say that
𝒪 is 𝑝-maximal. Thus, if one can prove that 𝒪 is 𝑝-maximal
for every prime 𝑝 , it will follow that 𝒪 = 𝒪𝐾 .

This idea, which will guide our approach for constructing
a formal proof of 𝒪 = 𝒪𝐾 , is also central to the currently
used algorithms for computing rings of integers. However,
the approach of showing a global equality by verifying a
local property is not limited to subrings in number fields.

We formalized a local notion of maximality that applies to
free and finite modules over Principal Ideal Domains (abbre-
viated as PIDs, whichmeans that every ideal can be generated
by one element) using a generalized notion of index, simi-
lar to [12]. This allows us to state and prove several useful
results in wider generality. For𝑀 a free module over a PID
of finite rank, the index of a submodule 𝑁 , which we also
denote by (︀𝑀 ∶ 𝑁 ⌋︀, is an element in 𝑅. If (︀𝑀 ∶ 𝑁 ⌋︀ is a unit,
then𝑀 = 𝑁 . When 𝑅 = Z and𝑀 and 𝑁 have equal rank, this
index coincides (up to sign) with the cardinality of𝑀⇑𝑁 .
In Lean, to say that 𝑅 is a PID and𝑀 is an 𝑅-module we

use the hypothesis [CommRing R] [IsPrincipalIdealRing R]
[IsDomain R] [AddCommGroup M] [Module R M]. We for-
malized the above notion of index as:
def Submodule.indexPID (N : Submodule R M)

[Module.Free R M] [Module.Finite R M] : R

where we include [Module.Free R M] [Module.Finite R M]
as instance parameters, indicating that𝑀 is free and finite.
The definition is tagged noncomputable as it depends on
choice of bases, which are noncomputable.
For an element 𝜋 in 𝑅, we say that 𝑁 is 𝜋-maximal if 𝜋

does not divide (︀𝑀 ∶ 𝑁 ⌋︀. In formal terms, this reads
def piMaximal [Module.Free R M] [Module.Finite R M]
( 𝜋 : R) (N : Submodule R M) : Prop :=
¬ ( 𝜋 ⋃︀ Submodule.indexPID N)

From the properties of the index, it follows that if 𝑁 is 𝜋-
maximal for every prime 𝜋 , then 𝑀 = 𝑁 ; where we recall
that 𝜋 is prime means that it is a nonzero non-unit element
such that 𝜋 ⋃︀𝑎𝑏 implies 𝜋 ⋃︀𝑎 or 𝜋 ⋃︀𝑏 for any 𝑎,𝑏 ∈ 𝑅.
As outlined at the start of this section, we will use this

definition when 𝐾 is an 𝑅-algebra, 𝒪 and 𝒪′ have type
Subalgebra R K, and we have the hypothesis (hm : 𝒪 ≤ 𝒪′).
To state that𝒪 is 𝜋-maximal (with respect to𝒪′), we need to
view 𝒪 as a submodule of 𝒪′. This is done via the inclusion
map ↥𝒪 →𝑎[R] ↥𝒪′. The term
Subalgebra.toSubmodule (Subalgebra.inclusion hm).range

is the range of this map, which we abbreviate as 𝒪∗, and
has type Submodule R ↥𝒪′, where ↥𝒪′ is the coercion of 𝒪′
into a subtype of 𝐾 .

5.4 The Pohst–Zassenhaus Theorem
In this section, we introduce a crucial theorem that can be
used to establish local maximality and forms the basis for
the certificate discussed in Section 5.6.
Let 𝑅 be a PID, 𝑄 its fraction field, and 𝐾 an 𝑅-algebra.

Consider two 𝑅-subalgebras of 𝐾 , denoted by 𝒪 and 𝒪′,
which are free and finite as 𝑅-modules, have the same rank,
and satisfy 𝒪 ⊆ 𝒪′. The primary case of interest to keep in
mind is: 𝑅 = Z, 𝐾 is a number field, and 𝒪′ = 𝒪𝐾 .

To construct a proof of 𝒪 = 𝒪′ we follow the strategy de-
scribed in the previous section by establishing 𝜋-maximality
for every prime 𝜋 of 𝑅. The main result we use is based on
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a theorem due to Pohst and Zassenhaus [38, Lemma 5.53],
which underpins the widely used Round-2 algorithm for com-
puting rings of integers [17, Algorithm 6.1.8].
For 𝐼 and ideal of 𝒪, we define the multiplier ring of 𝐼 by

𝑟(𝐼) = {𝑥 ∈ 𝐾 ⋃︀ 𝑥𝐼 ⊆ 𝐼}. It is an 𝑅-subalgebra of 𝐾 which
contains 𝒪. We formalized this definition as
def multiplierRing (I : Ideal 𝒪) : Subalgebra R K where
carrier := {(x : K) | ∀ (i : 𝒪), i ∈ I →

( ∃ (j : 𝒪), j ∈ I ∧ i ∗ x = j )} . . .

The radical of 𝐼 is the ideal {𝑥 ∈ 𝒪 ⋃︀ ∃𝑚 ≥ 1, 𝑥𝑚 ∈ 𝐼}. For
𝑟 ∈ 𝑅, we denote by 𝐼𝑟 the radical of the principal ideal 𝑟𝒪.
The main theorem we use to prove 𝜋-maximality is:

Theorem 5.1. Let 𝜋 in 𝑅 be a prime and suppose that 𝒪 and
𝒪′ have equal rank. If 𝒪 = 𝑟(𝐼𝜋), then 𝒪 is 𝜋-maximal.

This is a version of the Pohst–Zassenhaus theorem which
is sufficient for our purposes. However, it is more commonly
presented with 𝐾 being a finite dimensional and separable
𝑄-algebra, and𝒪′ the integral closure of 𝑅 in 𝐾 . In that case,
it is an if-and-only-if statement [17], [38].

We formalized Theorem 5.1 as follows:
variable (hm : 𝒪 ≤ 𝒪′) {𝜋 : R} (hp : Prime 𝜋 )
local notation "𝒪∗" => Subalgebra.toSubmodule

(Subalgebra.inclusion hm).range
theorem order_piMaximal_of_order_eq_multiplierRing

[Module.Free R 𝒪′] [Module.Finite R 𝒪′]
(heqr : Module.rank R 𝒪 = Module.rank R 𝒪′)
(heq : 𝒪 =

multiplierRing (Ideal.span {algebraMap R 𝒪 𝜋 }).radical) :
piMaximal 𝜋 𝒪∗:=
As before, 𝒪∗ represents 𝒪 as a submodule of 𝒪′. The

term Ideal.span {algebraMap R O 𝜋 } is the ideal 𝜋𝒪, with
algebraMap R 𝒪 𝜋 used to regard 𝜋 as an element of 𝒪.
The proof strategy for this theorem, which we adapted

from [17], consists of defining an intermediate subalgebra
𝒪𝜋 = {𝑥 ∈ 𝒪′ ⋃︀ ∃ 𝑗 ≥ 0 such that 𝜋 𝑗𝑥 ∈ 𝒪}, which sits
between 𝒪 and 𝒪′ and is 𝜋-maximal by construction, and
showing that 𝒪 = 𝒪𝜋 whenever 𝒪 = 𝑟(𝐼𝜋).
Using Theorem 5.1, the proof of 𝜋-maximality of 𝒪 re-

duces to the verification of the equality 𝒪 = 𝑟(𝐼𝜋). While an
explicit description of 𝐼𝜋 may not be simple, in cases where
𝒪 ≅ 𝑅(︀𝑋 ⌋︀⇑∐︀𝑇 ̃︀ –with 𝑇 a monic polynomial– there is an
explicit description of 𝐼𝜋 that leads to a simple criterion for
𝜋-maximality, called the Dedekind criterion. The case where
𝒪 is not necessarily of this form will be addressed in Section
5.6 for 𝑅 = Z.

