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Abstract

We show that, for every k ≥ 2, C2k-freeness can be decided in O(n1−1/k) rounds in the
CONGEST model by a randomized Monte-Carlo distributed algorithm with one-sided error
probability 1/3. This matches the best round-complexities of previously known algorithms for
k ∈ {2, 3, 4, 5} by Drucker et al. [PODC’14] and Censor-Hillel et al. [DISC’20], but improves the
complexities of the known algorithms for k > 5 by Eden et al. [DISC’19], which were essentially

of the form Õ(n1−2/k2

). Our algorithm uses colored BFS-explorations with threshold, but with
an original global approach that enables to overcome a recent impossibility result by Fraigniaud
et al. [SIROCCO’23] about using colored BFS-exploration with local threshold for detecting
cycles.

We also show how to quantize our algorithm for achieving a round-complexity Õ(n1/2−1/2k) in
the quantum setting for deciding C2k freeness. Furthermore, this allows us to improve the known
quantum complexities of the simpler problem of detecting cycles of length at most 2k by van
Apeldoorn and de Vos [PODC’22]. Our quantization is in two steps. First, the congestion of our
randomized algorithm is reduced, to the cost of reducing its success probability too. Second,
the success probability is boosted using a new quantum framework derived from sequential
algorithms, namely Monte-Carlo quantum amplification.

1 Introduction

For every fixed graphH, H-freeness is the problem consisting in deciding whether any given graphG
contains H as a subgraph. In the distributed setting, in which each vertex of G is a computing
element, the decision rule is specified as: G is H-free if and only if all nodes of G accept. That is,
if H is a subgraph of G, then at least one node of G must reject, otherwise all nodes must accept.

H-freeness has been extensively studied in various distributed models, including the standard
CONGEST model (see the recent survey [5, 6]). Recall that, in this latter model, a network is
modeled as a simple connected n-vertex graph G, where the computing nodes occupy the vertices
of G, and they exchange messages along the edges of G. All nodes start computing at the same
time, and they perform in lockstep, as a sequence of synchronous rounds. At each round, every
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node sends a (possibly different) message to each of its neighbors in G, receives the message sent by
its neighbors, and performs some local computation. The main constraint imposed on computation
by the CONGEST model is on the size of the messages exchanged during each round, which must
not exceed O(log n) bits in n-node networks [32].

The specific case of cycle-detection, i.e., deciding Ck-freeness for a fixed k ≥ 3, has been the
focus of several contributions to the CONGEST model (cf. Table 1) — unless specified otherwise,
all the algorithms mentioned there are in the randomized setting, i.e., they are Monte-Carlo algo-
rithms with 1-sided error probability 1/3. More generally, for ε ∈ (0, 1), a randomized distributed
algorithm A solves Ck-freeness with one-sided error probability ε if, for every input graph G,

• If G contains a cycle Ck as a subgraph, then, with probability at least 1−ε, at least one node
of G outputs reject;

• Otherwise, all nodes of G output accept with probability 1.

For odd cycles of length at least 5, the problem is essentially solved. Indeed, for every k ≥ 3, Ck-
freeness can be decided in O(n) rounds by a deterministic algorithm [30], and it was shown that, for
every odd k ≥ 5, deciding Ck-freeness requires Ω̃(n) rounds, even for randomized algorithms [15].
The case of triangles, i.e., deciding C3-freeness, is however still open. The best known upper bound
on the round-complexity of deciding C3-freeness is Õ(n1/3) [11]. However, it was shown that any
polynomial lower bound for this problem, i.e., any bound of the form Ω(nα) with α > 0 constant,
would imply major breakthroughs in circuit complexity [16].

Reference Cycle Complexity Framework

[11] C3 Õ(n1/3) rand.

[15, 30] C2k+1, k ≥ 2 Θ̃(n) O det. / Ω̃ rand.

[15] C4 Θ̃(
√
n) O det. / Ω̃ rand.

[30] C2k, k ≥ 2 Ω̃(
√
n) rand.

[10] C2k, k ∈ {2, 3, 4, 5} O(n1−1/k) rand.

[16] C2k, k ≥ 6 even Õ(n1−2/(k2−2k+4)) rand.

[16] C2k, k ≥ 7 odd Õ(n1−2/(k2−k+2)) rand.

[10] {Cℓ | 3 ≤ ℓ ≤ 2k}, k ≥ 2 Õ(n1−1/k) rand.

this paper C2k, k ≥ 2 O(n1−1/k) rand.

[8] C3 Õ(n1/5) quant.

[9] C4 Õ(n1/4) quant.

[33] {Cℓ | 3 ≤ ℓ ≤ 2k}, k ≥ 2 Õ(n1/2−1/4k+2) quant.

this paper C2k, k ≥ 2 Õ(n1/2−1/2k) quant.

this paper C2k, k ≥ 2 Ω̃(n1/4) quant.

this paper C2k+1, k ≥ 2 Θ̃(
√
n) quant.

this paper {Cℓ | 3 ≤ ℓ ≤ 2k}, k ≥ 2 Õ(n1/2−1/2k) quant.

Table 1: Summary of the results about deciding Ck-freeness in CONGEST.

The landscape of deciding the presence of an even-size cycle is more contrasted. It was first
shown that C4-freeness can be decided in O(

√
n) rounds, and that this complexity is essentially

optimal thanks to a lower bound of Ω̃(
√
n) rounds [15]. It was then shown that the lower bound

of Ω̃(
√
n) rounds applies to deciding C2k-freeness too, for every k ≥ 2 [30]. However, any lower

bound of the form Ω(n1/2+α) with α > 0 for deciding C2k-freeness for some k ≥ 3 would imply
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new lower bounds in circuit complexity, which are considered hard to obtain (see [10]). On the
positive side, it was first proved that, for every k ≥ 2, C2k-freeness can be decided in O(n1−1/k(k−1))
rounds [22]. This was later improved in [16], where it is proved that C2k-freeness can be decided in
O(n1−2/(k2−2k+4)) for even k ≥ 4, and in O(n1−2/(k2−k+2)) for odd k ≥ 3. However, better results
were obtained for small cycles, with algorithms for deciding C2k-freeness performing in O(n1−1/k)
rounds, for k ∈ {3, 4, 5} [10]. These algorithms were obtained by analyzing the congestion caused
by colored BFS-explorations, and by showing that if the congestion exceeds a certain threshold
then there must exist a 2k-cycle in the network. Unfortunately, it was later shown (see [23]) that
this technique does not extend to larger cycles, of length 2k for k ≥ 6.

A problem related to deciding Ck-freeness is deciding whether there is a cycle of length at
most 2k. Surprisingly, this problem is actually simpler, because deciding Ck-freeness can take
benefit from the fact that there are no cycles of length less than k. This fact was exploited in [10]
to design an algorithm deciding {Cℓ | 3 ≤ ℓ ≤ 2k}-freeness in O(n1−1/k) rounds, for any k ≥ 2.

Moreover, the CONGEST model can take benefits of quantum effects, as far as detecting sub-
graphs is concerned. Indeed, it was proved that deciding C3-freeness (respectively, C4-freeness)
can be decided in Õ(n1/5) rounds [8] (resp., Õ(n1/4) rounds [9]) in the quantum CONGEST model.
Similarly, {Cℓ | 3 ≤ ℓ ≤ 2k}-freeness can be decided in Õ(n1/2−1/4k+2) rounds [33] in the quan-
tum CONGEST model. However, since any lower bound on the round-complexity of a problem in
quantum CONGEST is also a lower bound on the round-complexity of the same problem in the
classical version of CONGEST, the hardness of designing lower bounds for triangle-freeness and for
C2k-freeness for k ≥ 3 in the classical setting also holds in the quantum setting.

1.1 Our Results

Our results are summarized in Table 1. We considerably simplify the landscape of results about
deciding Ck-freeness, and we extend it to the quantum CONGEST framework.

Our first main contribution shows that, for every k ≥ 2, the complexity of deciding C2k-freeness
is O(n1−1/k), hence extending the results of Drucker et al. [15] and Censor-Hillel et al. [10] to all
k ≥ 6, and improving the complexity of the algorithms by Eden et al. [16]. Specifically, we show
the following.

Theorem 1. For every integer k ≥ 2, and every real ε > 0, there is an algorithm that solves
C2k-freeness with one-sided error probability ε in O(log2(1/ε) · 23k k2k+3 · n1−1/k) rounds in the
CONGEST model.

Our second main contribution is related to analysing the speedup that can be obtained by
allowing nodes to handle entangled quantum resources, yet exchanging at most O(log n) qubits at
each round. We show that quantum resources enable to obtain a quadratic speedup for deciding
cycle-freeness. Specifically, we show the following.

Theorem 2. In the quantum CONGEST model, the following holds:

• For every integer k ≥ 2, there is a quantum algorithm deciding C2k-freeness with one-sided
error probability 1/poly(n) in kO(k) · polylog(n) · n1/2−1/2k rounds, and any algorithm deciding
C2k-freeness with one-sided error probability at most 1/3 performs in at least Ω̃(n1/4) rounds.

• For every integer k ≥ 1, there is a quantum algorithm deciding C2k+1-freeness with one-sided
error probability 1/poly(n) in Õ(

√
n) rounds, and, for every integer k ≥ 2, any quantum

3



algorithm deciding C2k+1-freeness with one-sided error probability at most 1/3 performs in at
least Ω̃(

√
n) rounds.

Therefore, our quantum algorithm for deciding C4-freeness performing in Õ(n1/4) rounds is,
up to logarithmic multiplicative factors, optimal. For k ≥ 3, we face the same difficulty as in
the classical framework for designing lower bounds of deciding C2k-freeness. For odd cycles, we
show that quantum algorithms enable quadratic speedup too, and this is essentially optimal, up to
logarithmic factors. That is, the complexity of deciding C2k+1-freeness in the quantum CONGEST
model is Θ̃(

√
n) rounds for all k ≥ 2. As for the (classical) CONGEST model, the case of C3-

freeness remains open in absence of any non trivial lower bound. However, we point out that our
new quantum framework enables to improve the quantum complexity of detecting cycles of length
at most 2k from [33]. For every k ≥ 2, our algorithm for {Cℓ | 3 ≤ ℓ ≤ 2k}-freeness performs in
Õ(n1/2−1/2k) instead of Õ(n1/2−1/4k+2).

1.1.1 Our Technique for CONGEST

As in previous papers about deciding C2k-freeness [10, 17], we separate the case of detecting light
cycles from the case of detecting heavy cycles, where the former are 2k-cycles containing solely
nodes the degrees of which do not exceed a specific bound dmax, and the latter are 2k-cycles that
are not light. We use the same technique as [10] for detecting light cycles, with the same bound
dmax = n1/k on the degrees. Our main contribution is a new technique for detecting heavy cycles,
i.e., cycles containing at least one node of degree larger than n1/k.

A central technique for detecting 2k-cycles is color coding [1], which is implemented in the
distributed setting as the so-called colored BFS-exploration [21, 24]. Roughly, it consists in each
node v picking a color c(v) ∈ {0, . . . , 2k − 1} uniformly at random (u.a.r.), and the goal is to
check whether there is a cycle C = (u0, . . . , u2k−1) with c(ui) = i for every i ∈ {0, . . . , 2k − 1}.
For this purpose, some nodes colored 0 launch a BFS-exploration, sending their identifiers to their
neighbors colored 1 and 2k − 1. Then, at every round i ∈ {1, . . . , k − 1}, nodes colored i forward
all the identifiers received from neighbors colored i − 1 to their neighbors colored i + 1, while
nodes colored 2k− i forward all the identifiers received from neighbors colored 2k− (i− 1) to their
neighbors colored 2k − (i + 1). If a node colored k receives the same identifier from a neighbor
colored k−1 and k+1, a 2k-cycle has been detected. By repeating about (2k)2k times the random
choice of the colors, the probability that an existing 2k-cycle is well colored is at least 2/3, which
guarantees the desired success probability. Using this approach, the issue is to control congestion,
that is, to control the number of distinct identifiers that a same node has to forward during the
BFS-exploration.

