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Abstract
In recent years, multi-view outlier detection (MVOD) methods have

advanced significantly, aiming to identify outliers within multi-

view datasets. A key point is to better detect class outliers and

class-attribute outliers, which only exist in multi-view data. How-

ever, existing methods either is not able to reduce the impact of

outliers when learning view-consistent information, or struggle

in cases with varying neighborhood structures. Moreover, most

of them do not apply to partial multi-view data in real-world sce-

narios. To overcome these drawbacks, we propose a novel method

named Regularized Contrastive Partial Multi-view Outlier Detec-

tion (RCPMOD). In this framework, we utilize contrastive learning

to learn view-consistent information and distinguish outliers by the

degree of consistency. Specifically, we propose (1) An outlier-aware

contrastive loss with a potential outlier memory bank to eliminate

their bias motivated by a theoretical analysis. (2) A neighbor align-

ment contrastive loss to capture the view-shared local structural

correlation. (3) A spreading regularization loss to prevent the model

from overfitting over outliers. With the Cross-view Relation Trans-

fer technique, we could easily impute the missing view samples

based on the features of neighbors. Experimental results on four

benchmark datasets demonstrate that our proposed approach could

outperform state-of-the-art competitors under different settings.
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Figure 1: Different types of outliers in complete and partial
multi-view data. Dashed circles represent the missing views.
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1 Introduction
Multi-view data, which describes an entity with features sourced

from various sensors or modalities, is ubiquitous in multimedia ap-

plications [4, 10, 28, 32, 38, 51, 55, 58]. For example, multi-view data

of a film can include textual and visual views that capture different

aspects, and multi-view data of an image can be formed by color or

shape feature descriptors. Each view contributes both consensus

and complementary information, enabling a more comprehensive

description of the underlying data. Consequently, multi-view learn-

ing plays a crucial role in improving the generalization performance

[5, 7, 19, 40, 49, 56]. However, since the quality of data collection

is difficult to control, the outliers are inevitable in real-world data.

What’s worse, as the organization of multi-view data is usually

more complicated, multi-view outliers also exhibit more diverse
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patterns than single-view ones. Accordingly, detecting these multi-

view outliers without labels becomes more challenging.

As shown in Fig. 1, multi-view outliers can be sorted into three

types:

• Attribute outliers (red triangle) are which consistently

differ from most other samples in all views.

• Class outliers (yellow diamond) are with inconsistent fea-

tures and cluster membership across different views.

• Class-attribute outliers (purple square) exhibit the charac-
teristic of attribute outliers in some view while the features

are inconsistent across different views.

To date, a plethora of multi-view outlier detection (MVOD) meth-

ods have been devised for this problem [2, 6, 9, 15, 22, 23, 26, 31, 44,

57]. These approaches mainly focus on the identification of multi-

view-data-specific outliers, i.e., class outliers and class-attribute out-
liers (hereinafter referred to as “class-related outliers” for brevity),

given their substantial impact on overall detection efficacy. Accord-

ing to the ways of detecting class-related outliers, recent MVOD

methods roughly fall into two categories: (1) Neighborhood similar-

ity based methods such as NCMOD [6], SRLSP [44] and MODGD

[15]. They assume that the neighborhood structures of class-related

outliers are inconsistent across views, and then identify outliers by

comparing the neighbors of a sample between the view-specific and

consensus similarity graphs. (2) View consistency based methods

like LDSR [22] and MODDIS [17]. They assess the level of view-

consistent information using latent representations, and detect

class-related outliers based on the extent of view-inconsistency.

While both types of methods have demonstrated good perfor-

mance, they also have their own limitations. On one hand, neighbor-

hood similarity-based methods might struggle in scenarios where

the neighborhood structures of samples exhibit significant varia-

tions. For example, when an inlier is surrounded by many class-

related outliers, its neighborhood structure differs across views. On

the other hand, although view consistency based methods are not

affected by varying neighborhood structures, their deficiency in ad-

equately handling class-related outliers leads to a suboptimal perfor-

mance. Since class-related outliers exhibit large view-inconsistency,

learning from inliers and these outliers equally will hinder the

model to capture the correct view-consistent information.

Another shortcoming of existing methods is that they can only

handle the complete multi-view data. Unfortunately, in real-world

applications, certain views of some instances might be missing,

resulting in the partial multi-view data [18]. The missing views

exacerbate the challenge of outlier detection, as the neighborhood

and view consistencies are more difficult to measure, as illustrated

in Fig. 1b. To effectively leverage the incomplete data, imputing

the missing views becomes necessary. As an early trial, CL [11]

exploits the inter-dependence across views to facilitate both view

completion and outlier detection. Yet it is designed specifically for

identifying class outliers. Therefore, how to better tackle the partial

MVOD problem remains underexplored.