5.5 Dedekind Criterion
We present a practical criterion involving only polynomial
arithmetic that provides a simple way of establishing 𝜋-
maximality in certain cases.
Let 𝑅 be a PID, 𝑄 its fraction field, and 𝒪 = 𝑅(︀𝑋 ⌋︀⇑∐︀𝑇 ̃︀ =

𝑅(︀𝜃⌋︀, with 𝜃 a root of 𝑇 , a monic polynomial. For a prime

𝜋 ∈ 𝑅, the quotient 𝑅⇑𝜋𝑅 is a field, and (𝑅⇑𝜋𝑅)(︀𝑋 ⌋︀ a PID.
To describe the ideal 𝐼𝜋 of 𝒪, we consider the reduction of
𝑇 modulo 𝜋 . Denote by 𝑇 (mod 𝜋), or 𝑇 , the polynomial
in (𝑅⇑𝜋𝑅)(︀𝑋 ⌋︀ obtained by mapping the coefficients of 𝑇
through the reduction map 𝑅 → 𝑅⇑𝜋𝑅. If 𝑔 ∈ 𝑅(︀𝑋 ⌋︀ is a lift
of the radical of 𝑇 –meaning that 𝑔 is the product of the
distinct irreducible factors of𝑇 – then 𝐼𝜋 can be expressed as
𝐼𝜋 = 𝜋𝒪 + 𝑔(𝜃)𝒪. This leads to a criterion that guarantees
𝒪 = 𝑟(𝐼𝜋).
Definition 5.2. Let 𝑔 in 𝑅(︀𝑋 ⌋︀ be a lift of the radical of 𝑇 .
Set ℎ to be a lift of 𝑇 ⇑𝑔 and define 𝑓 = (𝑔ℎ −𝑇 )⇑𝜋 . We say
that 𝑇 satisfies the Dedekind criterion at 𝜋 if gcd(𝑓 ,𝑔, ℎ̄) = 1.

If 𝐾 is a torsion-free 𝑅-algebra containing 𝒪, then 𝑇 satis-
fying the Dedekind criterion at 𝜋 implies 𝒪 = 𝑟(𝐼𝜋). Com-
bined with Theorem 5.1, this leads to the proposition:

Proposition 5.3. Let 𝐾 be torsion-free 𝑅-algebra containing
𝒪 ≅ 𝑅(︀𝑋 ⌋︀⇑∐︀𝑇 ̃︀. Let 𝒪′ be an 𝑅-subalgebra of 𝐾 , containing 𝒪
and with the same rank. If 𝑇 satisfies the Dedekind criterion
at 𝜋 , then 𝒪 is 𝜋-maximal (i.e. 𝜋 does not divide (︀𝒪′ ∶ 𝒪⌋︀).

To formalize the reduction modulo 𝜋 of polynomials as in
Definition 5.2, perhaps the obvious choice would be to use
the quotient map from R to R / (Ideal.span {𝜋 }). However,
for verifying the Dedekind criterion we need to compute in
(𝑅⇑𝜋𝑅)(︀𝑋 ⌋︀, and thus in 𝑅⇑𝜋𝑅. Hence, flexibility in the repre-
sentation of 𝑅⇑𝜋𝑅 is important. For instance, we prefer to use
polynomials over ZMod p rather than Z / (Ideal.span {p}) as
we have decidable equality and efficient modular arithmetic
in the former type but not in the latter.
For this reason, we model the quotient 𝑅⇑𝜋𝑅 as some

type (F : Type∗) with [Field F] instance, along with a ring
homomorphism q : R →+∗ F which is surjective and its ker-
nel equals Ideal.span {𝜋 }. This ensures that 𝐹 ≅ 𝑅⇑𝜋𝑅. This
approach of capturing the essential relationship between
structures without fixing a specific construction is common
in Mathlib as it allows for greater flexibility. In this context,
a proof transfer framework such as [16] could also be useful
for automating the translation of results involving differ-
ent representations of 𝑅⇑𝜋𝑅, though we did not explore this
further.

We formalized the Dedekind criterion as follows:
def satisfiesDedekindCriterion [Field F] (q : R →+∗ F)

(𝜋 : R) (T : Polynomial R) : Prop :=
∃ (f g h : Polynomial R) (a b c : Polynomial F),
IsRadicalPart (g mod 𝜋 ) (T mod 𝜋 )
∧ f ∗ (C 𝜋 ) = g ∗ h − T
∧ (a ∗ (f mod 𝜋 ) + b ∗ (g mod 𝜋 ) + c ∗ (h mod 𝜋 ) = 1)

The notation f mod 𝜋 stands for Polynomial.map q f, which
applies 𝑞 to the coefficients of 𝑓 . This formulation of Def-
inition 5.2 lets us avoid polynomial divisions and is more
convenient, after providing the witness polynomials, for a
proof by computation involving only simple operations. The
proposition IsRadicalPart (g mod 𝜋 ) (T mod 𝜋 ) states that
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𝑔 and𝑇 have the same prime divisors and 𝑔 is squarefree. We
can prove it by verifying that 𝑔 ⋃︀ 𝑇 , that 𝑇 ⋃︀ 𝑔𝑛 for some 𝑛,
and that 𝑔 is squarefree. The latter can be done by checking
that gcd(𝑔,𝑔′) = 1, with 𝑔′ the formal derivative of 𝑔 .

Observe that the discussed assumptions on q : R →+∗ F are
not needed to write down the previous definition. However,
they do appear in the following theorem, which is the formal
version of Proposition 5.3, adapted from [17]:

variable (q : R →+∗ F) (hqsurj : Function.Surjective q)
(hqker : RingHom.ker q = Ideal.span {𝜋 }) (hmc : 𝒪 ≤ 𝒪′)
local notation "𝒪∗" => Subalgebra.toSubmodule

(Subalgebra.inclusion hmc).range
theorem piMaximal_of_satisfiesDedekindCriteria

[Module.Free R 𝒪′] [Module.Finite R 𝒪′]
(j: IsAdjoinRoot 𝒪 T) (hp : Prime 𝜋 ) (hm: T.Monic)
(heqr : Module.rank R 𝒪= Module.rank R 𝒪′)
(h : satisfiesDedekindCriterion q 𝜋 T) :

piMaximal 𝜋 𝒪∗ := . . .

Note that no assumption of irreducibility of 𝑇 is required.
We also defined a specialized version of the Dedekind

criterion for the case 𝑅 = Z and F = ZMod p. We created
a structure, called CertificateDedekindCriterionLists, with
parameters (T : Z[X]) (p : N). Its fields include data certify-
ing that 𝑇 satisfies the Dedekind criterion at 𝑝 , and proofs
of the associated identities –involving additions and multi-
plications and using our list-based approach– which can be
solved automatically by rfl or decide.

The Dedekind criterion can still be useful even if 𝒪 is not
given by adjoining a root of a monic polynomial. If 𝛼 ∈ 𝒪 has
minimal polynomial𝑇 ∈ 𝑅(︀𝑋 ⌋︀, then the 𝑅-subalgebra 𝑅(︀𝛼⌋︀ ⊆
𝒪 is isomorphic to 𝑅(︀𝑋 ⌋︀⇑∐︀𝑇 ̃︀. If 𝑇 satisfies the Dedekind
criterion at 𝜋 and 𝒪′ has rank equal to deg(𝑇 ), then 𝑅(︀𝛼⌋︀,
and hence 𝒪, is 𝜋-maximal. Yet, for a number field 𝐾 , the
hope of using the Dedekind criterion to prove 𝑝-maximality
of its ring of integers at every prime 𝑝 soon fades. While
this criterion always applies if 𝒪𝐾 is monogenic, in some
number fields the index (︀𝒪𝐾 ∶ Z(︀𝛼⌋︀⌋︀ is divisible by a fixed
prime for all 𝛼 ∈ 𝒪𝐾 . Dedekind gave an example of this [19].