For controlling the congestion in colored BFS-exploration, an elegant approach has been pre-
sented in [10], that we refer to as local threshold. In essence, it consists in selecting a single source
node s u.a.r., which triggers all its neighbors colored 0, asking them to launch a colored BFS-
exploration. A key point is that, as shown in [10], for k ∈ {2, 3, 4, 5}, there exists a (constant)
threshold τk ≥ 1 such that, a constant fraction of sources s are either in a 2k-cycle or will not cause
any node to receive more than τk identifiers. Therefore, each attempt to find a 2k-cycle triggered
by a selected source s takes a constant number of rounds (namely, at most k · τk rounds). Now,
the probability that the selected source s has a neighbor in a cycle is at least 1/n1/k, and thus it
is sufficient to repeat O(n1−1/k) times the random choice of s for finding a 2k-cycle with constant
probability (if it exists). Unfortunately, the local threshold technique was proved to suffer from
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some limitation [23], namely it is not extendable to the detection of larger 2k-cycles, i.e., to k > 5.
To overcome the inherent limitation of the local threshold technique, we adopt a global threshold

approach. Specifically, instead of repeating O(n1−1/k) times the choice of a single source s that
triggers the colored BFS-exploration, we directly select a set S of O(n1−1/k) random sources, and
we only need to repeat O(1) times this choice. Now, we show that there exists a (global) threshold
τk(n) = O(n1−1/k) such that, for each choice of S, if a node has to forward more than τk(n)
identifiers at some round, then there must exist a 2k-cycle. Establishing this result is the key point
in our algorithm. It requires to analyze in detail the successive rounds of the BFS-exploration which
may eventually cause a node v to receive a set Iv of more that τk(n) identifiers, and to use this
analysis for constructing a 2k-cycle. This cycle is itself the union of a path P alternating between
nodes in S and nodes whose identifiers are in Iv, and two vertex-disjoint paths connecting the two
end points of P to v.

1.1.2 Our Technique for Quantum CONGEST

One of the main tools to speed-up distributed algorithm in the quantum framework is the distributed
Grover search [26]. Indeed, (sequential) Grover search enables solving problems such as minimizing
a function, or searching for a preimage, in a time-complexity that is often quadratically faster
than the classical (i.e., non quantum) time-complexity. Transferred to the quantum CONGEST
model, Grover search was first used to design sublinear algorithms for computing the diameter of
a graph [26]. A nested version of Grover search was also used recently for detecting cliques [8] and
a parallel one for cycles [33].

We take one step further in the use of Grover search, by defining an encapsulated quantum
framework for distributed computing that we call distributed quantum Monte-Carlo amplification
(Theorem 3). We show that, given any distributed (quantum, or randomized) Monte-Carlo al-
gorithm with small one-sided success probability ε and round-complexity R, there exists a quan-
tum algorithm with constant (e.g., 2/3) one-sided success probability, whose round-complexity is
roughly

√
1/ε ·R. Observe that boosting the success probability to a constant would have required

1/ε iterations in a non-quantum setting. Our boosting technique is quadratically faster. There is
however a cost to pay. Indeed, this is ignoring an additional term D/

√
ε, where D is the diameter of

the graph, that appears in the overall quantum complexity. This may not be an issue for problems
whose round-complexity inherently depends on the diameter (e.g., computing an MST), but this
is an issue for “local problems” such as H-freeness. Nevertheless, we can eliminate the diameter
dependence by employing the standard diameter reduction technique [17].

In order to apply our amplification technique, we first decrease the success probability of our
classical algorithm. This allows us to decrease its congestion too. Specifically, our classical al-
gorithm has constant success probability, and congestion O(n1−1/k). Indeed, in colored BFS-
exploration performed by the classical algorithm, every node participating to the exploration for-
wards information that comes from at most τk(n) nodes, where τk(n) = O(n1−1/k) is the global
threshold. This yields a congestion at most τk(n), and thus a round complexity at most τk(n). By
not activating systematically the nodes of the tested set in the colored BFS-exploration, but by
activating each of them independently with probability ε = O(1/τk(n)), we show that the conges-
tion decreases to O(ε τk(n)) = O(1), and the success probability drops down to ε. At this point,
we can apply our Monte-Carlo amplification technique to get one sided-error probability 1/poly(n)
with round-complexity Õ(D ·

√
τk(n)) rounds, where D is the diameter of the graph. Finally, the

diameter dependence is eventually removed, up to polylog factors, by using the technique in [17].
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1.2 Related Work

There is a vast literature on distributed algorithms for deciding whether the input graph G includes
a fixed given graph H as a subgraph, or as an induced subgraph. We refer to the recent survey [5, 6]
for a detailed description of the recent progress in the matter, including the typical techniques. We
just clarify here a few points that sometimes cause confusion. First, deciding H-freeness is also
referred to as detecting H. Second, subgraph detection has a more demanding variant, called
subgraph listing. In the latter, each occurrence of H must be reported by at least one node.
Subgraph detection and subgraph listing each have their local variants. Local detection imposes
that each node outputs accept or reject based on whether it is a part of a copy of H or not, and
local listing imposes that each node outputs the list of occurrences of the subgraph H it belongs to.
In this paper, we focused on deciding Ck-freeness, i.e., cycle detection. Besides cycles, two families
of graphs have been extensively studied in the framework of distributed H-freeness, trees [30] and
cliques [7, 13, 16]. Subgraph detection as well as subgraph listing have been studied in other
distributed computing models, such as CONGESTED CLIQUE (see, e.g., [14]). The testing variant
of the problem has also been considered, in which the goal is to decide whether the input graph is
H-free or contains many copies of H (measured, e.g., by the number of edges of G that must be
deleted to obtain a graph that is H-free). In this latter framework, it is possible to design decision
algorithms performing in O(1) rounds in CONGEST (see, e.g., [21, 25]).

In the quantum setting, it was shown in [18] that the quantum CONGESTmodel is not more pow-
erful that the classical CONGEST model for many important graph-theoretical problems. Nonethe-
less, it was later shown in [26] that computing the diameter of the network can be solved more
efficiently in the quantum setting. Since then, other quantum speed-ups have been discovered,
including subgraph detection [8, 33]. We also mention that a speed-up similar than ours has al-
ready been established for detecting C4, with round complexity Õ(n1/4) in an unpublished work [9].
This latter contribution is directly using a distributed Grover search [26], and not our Monte-Carlo
amplification. The implementation of Grover in [9] is thus a bit more involved. In particular, a
leader node is used for deciding which nodes are activated or not, based on a token sampling in
[1,
√
n]. While the token sampling is decentralized, the activation of the nodes for a given token

is centralized before applying the distributed Grover search, leading to a multiplicative term equal
to the diameter D. Finally, we note that in the CONGESTED CLIQUE model as well, quantum
algorithms faster than the best known classical algorithms have been discovered, starting for the
All-Pair Shortest Path problem [29], and recently for clique-detection [8]. In the LOCAL model,
which is another fundamental model in distributed computing, separations between the compu-
tational powers of the classical and quantum versions of the model have been reported for some
problems [27, 31], but other papers have also reported that quantum effects do not bring significant
benefits for other problems (e.g., approximate graph coloring [12]).

2 Cycle Detection in the Classical CONGEST Model

This section is entirely dedicated to proving Theorem 1. For this purpose, we first describe the
algorithm claimed to exist in the statement of the theorem (Algorithm 1), then we analyze it.
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2.1 Algorithm description

In Algorithm 1, k ≥ 2 and ϵ > 0 are fixed parameters, and G = (V,E) is the input graph. The
only prior knowledge given to each node v ∈ V , apart from k, ϵ, and the identifier id(v), is the
size n = |V | of the input graph. Algorithm 1 is using a variant of color-BFS with threshold [10],
displayed as Procedure color-BFS in Algorithm 1, detailed next.

2.1.1 Procedure Color-BFS with Threshold

The syntax of a call to color-BFS with threshold is

color-BFS(k,H, c,X, τ),

where k is the fixed parameter, H is a subgraph of the input graph G, c : V (H)→ {0, . . . , 2k − 1}
is a (non-necessarily proper) coloring of the vertices of H, X ⊆ V (H) is a set of vertices, and τ ≥ 0
is an integer called threshold. In all calls to color-BFS, graph H will be an induced subgraph of
G, and in particular every node of G will locally know whether it belongs to H or not. Similarly,
every node will know whether it belongs to set X or not.

In our variant of color-BFS, only the nodes x ∈ X initiate the search for a 2k-cycle, and the
search is performed in H only, i.e., not necessarily in the whole graph G. Specifically, every node
x ∈ X colored 0, i.e., every node x ∈ X for which c(x) = 0, launches the search by sending its
identifier id(x) to all its neighbors in H (cf. Instruction 15).

Then, as specified in the for-loop at Instruction 16, for every i = 1, . . . , k − 1, every node
v ∈ V (H) colored i having received a collection of identifiers Iv ⊆ {id(x) | x ∈ X} from its
neighbors in H colored i− 1 aims at forwarding Iv to all its neighbors in H colored i+1. However,
it does forward Iv to its neighbors only if Iv is not too large, namely only if the number |Iv| of
identifiers in Iv does not exceed the threshold τ . Instead, if v has collected too many identifiers,
i.e., if |Iv| > τ , then v simply discards Iv, and forwards nothing.

Similarly, for every i = 2k − 1, . . . , k + 1, every node v ∈ V (H) colored i having received
a collection Iv of identifiers from its neighbors in H colored i + 1 mod 2k forwards Iv to all its
neighbors in H colored i− 1 whenever |Iv| ≤ τ , and discards Iv otherwise.

Eventually, at Instruction 25, if a node v ∈ V (H) colored k receives a same identifier id(x) of
some node x ∈ X from a neighbor in H colored k−1, and from a neighbor in H colored k+1, then
v rejects. Observe that when v rejects, then by construction there is a 2k-cycle containing v and x.
Indeed id(x) traveled to v along two paths (x = u0, u1, . . . , uk = v) and (x = u0, u2k−1, . . . , uk = v)
of length k, with different internal vertices.

2.1.2 The Cycle Detection Algorithm

Our cycle detection algorithm is detailed in Algorithm 1. It essentially consists of three calls to
color-BFS(k,H, c,X, τ), for three different graphs H, three different sets X, and one threshold τ .
The first set is the set U of light nodes in G (see Instruction 1), i.e., the set of nodes

U = {u ∈ V | deg(u) ≤ n1/k}.