To overcome these drawbacks, we propose a novel MVOD frame-

work, which is established on view-specific autoencoders and mod-

els the latent view consistency through contrastive learning. Con-

sidering that class-related outliers will bias the view consistency

in the naïve contrastive learning, we design an outlier-aware con-

trastive loss with a memory bank restoring potential outliers in

each mini-batch motivated by a theoretical analysis. They are then

adopted as additional negative samples for contrastive learning, to

push them away from inliers and mitigate their negative impact.

Noticing that neighborhood structural consistency is also beneficial

to promote the view consistency, we propose a neighbor alignment

contrastive loss to explicitly capture the neighborhood structural

consistency across views. Moreover, a spreading regularization is

employed to overcome the problem of overfitting over outliers.

Finally, a flexible and effective outlier scoring criteria is tailored

for the proposed contrastive learning framework. With the help of

neighbor alignment, we can adopt the Cross-view Relation Transfer

(CRT) technique [43] for accurate missing data imputation based

on the neighbor features.

In summary, our major contributions are three-fold:

• We propose a novel contrastive-learning-based partial multi-

view outlier detection framework called RCPMOD, which is

capable of handling partial multi-view data and simultane-

ously detecting three types of outliers.

• In the core of the framework, we propose an outlier-aware

contrastive loss and a neighbor alignment contrastive loss to

eliminate the bias caused by outliers and maximize the view

consistency. We further employ a spreading regularization

to mitigate the outlier overfitting in contrastive learning.

• With these learning techniques, we design the corresponding

outlier scoring rule based on view consistency.

The effectiveness of the proposed framework is validated on four

benchmark datasets under various outlier ratios and view missing

rates, together with ablation and sensitivity studies.

2 Related Work
2.1 Multi-view Outlier Detection
Outlier detection is an important and challenging task in machine

learning [12, 45]. Currently, the majority of the methods for detect-

ing outliers are designed for single-view data.[1, 3, 14, 20, 21, 30, 46].

However, themulti-view datasets presents amore intricate situation

with three types of outliers holding diverse characteristics.

In the past decade, several methods for MVOD have been de-

veloped. The transition from single-view to multi-view outlier de-

tection began with HOAD [9], which was the first to detect class

outliers. Early methods [2, 9, 26] relied on clear cluster structures.

DMOD [57] advanced the field by using latent coefficients and con-

struction errors to address both class and attribute outliers without

relying on clear cluster structures. Following DMOD, MLRA [23],

MLRA+ [24], and MuvAD [31] improved performance but were

limited to two views. LDSR [22] overcame view number limita-

tions by dividing representations into view-consistent and view-

inconsistent parts, introducing the concept of class-attribute out-

liers. MODDIS [17] adopted a similar approach with deep learning

to learn these parts using separate networks.

Recently, methods based on neighborhood similarity were devel-

oped. NCMOD [6] used an autoencoder to map samples to a latent

space and constructed neighborhood consensus graphs to detect

outliers. SRLSP [44] also constructed neighbor similarity graphs

and fused them with a graph fusion term. MODGD [15] introduced
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a row-wise sparse outlier matrix for outlier detection when fusing

neighborhood graphs.

Partial multi-view outlier detection. The MVOD problem is

underexplored when some views of data are missing. To the best of

our knowledge, there is only one early trial, i.e., CL [11], tailored

for this task. It proposes a Collective Learning based framework

that exploits inter-dependence among different views for view com-

pletion and outlier detection. However, CL could only handle class

outliers and fails when facing attribute outliers.

Although partial view problem has still been underexplored in

MVOD, it is an important problem in multi-view (MV) learning

and has gained much attention recently due to its realisticness. In

fact, partial MVOD can serve as a preliminary task to enhance the

outlier-robustness of other partial MV learning tasks.

2.2 Contrastive Multi-view Learning
Contrastive learning stands out as a notable method in unsuper-

vised representation learning [27, 34, 37, 41]. It learns intrinsic

information of unsupervised data by enhancing the similarity be-

tween positive pairs and reducing it among negative pairs. The

method has also been extended to multi-view learning, with sig-

nificant works in this area including [13, 35]. A representavtive

work is [35], which introduces a multi-view coding framework

using contrastive learning to understand scene semantics better.

Recent efforts have been made to explore the implementations of

contrastive learning in multi-view clustering [25, 36, 42, 50, 52].

For example, MFLVC [50] combines instance- and cluster-level

contrastive learning on high-level features to learn more common

semantics across views, AGCL [42] adopt within-view graph con-

trastive learning and cross-view graph consistency learning to learn

more discriminative representations.

In this paper, we utilize contrastive learning in MVOD to pursue

the cross-view consistency, with some special designs to allevi-

ate the influence of outliers. Meanwhile, a neighbor alignment

contrastive module is designed to further learn the neighborhood

structural consistency and improve the imputation performance.