5.6 The Non-monogenic Case
In this section, we introduce a certificate for local maximality
which can be used even if the Dedekind criterion does not
apply. We specialize to 𝑅 = Z, our main interest. Our formal-
ization efforts were primarily focused on this case, with F𝑝
modeled as ZMod p. However, we formalized many theo-
rems about semilinear maps (introduced in Lean in [22]) and
their kernels –which we use extensively– in a more general
setting, laying the groundwork for future extensions.
The strategy used in the Round-2 algorithm is to reduce

the computation of 𝐼𝑝 and 𝑟(𝐼𝑝) to a computation in linear
algebra over the field F𝑝 . We will use an analogous strategy
to certify 𝑝-maximality by verifying that the kernel of certain
linear map is trivial. Let 𝒪 be a commutative ring which is

free as a Z-module and of finite rank 𝑟 , and let 𝑝 be a prime
number. The quotient ring 𝒪⇑𝑝𝒪 is a finite dimensional F𝑝 -
algebra. Similarly, the quotient 𝐼𝑝⇑𝑝𝐼𝑝 is a finite dimensional
F𝑝 -module (albeit not an F𝑝 - algebra). Consider the map from
𝒪⇑𝑝𝒪 to the F𝑝 -linear endomorphisms of 𝐼𝑝⇑𝑝𝐼𝑝 .

𝜑 ∶ 𝒪⇑𝑝𝒪 → End(𝐼𝑝⇑𝑝𝐼𝑝) (3)

𝛼 ↦ (𝛽 → 𝛼𝛽)
This is the map in [17, Lemma 6.1.7], it is well defined and
F𝑝-linear. The following proposition follows directly from
the definitions of the multiplier ring and the radical 𝐼𝑝 and
will be the basis for our certificate of 𝑝-maximality.

Proposition 5.4. Let 𝐾 be Z-torsion-free ring containing 𝒪.
If the kernel of the map 𝜑 in (3) is trivial, then 𝑟(𝐼𝑝) = 𝒪.

When 𝐾 is a Q-algebra, this is an if-and-only-if statement.
If 𝒪′ is a subring of 𝐾 containing 𝒪 and of equal rank, then
the previous proposition togetherwith Theorem (5.1) ensures
that 𝒪 is 𝑝-maximal if the kernel of 𝜑 is trivial. Therefore,
finding a way to certify that 𝜑 has trivial kernel becomes our
main goal.
To define (3) in Lean, we need to endow both 𝐼𝑝⇑𝑝𝐼𝑝 and

𝒪⇑𝑝𝒪with an F𝑝 -module structure. However, these quotient
constructions are not exactly the same. If we want Lean to
automatically infer that 𝒪⇑𝑝𝒪 has a CommRing instance,
the quotient 𝒪⇑𝑝𝒪 should be constructed with 𝑝𝒪 of type
Ideal 𝒪 (which is definitionally equal to Submodule 𝒪 𝒪).
However, since 𝐼𝑝 is not a ring (it lacks a one), 𝑝𝐼𝑝 cannot be
treated as an ideal of 𝐼𝑝 .
To unify these two constructions, we model 𝑀⇑𝑛𝑀 for

any abelian additive group𝑀 and a non-zero natural 𝑛, by
using a ring 𝑅 as a parameter (such that𝑀 is an 𝑅-module)
and considering the quotient as a quotient of 𝑅-modules. We
represent it asM / (n : R) ⋅ (⊺ : Submodule R M ), where ⊺ is
𝑀 viewed as a submodule of itself. We then define:
instance module_modp_is_zmodp_module
(R M : Type∗) (n : N)[Module R M] [NeZero n] :

Module (ZMod n) (M / (n : R) ⋅ ⊺) :=
Thus, 𝐼𝑝⇑𝑝𝐼𝑝 (taking 𝑀 = 𝐼𝑝 and 𝑅 = Z) and 𝑂⇑𝑝𝑂 (taking
𝑀 = 𝒪 and 𝑅 = 𝒪) are both special cases of this construction,
allowing Lean to infer an F𝑝 -module instance for each. Fur-
thermore, Lean will automatically synthesize a CommRing
instance for𝒪⇑𝑝𝒪, which we then use to give it a F𝑝 -algebra
structure. Another advantage of this unified approach is that
we can define associated objects –such as a Z⇑𝑛Z-basis for
𝑀⇑𝑛𝑀 given a Z-basis for 𝑀– and apply it to both cases.
We also provide DistribMulAction and SMulCommClass in-
stances that act as a shortcut for typeclass inference, and
thereby prevent a timeout in downstream code.
To define map (3) in Lean, we used multiple steps. First,

for a parameter (α : 𝒪), we defined the map 𝐼𝑝 → 𝐼𝑝⇑𝑝𝐼𝑝
sending 𝛽 ↦ 𝛼𝛽 . UsingQuotient.lift we lifted this to a map
𝐼𝑝⇑𝑝𝐼𝑝 → 𝐼𝑝⇑𝑝𝐼𝑝 . This was bundled with its proofs of linearity
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into a linear function, giving an element in End(𝐼𝑝⇑𝑝𝐼𝑝).
After defining the corresponding map 𝒪 → End(𝐼𝑝⇑𝑝𝐼𝑝),
lifting again, and proving linearity, we obtain:
def map_to_end_lin (𝒪 : Type∗) [CommRing 𝒪]
(p : N) [Fact (Nat.Prime p)] :
𝒪 / ↑p ⋅ ⊺ →l[ZMod p] ↥(Ideal.radical (↑p ⋅ ⊺)) / ↑p ⋅ ⊺
→l[ZMod p] ↥(Ideal.radical (↑p ⋅ ⊺)) / ↑p ⋅ ⊺ := . . .

The arrows have the following meanings. The expres-
sion ↑p appearing in 𝒪 / ↑p ⋅ ⊺ and Ideal.radical (↑p ⋅ ⊺) de-
notes the coercion of p : N into 𝒪. The arrow ↥ coerces
Ideal.radical (↑p ⋅ ⊺) into a type. Lastly, the rightmost appear-
ance of ↑p in (Ideal.radical (↑p ⋅ ⊺)) / ↑p ⋅ ⊺ is the coercion of
p : N into Z.

Formally, Proposition 5.4 reads:
theorem

mult_ring_eq_ring_of_trivial_ker_map_to_end_lin
{K : Type∗} [CommRing K] [NoZeroSMulDivisors Z K]
(𝒪 : Subalgebra Z K) (p : N) [hpI : Fact (Nat.Prime p)]
(hk : LinearMap.ker (map_to_end_lin ↥𝒪 p) = ⊥) :
𝒪 = multiplierRing (Ideal.span {↑p}).radical :=
Let us return to the matter of certifying that the kernel

of 𝜑 is trivial. Given a Z-basis for an abelian additive group
𝑀 , we obtain a Z⇑𝑛Z-basis for𝑀⇑𝑛𝑀 by mapping it through
the 𝜎-semilinear map𝑀 →𝑀⇑𝑛𝑀 , with 𝜎 ∶ Z→ Z⇑𝑛Z. With
these bases, the image of an element in 𝑀 represented by
(𝑥1, . . . , 𝑥𝑟 ) ∈ Z𝑟 will have coordinates (𝑥1, . . . , 𝑥𝑟 ) ∈ (Z⇑𝑛Z)𝑟
in𝑀⇑𝑛𝑀 . In this way, we obtain an F𝑝 -basis for𝒪⇑𝑝𝒪 from a
Z-basis for𝒪. Finding an F𝑝 -basis for 𝐼𝑝⇑𝑝𝐼𝑝 is more complex.
We will make use of the Frobenius endomorphism Frob𝑝 ,
which, in a ring of characteristic 𝑝 , is the F𝑝-linear map
𝑥 ↦ 𝑥𝑝 . For 𝑡 ∈ N, the iterated Frobenius endomorphism
Frob𝑡𝑝 sends 𝑥 ↦ 𝑥𝑝

𝑡

. The image of 𝐼𝑝 under the quotient
map 𝒪 → 𝒪⇑𝑝𝒪 is 𝐼𝑝⇑𝑝𝒪, an F𝑝-subspace of 𝒪⇑𝑝𝒪. The
following proposition lets us realize 𝐼𝑝⇑𝑝𝒪 as the kernel of
a linear map:

Proposition 5.5. Let 𝑡 be an integer such that 𝑟 ≤ 𝑝𝑡 . The
kernel of Frob𝑡𝑝 ∶ 𝒪⇑𝑝𝒪 → 𝒪⇑𝑝𝒪 is equal to 𝐼𝑝⇑𝑝𝒪.