The second set is denoted by S. It is constructed randomly at Instructions 3-4, by having each node
independently deciding whether to enter set S with probability p = Θ(1/n1/k). In other words, if

7



Algorithm 1 Deciding C2k-freeness in G = (V,E) with one sided-error ε

1: U ← {u ∈ V | deg(u) ≤ n1/k}; ▷ U is the set of “light” nodes
2: ε̂← ln(3/ε); p← ε̂ · 2k2/n1/k; ▷ Setting of the selection probability p
3: every node u ∈ V selects itself with probability p;
4: S ← {selected nodes}; ▷ In expectation, |S| = np
5: W ← {u ∈ V ∖ S | |NG(u) ∩ S| ≥ k2}; ▷ u ∈W iff u has at least k2 selected neighbors
6: K ← ε̂ · (2k)2k; τ ← k2k · np; ▷ Setting of #repetitions K, and threshold τ
7: for r = 1 to K do ▷ A sequence of K search phases
8: every node u ∈ V picks a color c(u) ∈ {0, . . . , 2k − 1} u.a.r.;
9: color-BFS(k,G[U ], c, U, τ); ▷ Search for 2k-cycles with light nodes only

10: color-BFS(k,G, c, S, τ); ▷ Search for 2k-cycles with at least one selected node
11: color-BFS(k,G[V ∖ S], c,W, τ); ▷ Search for other 2k-cycles
12: end for
13: every node that has not output reject at a previous round outputs accept.

14: procedure color-BFS(k,H, c,X, τ)
15: every node x ∈ X with c(x) = 0 sends its ID to its neighbors in H
16: for i = 1 to k − 1 do
17: for every node v ∈ V (H) with c(v) = i (resp., c(v) = 2k − i) do
18: Iv ← {IDs received from neighbors in H colored i− 1 (resp. 2k − i− 1)}
19: if |Iv| ≤ τ then
20: v forwards Iv to its neighbors in H colored i+ 1 (resp. 2k − i− 1)
21: end if
22: end for
23: end for
24: for every node v ∈ V (H) colored k do
25: if v receives a same ID from two neighbors respectively colored k − 1 and k + 1 then
26: v outputs reject
27: end if
28: end for
29: end procedure

Bp denotes the random variable with Bernoulli distribution of parameter p,

S = {u ∈ V | Bp(u) = 1}.

Note that the expected size of S is Θ(n1−1/k). As we shall show later, the probability p = Θ(1/n1/k)
can be set so that, for every node u of degree at least n1/k, the probability that u has at least a
constant number |NG(u) ∩ S| of neighbors in S is constant. This leads us to setting our third set,
W , as the set of nodes that have at least k2 selected neighbors (see Instruction 5), that is,

W = {u ∈ V ∖ S | |NG(u) ∩ S| ≥ k2}.

Once these three sets U , S, and W have been constructed, they remain fixed for the rest of the
algorithm. Finally, a threshold

τ = Θ(n1−1/k)
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is set at Instruction 6. This threshold will be used in all color-BFS calls in the for-loop at Instruc-
tion 7.

The for-loop at Instruction 7 is performed a constant number K of times. It will be shown
later that choosing K as a sufficiently large constant will be sufficient to guarantee that, if there is
a 2k-cycle C in G, then, with constant probability, its nodes will be colored consecutively from 0
to 2k − 1 in a run of the loop. Indeed, at each iteration of the for-loop, every node u ∈ V picks a
color c(u) ∈ {0, . . . , 2k − 1} uniformly at random, at Instruction 8. Provided with this coloring c,
the algorithm proceeds as a sequence of three different color-BFS calls.

The first color-BFS (see Instruction 9) aims at detecting the presence of a 2k-cycle containing
light nodes only. Therefore, X is set to U , the graph H is merely the subgraph G[U ] of G induced
by U , and the threshold is τ . Then, since G[U ] has maximum degree n1/k, as we shall see in
Lemma 1, the threshold cannot be exceeded. As a consequence, thanks to Fact 4, if the coloring c
does color the nodes of a 2k-cycle consecutively from 0 to 2k − 1, then this cycle will be detected.

The second color-BFS (see Instruction 10) aims at detecting the presence of a 2k-cycle containing
at least one selected node, i.e., at least one node in S. Therefore, X is set to S, and the graph H is
the whole graph G. The threshold is again set to τ , which exceeds the expected size of S. Therefore,
thanks to Fact 4, if there is a 2k-cycle including a node in S, this cycle will be detected.

The third color-BFS (see Instruction 11) is addressing the “general case”, that is the detection of
a cycle containing at least one heavy node (i.e., with at least one node not in U), and not containing
any selected nodes (i.e., with no nodes in S). The search is therefore performed in the subgraph
G[V ∖ S] of G. The crucial point in the third color-BFS is the choice of the set X initializing the
search. We set it to the aforementioned set W = {u ∈ V ∖ S | |NG(u) ∩ S| ≥ k2}. That is, the
search is activated only by nodes neighboring sufficiently many, i.e., at least k2, selected nodes. As
for the first two color-BFS calls, the threshold is set to τ . This may appear counter intuitive as
W may be larger than O(n1−1/k). Nevertheless, we shall show that if a node v ∈ G[V ∖ S] has
to forward more than O(n1−1/k) identifiers of nodes in W , then there must exist a 2k-cycle in G
passing through S, which would have been detected at the previous step.

Finally, each node having performed K iterations of the for-loop, without rejecting during any
execution of the 3K color-BFS procedures, accepts. This completes the description of the algorithm.

2.2 Analysis of Algorithm 1

Let us start the analysis of Algorithm 1 by a collection of basic technical facts.

2.2.1 Preliminary Results

We first show that when a 2k-cycle exists, by setting the constant K large enough, there will be
a run of the loop at Instruction 7 of Algorithm 1 for which the nodes of the cycle are colored
consecutively from 0 to 2k − 1 by the coloring c.

Fact 1. Let α > 0, and K ≥ α(2k)2k. Let (u0, u1, . . . , u2k−1) be any sequence of 2k nodes of G.
Then, with probability at least 1− e−α, there is at least one iteration of the loop at Instruction 7 in
Algorithm 1 such that c(ui) = i, for i = 0, . . . , 2k − 1.

Proof. For each iteration, the probability that this event occurs is (1/2k)2k, due to the independent
choices of the colors of the nodes. The choices of coloring being also independent at each iteration

9



of the loop, the probability that the event never occurs for any of the K iterations is(
1− 1

(2k)2k

)K

≤ exp

(
− K

(2k)2k

)
≤ e−α,

as claimed.

We carry on with two standard claims stating that, with high probability, the set S is not too
large, and vertices with large degree (in G) have sufficiently many neighbors in S.

Fact 2. Let α > 0. If every node selects itself with probability p = α/n1/k at Instruction 3 of
Algorithm 1, then

Pr[|S| ≤ 2αn1−1/k] ≥ 1− e−α/3.

Proof. The cardinality of S is a random variable that follows a binomial distribution of parameters
(n, α/n1/k). We use the following Chernoff Bound: for any δ ≥ 0,

Pr [|S| ≥ (1 + δ)E[|S|]] ≤ exp

(
−δ2E[|S|]

2 + δ

)
.

With δ = 1 and E[|S|] = αn1−1/k, we conclude:

Pr
[
|S| ≥ 2αn1−1/k]

]
≤ exp

(
−αn1−1/k

3

)
≤ e−α/3,

as claimed.

Fact 3. Let α > 0, and let v ∈ V such that deg(v) > n1/k. If every node selects itself with probability
p = α/n1/k at Instruction 3 of Algorithm 1, then

Pr[|NG(v) ∩ S| ≥ α/2] ≥ 1− e−α/8.

Proof. The degree |NG(v) ∩ S| of v in S follows a binomial law of parameters (deg(v), p). We use
the following Chernoff Bound: for any 0 < δ < 1,

Pr [|NG(v) ∩ S| ≤ (1− δ)E[|NG(v) ∩ S|]] ≤ exp

(
−δ2E[|NG(v) ∩ S|]

2

)
.

For δ = 1/2, we have E[|NG(v) ∩ S|] = pdeg(v) ≥ α, from which it follows that

Pr [|NG(v) ∩ S| ≤ α/2] ≤ Pr [|NG(v) ∩ S| ≤ p deg(v)/2] ≤ exp

(
−p deg(v)

8

)
≤ e−α/8,

as desired.

Let us now introduce some notations used for analysing Procedure color-BFS(k,H, c,X, τ) in
Algorithm 1. Let

X0 = {x ∈ X | c(x) = 0}

be the set of nodes that send their identifiers at Instruction 15 of color-BFS(k,H, c,X, τ). We define,
for any node v in H colored i or 2k − i with i ∈ {1, . . . , k − 1}, the subset X0(v) ⊆ X0 of nodes
connected to v by a “well colored” path in H, as follows.
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• If c(v) ∈ {1, . . . , k − 1} then
X0(v) = {x ∈ X0 | there exists a path (x, v1, . . . , vc(v)−1, v) in H such that,

for every j ∈ {1, . . . , c(v)− 1}, c(vj) = j}.
(1)

• If c(v) ∈ {2k − 1, . . . , k + 1} then
X0(v) = {x ∈ X0 | there exists a path (x, v2k−1, . . . , vc(v)+1, v) in H such that

for every j ∈ {c(v)− 1, . . . , 2k − 1}, c(vj) = j}.
(2)

With this construction in hand, we can state a first general fact for any instance of color-
BFS(k,H, c,X, τ) from Algorithm 1.

Fact 4. Procedure color-BFS(k,H, c,X, τ) satisfies the following two properties.

• Let (v1, v2, . . . , vk−1) be a path in H such that c(vi) = i for all i ∈ {1, . . . , k − 1}. If
|X0(vk−1)| ≤ τ , then, for every i ∈ {1, . . . , k − 1}, |Ivi | ≤ τ and Ivi = X0(vi).

• Let (v2k−1, v2k−2, . . . , vk+1) be a path in H such that c(vi) = i for all i ∈ {k + 1, . . . , 2k − 1}.
If |X0(vk+1)| ≤ τ , then, for every i ∈ {k + 1, . . . , 2k − 1}, |Ivi | ≤ τ and Ivi = X0(vi).

Proof. We prove the result for nodes with colors between 1 and k − 1 only, as the result for nodes
with colors between 2k−1 and k+1 holds by the same arguments. From Instructions 15 and 18, we
get that for every node v in H, every identifier in Iv is the one of some node in X0(v). All along a
path (v1, . . . , vk−1), if |X0(vi)| ≤ τ for every i ∈ {1, . . . , k− 1}, then the condition of Instruction 19
is always satisfied for Ivi , and the identifiers of all the nodes X0(vi) are in Ivi . The result follows
after noticing that X0(vi) ⊆ X0(vk−1) for every i ∈ {1, . . . , k − 1}.

2.2.2 Analysis of the first two color-BFS

The next lemma states that, if G contains a 2k-cycle composed of consecutively colored nodes which
are all light, that is, with small degree, then the first call of color-BFS leads at least one node to
reject.

Lemma 1. Suppose that G contains a 2k-cycle C = (u0, . . . , u2k−1) in G[U ], and that c is a coloring
for which c(ui) = i for every i ∈ {0, . . . , 2k − 1}. Then uk rejects in color-BFS(k,G[U ], c, U, τ).

Proof. Every node in U has degree at most n1/k. By a direct induction on i = 1, . . . , k − 1, we get
that |U0(ui)| ≤ ni/k ≤ τ for every i ∈ {0, . . . , k − 1}, and the same holds for u2k−i. Fact 4 implies
that |Iui | ≤ τ and |Iu2k−i

| ≤ τ for every i ∈ {1, . . . , k−1}. Therefore the identifier of u0 is forwarded
along the two paths (u0, u1, . . . , uk−1, uk) and (u0, u2k−1, . . . , uk+1, uk), and uk rejects.

The next lemma establishes that if S is of size at most τ , and if G contains a well colored cycle
for which the node colored 0 is in S, then the second call of color-BFS leads the node colored k in
the cycle to reject.