3 Methodology
3.1 Problem Setting
Without loss of generality, we take bi-view data as an example.

Consider a partial bi-view dataset 𝑿𝒎𝒔 = {𝑿 (1)
𝑐 ,𝑿 (2)

𝑐 ,𝑿 (1)
𝑎 ,𝑿 (2)

𝑏
}

without labels, where {𝑿 (1)
𝑐 ,𝑿 (2)

𝑐 } denote the instances presented
in both views (also called complete data subset) with the size of 𝑁 ,

𝑿 (1)
𝑎 and 𝑿 (2)

𝑏
denote those presented in one view but missing in

the other view. Let 𝑿 (1) = {𝑿 (1)
𝑐 ,𝑿 (1)

𝑎 } and 𝑿 (2) = {𝑿 (2)
𝑐 ,𝑿 (2)

𝑏
}

be all the samples in view 1 and 2 with a size of 𝑁1 and 𝑁2, respec-

tively. The data might simultaneously contain attribute/class/class-

attribute outliers. Our target is designing a scoring function 𝒔 (·)
to detect outliers in the data in an unsupervised manner, with a

higher score indicating a larger probability to be abnormal.

The proposed RCPMOD model consists of three modules as

Fig.2 shows: (1) the outlier-aware contrastive module learns view

consistency, (2) the neighbor alignment contrastive module learns

shared local structural correlation across different views and (3) the

spreading regularization module prevents overfitting to outliers.

3.2 Outlier-aware Contrastive Learning
Following the convention of deep unsupervised multi-view learn-

ing [25, 50], we adopt the autoencoder (AE) to learn the latent

representation of each views. Let 𝑓 (𝑣) and 𝑔 (𝑣) denote the encoder
and decoder for the 𝑣-th view, respectively. To preserve the infor-

mation of each view in the latent space, the AE reconstruction loss

is defined as:

L𝑎𝑟 =
1

2

2∑︁
𝑣=1

𝑁𝑣∑︁
𝑖=1




𝒙 (𝑣)
𝑖

− 𝑔 (𝑣)
(
𝑓 (𝑣)

(
𝒙 (𝑣)
𝑖

))


2
2

, (1)

where 𝒙 (𝑣)
𝑖

denotes the 𝑖-th sample in 𝑿 (𝑣)
. Hence, the latent rep-

resentation of 𝒙 (𝑣)
𝑖

is given by 𝒛 (𝑣)
𝑖

= 𝑓 (𝑣) (𝒙 (𝑣)
𝑖

) .
To facilitate the multi-view outlier detection, we hope to learn a

latent space in which inliers exhibit a large cross-view consistency

while outliers (especially class-related ones) are quite the opposite.

In many recent multi-view learning methods [36, 47, 50], the view-

consistent information can be learned by contrastive learning. It

pulls the embeddings of the same instance in each view close to

each other while simultaneously pushing away those of different

instances. For a given latent representation 𝒛 (1)
𝑖

, its counterpart in

the other view 𝒛 (2)
𝑖

is considered as the positive sample, and the

rest samples in all views usually serve as negative samples. Using

the cosine similarity 𝑠 (𝑥,𝑦), a typical multi-view contrastive loss

could be formulated as:

L𝑐𝑜𝑛 = −1

2

2∑︁
𝑚=1

𝑁∑︁
𝑖=1

log

𝑒𝑠 (𝒛
(𝑚)
𝑖

,𝒛 (𝑚′ )
𝑖

)/𝜏𝐹∑𝑁
𝑗=1

∑
2

𝑣=1 𝑒
𝑠 (𝒛 (𝑚)

𝑖
,𝒛 (𝑣)

𝑗
)/𝜏𝐹

, (2)

where𝑚′
is the counterpart view of𝑚 (e.g.,𝑚′ = 2 when𝑚 = 1),

and 𝜏𝐹 denotes the temperature parameter.

However, the naïve contrastive loss overlooks the presence of

outliers. Given that class-related outliers usually exhibit a large

inconsistency among different views, arbitrarily pursuing the view-

consistency for all the contaminated data will inevitably bias the

latent space and then harm the learning. Recall that the contrastive

loss fundamentally maximizes a lower bound on the mutual infor-

mation between different views of an instance [37], i.e., 𝐼 (𝒛 (1) , 𝒛 (2) ).
But in our case, we should only maximize the mutual information

for inliers and keep the mutual information of outliers low to al-

leviate their negative impact. According to the characteristic of

class-related outliers, we can naturally assume that the mutual

information between different views of class-related outliers is

upper-bounded:

𝐼 (𝒙 (1)
𝑜 , 𝒙 (2)

𝑜 ) ≤ 𝜀, (3)

where 𝒙 (1)
𝑜 and 𝒙 (2)

𝑜 represent the different views of any arbitrary

class-related outlier. Then we can find that a lower bound exists

for the contrastive loss of such outliers, as shown in the following

proposition. Due to space limitations, we leave the detailed proof

in the supplementary materials.