While we could theoretically find a matrix representation
for this map, an algorithm for computing the kernel of a
matrix has not yet, as far as we know, been implemented in
Lean. However, we can certify that a given set of elements
in 𝒪⇑𝑝𝒪 is a basis for the kernel of Frob𝑡𝑝 as follows:
Denote by 𝑥 the image in 𝒪⇑𝑝𝒪 of 𝑥 in 𝒪. Provide mul-

tisets 𝒱 = {𝑣1, . . . , 𝑣𝑚} and𝒲 = {𝑤1, . . . ,𝑤𝑛} with elements
in 𝒪 –where 𝑟 = 𝑚 + 𝑛– such that 𝒱 = {𝑣1, . . . , 𝑣𝑚} and
𝒰 = {Frob𝑡𝑝(�̄�1), . . . , Frob𝑡𝑝(�̄�𝑛)} are F𝑝-linearly indepen-
dent and Frob𝑡𝑝(𝑣𝑖) = 0 for all 𝑖 . By a dimension argument,
this guarantees that {𝑣1, . . . , 𝑣𝑚} is an F𝑝 -basis for the kernel
of Frob𝑡𝑝 – and thus for 𝐼𝑝⇑𝑝𝒪.
We can represent 𝒱 as an𝑚 × 𝑟 matrix over F𝑝 , the rows

being the coordinates of the elements in 𝒱 with respect to

the basis for𝒪⇑𝑝𝒪. Since we are working over a field, we can
choose the elements in 𝒱 so that the corresponding matrix
is in reduced row echelon form. The linear independence
of 𝒱 can then be read off directly, without any determinant
calculation (which is rather slow using the current Lean
implementation). Similarly, the right choice of𝒲 will make
the linear independence of 𝒰 immediate to determine.

With the 𝑣𝑖 and𝑤𝑖 as above, it can be shown that

{𝑣1, . . . , 𝑣𝑚, 𝑝𝑤1, . . . , 𝑝𝑤𝑛} ⊆ 𝐼𝑝⇑𝑝𝐼𝑝 (4)

is an F𝑝 -basis for 𝐼𝑝⇑𝑝𝐼𝑝 , with 𝑦 the image of 𝑦 ∈ 𝐼𝑝 in 𝐼𝑝⇑𝑝𝐼𝑝 .
Many different quotients and reductions come into play

in this last statement, this made our initial formalization
attempt quite challenging. To address this, we proved it in
a more general setting as basisSubmoduleModOfBasisMod.
Instead of using the quotient construction, we worked with
general types endowed with the appropiate instances, incor-
porating surjective maps with conditions on their kernels.
This approach also allowed the construction to type-check
faster. The result is a term of type Basis (Fin m ⊕ Fin n) S J
(in this case, 𝐽 models 𝐼𝑝⇑𝑝𝐼𝑝 and 𝑆 corresponds to F𝑝 ).

Using Fin m ⊕ Fin n as the index type, which is the dis-
joint union of Fin m and Fin n, mimics our informal descrip-
tion and makes it more convenient to work with.

With a basis for 𝐼𝑝⇑𝑝𝐼𝑝 , we can now represent an element
in this space as an 𝑟 -tuple, and an element in End(𝐼𝑝⇑𝑝𝑝) as
an 𝑟 × 𝑟 matrix over F𝑝 . To certify that the kernel of the map
𝜑 in (3) is trivial, we can provide a multiset 𝒳 = {𝑥1, . . . , 𝑥𝑟}
of elements in 𝒪 such that 𝜑(𝒳 ) = {𝜑(𝑥1), . . . , 𝜑(𝑥𝑟 )} is
linearly independent. This last verification can be simplified
by observing that, generically, we expect to find an element
𝛽𝑊 ∈ 𝐼𝑝⇑𝑝𝐼𝑝 such that {𝜑(𝑥1)(𝛽𝑊 ), . . . , 𝜑(𝑥𝑟 )(𝛽𝑊 )} is lin-
early independent. This 𝛽𝑊 acts as a witness of the linear
independence of 𝜑(𝒳 ). Furthermore, we can choose 𝒳 in
a way that makes the linear independence of the multiset
easy to verify. This leads us to the following certificate for
𝑝-maximality.

Certificate. Consider𝒪 and𝒪′ subalgebras of aZ-torsion-
free commutative ring such that 𝒪 ⊆ 𝒪′, and both of rank
𝑟 . Let ℬ = {𝑏1, . . . , 𝑏𝑟} be a Z-basis for 𝒪. Let 𝑚,𝑛 and 𝑡
be non-negative integers with 𝑟 = 𝑚 + 𝑛 and 𝑟 ≤ 𝑝𝑡 . A
certificate for 𝑝-maximality consists of the following data:

● 𝑚 × 𝑟 matrix 𝒱 over Z
● 𝑛 × 𝑟 matrix𝒲 over Z
● 𝑛 × 𝑟 matrix 𝒰 over F𝑝
● 𝑚-tuple 𝜈 over Z>0
● 𝑛-tuple 𝜔 over Z>0

● 𝑟 × 𝑟 matrix 𝒳 over Z
● 𝑚-tuple 𝛽 over Z
● 𝑛-tuple 𝛾 over Z
● 𝑟 ×𝑚 matrix a over Z
● 𝑟 × 𝑛 matrix c over Z

● 𝑟 -tuple 𝜂 over the disjoint union 𝐴 ⊔ 𝐵 with
𝐴 = {1, . . . ,𝑚} and 𝐵 = {1, . . . , 𝑛}.

For an integer 𝑠 , let 𝑠 be its reduction modulo 𝑝 in F𝑝 . For 𝑏
in 𝒪, let 𝑏 be its reduction in 𝒪⇑𝑝𝒪. For verification, check
that:

(i) For all 𝑖 , 𝒱𝑖𝜈𝑖 ≠ 0 and 𝒱 𝑗𝜈𝑖 = 0 for all 𝑗 ≠ 𝑖 .
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(ii) For all 𝑖 , 𝒰𝑖𝜔𝑖
≠ 0 and 𝒰𝑗𝜔𝑖

= 0 for all 𝑗 ≠ 𝑖 .
(iii) For all 𝑖 ,

● if 𝜂𝑖 is in 𝐴: 𝑎𝑖𝜂𝑖 ≠ 0 and ∀ 𝑗 ≠ 𝑖 , 𝑎 𝑗𝜂𝑖 = 0;
● if 𝜂𝑖 is in 𝐵: 𝑐𝑖𝜂𝑖 ≠ 0 and ∀ 𝑗 ≠ 𝑖 , 𝑐 𝑗𝜂𝑖 = 0.

(iv) For all 𝑖 , (∑𝑗 𝒱𝑖 𝑗 ⋅ 𝑏 𝑗)𝑝
𝑡 = 0.