Lemma 2. Suppose that G contains a 2k-cycle C = (u0, . . . , u2k−1) with u0 ∈ S, and let c
be a coloring such that c(ui) = i for every i ∈ {0, . . . , 2k − 1}. If |S| ≤ τ then uk rejects in
color-BFS(k,G, c, S, τ).

Proof. As S0(v) ⊆ S for every node v ∈ G, |S0(v)| ≤ |S|, and thus in particular for every node
v ∈ {u1, . . . , uk−1}∪{u2k−1, . . . , uk+1}. Fact 4 then implies that |Iui | ≤ τ and |Iu2k−i

| ≤ τ for every
i ∈ {1, . . . , k − 1}. Therefore, the identifier of node u0 is forwarded along the two branches of the
cycle, and uk rejects.
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2.2.3 Analysis of the third color-BFS

The purpose of this section is to prove the following lemma which, combined with Lemmas 1 and 2,
ensures the correctness of our algorithm. Informally, Lemma 3 below states that if G contains
no cycle passing through S, but contains a well colored cycle passing through some u0 having
sufficiently many neighbours in S, then the third call to color-BFS rejects. This lemma is crucial
as it does not only provide the key of the proof of Theorem 1, but it is also central in the design of
our algorithm for quantum CONGEST.

Lemma 3. Suppose that G contains a 2k-cycle C = (u0, . . . , u2k−1) with c(ui) = i for every
i ∈ {0, . . . , 2k − 1}, which is not intersecting S, but such that u0 has at least k2 neighbors in S. If
|S| ≤ τ/(k2k−1) then uk rejects in color-BFS(k,G[V ∖ S], c,W, τ).

The proof of Lemma 3 is based on the following combinatorial property. If C ∩S = ∅ for every
2k-cycle C in G, then, for every v ∈ V ∖ S, the set W0(v) defined below is small, which implies
that Iv is also small in color-BFS(k,G[V ∖ S], c,W, τ). More specifically, the following holds.

Lemma 4 (Density lemma). Let S,W0, V1, . . . , Vk−1 be non-empty disjoint subsets of vertices of a
graph G, and let us assume that every vertex w0 ∈ W0 has at least k2 neighbors in S. For every
i ∈ {1, . . . , k − 1}, and every v ∈ Vi, let us define

W0(v) = {w ∈W0 | G contains a path (w, v1, . . . , vi = v) s.t., for every j ∈ {1, . . . , i− 1}, vj ∈ Vj}.

If |W0(v)| > 2i−1(k−1)|S| for some i ∈ {1, . . . , k−1} and some v ∈ Vi, then G contains a 2k-cycle
intersecting S.

Before proving Lemma 4, let us observe that it directly implies Lemma 3.

Proof of Lemma 3. Let us apply Lemma 4 twice, once with

Vi = {v ∈ V ∖ S | c(v) = i}

for every i ∈ {1, . . . , k − 1}, and once with

Vi = {v ∈ V ∖ S | c(v) = 2k − i}.

We get that, for color-BFS(k,G[V ∖S], c,W, τ), if C∩S = ∅ for every 2k-cycle C in G then, for every
node v ∈ V ∖S colored i or 2k− i with i ∈ {1, . . . , k− 1}, we have |W0(v)| ≤ 2i−1(k− 1)|S|. Using
the fact that |S| ≤ τ/(k2k−1), we derive that |W0(v)| ≤ τ . It infers by Fact 4 that Iui = W0(ui) for
all i ∈ {1, . . . , k − 1} ∪ {2k − 1, . . . , k + 1}. In particular the identifier of u0 is forwarded along the
two branches of the cycle, and uk rejects.

The rest of this subsection is devoted to the proof of the Density Lemma (Lemma 4).
As a warm-up, let us prove the Density Lemma for i = 1, in order to provide the reader with

an intuition of the proof before getting into the (considerably more complicated) general case. The
case i = 1 will also illustrate why the lemma is called “Density lemma”.

12



Warm Up: The Case i = 1. Let v ∈ V1, and let us consider the bipartite graph H(v) with
vertex partition S and W0(v). (Recall that W0(v) ⊆ W0.) Suppose that |W0(v)| > (k − 1)|S|. Let
us show that one can construct a path P , of length 2(k − 1), with both end points in W0(v). This
path together with v forms a 2k-cycle. Path P exists merely because the graph H(v) is dense. More
precisely, H(v) has degeneracy1 at least k. Indeed, since every w ∈ W0 has at least k2 neighbours
in S, we get that

|E(H(v))| ≥ k2|W0(v)| ≥ 2k|W0(v)| ≥ k(|W0(v)|+ |S|) = k|V (H(v))|.

Consequently, H(v) contains a non-empty subgraph of minimum degree at least k, obtained by
repeatedly removing all vertices of degree less than k. In a bipartite graph of minimum degree k,
one can greedily construct a path of 2k vertices, starting from any vertex, and extending it 2k − 1
times with a new vertex that has not been used before. The extension is possible as long as the
path has no more than k − 1 vertices in each of the partitions. In particular, one can construct a
path with 2k− 1 edges with one extremity in S and one in W0(v). Therefore there exists a path P
with 2(k−1) edges, starting and ending on vertices of W0(v), thus achieving the proof for i = 1.

We aim at extending the proof above to arbitrary values of i. Let i be the smallest index for
which the condition of the lemma, i.e., |W0(v)| > 2i−1(k − 1)|S| for some v ∈ Vi, holds. A naive
approach consists in considering again the bipartite graph H(v) with edge set E(S,W0(v)). As in
the case i = 1, one may argue that H(v) is dense enough to contain a path P of length 2(k − i),
starting and ending on some vertices of W0(v). Both endpoints of path P have some path to v,
say P ′ and P ′′ respectively, of length i. If paths P ′ and P ′′ were disjoint (except for v), then they
would form, together with path P , a 2k-cycle. Unfortunately, with a greedy construction of path
P as in the case i = 1, there are no reasons why paths P ′ and P ′′ should be disjoint, hence the
need to refine the analysis.

Intuition of the proof. (Also see Fig. 1 .) Let us construct a sequence of nested subgraphs of
H(v), denoted by

IN(v, 0), IN(v, 1), . . . , IN(v, 2q),

where q = ⌊k−1
2 ⌋. The construction starts from IN(v, 2q), down to IN(v, 0), with IN(v, γ − 1) ⊆

IN(v, γ) for every γ ∈ {1, . . . , 2q}. We prove (cf. Lemma 6) that, if IN(v, 0) is not empty, then G
contains a 2k-cycle passing through S. Then we conclude by showing (cf. Lemma 7) that if the
graph IN(vj , 0) is empty for every j ∈ {1, . . . , i} and every vj ∈ Vj , then |W0(v)| ≤ 2i−1(k − 1)|S|.

In order to construct the decreasing sequence of graphs IN(v, γ), γ = 2q, . . . , 0, each vertex v
“selects” a subset of edges of H(v), denoted by OUT(v). One can think of these edge-sets as edges
selected by vertex v for its neighbors of color c(v) + 1, and vertices of color c(v) + 1 will only be
allowed to choose among edges selected for them by their neighbors of color c(v). More specifically,
if v is colored 0, then OUT(v) is simply the set of edges incident to v connecting v to a vertex
of S. Then, for any vertex v of color i ≥ 1, v constructs the sequence IN(v, γ) starting from the
union of OUT(v′) for all neighbors v′ of v with color i− 1. The sequence IN(v, γ) is constructed by
repeatedly removing edges incident to vertices of “small” degree, and OUT(v) corresponds to some
of the edges removed during the process. This construction will ensure that if, for some vertex v
of color i, IN(v, 0) ̸= ∅, then G contains a 2k-cycle (Lemma 6), and the reason for this is that one
can construct the three following paths (see Fig. 1):

1A graph is d-degenerate if each of its subgraphs has a vertex of degree at most d; The degeneracy of a graph is
the smallest value d for which it is d-degenerate.
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1. a path P of length 2(k − i) − 1 in IN(v, 2q), starting from some w ∈ W0(v), and ending on
some s ∈ S of high degree;

2. a path P ′ = (v′0, v
′
1, . . . , v

′
i − 1, v′i) of length i from the endpoint w = v′0 of P to v = v′i, such

that, for every j < i, v′j is colored j, and the edge incident to w in P is contained in the graph
OUT(v′j);

3. a path P ′′ = (s, v′′0 , . . . , v
′′
i ) of length i + 1 from the other endpoint s of P to v = v′′i , where

each v′′j is colored j, such that P ′′ intersects P only in s, and intersects P ′ only in v. For
constructing this third path P ′′, we heavily rely on the maximum degrees of the graphs
OUT(vj) (which are upper bounded by a function of j), and on the fact that the edge of P ′′

incident to s can be chosen to avoid all sets OUT(vj), for all j < i. This will ensure that P ′′

and P ′ are disjoint.

The paths P , P ′, and P ′′ together form the cycle of length 2k. Provided with this rough intuition,
let us proceed with the formal construction of the graphs IN and OUT.

Sparsification. Let E(S,W0) denote the set of edges of G having one endpoint in S, and the
other in W0. Let OUT(v), IN(v) ⊆ E(S,W0) be defined inductively on i = 1, . . . , k− 1 for any node
v ∈ Vi. OUT(v) and IN(v) are constructed as sets of edges, and we slightly abuse notation by also
denoting OUT(v) and IN(v) as the graphs induced by these edge sets.

For every w ∈W0, OUT(w) is defined as the set of edges between w and S in G = (V,E), that
is, for every w ∈W0,

OUT(w) = E({w}, S) =
{
{w, s} ∈ E | s ∈ S

}
. (3)

Let us set V0 = W0. Then, for every i ∈ {1, . . . , k − 1}, and every v ∈ Vi, we inductively define

IN(v) =
⋃

{v,v′}∈E : v′∈Vi−1

OUT(v′). (4)

Let q =
⌊
k−i
2

⌋
. We now inductively define an intermediate increasing sequence of subsets

IN(v, 0) ⊆ IN(v, 1) ⊆ . . . ⊆ IN(v, 2q − 1) ⊆ IN(v, 2q) ⊆ IN(v)

as follows:

1. Initialization:

IN(v, 2q) =
{
{s, v} ∈ IN(v) | (s ∈ S) ∧

(
degIN(v)(s) > 2i−1(k − 1)

)}
. (5)

2. Induction from 2γ to 2γ − 1:

IN(v, 2γ − 1) =
{
{w, s} ∈ IN(v, 2γ) | (w ∈W0) ∧

(
degIN(v,2γ)(w) > 2γ

)}
. (6)

3. Induction from 2γ − 1 to 2γ − 2:

IN(v, 2γ − 2) =
{
{s, w} ∈ IN(v, 2γ − 1) | (s ∈ S) ∧

(
degIN(v,2γ−1)(s) > 2γ − 1

)}
. (7)

Finally, we define OUT(v) as:

OUT(v) =
{
{s, v} ∈ IN(v) | (s ∈ S) ∧

(
degIN(v)(s) ≤ 2i−1(k − 1)

)}
q⋃

γ=1

{
{s, v} ∈ IN(v, 2γ − 1) | (s ∈ S) ∧

(
degIN(v,2γ−1)(s) ≤ 2γ − 1)

)}
.

(8)
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This construction is central because if IN(v, 0) ̸= ∅ then there is a 2k-cycle in the graph, passing
through S (Lemma 6). Let us first state two preliminary results on IN(v) and OUT(v).

Fact 5. Let i ∈ {1, . . . , k − 1}, and let v ∈ Vi. For any s ∈ S ∩ IN(v), we have

degOUT(v)(s) ≤ 2i−1(k − 1).