Proposition 1. If 𝐼 (𝒙 (1)
𝑜 , 𝒙 (2)

𝑜 ) ≤ 𝜀, then the contrastive loss
value of outlier instances is lower-bounded by log(2𝑁 ) − 𝜀.

Proof Sketch. Following [37], it is easy to show that:

𝐼 (𝒛 (1)𝑜 , 𝒛 (2)𝑜 ) ≥ log(2𝑁 ) − L𝑜𝑐𝑜𝑛, (4)
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Figure 2: Overview of RCPMOD on bi-view data. Two key contrastive learning modules are applied on the latent space to
promote the view consistency: (1) In outlier-aware contrastive module, potential class-related outliers are restored in a memory
bank and used as additional negative samples. (2) In neighbor alignment contrastive module, the corresponding neighbors of a
sample are aligned to learn the cross-view structural correlations. Moreover, we adopt a spreading regularization to prevent
from overfitting on class-related outliers. The missing samples are imputed by the Cross-view Relation Transfer technique.

where L𝑜𝑐𝑜𝑛 denotes the contrastive loss over all the outliers but the

negative samples could be chosen from both inliers and outliers.

Meanwhile, by the data processing inequality, we have:

𝐼 (𝒛 (1)𝑜 , 𝒛 (2)𝑜 ) ≤ 𝐼 (𝒙 (1)
𝑜 , 𝒙 (2)

𝑜 ) ≤ 𝜀. (5)

Combining the above results, we can obtain:

L𝑜𝑐𝑜𝑛 ≥ log(2𝑁 ) − 𝐼 (𝒛 (1)𝑜 , 𝒛 (2)𝑜 ) ≥ log(2𝑁 ) − 𝜀. (6)

□

The lower bound given in Proposition 1 suggests the feasibility

of identifying outliers based on their loss values. Indeed, the con-

trastive loss value of each instance could also reflect how it is con-

sistent across different views during the learning. Class-related out-

liers, being predominantly view-inconsistent, may exhibit higher

loss values compared to inliers. In this sense, it is also natural to

adopt this value as the indicator of such outliers. For computational

convenience, here we simplify the calculation in Eq.(2), and only

adopt the cross-view cosine similarity of each view-complete in-

stance, i.e., 𝑠 (𝒛 (1)
𝑖
, 𝒛 (2)
𝑖

), as the criterion. To utilize these potential

outliers, we propose employing amemory bank to store them. These

potential outliers could be used as negative samples for each 𝒛 (𝑣)
𝑖

.

In practice, we select a fixed ratio 𝜂 of instances with the smallest

cross-view similarities in each mini-batch to form the memory bank

M with a size of 𝑁𝑀 . The memory bank is a first-in-first-out queue

to keep the potential outliers up-to-date. By incorporating the newly

formed negative pairs into Eq.(2), we formulate the outlier-aware

contrastive loss as:

L𝑜𝑎 = −1

2

2∑︁
𝑚=1

𝑁∑︁
𝑖=1

log

𝑒𝑠 (𝒛
(𝑚)
𝑖

,𝒛 (𝑚′ )
𝑖

)/𝜏𝐹∑𝑁
𝑗=1

∑
2

𝑣=1 𝑒
𝑠 (𝒛 (𝑚)

𝑖
,𝒛 (𝑣)

𝑗
)/𝜏𝐹 + 𝑃𝑀

,

𝑃𝑀 =

2∑︁
𝑣=1

𝑁𝑀∑︁
𝑡=1

𝑒𝑠 (𝒛
(𝑚)
𝑖

,𝒎 (𝑣)
𝑡 )/𝜏𝐹 ,

(7)

where 𝒎 (𝑣)
𝑡 is the 𝑡-th sample representation in 𝑣-th view in M.

With this modified contrastive loss, class-related outliers are more

distinguishable in view consistency.

Note that to accurately learn the latent space, the outlier-aware

contrastive learning is only conducted on the view-complete in-

stances at the beginning of training. After training for few epochs,

we start to impute the missing view samples (the details will be

introduced later) and then apply Eq.(7) to both the complete subset

and imputed data.

3.3 Neighbor Alignment Contrastive Learning
It is often assumed that data in different views share abundant

local structural correlation. This information is apparently help-

ful in identifying class-related outliers since them usually exhibit

inconsistent local structure across views. However, the standard

contrastive learning objective is not able to exploit such informa-

tion. To address this, we design a contrastive loss to explicitly learn

the cross-view local neighborhood correlation by aligning the repre-

sentations of 𝐾-nearest neighbors of an instance in different views.