(v) For all 𝑖 , (∑𝑗𝒲𝑖 𝑗 ⋅ 𝑏 𝑗)𝑝
𝑡 = ∑𝑗 𝒰𝑖 𝑗 ⋅ 𝑏 𝑗 .

(vi) For all 𝑖 :

(∑𝑗 𝒳𝑖 𝑗 ⋅𝑏 𝑗)(∑𝑘 (𝛽𝑘 ⋅∑𝑗 𝒱𝑘 𝑗 ⋅ 𝑏 𝑗)+∑𝑘 (𝑝𝛾𝑘 ⋅∑𝑗𝒲𝑘 𝑗 ⋅ 𝑏 𝑗))
= ∑𝑘 (𝑎𝑖𝑘 ⋅∑𝑗 𝒱𝑘 𝑗 ⋅ 𝑏 𝑗) +∑𝑘 (𝑝𝑐𝑖𝑘 ⋅∑𝑗𝒲𝑘 𝑗 ⋅ 𝑏 𝑗) .

The rows of 𝒳 , 𝒱 and𝒲 represent elements in 𝒪 as re-
marked before. The matrix 𝒰 represents elements in 𝒪⇑𝑝𝒪.
Statement (i) and (ii) prove that 𝒱 and 𝒰 are linearly inde-
pendent. This, together with (iv) and (v) guarantee that the
collection as in (4) is a basis for 𝐼𝑝⇑𝑝𝐼𝑝 . The tuples 𝛾 and 𝛽
give the coordinates of a witness element 𝛽𝑊 in 𝐼𝑝⇑𝑝𝐼𝑝 with
respect to this basis. Statement (vi) together with (iii) imply
that {𝜑(𝑥1)(𝛽𝑊 ), . . . , 𝜑(𝑥𝑟 )(𝛽𝑊 )} is linearly independent,
establishing the 𝑝-maximality of 𝒪.
We formalized this certification scheme in Lean as:

structure MaximalOrderCertificateWLists
{K : Type∗} [CommRing K] [NoZeroSMulDivisors Z K]
(p : N) [hpI : Fact $ Nat.Prime p] (𝒪 : Subalgebra Z K)
(𝒪′ : Subalgebra Z K) (hm : 𝒪 ≤ 𝒪′) where . . .

It includes as part of its fields a term of type TimesTable
(Fin (m + n)) Z 𝒪, a term of type Basis (Fin (m + n)) Z 𝒪′
(which we do not know explicitly, of course, but serves as
a proof that, as a Z-module, 𝒪′ is free, finite and has rank
𝑟 ), and the certifying data described earlier, together with
proofs of the verification statements.

The statements (iv), (v), and (vi), which involve 𝑟 identities
in 𝒪⇑𝑝𝒪 and 𝑟 in 𝒪, are stated in terms of lists over F𝑝 and
Z, respectively, as described in Section 5.2. The proofs can
then be solved using decide and/or decide!. From a term of
this type, we get a proof of piMaximal ↑p 𝒪∗.
In case a witness 𝛽𝑊 does not exist or cannot be found,

we formalized a longer certification scheme for which a
certificate always exists when 𝐾 is a number field, 𝒪′ = 𝒪𝐾 ,
and 𝒪 is 𝑝-maximal. This requires verifying 𝑟 2 identities in
𝒪. For details, we refer to Appendix A. Additionally, in cases
where𝑚 = 0 (corresponding to 𝑝 being unramified in 𝐾) a
simplified certificate is available.
We wrote CertificatePMaximalityF in SageMath, to

compute these certificates and write the corresponding Lean
term.

5.7 Global Maximality
Here, we describe how we can automatically generate a Lean
proof of𝒪 = 𝒪𝐾 using the certificates previously introduced.

Let𝐾 be the number field obtained by adjoining a root 𝜃 of
the monic irreducible polynomial𝑇 in Z(︀𝑋 ⌋︀. We aim to verify
that a subalgebra 𝒪, with an explicitly given basis, is equal

to 𝒪𝐾 . Since 𝑇 is separable, we can find 𝑎,𝑏 ∈ Z(︀𝑋 ⌋︀ such
that 𝑎𝑇 + 𝑏𝑇 ′ = 𝑛 for some nonzero integer 𝑛. If 𝑝 does not
divide 𝑛, then 𝑇 (mod 𝑝) is squarefree and it easily follows
that𝑇 satisfies the Dedekind criterion at 𝑝 . Given 𝜃 ∈ 𝒪, this
gives a quick way to prove 𝑝-maximality of 𝒪 for all but
finitely many primes 𝑝 (those dividing 𝑛). In fact,𝑇 may still
satisfy the criterion for some of these primes. For the rest,
the certificates in Section 5.6 can be used, leading to a proof
of 𝒪 = 𝒪𝐾 .
We wrote a SageMath function, called LeanProof, that

takes as input an irreducible andmonic polynomial𝑇 ∈ Z(︀𝑋 ⌋︀,
a Z-basis {𝑤𝑖}𝑖 for the ring of integers of𝐾 = Q(︀𝑋 ⌋︀⇑∐︀𝑇 ̃︀, and
outputs a Lean proof of :

𝒪 = NumberField.RingOfIntegers K

where𝐾 is AdjoinRoot (map (algebraMap Z Q) T) , and𝒪 is
the subalgebra of 𝐾 with integral basis {𝑤𝑖}𝑖 , constructed as
in Section 5.1. The proof of irreducibility of𝑇 is generated as
in Section 4. Lean can then infer a NumberField K instance.
The term NumberField.RingOfIntegers K is simply the coer-
cion of IntegralClosure Z K into a type. As mentioned, while
generating Lean code from SageMath was sufficient for our
purposes, tighter integration between the CAS and Lean
remains an interesting direction for future work.
The previous approach avoids any computation of the

discriminant (defined in the next section) in Lean. However,
a proof of the discriminant of𝒪, and consequently of 𝐾 , can
help narrow down the primes one needs to check. These
concept, and its computation, are the subject of the next
section.

6 Resultants and Discriminants
The goal of this section is to provide a method for comput-
ing the discriminant of an integral basis of 𝒪. Consider an
𝑅-algebra 𝐴 with a finite 𝑅-basis. Given an element 𝑥 ∈ 𝐴,
the map 𝑦 ↦ 𝑥𝑦 is an 𝑅-linear map, and thus can be repre-
sented as a matrix with entries in 𝑅. The trace of this matrix,
which is independent of the choice of basis, is known as
the trace of 𝑥 and denoted by Tr𝐴⇑𝑅(𝑥). For a collection
of elements 𝑎1, . . . , 𝑎𝑛 of 𝐴, its discriminant is defined by
disc(𝑎1, . . . , 𝑎𝑛) = det(Tr𝐴⇑𝑅(𝑎𝑖𝑎 𝑗))𝑖 𝑗 . When we started our
project, Mathlib already contained this definition.