Proof. By construction thanks to Eq. (8), and by the fact that 2q − 1 ≤ k − 2 ≤ 2i−1(k − 1).

Lemma 5. Let i ∈ {1, . . . , k − 1}, and let v ∈ Vi. For every edge {s, w} ∈ IN(v), with s ∈ S and
w ∈ W0, there is a path (w, v1, . . . , vi−1, v) such that, for every j ∈ {1, . . . , i − 1}, vj ∈ Vj and
{s, w} ∈ OUT(vj). In particular, IN(v) ⊆ E(S,W0(v)).

Proof. The second claim, IN(v) ⊆ E(S,W0(v)), is a direct consequence of the first. The first
statement is proven by induction on i ≥ 1. For i = 1, i.e., for v ∈ V ∖ S with c(v) = 1, and
for {s, w} ∈ IN(v), it follows from Eq. (4) that there exists v′ ∈ V ∖ S such that {v, v′} ∈ E,
c(v′) = 0, and {s, w} ∈ OUT(v′). By construction, OUT(v′) = E({v′}, S) when c(v′) = 0 (see
Eq. (3)), therefore w = v′, and the required path is just the edge {w, v}.

Assume now that the lemma holds for color i ≥ 1. Fix v ∈ V ∖S such that c(v) = i+1. Again,
by Eq. (4), if {s, w} ∈ IN(v), then there exists v′ ∈ V ∖ S such that {v, v′} ∈ E, c(v′) = i, and
{s, w} ∈ OUT(v′). By construction (see Eq. (8)), OUT(v′) ⊆ IN(v′). As a consequence, we can apply
the induction hypothesis on {s, w} ∈ IN(v′), which provides us with a path (w, v1, . . . , vi−1, v

′). We
further extend this path using the edge {v, v′} ∈ G[V ∖ S], which concludes the induction.

Cycle construction. The following lemma implies that if there exists v ∈ V ∖ S such that
IN(v, 0) ̸= ∅, then there is a 2k-cycle intersecting S. Such a cycle is exhibited in Figure 1 for k = 5
and i = 2. Associated with Lemma 7 that provides the existence of such a v, it will prove Lemma 4.

Lemma 6. Assume that IN(v, 0) ̸= ∅ for some v ∈ V ∖ S with c(v) = i ∈ {1, . . . , k − 1}. Then
there is a 2k-cycle C in G such that C ∩ S ̸= ∅.

Proof. The existence of a 2k-cycle in G going through S is shown by constructing three simple
paths P (Claim 1), P ′ and P ′′ (Claim 2), the union of which is a cycle. In Figure 1, path P =
(w, s3, w2, s1, w

′
2, s), path P ′ = (w, v′1, v) and path P ′′ = (s, w′′, v′′1 , v).

Claim 1. There is a simple path P with 2(k − i) nodes in W0 ∪ S, alternating between nodes in
W0 and nodes in S, the edges of which are all in IN(v, 2q).

Proof of claim. The construction is done by induction on γ. A path

Pγ = (s2γ+1, . . . , w2, s1, w
′
2, . . . , s

′
2γ+1) ⊆ IN(v, 2γ)

is aimed at being extended to a path Pγ+1 ⊆ IN(v, 2γ + 2). The extension uses the fact that both
extremities of Pγ have some incident edges in IN(v, 2γ).

For the base case γ = 0, let s1 = s′1 ∈ S be any node with an incident edge in IN(v, 0) ̸= ∅.
Observe that, in this base case, the path is trivial, formed by a unique vertex of graph IN(v, 0).

For the induction step, we start from a path Pγ = (s2γ+1, . . . , s1, . . . , s
′
2γ+1) in IN(v, 2γ), from

S to S. Note that this path is also a path in IN(v, 2γ + 2) ⊇ IN(v, 2γ). Moreover, since s2γ+1 has
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Figure 1: The case of a 10-cycle (i.e., k = 5). In the figure, IN(v, 0) ̸= ∅ as v ∈ V2. Here we
have q = 1, and thus the considered graphs for the proof are IN(v, 0) ⊆ IN(v, 1) ⊆ IN(v, 2) ⊆ IN(v).
Regarding the proof of Claim 1, we have degIN(v,1)(s1) > 1, and thus there exist vertices w2 and
w′
2 in IN(v, 1). Since degIN(v,2)(w2) > 2, and since degIN(v,2)(w

′
2) > 2, there are two vertices s3 and

s′3 in IN(v, 2). And since degIN(v)(s3) > 8, there exists a vertex w in IN(v). Regarding the proof of
Claim 2, we have degIN(v)(s) > 8 and degOUT(v′1)

(s′3) ≤ 4. Therefore, there exists a vertex w′′ in

IN(v)[s]∖
(
{w,w2, w

′
2} ∪ OUT(v′1)

)
.

some incident edge in IN(v, 2γ), and since IN(v, 2γ) ⊆ IN(v, 2γ + 1), s2γ+1 must have large degree
in IN(v, 2γ + 1). Specifically, thanks to Eq. (7), we have

degIN(v,2γ+1)(s2γ+1) = degIN(v,2γ)(s2γ) > 2γ + 1.

Thus, there is a vertex w2γ+2 ∈W0 such that

w2γ+2 ̸∈ {w2, w
′
2, . . . , w2γ , w

′
2γ} and {w2γ+2, s2γ+1} ∈ IN(v, 2γ + 1).

Similarly, we can find w′
2γ+2 adjacent to s′2γ+1 in IN(v, 2γ + 1) (see edges (s1, w2) and (s′1, w

′
2) in

Figure 1). The degrees of w2γ+2 and w′
2γ+2 in IN(v, 2γ+2) are equal to their degrees in IN(v, 2γ+1),

and thus they are both at least 2γ+2 (by Eq (6)). This establishes the existence of two new vertices
s2γ+3 and s′2γ+3 (see edges (w2, s3) and (w′

2, s
′
3) in Figure 1). The extended path is then

Pγ+1 = (s2γ+3, w2γ+2, s2γ+1, . . . , s1, . . . , s
′
2γ+1, w

′
2γ+2, s

′
2γ+3),

which concludes the induction step. The path Pq has 4q + 1 vertices, and has its end points in S
(path P1 = (s3, w2, s1, w

′
2, s

′
3) in Figure 1).

If k − i is even, then 4q + 1 = 2(k − i) + 1. So the path P is merely Pq without one of its two
end points.

If k− i is odd (as in Figure 1), then the path Pq has 2(k− i)−1 vertices, and we need one more
step to reach the desired length 2(k − i). Since {s2q+1, w2q} ∈ IN(v, 2q), by using Eq. (5), we get

degIN(v)(s2q+1) = degIN(v,2q)(s2q+1) > 2i−1(k − 1) > 2q = k − i− 1.

Therefore we can select w /∈ {w2, w
′
2, . . . , w2q, w

′
2q} such that {s2q+1, w} ∈ IN(v, 2q) (see edge (s3, w)

in Figure 1). Then P is Pq augmented with w connected to its end point s2q+1. ⋄
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Let us now connect the two extremities of P to node v by using two well-colored node-disjoint
paths.

Claim 2. There are two simple paths:

1. P ′ = (w, v′1, . . . , v
′
i−1, v), with i+1 nodes from the extremity w ∈W0 of P to v, such that, for

every j ∈ {1, . . . , i− 1}, v′j ̸∈ P , and c(v′j) = j.

2. P ′′ = (s, w′′, v′′1 , . . . , v
′′
i−1, v), with i + 2 nodes from the extremity s ∈ S of P to v, where

w′′ ∈ IN(v)∖
(
P ∪ P ′), and, for every j ∈ {1, . . . , i− 1}, v′′j ̸∈ P ∪ P ′, and c(v′′j ) = j.

Proof of claim. We first construct the path P ′. Since the edge in P incident to w belongs to
IN(v, 2q) ⊆ IN(v), Lemma 5 directly gives us a path (w, v′1, . . . , v

′
i−1, v) in G[V ∖ S] such that

v′j ∈ Vj for all j ∈ {1, . . . , i− 1} (P ′ = (w, v′1, v) in Figure 1). This path P ′ intersects P only in w
because the nodes of P are contained in W0 ∪ S, and the only intersection of P ′ with this set is w.

Let us now construct the second path P ′′. Let s be the extremity of P in S. Let us denote
by IN(v)[s] the set of edges incident to s in IN(v). On the one hand, by Claim 1, the edge of P
incident to s is in IN(v, 2q). By Eq. (5), the degree of s in IN(v, 2q) is larger than 2i−1(k−1). Since
IN(v, 2q) ⊆ IN(v), we have ∣∣IN(v)[s]∣∣ = degIN(v)(s) > 2i−1(k − 1).

On the other hand,

∣∣∣IN(v)[s] ∩ (P ∪ ( ∪i−1
j=1 OUT(v

′
j)
))∣∣∣ ≤ ∣∣W0 ∩ P

∣∣+ i−1∑
j=1

degOUT(v′j)
(s).

Moreover, thanks to Fact 5, degOUT(v′j)
(s) ≤ 2j−1(k − 1) for every j ∈ {1, . . . , i − 1}. As a conse-

quence,

∣∣∣IN(v)[s] ∩ (P ∪ ( ∪i−1
j=1 OUT(v

′
j)
))∣∣∣ ≤ k − i+

i−1∑
j=1

2j−1(k − 1) ≤ 2i−1(k − 1).

It follows that ∣∣∣IN(v)[s] ∩ (P ∪ ( ∪i−1
j=1 OUT(v

′
j)
))∣∣∣ < ∣∣IN(v)[s]∣∣.

Therefore, there exists an edge e = {s, w′′} ∈ IN(v) which is neither in P , nor in any OUT(v′j) for
every j ∈ {1, . . . , i−1} (see Figure 1). Finally, by Lemma 5, there exists a path (w′′, v′′1 , . . . , v

′′
i−1, v)

in G[V ∖S] such that, for every j ∈ {1, . . . , i− 1}, c(v′′j ) = j, and e ∈ OUT(v′′j ). Since e /∈ OUT(v′j)
for any j ∈ {1, . . . , i − 1}, and since nodes in P are either in S, or colored 0, none of the nodes
v′′1 , . . . , v

′′
i−1 are in P ∪ P ′, which completes the proof of the claim. ⋄

By construction, the paths P, P ′, and P ′′ from Claims 1-2 satisfy that P ∪ P ′ ∪ P ′′ is a cycle.
By denoting |Q| the number of vertices of a path Q, the length of P ∪ P ′ ∪ P ′′ is

(|P | − 1) + (|P ′| − 1) + (|P ′′| − 1) = (2(k − i)− 1) + ((i+ 1)− 1) + ((i+ 2)− 1) = 2k.

which completes the proof of Lemma 6.
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Congestion. To complete the proof of Lemma 4, we establish a lemma that allows us to bound
the size of W0(v) as a function of the size of OUT(v) whenever all sets IN(v) are empty. Its
contrapositive provides the hypothesis needed to apply Lemma 6, and prove Lemma 4.

Lemma 7. Let i ∈ {1, . . . , k − 1}. Assume that, for every j ∈ {1, . . . , i}, every vj ∈ Vj satisfies
IN(v, 0) = ∅. Then, for every v ∈ Vi, |W0(v)| ≤ 2i−1(k − 1)|S|.