Specifically, for each sample 𝒛 (𝑣)
𝑖

, we find its 𝐾-nearest neighbors

(𝐾-NNs) {𝒛 (𝑣)
𝑖,𝑡

}𝐾
𝑡=1

within the same view, where 𝒛 (𝑣)
𝑖,𝑡

denote the 𝑡-

th neighbor of 𝒛 (𝑣)
𝑖

. The neighbor alignment contrastive loss could

then be formulated as:

L𝑡𝑛𝑎 = −1

2

2∑︁
𝑚=1

𝑁∑︁
𝑖=1

log

𝑒
𝑠 (𝒛 (𝑚)

𝑖,𝑡
,𝒛 (𝑚′ )
𝑖,𝑡

)∑𝑁
𝑗=1

∑
2

𝑣=1 𝑒
𝑠 (𝒛 (𝑚)

𝑖,𝑡
,𝒛 (𝑣)

𝑗,𝑡
)
,

L𝑛𝑎 =
1

𝐾

𝐾∑︁
𝑡=1

L𝑡𝑛𝑎 .

(8)

It is noteworthy that since the 𝐾-nearest neighbors are calculated

within individual views, the neighbor sets {𝒛 (1)
𝑖,𝑡

}𝐾
𝑡=1

and {𝒛 (2)
𝑖,𝑡

}𝐾
𝑡=1

are not necessarily identical. As shown in the right panel of Fig. 2,
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(a) AUC comparison (b) Loss comparison (c) Score distribution without SR (d) Score distribution with SR

Figure 3: (a) Comparison of the detection AUC with and without spreading regularization (SR) on SCENE15. (b) Comparison of
the average loss value over inliers and outliers. (c)/(d) Outlier score distribution without/with SR.

the proposed loss encourages the corresponding nearest neighbors

across different views of an instance to be close. By doing so over all

𝐾 nearest neighbors, the neighborhood structure of each instance is

aligned across views, which further enhances the view-consistency.

Besides, in the beginning of training, the network usually cannot

capture a stable latent structure in the data. Thus, the 𝐾-NNs in

this stage are obtained based on the input features. When the latent

structure becomes stable, the neighbors are then updated based on

the newest latent features.

3.4 Spreading Regularization
The above two contrastive losses equip our model with a strong

ability to learn the view-consistent information in the presence

of outliers, which is helpful for the detection. However, learning

with contrastive losses may also incur some side effects. As the

dotted red lines in Fig. 3a show, although the detection performance

increases rapidly at the beginning of training, it then tends to de-

crease after reaching the performance peak. Such an overfitting

could be further demonstrated through the dashed lines in Fig. 3b.

Apparently, the cross-view consistency is much easier to achieve

over inliers than outliers, so the contrastive loss of inliers decreases

much faster. Unfortunately, as the learning goes on, the inliers

are sufficiently view-consistent, turning the model’s attention to

promote the consistency over outliers. Accordingly, the loss of class-

related outliers starts to decrease rapidly when the loss of inliers

gradually becomes stable. On the other hand, due to the underlying

clustering effect of contrastive losses [16], outliers might become

still closer and closer to inliers in the latent space. This intrinsic

trend cannot be completely alleviated by the outlier-aware design

in Sec. 3.2 due to the limited volume of the outlier memory bank. It

will also result in the outliers, especially attribute-related outliers,

becoming increasingly indistinguishable.

To overcome this issue, we need to control the closeness for

samples. We extend the KoLeo loss [29] into the multi-view setting

as a regularizer of contrastive losses:

LKoLeo = −1

2

2∑︁
𝑣=1

𝑁𝑣∑︁
𝑖=1

log(𝛿 (𝑣)
𝑖

), (9)

where

𝛿
(𝑣)
𝑖

= min

𝑗≠𝑖
∥𝒛 (𝑣)
𝑖

− 𝒛 (𝑣)
𝑗

∥. (10)

Here the closest points in each view are pushed away, which con-

tinuously scatters the latent representations. Following [29], a rank

preserving loss is also adopted to prevent the KoLeo loss from

undermining the latent structure:

L
rank

= −1

2

2∑︁
𝑣=1

𝑁𝑣∑︁
𝑖=1

max

(
0, ∥𝒛 (𝑣)

𝑖
− 𝒛 (𝑣)+

𝑖
∥2 − ∥𝒛 (𝑣)

𝑖
− 𝒛 (𝑣)−

𝑖
∥2
)
,

(11)

where the positive sample 𝒛 (𝑣)+
𝑖

is randomly chosen among the 𝑘𝑝𝑜𝑠

nearest neighbors of 𝒛 (𝑣)
𝑖

and the negative sample 𝒛 (𝑣)−
𝑖

is the 𝑘𝑛𝑒𝑔-

th neighbor. 𝑘𝑛𝑒𝑔 is usually set as a much larger value than 𝑘𝑝𝑜𝑠

so that 𝒛 (𝑣)+
𝑖

and 𝒛 (𝑣)−
𝑖

can be near and far from 𝒛 (𝑣)
𝑖

, respectively.