If𝐾 = Q(𝛼) is a number field of degree𝑛 and𝒪 is a subring
which is free of rank 𝑛 as a Z-module, we define disc(𝒪) ∈ Z
as the discriminant of aZ-basis for𝒪. In particular, disc(𝒪𝐾)
is known as the discriminant of the number field 𝐾 and it
is an important arithmetic invariant encoding information
about 𝐾 . If 𝛼 ∈ 𝒪, then we have

disc(1, 𝛼, . . . , 𝛼𝑛−1) = (︀𝒪 ∶ Z(︀𝛼⌋︀⌋︀2 ⋅ disc(𝒪). (5)

The index (︀𝒪 ∶ Z(︀𝛼⌋︀⌋︀ can be determined from an explicit
basis for 𝒪 in terms of 𝛼 . Knowing the discriminant of the
power basis 1, 𝛼, . . . , 𝛼𝑛−1 then allows us to compute disc(𝒪).
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More generally, let 𝐾 = 𝐹(𝛼) be a finite separable field
extension of 𝐹 (e.g. 𝐾 a number field and 𝐹 = Q). Letting the
conjugate roots of 𝛼 in the algebraic closure be numbered
𝛼1, . . . , 𝛼𝑛 , then the discriminant of 1, 𝛼, . . . , 𝛼𝑛−1 is equal to
∏𝑖∏𝑗>𝑖(𝛼 𝑗 −𝛼𝑖)2. This result was already available in Math-
lib. However, the value of the discriminant is not directly
computable. Thus, we define a computable notion of discrim-
inant for an explicitly given polynomial.
In the remainder of this section, let 𝑅 be an integral do-

main, 𝑓 ,𝑔 be polynomials of degree𝑛 and𝑚 respectively with
coefficients given by 𝑓 (𝑋) = 𝑎𝑛𝑋𝑛 + ⋯ + 𝑎1𝑋 + 𝑎0 ∈ 𝑅(︀𝑋 ⌋︀
and 𝑔(𝑋) = 𝑏𝑚𝑋𝑚 + ⋯ + 𝑏1𝑋 + 𝑏0 ∈ 𝑅(︀𝑋 ⌋︀. Our path to-
wards formalized computation of the discriminant starts
with the resultant Res(𝑓 ,𝑔) defined as the determinant of
the Sylvester matrix of dimension (𝑚 + 𝑛) × (𝑚 + 𝑛), deter-
mined by the coefficients of 𝑓 and 𝑔 (see [30, IV, §8] for a
transposed version with 𝑓 and 𝑔 interchanged and coeffi-
cients reversed); we work out an example in Appendix B. Let
𝑓 be a polynomial with formal derivative 𝑓 ′, then Res(𝑓 , 𝑓 ′)
is divisible by the leading coefficient 𝑎𝑛 of 𝑓 ; one sees this
by inspection of the last row of the Sylvester matrix, which
contains two nonzero entries: 𝑎𝑛 and 𝑛𝑎𝑛 . We define the dis-
criminant of a polynomial 𝑓 with leading coefficient 𝑎𝑛 such
that 𝑎𝑛 Disc(𝑓 ) = (−1)𝑛(𝑛−1)⇑2 Res(𝑓 , 𝑓 ′), by modifying the
Sylvester matrix to divide the last row by 𝑎𝑛 , and multiplying
the determinant of this modified matrix by the desired sign.

Our definition of the resultant allows for direct evaluation,
but we need the relation to the discriminant of a power basis.
The main theorem we proved expresses the resultant of two
polynomials in terms of their roots:

Theorem 6.1. Let 𝑓 ,𝑔 ∈ 𝑅(︀𝑋 ⌋︀ be polynomials and assume
they split completely: 𝑓 (𝑋) = 𝑎𝑛∏𝑖(𝑋 − 𝛼𝑖) and 𝑔(𝑋) =
𝑏𝑚∏𝑖(𝑋 − 𝛽𝑖), then:

Res(𝑓 ,𝑔) = 𝑎𝑚𝑛 𝑏𝑛𝑚∏
𝑖

∏
𝑗

(𝛼𝑖 − 𝛽 𝑗).

Note that the assumption of Theorem 6.1 always applies
after mapping 𝑓 and 𝑔 to the algebraic closure of the fraction
field of 𝑅, and this map will preserve the resultant, so we will
assume that 𝑓 and 𝑔 split completely. It then follows from
the product rule and elementary algebraic manipulations
that, for 𝑓 monic with roots 𝛼𝑖 ,∏𝑖∏𝑗>𝑖(𝛼 𝑗 −𝛼𝑖)2 = Disc(𝑓 ).
Since the former term is shown in Mathlib to equal the dis-
criminant of the power basis 1, . . . , 𝛼𝑛−1, and the latter term
is computable, this gives us a way to compute, given a basis
for 𝒪𝐾 and using (5), the discriminant of a number field.
It remains to prove Theorem 6.1. We first showed that

for two homogeneous polynomials 𝑝,𝑞 ∈ 𝑅(︀𝑥,𝑦, . . . , 𝑧⌋︀ of
the same degree: if 𝑝 divides 𝑞, then they are equal up to
a multiplicative constant: 𝑞 = 𝑐𝑝 for 𝑐 ∈ 𝑅. This required
formalizing a substantial amount of preliminaries in the
theory of (homogeneous) multivariate polynomials.

Next, we may take 𝑓 and 𝑔 monic and view Res(𝑓 ,𝑔) and
∏𝑖∏𝑗(𝛼𝑖 − 𝛽 𝑗) as polynomials in 𝑅(︀𝛼1, . . . , 𝛼𝑛, 𝛽1, . . . , 𝛽𝑚⌋︀.

We showed that these are indeed homogeneous polynomials,
of degree 𝑚𝑛, where an essential ingredient was charac-
terizing the homogeneous polynomials 𝑝 ∈ 𝑅(︀𝑥,𝑦, . . . , 𝑧⌋︀ as
those polynomials where 𝑝(𝑐𝑥, 𝑐𝑦, . . . , 𝑐𝑧) = 𝑐𝑘𝑝(𝑥,𝑦, . . . , 𝑧),
assuming 𝑅 is infinite. The coefficient of (𝛼1𝛼2⋯𝛼𝑛)𝑚 in
Res(𝑓 ,𝑔) and in ∏𝑖∏𝑗(𝛼𝑖 − 𝛽 𝑗) equals 1, so if the two ex-
pressions are equal up to multiplication by 𝑐 , we must have
𝑐 = 1 and the expressions are actually equal.

Finally, our approach to showing∏𝑖∏𝑗(𝛼𝑖 − 𝛽 𝑗) divides
Res(𝑓 ,𝑔) was by showing 𝛼𝑖 − 𝛽 𝑗 divides Res(𝑓 ,𝑔) for each
𝑖, 𝑗 . We proved that the latter statement is equivalent, un-
der the condition that 𝑅 is infinite, to the statement that
Res(𝑓 ,𝑔) = 0 if 𝑓 and 𝑔 share a root. To show the latter state-
ment, we considered the 𝑅-linear map (𝑝,𝑞) ↦ (𝑝𝑓 + 𝑞𝑔)
on the subspace 𝑀 = {(𝑝,𝑞) ∈ 𝑅(︀𝑋 ⌋︀ × 𝑅(︀𝑋 ⌋︀ ⋃︀ deg𝑝 <
𝑚 anddeg𝑞 < 𝑛}, and computed that the determinant of
this map is exactly equal to the resultant. If 𝑓 and 𝑔 have
a common root, then (𝑝,𝑞) ↦ (𝑝𝑓 + 𝑞𝑔) has a nontrivial
kernel, so the determinant is zero.