Proof. We first show that, for every w ∈W0(v), there is an edge incident to w in OUT(v). In other
words, we show that w is of degree at least 1 in OUT(v). We first prove the more general inequality

degOUT(v)(w) ≥ k2 − 2i q,

by induction on the index i ∈ {0, . . . , k − 1} of set Vi containing node v. In fact, this inequality
also holds for the case v ∈ W0, which constitutes the base case “i = 0” of our induction, i.e.,
W0(v) = {v}. In this case, the only scenario is w = v. Recall that OUT(w) = E({w}, S) (see
Eq. (3)). Since w ∈W0 has at least k2 neighbors in S, we have degOUT(w)(w) ≥ k2, as desired.

Suppose now that the inequality holds for vertices colored i− 1, and let v ∈ Vi and w ∈W0(v).
By definition of W0(v), there exists a neighbor v′ of v colored i − 1 such that w ∈ W0(v

′). By
induction,

degOUT(v′)(w) ≥ k2 − 2(i− 1) q.

As OUT(v′) ⊆ IN(v), it also holds that

degIN(v)(w) ≥ k2 − 2(i− 1) q.

We are going to estimate the maximal number of edges incident to w that can be removed, i.e.,
that appear in IN(v) but not in OUT(v). By construction of OUT(v) and IN(v, 0), every edge
{s, w} ∈ IN(v) satisfies exactly one of the three following statements:

1. {s, w} ∈ IN(v, 0);

2. There exists γ ∈ {1, . . . , q} such that {s, w} ∈ IN(v, 2γ)∖ IN(v, 2γ − 1);

3. {s, w} ∈ OUT(v).

By our assumption, IN(v, 0) = ∅, excluding case 1. Let us now consider case 2, if it occurs.
Let γ ∈ {1, . . . , q} be the largest integer such that IN(v, 2γ) ∖ IN(v, 2γ − 1) contains some edge
incident to w. Fix any {s, w} ∈ IN(v, 2γ) ∖ IN(v, 2γ − 1). Since {s, w} ̸∈ IN(v, 2γ − 1), we have
degIN(v,2γ)(w) ≤ 2γ (cf. Eq. 6), and none of the edges incident to w in IN(v, 2γ) are kept in
IN(v, 2γ − 1). In other words, vertex w does not appear in graph IN(v, 2γ − 1), and therefore it
does not appear in any of the graphs IN(v, α), for any α ≤ 2γ − 1. That is, all edges incident to w
that are in case 2 have been suppressed simultaneously, they all belong to IN(v, 2γ)∖ IN(v, 2γ− 1).
Therefore, we conclude the induction step as follows:

degOUT(v)(w) = degIN(v)(w)− degIN(v,2γ)(w)

≥
[
k2 − 2(i− 1)q

]
− 2γ

≥ k2 − 2iq.

Using this inequality we deduce that

degOUT(v)(w) ≥ k2 − 2i q ≥ k2 − i(k − i) ≥ k2 − (k − 1)2 > 0.
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Thus every vertex w ∈W0 has at least one incident edge in OUT(v), which implies that |W0(v)| ≤
|OUT(v)|. By Fact 5, in graph OUT(v), each vertex contained in S has degree at most 2k−2(k− 1),
hence |OUT(v)| ≤ 2k−2(k − 1)|S|, which proves our lemma.

Proof of Lemma 4. Applying first the contrapositive of Lemma 7, Lemma 4 directly follows from
Lemma 6.

Proof of Theorem 1. Let us first analyze the round complexity of Algorithm 1, and then prove that
this algorithm accepts and rejects with the specified success probabilities.

Complexity. By construction, the threshold τ ensures that the complexities of the three calls
color-BFS(k,G[U ], c, U, τ), color-BFS(k,G, c, S, τ), and color-BFS(k,G[V ∖ S, c,W, τ) are each of at
most kτ rounds. The for-loop at Instruction 7 is performed K times. So, overall, the total number
of rounds performed by Algorithm 1 is Kkτ = O(log2(1/ε) · 23kk2k+3n1−1/k) rounds.

Acceptance without error. First note that a node u may reject in Algorithm 1 only while
performing one of the calls to color-BFS. The rejection by u is thus caused by some identifier
id(u0) that has traversed two paths, on the one hand a path u0, u1, . . . , uk, and on the other
hand a path u0, u2k−1, u2k−2, . . . , uk, where ui is colored i, for every i ∈ {0, . . . , 2k − 1}, and
has reached u = uk from both neighbors uk−1 and uk+1. These paths form together a 2k-cycle
u0, . . . , uk−1, uk, uk+1, . . . , u2k−1. Therefore, any node that rejects does so rightfully. In other words,
if G contains no 2k-cycles, then the probability that all nodes accept is 1, as desired.

Rejection probability. We now prove that when there is a 2k-cycle C in G, Algorithm 1 rejects
with probability 1− ε. We do the analysis by considering three cases, not necessarily disjoint but
covering every possible scenarios. Each of them will reject with probability at least 1− ε, leading
to the claimed global rejection. The probability events will be analyzed using Facts 1, 2, 3. For any
considered 2k-cycle C = (u0, . . . , u2k−1), we will assume that c(ui) = i for every i ∈ {0, . . . , 2k−1}.
This is indeed the case, with probability at least 1− ε/3, for at least one coloring of the loop (Fact 1
with α = ε̂). Moreover, we will also assume that |S| ≤ 4k2ε̂n1−1/k, since this occurs with probability
at least 1 − ε/3 (Fact 2 with α = 2k2ε̂, using that k ≥ 2). Lastly, when considering u0 ∈ C with
deg(u0) ≥ n1/k, we will assume that |NG(u0) ∩ S| ≥ k2, since this occurs with probability at least
1− ε/3 (Fact 3 with α = 2k2ε̂).

Case 1: C ⊆ G[U ]. Let C = (u0, . . . , u2k−1) with ui ∈ U for every i ∈ {0, . . . , 2k − 1}. By
Lemma 1, when a coloring of the for-loop satisfies c(ui) = i for every i ∈ {0, . . . , 2k−1}, node
uk rejects in color-BFS(k,G[U ], c, U, τ). Thus Algorithm 1 rejects with probability at least
1− ε/3.

Case 2: C ∩ S ̸= ∅. Let C = (u0, . . . , u2k−1) with u0 ∈ S. If a coloring of the for-loop satisfies
c(ui) = i for every i ∈ {0, . . . , 2k− 1}, and if |S| ≤ 4k2ε̂n1−1/k, then, by Lemma 2, uk rejects
in color-BFS(k,G, c, S, τ). Thus Algorithm 1 rejects with probability at least 1 − 2ε/3, using
union bound.

Case 3: C ∩ S = ∅ and C ∩ (V ∖ U) ̸= ∅. Let C = (u0, . . . , u2k−1) with u0 ∈ V ∖ (S ∪ U),
in particular deg(u0) ≥ n1/k. Using union bound, with probability at least 1 − ε, we get
(1) a coloring of the for-loop satisfying c(ui) = i for every i ∈ {0, . . . , 2k − 1}, (2) |S| ≤
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4k2ε̂n1−1/k, and (3) |NG(u0) ∩ S| ≥ k2. Thanks to Lemma 3, since u0 ∈ W0, uk rejects in
color-BFS(k,G[V ∖ S], c,W, τ).

The analysis of these three cases completes the proof.

3 Quantum complexity

The objective of this section is to prove that by using an adaptation of Grover search to the
distributed setting, Algorithm 1 can be sped up to Õ(n1/2−1/2k) rounds in a quantum setting, as
claimed in Theorem 2. The whole section is devoted to the proof of Theorem 2.

3.1 Preliminaries

3.1.1 Quantum amplification

We first review the framework for distributed quantum search [26] in the simple case of a search
problem (instead of a general optimization problem), which can be seen as a distributed implemen-
tation of Grover’s search [28], and its generalizations such as amplitude amplification [3]. Then we
show how this can be used as in the sequential setting (see [2, Theorem 2.2]) for boosting the success
probability of any one-sided error distributed algorithm. Those procedures require a centralized
control, thus a specific node vlead will have to play that role in distributed environments.

Let X be a finite set, and let f : X → {0, 1}. Let vlead be any fixed vertex of a network (e.g., an
elected leader), whose purpose is to find x ∈ X such that f(x) = 1 (assuming such elements exist).
Vertex vlead has two (randomized or quantum) distributed procedures at its disposal:

• Setup: Sample x ∈ X (or create a superposition of elements x ∈ X) such that f(x) = 1
with probability pfound (when measuring x in the quantum setting). We let TSetup denote the
round-complexity of Setup.

• Checking: Compute f(x), given input x ∈ X. We let TChecking denote the round-complexity
of Checking.

Assume one wants to amplify the success probability of Setup as follows: (1) vertex vlead has
to sample x ∈ X in the support of Setup, and (2) x should satisfy f(x) = 1 with high probability
whenever pfound ≥ ε. A randomized strategy consists in executing Setup Θ(1/ε) times, and returning
any of the sampled values of x satisfying f(x) = 1, using Checking. The success probability
can be made arbitrarily high assuming that pfound ≥ ε. This procedure has round complexity
O((TSetup + TChecking)/ε). But quantumly we can do quadratically better in ε.

Lemma 8 (Distributed quantum search [26, Theorem 7]). Let f, vlead, Setup,Checking,
TSetup, TChecking and pfound be defined as above. For any δ > 0, there is a quantum distributed
algorithm with round complexity

O

(
log(1/δ) · 1√

ε
(TSetup + TChecking)

)
,

such that (1) node vlead returns x in the support of Setup, and (2) f(x) = 1 with probability at least
1− δ whenever pfound ≥ ε.
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Remark. Note that, actually, the statement above slightly differs from Theorem 7 in [26] in sev-
eral aspects. First, it is restricted to the simplest case of search problems (instead of optimization
ones). Second, there is no mention of any initialization procedure that we let outside our framework
for the sake of simplifying the presentation. Third, procedures Setup and Checking may be deter-
ministic or randomized. Indeed, in the distributing setting, they can be converted into quantum
procedures using standard techniques similar to those used for the sequential setting (see [26]).
Last, point (1) was not explicit in [26], but this is a well-known property of Grover’s search and
amplitude amplification.

As an application, and similarly to the sequential case (see for instance [2, Theorem 2.2]),
Lemma 8 can be used to amplify the success probability of any one-sided error Monte-Carlo dis-
tributed algorithm. This amplification result is of independent interest, and may be used for other
purposes, beyond the design of H-freeness decision algorithms. We call it Distributed quantum
Monte-Carlo amplification .

Theorem 3 (Distributed quantum Monte-Carlo amplification). Let P be a Boolean predicate on
graphs. Assume that there exists a (randomized or quantum) distributed algorithm A that decides
P with one-sided success probability ε on input graph G, i.e.,

• If G satisfies P, then, with probability 1, A accepts at all nodes;

• If G does not satisfy P, then, with probability at least ε, A rejects in at least one node.

Assume further that A has round-complexity T (n,D) for n-node graphs of diameter at most D.
Then, for any δ > 0, there exists a quantum distributed algorithm B that decides P with one-sided
error probability δ, and round-complexity polylog(1/δ) · 1√

ε
(D + T (n,D)).

Proof. Let A be the given distributed algorithm. First we recast the problem in the framework
of Lemma 8. Let X = {accept , reject} and f : X → {0, 1} be such that f(accept) = 0 and
f(reject) = 1. Now define Setup as an algorithm which (1) selects a leader node vlead, (2) runs A,
(3) broadcasts the existence of a rejecting node to vlead, (4) outputs accept when all nodes accepts,
and reject otherwise. Thus TSetup = T (n,D) +O(D). The procedure Checking is trivial since vlead
simply transforms accept in 0 and reject in 1, which requires no rounds, thus TChecking = 0. Let us
call B the resulting algorithm after applying Lemma 8 with these procedures, and with the same
parameter ε. By construction, B has the claimed round-complexity. For the analysis of correctness,
we consider two cases.