This loss mainly focuses on preserving the neighborhood structure

in each view, so that the KoLeo loss will not break the data structure.

Thus the spreading regularization loss can be formulated as:

L𝑠𝑟 = LKoLeo + L
rank

. (12)

With the help of this regularization, the detection performance

could be significantly stabilized and the overfitting on outliers are

prevented, as shown by the solid lines in Fig. 3a and 3b. Furthermore,

the outlier score distribution before and after adding spreading

regularization in Fig. 3c and 3d also demonstrates the effect of this

loss. We can find that the overlapping between inliers and outliers

is reduced with spreading regularization.

Putting all together, the overall learning objective of RCPMOD

can be formulated as:

L = L𝑎𝑟 + 𝜆1L𝑜𝑎 + 𝜆2L𝑛𝑎 + 𝜇L𝑠𝑟 , (13)

where 𝜆1, 𝜆2, 𝜇 are balancing parameters. This framework could

be easily extend to the case with more than two views similar to

existing multi-view learning method such as [50].

3.5 Outlier Scoring
The design for a proper outlier scoring function should consider

the characteristics of the three kinds of outliers. In our framework,

we mainly have the following consideration:

• Attribute outliers: Harder to reconstruct due to their ab-

normality in all views. Thus, a large reconstruction error

indicates an attribute outlier.

• Class outliers: View-inconsistent as discussed in Sec. 3.2.

Considering the outlier-aware contrastive loss could enhance
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Table 1: Data statistics of the benchmark datasets.

Datasets Instances Views Classes

BDGP 2500 2 5

SCENE15 4568 3 15

LandUse21 2100 3 21

Fashion 10000 3 10

Table 2: Different combinations of outlier ratios.

id 1 2 3 4 5 6

𝜌1 0.02 0.02 0.05 0.05 0.08 0.08

𝜌2 0.05 0.08 0.02 0.08 0.02 0.05

𝜌3 0.08 0.05 0.08 0.02 0.05 0.02

the view-consistency of normal instances, a large contrastive

loss indicates a class outlier.

• Class-attribute outliers: Exhibiting traits of both attribute

and class outliers. Thus, such outliers could be indicated by

a combination of reconstruction error and contrastive loss.

Then we could obtain the corresponding scoring function as:

𝑠 (𝒙𝑖 ) = 𝑠𝑟 (𝒙𝑖 ) + 𝑠𝑐 (𝒙𝑖 ), (14)

where

𝑠𝑟 (𝒙𝑖 ) =
1

2

2∑︁
𝑣=1




𝒙 (𝑣)
𝑖

− 𝒙̂ (𝑣)
𝑖




2
2

,

𝑠𝑐 (𝒙𝑖 ) = −1

2

2∑︁
𝑚=1

log

𝑒𝑑 (𝒛
(𝑚)
𝑖

,𝒛 (𝑚′ )
𝑖

)/𝜏𝐹∑𝑁
𝑗=1

∑
2

𝑣=1 𝑒
𝑑 (𝒛 (𝑚)

𝑖
,𝒛 (𝑣)

𝑗
)/𝜏𝐹

.

(15)

Here 𝑠𝑟 (𝒙𝑖 ) is the reconstruction error across all views, which will

be large for attribute outliers; 𝑠𝑐 (𝒙𝑖 ) is the contrastive loss value and
should be large for class outliers. For partial data, 𝑠𝑐 (𝒙𝑖 ) is calculated
after imputation. Meanwhile, class-attribute outliers will also have

large 𝑠 (𝒙𝑖 )s. What’s more, the inliers are easy to reconstruct and

their view-consistency should be high, resulting in a small 𝑠 (𝒙𝑖 ).
Missing Sample Imputation. In our work, the cross-view consis-

tency learning and missing view imputation procedures collaborate.

With the aligned neighborhood structure, our method can easily

recover the representation of missing samples with the Cross-view

Relation Transfer technique [43]. The core idea is to impute the

missing view based on the nearest neighbors in other views. Taking

the recovery of 𝒛 (1)
𝑏,𝑖

as an example. We first obtain the 𝐾 nearest

neighbors of 𝒛 (2)
𝑏,𝑖

in view 2 and find their counterparts in view 1.

Since some neighbor counterparts may be missing in view 1, we

ignore these missing samples and take the average of the rest com-

plete ones as the recovered latent representation 𝒛̂ (1)
𝑏,𝑖

. With more

accurate imputation, the overall loss is applied on completed data,

enhancing the utilization for partial data and further improving

imputation.