Although this approach does not differ significantly from
one found in textbooks such as Lang’s Algebra [30], a par-
ticular source of difficulty we had to deal with was the text-
books’ implicitly shifting point of view between different
polynomial rings. For example, Lang argues that Res(𝑓 ,𝑔) is
homogeneous of degree𝑚 as a polynomial in 𝑅(︀𝑎0, . . . , 𝑎𝑛⌋︀
and of degree 𝑛 as a polynomial in 𝑅(︀𝑏0, . . . , 𝑏𝑚⌋︀, but that
𝛼𝑖 − 𝛽 𝑗 divides Res(𝑓 ,𝑔) in 𝑅(︀𝛼1, . . . , 𝛼𝑛, 𝛽1, . . . , 𝛽𝑚⌋︀. Rather
than having to repeat the boilerplate involved with a change
of rings repeatedly throughout our proofs, we chose to adapt
the proofs from the literature to remain within one ring. Our
formalization works exclusively in the polynomials
𝑅(︀𝛼1, . . . , 𝛼𝑛, 𝛽1, . . . , 𝛽𝑚⌋︀. For example, polynomials that are
expressed in terms of 𝑎0, . . . , 𝑎𝑛, 𝑏0, . . . , 𝑏𝑚 can be translated
to 𝑅(︀𝛼1, . . . , 𝛼𝑛, 𝛽1, . . . , 𝛽𝑚⌋︀ using the monadic bind opera-
tor [18], since each coefficient𝑎𝑖 can be given as a polynomial
in the roots 𝛼 𝑗 .
To evaluate discriminants, we use the Polynomial.ofList

definition of Section 4.1. Expressions such as resultant (ofList
[5, 4, 3, 2, 1]) (ofList [4, 6, 6, 4]) are computable, althoughwe
run into a subsequent error: the implementation of deter-
minants in Mathlib is not optimized for computation and
therefore causes a stack overflow. However, we were still able
to compute the discriminant of degree 3 polynomials such
as 𝑓 = 𝑋 3 −30𝑋 −80 and, after formally verifying an integral
basis for the ring of integers of 𝐾 = Q(︀𝑋 ⌋︀⇑∐︀𝑓 ̃︀, proved
theorem K_discr : NumberField.discr K = −16200 := . . .

7 Formally Verifiying LMFDB Entries
A popular publicly available online database containing num-
ber theoretic data is the L-functions and modular forms data-
base (LMFDB) [34]. It gathers data from various sources, rely-
ing on several programming languages and CASes. Much of
the data is currently beyond the reach of formalization, but
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our workmakes it possible to formally verify some nontrivial
entries for number fields of arbitrary degree. In particular, we
focus on checking the integral basis for a choice of number
fields up to degree 8. To a lesser extent, we also compute
the corresponding discriminant, but only up to degree 3, as
our computational methods are currently still under develop-
ment. At this point the aim is not to formally verify integral
bases and discriminants for a large fraction of the LMFDB,
but to show the feasibility, and current computational limits,
of the approach.
Concretely, there are 142 number fields in the LMFDB

which are of degree 5, unramified outside 2, 3, 5, and have
(to focus on complications) non-monogenic ring of integers.
(This list, up to isomorphism, is complete, but this is not our
concern here.) For all these 142 number fields we successfully
used our tools to formally verify the given integral basis.
The most time-consuming step when checking these proofs
appears to be the exponentiation step in the certificates of
Section 5.6. We recall that this is done with repeated squaring
and multiplication. Using a virtual machine running an AMD
EPYC 7B13 processor (2.45 GHz) and 16GB of RAM, each
ring of integers took, on average, around 33 seconds to check.
Approximately 14% of that time is spent on the irreducibility
proof for the defining polynomial. Replacing decide and
decide! with native_decide whenever possible reduces the
overall checking time by about 20%. During development, we
encountered a couple of examples that required more than
the default number of maximum heartbeats (200,000) for
type-checking, and the proofs had to be manually adjusted.
This was resolved after a Mathlib update.

As our discriminant computations cannot yet handle large
degrees, we also tested degree 3 cases. There are 7 number
fields in the LMFDB which are of degree 3, unramified out-
side 2, 3, 5, and have non-monogenic ring of integers. For
all these number fields we successfully formally verify the
given integral basis as well as the discriminant. We note that
in all of these cases, the longer form of the certificate for 𝑝-
maximality (given in detail in Appendix A) had to be used. In
contrast, for all of degree 5 examples except one, the shorter
certificate with a witness was sufficient. In this case, each
ring of integers took, on average, around 28 seconds to check.
Using native_decide decreases this time by around 10%.
We also successfully verified a degree 6 example and a

simpler degree 8 example. Both took around 48 seconds to
check. For these, native_decide reduces the checking time
by 61% and 32%, respectively.

8 Discussion
8.1 Future Work
The discriminant computations should be improved. At this
point, these are directly computed from the corresponding re-
sultant. For repeated use of discriminant evaluation of a fixed
degree, general formulae for the discriminant of a degree 𝑛

polynomial should be formalized, up to some ‘reasonable’ 𝑛.
The computations for the ring of integers are in a more ad-
vanced stage, though further optimization is needed to deal
with higher degrees in order to be able to cover all number
fields from the LMFDB. We note that much of the mathemati-
cal foundation is formalized in enough generality to allow for
possible extension to more general contexts. Although not
essential for database verification – since all necessary Lean
files can be generated in advance– integrating SageMath and
Lean, for instance by calling our SageMath scripts directly
from Lean, could be convenient for on-demand computa-
tions. Finally, certifying other fundamental invariants, such
as class groups and unit groups, would be very interesting.
While these would constitute completely new projects, they
could build on the formalized rings of integers.

8.2 Related Work
As mentioned above, some rings of integers for quadratic
number fields have been formalized before [5]; this concerns
both the determination as well as concrete computation. Spe-
cific instances, such as the Gaussian integers Z(︀𝑖⌋︀, have been
considered in various systems; see e.g. [23, 25]. Mathemat-
ical certificates outside of algebraic number theory have
received much attention. Some examples relevant for (gen-
eral) number theory and computer algebra include [35, 43].
Previous work bridging Lean with Computer Algebra Sys-
tems includes the tactics polyrith, written by Dhruv Bhatia,
and sageify [5], both of which integrate with SageMath. Ad-
ditionally, [32, 33] develop a connection between Lean and
Mathematica. The use of a proof assistant as a CAS itself has
also been explored in prior work. In [20], efficient algorithms
in linear algebra and polynomial arithmetic are implemented
and verified in Coq. Similarly, [2, 3] implements various lin-
ear algebra algorithms in Isabelle/HOL.

8.3 Conclusions
We have successfully built tools to formally verify rings of
integers in number fields of, in principle, arbitrary degree,
as well as set up the basis for computing discriminants. This
represents a step towards bridging the gap between tradi-
tional Computer Algebra Systems and formal verification.
Developing some of the actual certification schemes, espe-
cially for the ring of integers, required several new ideas.
While the formalization of the mathematical theory proved
challenging at times, a major part of the effort involved trans-
lating the abstract mathematical concepts and results into a
representation suitable for computation.

In total, for our developments, we wrote about 13000 lines
of Lean code. Our SageMath scripts automatically generated
about 32000 lines of Lean code (excluding the alternative
code containing native_decide) to perform the certifications
we considered.

With these kind of projects, it is very hard to reliably
measure the De Bruijn factor.
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A Certificate for 𝑝-maximality
The following certificate is guaranteed to always exist if 𝐾
is a number field, 𝒪′ = 𝒪𝐾 , and 𝒪 is 𝑝-maximal.

Certificate
Consider 𝒪 and 𝒪′ subalgebras of a Z-torsion-free com-
mutative ring such that 𝒪 ⊆ 𝒪′, and both of rank 𝑟 . Let
ℬ = {𝑏1, . . . , 𝑏𝑟} be a Z-basis for 𝒪. Let𝑚,𝑛 and 𝑡 be non-
negative integers with 𝑟 =𝑚 + 𝑛 and 𝑟 ≤ 𝑝𝑡 . A certificate for
𝑝-maximality consists of the following data:

● 𝑚 × 𝑟 matrix 𝒱 over Z
● 𝑛 × 𝑟 matrix𝒲 over Z
● 𝑛 × 𝑟 matrix 𝒰 over F𝑝
● 𝑚-tuple 𝜈 over Z>0
● 𝑛-tuple 𝜔 over Z>0

● 𝑟 × 𝑟 matrix 𝒳 over Z
● 𝑟 ×𝑚 ×𝑚 array a over Z.
● 𝑟 ×𝑚 × 𝑛 array c over Z.
● 𝑟 × 𝑛 ×𝑚 array d over Z.
● 𝑟 × 𝑛 × 𝑛 array e over Z.