• Assume that A accepts with probability 1, that is, A samples reject with probability 0. Then
B also samples reject with probability 0 since it samples in the support of A.

• Assume now that A rejects with probability at least ε. Then A samples reject with the same
probability, that is pfound ≥ ε. Thus B will sample reject with probability at least 1− δ.

We conclude that B is an algorithm that solves P with one-sided error probability δ.

3.1.2 Diameter reduction

As demonstrated in [17], one can assume that the network has small diameter when looking for a
forbidden connected subgraph. As observed in [8, 33], this assumption is valid for both quantum
and randomized algorithms in the CONGEST model .
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Lemma 9 ([17, Theorem 15]). Let H be any fixed, connected k-vertex graph. Let A be a ran-
domized (resp., quantum) algorithm that decides H-freeness, with round-complexity T (n,D) in
n-node graphs of diameter at most D, and error probability ρ(n) = o(1/(n log n)). Then there
is a randomized (resp., quantum) algorithm A′ that decides H-freeness with round-complexity
polylog(n)(T (n,O(k log n)) + k), and error probability at most (cρ(n) · n log n + 1/poly(n)), for
some constant c > 0.

This result is based on a powerful technique of network decomposition from [19], which leads
to the following (classical) preprocessing step, where nodes get one or more colors.

Lemma 10 ([17, Theorem 17]). Let G = (V,E) be an n-node graph and let k ≥ 2 be an integer.
There is a randomized algorithm with round complexity k polylog(n) and error probability at most
1/ poly(n) that constructs a set of clusters of diameter O(k log n) such that (1) each node is in at
least one cluster, (2) the clusters are colored with γ = O(log n) colors, and (3) clusters of the same
color are at distance at least k from each other in G.

We now briefly review the reduction in Lemma 9 to convince the reader that this reduction
applies to quantum protocols too. The following can be viewed as a sketch of proof of Lemma 9.

Construction in the proof of Lemma 9. We define A′ as follows. First A′ computes the
network decomposition of Lemma 10 with parameter 2k + 1. Therefore, the clusters of a same
color are at pairwise distance at least 2k + 1. Define G(i, k) as the graph induced by all vertices
of color i ∈ [γ], and their k-neighborhood. Observe that each connected component of G(i, k) is of
diameter O(k log n). Indeed when we enlarge the clusters of color i as in G(i, k) by adding their
k-neighborhood, the subgraphs of G(i, k) resulting from different clusters are disjoint. Moreover,
they are not connected in G(i, k). Therefore each connected component of G(i, k) is obtained by
the enlargement of one cluster, with its k-neighborhood. Thus the diameter of the component is
at most the diameter of the cluster, plus 2k.

Then, sequentially, for each color i ∈ [γ], A′ runs A in parallel on each connected compo-
nent of G(i, k). For the analysis, we first assume that the network decomposition has succeeded,
and satisfies the conclusions of Lemma 10. Since connected components of G(i, k) have diameter
O(k log n), and since we used O(log n) different colors, the round-complexity of A′ is as claimed.
The correctness of A′ is a direct consequence of the following observation. G contains a copy of H
as a subgraph if and only if there exists a color i ∈ [c] such that G(i, k) contains a copy of H as a
subgraph. For the overall error probability, simply take the union bound of all the potential failure
events.

3.2 Quantum algorithm

3.2.1 Congestion reduction

Our classical algorithm has a constant success probability (cf. Theorem 1), and its three calls to
the subroutine color-BFS have complexities upper bounded by O(n1−1/k). In order to speed up
this algorithm, we first reduce its success probability to ε = Θ(1/n1−1/k) such that the color-BFS
subroutines have O(1) round-complexities. Classically, one would have to repeat this process 1/ε
times in order to get constant success probability, whereas 1/

√
ε quantum rounds suffices thanks

to Theorem 3.
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Recall that the complexity O(n1−1/k) of color-BFS is a consequence of the setting of the threshold
τ = O(n1−1/k). Indeed, every node only needs to send information that comes from at most τ nodes
x0, leading to a congestion of τ , and thus a round complexity of τ . By activating each node x0
with probability ε = O(1/τ) uniformly at random, one can expect to reduce the congestion to
O(ετ) = O(1), and to reduce the success probability to ε. Then, we apply Theorem 3 to get
constant success probability within O(D×

√
τ) rounds, where D is the graph diameter. Note that,

later on, we will eliminate the diameter dependence by employing the standard diameter reduction
offered by Lemma 9. This technique has already been used for detecting C4 with round complexity
Õ(n1/4) in an unpublished work [9], using directly Lemma 8, and not our new Theorem 3. The
implementation is then a bit more involved. Each node initially samples a private token in [1/ε],
activated nodes are then decided by the leader choosing a token and broadcasting it. While the
token sampling is decentralized, the activation of nodes of a given token must be centralized before
applying Lemma 8, which yields also a multiplicative term D. However, for our purpose, we used
a novel, and more general randomized distributed algorithm (Theorem 1), together with a more
encapsulated quantum framework (Theorem 3) that eases its application.

3.2.2 Application to color-BFS

To speedup Algorithm 1, we replace color-BFS(k,H, c,X, τ) with a randomized protocol
called randomized-color-BFS(k,H, c,X, τ), described in Algorithm 2 . This randomized pro-
tocol has smaller round complexity, and thus has smaller success probability. Compared to
color-BFS(k,H, c,X, τ), the modifications are the following:

• A node colored 0 does not systematically initiate a search, but does so with probability 1/τ
(cf. Instruction 1).

• Instead of using the threshold τ , the randomized algorithm uses a much smaller (constant)
threshold, merely equal to 4 (cf. Instruction 5).

Algorithm 2 randomized-color-BFS(k,H, c,X, τ)

1: every node x ∈ X with c(x) = 0 sends its ID to its neighbors in H with probability 1/τ
2: for i = 1 to k − 1 do
3: for every node v ∈ V (H) with c(v) = i (resp., c(v) = 2k − i) do
4: Iv ← {IDs received from neighbors in H colored i− 1 (resp. 2k − i− 1)}
5: if |Iv| ≤ 4 then
6: v forwards Iv to its neighbors in H colored i+ 1 (resp. 2k − i− 1)
7: end if
8: end for
9: end for

10: for every node v ∈ V (H) colored k do
11: if v receives a same ID from two neighbors respectively colored k − 1 and k + 1 then
12: v outputs reject
13: end if
14: end for

The protocol randomized-color-BFS has round-complexity O(1) since no node ever forwards more
than 4 identifiers. Let us analyse its success probability. In order to take into account the fact that
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the first instruction of randomized-color-BFS(k,H, c,X, τ) is randomized, we define the random set

X ′
0 = {x ∈ X0 | x sends id(x) at Instruction 1 of Algorithm 2}.

For X ′
0(v), we proceed accordingly to the definition of X0(v) in Eq. (1) and (2) for every v ∈ H

colored i, or 2k − i, for every i ∈ {1, . . . , k − 1}. More formally,

X ′
0(v) = {x ∈ X0(v) ∩X ′

0}.

Then X ′
0(v) satisfies a fact similar to Fact 4 for X0(v) .

Fact 6.

• Let (v1, v2, . . . , vk−1) be a path in H such that c(vi) = i for evey i ∈ {1, . . . , k − 1}. If
|X ′

0(vk−1)| ≤ 4 then, for every i ∈ {1, . . . , k − 1}, |Ivi | ≤ 4 and Ivi = X ′
0(vi).

• Let (v2k−1, v2k−2, . . . , vk+1) be a path in H such that c(vi) = i for every i ∈ {k+1, . . . , 2k−1}.
If |X ′

0(vk+1)| ≤ 4 then, for every i ∈ {k + 1, . . . , 2k − 1}, |Ivi | ≤ 4 and Ivi = X ′
0(vi).

Proof. We prove the result only for nodes colored between 1 and k − 1 as, by symmetry, the same
holds for nodes colored between 2k − 1 and k + 1. It follows from Instructions 1 and 4 that, for
every v ∈ H, each identifier in Iv corresponds to a node in X ′

0(v). Now, along a path (v1, . . . , vk−1),
as long as |X ′

0(vi)| ≤ 4 for every i ∈ {1, . . . , k − 1}, the condition of Instruction 5 is always
satisfied for Ivi , and every node in X ′

0(vi) belongs to Ivi . The result follows thanks to the fact that
X ′

0(vi) ⊆ X ′
0(vk−1) for every i ∈ {1, . . . , k − 1}.

We can now state a first statement on the success probability of randomized-color-BFS, which
is not yet suitable for applying Theorem 3. Note that the two cases considered in the lemma below
do not cover all scenarios.

Lemma 11. Protocol randomized-color-BFS(k,H, c,X, τ) satisfies the following.

• If there are no 2k-cycles in H, then, with probability 1, all nodes accept.

• If there is a 2k-cycle C = (u0, . . . , u2k−1) in H, with u0 ∈ X, c(ui) = i for every
i ∈ {0, . . . , 2k − 1}, |X0(uk−1)| ≤ τ , and |X0(uk+1)| ≤ τ , then, with probability at least 1/(2τ),
at least one node rejects.

Proof. The first claim is straightforward. Let us prove the second claim. As each element of X0

belongs to X ′
0 with probability 1/τ , we get u0 ∈ X ′

0 with probability 1/τ . Assume that u0 ∈ X ′
0.

Then u0 ∈ Iu1 ∩ Iu2k−1
. Conditioned to u0 ∈ X ′

0, the expected sizes of X ′
0(uk−1) ∖ {u0} and

X ′
0(uk+1) ∖ {u0} are at most 1. Thus, by Markov’s inequality, each of them is at least 4 with

probability at most 1/4. Therefore by the union bound,

Pr
[(
|X ′

0(uk−1)∖ {u0}| ≤ 3
)
∧
(
|X ′

0(uk+1)∖ {u0}| ≤ 3
)]
≥ 1

2
.

It follows that, with probability at least 1/2τ , we have u0 ∈ Iu1 ∩ Iu2k−1
, |X ′

0(uk−1)| ≤ 4, and
|X ′

0(uk+1)| ≤ 4. Using Fact 6, we derive that, for every i ∈ {1, . . . , k−1}, |Iui | ≤ 4 and |Iu2k−i
| ≤ 4,

meaning that uk rejects after receiving u0’s identifier along path (u1, . . . , uk−1), and along path
(u2k−1, . . . , uk+1).
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3.2.3 Application to cycle detection

We now have all the ingredients to prove the upper bound in Theorem 2 regarding deciding C2k-
freeness in quantum CONGEST.

Lemma 12. For every k ≥ 2, there is a randomized distributed algorithm A solving C2k-freeness
with one-sided success probability 1/(3τ), and running in kO(k) rounds.

Proof. Let A be Algorithm 1 where color-BFS is replaced by randomized-color-BFS. To analyze
A we refer to the analysis of Algorithm 1 with ϵ = 1/3 in Theorem 1 , and only highlight the
differences.

• Complexity: By construction, the new threshold 4 in randomized-color-BFS, instead of τ in
color-BFS, ensures that the overall complexity is 4kK, that is O(k(2k)2k) = kO(k) rounds.

• Acceptation probability: As a node can only reject in randomized-color-BFS(k,H, c,X, τ),
then by Lemma 11, Algorithm A always accepts when there are no 2k-cycle in G.