4 Experiments
4.1 Experimental Settings
Datasets and evaluation protocols. The details of four datasets
are recorded in Table 1. For a simpler notation, we denote LandUse-

21 [53], Scene15 [8], BDGP [39] and Fashion [48] as ‘L’, ‘S’, ‘B’ and

‘F’ respectively for short.

Following the previous work [15, 17, 22, 44], we generate out-

liers in these datasets with the following strategy: (1) For attribute

outliers, we randomly choose an instance, and replace its feature

in all views by random values. (2) For class outliers, we randomly

take some pairs of instances and swap the feature vectors in

⌊
𝑉
2

⌋
views while keeping feature vectors in the other views unchanged.

(3) For class-attribute outliers, we also randomly choose some pairs

of instances, swap feature vectors in

⌊
𝑉
2

⌋
views, and replacing fea-

tures with random values in the other views. Also, we vary the

outlier ratio for a more comprehensive evaluation. Table 2 illus-

trates the different combinations for ratios of attribute outlier (𝜌1),

class outlier (𝜌2) and class-attribute outlier (𝜌3).

Besides, as the original datasets are all complete, we follow [11]

to form partial multi-view data by randomly removing one view of

some randomly selected instances. The view missing rate is defined

as
𝑁𝑎𝑙𝑙−𝑁
𝑁𝑎𝑙𝑙

, where 𝑁𝑎𝑙𝑙 is the total number of instances involved in

partial multi-view data. To evaluate the ability of dealing different

degree of viewmissing, we evaluate themethods on themissing rate

of 0, 0.15, 0.3, 0.45, respectively. It is noteworthy that we also use

complete multi-view datasets for evaluation, to show the strength

of the proposed method in an ideal case.

Baselines. We compare our method with five MVOD methods

includingMODDIS [17], NCMOD [6], SRLSP [44], MODGD [15] and

CL [11]. Among them, the first four models are merely designed for

complete multi-view data. So for these methods, partial multi-view

data is imputed using the method proposed by a recent incomplete

multi-view learning framework DSIMVC [33] for a fair comparison.

Implementation details. The structures of AEs are slightly dif-

ferent across datasets. For LandUse21 and Scene15, we use three

fully-connected layers as the encoder, and their latent dimensions

are 1024-1024-64. For BDGP and Fashion, the depth of the encoder

is 2, and the structure is 1024-64 and 1024-256, respectively. The

decoders then have a reverse structure. The activation function is

ReLU. The Adam optimizer is adopted with the learning rate of

1𝑒−3 for training. The hyperparameter 𝜆1 and 𝜆2 are fixed to 1 and

𝜂 is fixed to 0.05. The number of nearest neighbors 𝐾 is set to 6 for

all datasets. We design a piecewise-linear scheduler for 𝜇 to adjust

the impact of SR. In the first 100 epochs, 𝜇 increases from 0 to a

specific value 𝜇1 linearly, and then rises to a larger value 𝜇2 in the

rest epochs. 𝜇1/𝜇2 is set as 0.01/0.2, 0.02/0.2, 0.02/0.4, 0.05/0.4 on

BDGP, LandUse21, Scene15 and Fashion, respectively.

4.2 Comparisons with Baseline Methods
The detection AUC results [54] under different missing rates are

recorded in Table 3 and 4. The dataset name is shorted and combined

with the setting id denoted in Table 2. From these tables we have

the following observations:

• RCPMOD outperforms all the baseline methods in most set-

tings, regardless of whether the dataset is partial or not.
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Table 3: The detection AUC (%) on different datasets under the missing rates of 0 and 0.15. The value marked in "red" holds the
highest value, and "blue" holds the second highest.

(a) AUC on BDGP and SCENE15 with no missing view

CL MODDIS NCMOD SRLSP MODGD Ours

B1 49.84±1.53 88.64±0.92 86.03±1.22 91.29±1.22 76.69±1.56 97.05±0.18
B2 52.15±1.23 80.85±1.23 77.18±1.10 85.14±0.91 69.62±1.62 95.67±0.65
B3 47.28±1.80 95.58±0.51 94.05±0.78 96.62±0.44 86.13±1.86 95.80±0.72
B4 51.33±0.79 81.45±1.31 78.29±0.74 85.38±0.78 71.53±1.41 91.30±0.48
B5 50.17±2.49 95.83±0.45 94.01±1.15 96.66±0.42 88.52±0.74 95.58±0.54