● 𝑟 pairs (𝜂𝑖 , 𝜂′𝑖)with 𝜂′𝑖 and 𝜂𝑖 in the disjoint union𝐴⊔𝐵
with 𝐴 = {1, . . . ,𝑚} and 𝐵 = {1, . . . , 𝑛}

For an integer 𝑠 , let 𝑠 be its reduction modulo 𝑝 in F𝑝 . For 𝑏
in 𝒪, let 𝑏 be its reduction in 𝒪⇑𝑝𝒪. For verification, check
that:

(i) For all 𝑖 , 𝒱𝑖𝜈𝑖 ≠ 0 and 𝒱 𝑗𝜈𝑖 = 0 for all 𝑗 ≠ 𝑖
(ii) For all 𝑖 , 𝒰𝑖𝜔𝑖

≠ 0 and 𝒰𝑗𝜔𝑖
= 0 for all 𝑗 ≠ 𝑖

(iii) For all 𝑖 ,
● If 𝜂𝑖 and 𝜂′𝑖 in 𝐴, 𝑎𝑖𝜂𝑖𝜂′𝑖 ≠ 0 and ∀ 𝑗 ≠ 𝑖 , 𝑎 𝑗𝜂𝑖𝜂′𝑖 = 0.
● If 𝜂𝑖 in 𝐴 and 𝜂′𝑖 in 𝐵, 𝑐𝑖𝜂𝑖𝜂′𝑖 ≠ 0 and ∀ 𝑗 ≠ 𝑖 , 𝑐 𝑗𝜂𝑖𝜂′𝑖 = 0.
● If 𝜂𝑖 in 𝐵 and 𝜂′𝑖 in 𝐴, 𝑑𝑖𝜂𝑖𝜂′𝑖 ≠ 0 and ∀ 𝑗 ≠ 𝑖 , 𝑑 𝑗𝜂𝑖𝜂′𝑖 = 0.
● If 𝜂𝑖 and 𝜂′𝑖 in 𝐵, 𝑒𝑖𝜂𝑖𝜂′𝑖 ≠ 0 and ∀ 𝑗 ≠ 𝑖 , 𝑒 𝑗𝜂𝑖𝜂′𝑖 = 0.

(iv) For all 𝑖 , (∑𝑗 𝒱𝑖 𝑗 ⋅ 𝑏 𝑗)𝑝
𝑡 = 0

(v) For all 𝑖 , (∑𝑗𝒲𝑖 𝑗 ⋅ 𝑏 𝑗)𝑝
𝑡 = ∑𝑗 𝒰𝑖 𝑗 ⋅ 𝑏 𝑗 .

(vi) For all 𝑖 and 𝑗 :

(∑𝑙 𝒳𝑖𝑙 ⋅ 𝑏𝑙)(∑𝑙 𝒱𝑗𝑙 ⋅ 𝑏𝑙) =
∑𝑘 (𝑎𝑖 𝑗𝑘 ⋅∑𝑙 𝒱𝑘𝑙 ⋅ 𝑏𝑙) +∑𝑘 (𝑝𝑐𝑖 𝑗𝑘 ⋅∑𝑙𝒲𝑘𝑙 ⋅ 𝑏𝑙) .

(vii) For all 𝑖 and 𝑗 :

(∑𝑙 𝒳𝑖𝑙 ⋅ 𝑏𝑙)(∑𝑙 𝑝𝒲𝑗𝑙 ⋅ 𝑏𝑙) =
∑𝑘 (𝑑𝑖 𝑗𝑘 ⋅∑𝑙 𝒱𝑘𝑙 ⋅ 𝑏𝑙) +∑𝑘 (𝑝𝑒𝑖 𝑗𝑘 ⋅∑𝑙𝒲𝑘𝑙 ⋅ 𝑏𝑙) .

The rows of 𝒳 , 𝒱 and𝒲 represent elements in 𝒪. The
matrix 𝒰 represents elements in𝒪⇑𝑝𝒪. Statement (i) and (ii)
prove that 𝒱 and 𝒰 are linearly independent. This, together
with (iv) and (v) guarantee that the collection as in (4) is
a basis for 𝐼𝑝⇑𝑝𝐼𝑝 . Statements (vi) and (vii) imply that the
matrix representing the endomorphism 𝜑(𝑥𝑖) with respect
to this basis is given by:

⎛
⎜⎜⎜
⎝

𝑎𝑖11 ... 𝑎𝑖𝑚1 𝑑𝑖11 ... 𝑑𝑖𝑛1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎𝑖1𝑚 ... 𝑎𝑖𝑚𝑚 𝑑𝑖1𝑚 ... 𝑑𝑖𝑛𝑚
𝑐𝑖11 ... 𝑐𝑖𝑚1 𝑒𝑖11 ... 𝑒𝑖𝑛1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑐𝑖1𝑛 ... 𝑐𝑖𝑚𝑛 𝑒𝑖1𝑛 ... 𝑒𝑖𝑛𝑛 .

⎞
⎟⎟⎟
⎠

(6)

From (iii) the linear independence of {𝜑(𝑥1), . . . , 𝜑(𝑥𝑟 ))}
follows, establishing the 𝑝-maximality of 𝒪.

We formalized this certificate in Lean as the structure
structure MaximalOrderCertificateLists
{K : Type∗} [CommRing K] [NoZeroSMulDivisors Z K]
(p : N) [hpI : Fact $ Nat.Prime p] (𝒪 : Subalgebra Z K)

(𝒪′ : Subalgebra Z K) (hm : 𝒪 ≤ 𝒪′) where . . .

B Sylvester matrix computation examples
Consider the polynomial 𝑓 = 2𝑋 3−𝑋 2−2𝑋 +1 ∈ Z(︀𝑋 ⌋︀, which
has derivative 𝑓 ′ = 6𝑋 2 − 2𝑋 − 2. The Sylvester matrix for 𝑓
and 𝑓 ′ is given by:

𝐴 =

⎛
⎜⎜⎜⎜⎜
⎝

−2 0 0 1 0
−2 −2 0 −2 1
6 −2 −2 −1 −2
0 6 −2 2 −1
0 0 6 0 2

⎞
⎟⎟⎟⎟⎟
⎠

.

The resultant is defined as the determinant of the Sylvester
matrix, giving us Res(𝑓 , 𝑓 ′) = ⋃︀𝐴⋃︀ = −72.

To compute the discriminant of 𝑓 we modify the Sylvester
matrix by dividing out the leading coefficient of 𝑓 , 2, in the
last row:

𝐴 =

⎛
⎜⎜⎜⎜⎜
⎝

−2 0 0 1 0
−2 −2 0 −2 1
6 −2 −2 −1 −2
0 6 −2 2 −1
0 0 3 0 1

⎞
⎟⎟⎟⎟⎟
⎠

.

We obtain Disc(𝑓 ) = (−1)deg 𝑓 (deg 𝑓 −1)⇑2⋃︀𝐴′⋃︀ = (−1)3 ⋅
−36 = 36.
Passing to the field of fractions, we can divide 𝑓 by its

leading coefficient to get the monic polynomial 𝑔 = 𝑋 3 −
1
2𝑋

2 −𝑋 + 1
2 ∈ Q(︀𝑋 ⌋︀, with discriminant computed as before

Disc(𝑔) = 9
4 = (

1
2)

2(deg 𝑓 −1) Disc(𝑓 ). The roots of 𝑓 and 𝑔 in
Q are given by 𝑋 ∈ {−1, 1

2 , 1}, and we find as expected that
the product of root differences equals the discriminant of 𝑔:

(1
2
− −1)

2
(1 − −1)2 (1 − 1

2
)

2
= 9

4
.

Data-Availability Statement
Full source code of our formalization and SageMath scripts
are available online at https://github.com/alainchmt/RingO
fIntegersProject and are archived as [15].
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