• Rejection probability: We prove that if there is 2k-cycle C in G then Algorithm A rejects with
probability Ω(1/τ). Observe that the proofs of Lemmas 1, 2 and 3 consist in upper bounding
by τ the size of the sets X0(uk−1) and X0(uk+1), where C = (u0, . . . , u2k−1) is the considered
cycle. In particular, whenever those lemmas are applied, we can use Lemma 11 instead, on
the same considered cycle, in order to lower bound the rejection probability by 1/(2τ). With
this modification in mind, the rest of the proof of Theorem 1 applies, leading to a rejection
probability of at least (1− ε)/(2τ) = 1/(3τ).

This completes the proof.

The upper bound for even cycles in Theorem 2 is now proved in the following lemma.

Lemma 13. There is a quantum distributed algorithm A solving C2k-freeness with one sided error
probability 1/poly(n), and running in kO(k) · polylog(n) · n1/2−1/2k rounds.

Proof. First, by Lemma 12, we get a randomized algorithm with one-sided success probability 1/3τ ,
and round-complexity kO(k). Then, we apply Theorem 3 to amplify this algorithm to get a one-
sided error probability 1/poly(n), in polylog(n) ·

√
τ · (kO(k) + D) rounds. Finally, we get rid of

the diameter factor by applying Lemma 9, which yields one-sided error probability 1/poly(n), and
round-complexity

polylog(n)[(kO(k) +O(k log n))
√
τ + 2k] = kO(k)polylog(n) ·

√
τ = kO(k)polylog(n) · n

1
2
− 1

2k ,

which completes the proof.

3.3 Quantum Lower bounds

In this section, we prove the lower bounds stated in Theorem 2. Let us first consider even length
cycles.

3.3.1 Even-Length Cycles

We show that, for any k ≥ 2, deciding C2k-freeness requires Ω(n
1/4/ log n) rounds in the quantum

CONGEST model. The proof relies on a reduction from the Set-Disjointness problem in the two-
party quantum communication framework, to the C2k-freeness problem in the quantum CONGEST
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model. The reduction is the same as in the classical case. For k = 2, it is based on the construction
of [15], and for k ≥ 3, on the one of [30]. Recall that, in the Set-Disjointness problem, each of
two players, typically referred to as Alice and Bob, gets a subset of a universe of size N , say [N ],
and they must decide whether there is an element in common in their subsets, while exchanging
as few qubits (in the quantum setting) as possible. The total number of exchanged qubits is called
the quantum communication complexity. The number of rounds of interactions between the two
players is the round complexity. Note that the input of Alice (resp., Bob) can be represented as a
binary string x ∈ {0, 1}N (resp., y ∈ {0, 1}N ), where xi = 1 (resp., yi = 1) whenever element i is
in the input set of Alice (resp., Bob).

The reduction in [15] and [30] are based on picking a gadget graphG withN edges, e1, e2, . . . , eN ,
and constructing a graph H composed on two subgraphs GA and GB of G connected by a perfect
matching. These subgraphs are obtained from the inputs x and y of Alice and Bob, as follows. For
every i ∈ [N ], Alice (resp., Bob) keeps edge ei if xi = 1 (resp., yi = 1), and discards it otherwise.
The gadget graphs in [15] and [30] are different, but the construction is the same once the gadget
graph is fixed. The gadget graph in [15] has N = Θ(n3/2) edges, while the gadget graph in [30] has
N = Θ(n) edges. Let us denote by H ′ the graph resulting from the former, and by H ′′ the graph
resulting from the latter.

• It was shown in [15] that if there is a T (n)-round CONGEST algorithm deciding C4-freeness
in the n-node graphs H ′ then there is a T (n)-round two-party communication protocol for
Set-Disjointness of size N = Θ(n3/2) with communication complexity O(T (n) · n · log n) bits.

• Similarly, it was shown in [30] that if there is a T (n)-round CONGEST algorithm deciding
C2k-freeness for k ≥ 3 in the n-node graphs H ′′ then there is a T (n)-round two-party com-
munication protocol for Set-Disjointness of size N = Θ(n) with communication complexity
O(T (n) ·

√
n · log n) bits.

By exactly the same arguments, the same two properties hold for quantum CONGEST algorithms.
Now, it is known [4] that, in the quantum two-party communication model, for every r ≥ 1, any
r-round communication protocol solving Set Disjointness for sets of size N has communication
complexity Ω(r + N

r ) qubits. As a consequence, we get the following.

• For k = 2, any quantum algorithm solving C4-freeness in T (n) rounds must satisfy

T (n) · n · log n = Ω(N/T (n)),

with N = Θ(n3/2), and therefore T (n) = Ω(n1/4/
√
log n).

• For k ≥ 3, any quantum algorithm solving C2k-freeness in T (n) rounds must satisfy

T (n) ·
√
n · log n = Ω(N/T (n)),

with N = Θ(n). Therefore T (n) = Ω(n1/4/
√
log n), as claimed.

3.3.2 Odd-Length Cycles

Let us now move on with establishing the lower bound stated in Theorem 2 for cycles of odd lengths.
That is, we show that, for any k ≥ 2, the round complexity of C2k+1-freeness is Θ̃(

√
n) in quantum

CONGEST. Once again, we use reduction from set disjointness. A gadget graph H ′′ with Θ(n2)
edges has been constructed in [15], for which it was proved that if there is a T (n)-round CONGEST
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algorithm deciding C2k+1-freeness in the n-node graphs H ′′ then there is a T (n)-round two-party
communication protocol for Set-Disjointness of size N = Θ(n2) with communication complexity
O(T (n) · n · log n) bits. The same holds for quantum CONGEST. Therefore, using again the lower
bound for set disjointness in [4], we get that any quantum algorithm solving C2k+1-freeness in T (n)
rounds must satisfy

T (n) · n · log n = Ω(N/T (n)),

with N = Ω(n2). Therefore T (n) = Ω(
√
n/ log n), as claimed.

3.4 Quantum Upper Bound for Deciding Odd Cycles

We finally show that the lower bound for odd cycles C2k+1 with k ≥ 2 established in the previous
section is tight, which completes the proof of Theorem 2. Specifically, we show that there is a
simple one-sided error randomized algorithm with success probability Ω(1/n) for deciding C2k+1-
freeness. As for the even case, the algorithm consists of looking for a well colored cycle, using
a repetition of K = O(1) random coloring c of the vertices of the graph, but with colors taken
in {0, . . . , 2k} (instead of {0, . . . , 2k − 1}). For every coloring c, we apply a procedure similar to
randomized-color-BFS(k,G, c, V, 4) described in Algorithm 2. Indeed, for odd cycles the procedure
only differs by the fact that we look for a cycle (u0, . . . , u2k) instead of (u0, . . . , u2k−1). That is, a
node colored k checks reception of a same identifier transmitted along a path colored 0, 1, . . . , k −
1, k (of length k), and a path colored 0, 2k, . . . , k + 1, k (of length k + 1). For any node u, and
for any coloring c, we have |V0(u)| ≤ |V | ≤ n. Therefore, by using the same arguments as in
Lemma 11, we get an algorithm with one-sided success probability Ω(1/n), and constant round-
complexity. Indeed, whenever a (2k+ 1)-cycle C is well colored, the node u0 with color 0 in C has
probability 1/n of sending its identifier. Moreover, if this happens then, with constant probability,
no node of the cycle C will receive more than a constant number of identifiers. One can apply
our quantum boosting technique (cf. Theorem 3), combined with the diameter reduction technique
(cf. Lemma 9). This results in an algorithm with round-complexity Õ(

√
n), and error probability

1− 1/poly(n).

3.5 Quantum Upper bound for Deciding Cycles of Bounded Length

For every k ≥ 2, let F2k = {Cℓ | 3 ≤ ℓ ≤ 2k}. In this section, we show how to use our quantum
algorithm deciding C2k-freeness for deciding F2k-freeness, in Õ(n1/2−1/2k) rounds. In a nutshell, the
(quantum) algorithm in [33] uses a different bound dmax compared to [10], and quantize only the
search for heavy cycles. Instead, we keep the same bound dmax = n1/k, but we quantize the search
of both light and heavy cycles. Our quantum algorithm is rejecting with probability 1− 1/poly(n) if
there is a cycle of length ℓ ∈ {3, . . . , 2k}, and is accepting otherwise.

Our quantum algorithm results from quantizing the classical algorithm for F2k-freeness in [10],
in the same way we quantized our classical algorithm for C2k-freeness (see Algorithm 1). More
specifically, we sequentially check the existence of cycles for pairs of lengths, by deciding C2ℓ−1-
and C2ℓ-freeness conjointly, for every ℓ ∈ {2, . . . , k}. For every ℓ, the decision algorithm works
under the assumption that there are no cycles of length at most 2(ℓ − 1), as if there were such
cycles, they would have been detected when testing a smaller pair of length. For a fixed ℓ, the
algorithm is quasi-identical to Algorithm 1 with just four differences, listed below (we refer to the
instructions in Algorithm 1).

27



• Instruction 5: We set W as the set of all neighbors of the set S, with no restrictions on the
degrees of the nodes.

• Instruction 6: the threshold is now set to τ = 2np.

• Instructions 10 and 11 are merged into a single color-BFS(m,G, c,W, τ).

In addition, in any color-BFS aiming at detecting (2ℓ− 1)-cycles, nodes colored ℓ+ 1 also forwards
the received identifiers to neighbors colored ℓ− 1, which reject if one of those identifiers is equal to
one received from neighbors colored ℓ− 2.

The detection of light cycles by color-BFS(m,G[U ], c, U, τ) performs in O(n1−1/ℓ) rounds. On
the other hand, regarding the simplified detection of heavy cycles using color-BFS(m,G, c,W, τ), if
a node v ∈ V receives more than |S| identifiers of nodes in W , then two of them must be neighbors
of a same node s ∈ S. The two sequentially colored paths from s to v induced by the forwarding
of those two identifiers then form a cycle of length ≤ 2ℓ.

4 Conclusion

Thanks to our work, which complements previous work on the matter, the complexity landscape
of deciding Ck-freeness in CONGEST is roughly as follows. In the classical setting, for k > 3 odd,
deciding Ck-freeness takes Θ̃(n) rounds, and, for k ≥ 4 even, deciding Ck-freeness takes Õ(n1−2/k)
rounds. In the quantum setting, for k > 3 odd, deciding Ck-freeness takes Θ̃(

√
n) rounds, and,

for k ≥ 4 even, deciding Ck-freeness takes Õ(n1/2−1/k) rounds. That is, quantum effects allowed us
to design quantum algorithms with quadratic speedup compared to the best classical algorithms.
Interestingly, in order to get quantum speed-up for even cycles, we first establish a trade-off between
congestion, and round complexity. Such trade-offs might be exhibited for other distributed tasks,
which would automatically lead to a quantum speed-up for these tasks as well.

We have already mentioned the difficulty of designing lower bounds for triangle-freeness, as well
as for C2k-freeness for k ≥ 3. Yet, it seems that for C2k-freeness and k ≥ 3, the design of classical
algorithms with complexity O(n1−1/k−α), or quantum algorithms with complexity O(n1/2−1/2k−α),
with α > 0, would require entirely new techniques.

Finally, it is worth mentioning that, as far as randomized algorithms for cycle detection are
concerned, the randomized color-coding phases can often be replaced by deterministic protocols
based on [20] (see, e.g., [25, 30] for its application). However, as for most distributed algorithms
detecting subgraphs, our algorithm needs to pick a set S of vertices at random. For 4-cycles,
randomization is not necessary, but we do not known whether randomization is necessary or not
for detecting larger cycles of even length in a sublinear number of rounds.
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