B6 51.33±3.22 88.27±0.71 86.80±1.83 91.29±1.28 82.09±1.14 92.18±1.00

S1 52.25±4.89 92.24±0.40 91.12±1.09 95.89±0.21 85.30±1.16 97.67±0.41
S2 54.73±4.18 87.40±0.67 82.78±1.20 93.32±0.49 76.29±0.78 95.03±0.46
S3 53.33±3.41 95.50±0.40 95.08±0.38 92.98±0.37 93.83±0.45 97.89±0.57
S4 53.55±3.89 87.27±0.88 83.61±2.88 93.20±0.45 76.39±0.98 94.61±0.69
S5 51.47±3.11 94.54±2.35 95.98±0.53 93.80±0.33 93.68±0.32 97.36±0.31
S6 52.20±2.85 92.03±0.60 89.44±1.32 95.85±0.27 85.19±1.28 97.02±0.52

(b) AUC on BDGP and SCENE15 with a missing rate of 0.15

CL MODDIS NCMOD SRLSP MODGD Ours

B1 50.37±1.54 87.97±1.01 86.00±0.76 88.58±1.25 75.11±1.82 97.09±0.27
B2 49.11±2.01 80.77±0.33 78.16±0.65 82.71±1.22 69.47±1.81 95.27±0.74
B3 50.21±1.81 95.31±0.33 93.80±0.34 95.22±0.81 83.76±1.04 96.79±0.59
B4 49.86±2.35 81.33±1.28 79.37±0.66 83.74±0.59 72.10±1.17 89.34±2.21
B5 47.24±5.33 95.32±0.29 94.42±0.41 95.75±0.46 88.35±0.80 95.90±0.31
B6 47.02±4.59 88.26±0.57 88.41±0.55 89.77±0.64 82.24±0.48 91.80±1.09

S1 48.95±3.66 92.10±0.99 87.66±0.72 95.22±0.69 83.40±0.59 96.31±0.23
S2 49.81±4.41 86.94±0.41 82.04±2.09 92.38±0.37 74.07±1.30 96.39±0.47
S3 48.84±3.19 96.08±0.36 94.66±0.61 93.75±0.36 93.26±0.42 97.08±0.30
S4 48.55±3.70 87.40±0.91 81.29±0.84 92.68±0.57 74.66±1.14 93.95±1.44
S5 50.16±2.12 95.81±0.23 95.02±0.17 94.26±0.27 93.54±0.40 96.37±0.12
S6 49.76±2.38 92.57±0.85 88.86±1.40 95.75±0.84 84.02±0.39 96.40±0.43

(c) AUC on Fashion and LandUse21 with no missing view

CL MODDIS NCMOD SRLSP MODGD Ours

F1 47.35±3.30 91.68±0.46 90.68±0.39 93.22±0.40 84.09±0.41 97.63±0.09
F2 48.19±2.87 86.04±0.51 86.39±0.41 88.52±0.52 74.23±0.33 96.55±0.36
F3 47.78±6.16 96.44±0.20 96.20±0.35 97.52±0.16 93.54±0.19 98.61±0.17
F4 48.00±3.81 86.57±0.37 86.92±0.57 88.59±0.58 74.35±0.49 96.09±0.42
F5 45.87±8.04 96.75±0.12 96.70±0.18 97.52±0.18 93.57±0.14 98.34±0.19
F6 47.03±5.62 92.07±0.45 92.09±0.48 93.29±0.43 84.15±0.40 96.67±0.32

L1 54.50±10.52 91.34±0.43 86.77±0.76 93.88±0.71 89.15±0.38 98.02±0.36
L2 53.97±10.14 85.41±1.06 78.18±0.98 89.89±0.58 82.38±1.32 97.76±0.50
L3 53.34±9.93 96.52±0.47 94.52±0.73 97.82±0.44 95.66±0.56 98.94±0.21
L4 53.39±8.59 85.61±0.79 78.40±0.86 89.81±0.60 82.18±1.33 97.36±0.24
L5 53.77±7.92 96.56±0.51 95.09±1.57 97.85±0.46 95.63±0.44 99.06±0.29
L6 52.95±9.40 91.16±0.58 85.65±0.46 93.88±0.76 89.23±0.65 97.61±0.79

(d) AUC on Fashion and LandUse21 with a missing rate of 0.15

CL MODDIS NCMOD SRLSP MODGD Ours

F1 46.37±5.68 90.93±0.35 91.62±0.24 92.32±0.17 83.58±0.18 97.70±0.07
F2 47.62±4.05 86.76±0.86 87.05±0.34 88.31±0.44 75.07±1.40 96.66±0.28
F3 45.30±8.86 96.14±0.38 94.79±0.35 96.85±0.39 92.01±1.20 98.55±0.13
F4 46.83±4.90 87.38±0.31 87.90±0.33 88.55±0.57 74.68±0.44 96.04±0.17
F5 44.59±10.48 96.23±0.52 96.08±0.42 96.95±0.32 92.62±1.87 98.29±0.14
F6 45.07±9.30 92.39±0.34 92.09±0.78 93.03±0.21 82.62±1.92 97.01±0.46

L1 50.82±9.81 90.72±0.62 85.47±0.35 93.04±0.79 87.39±0.54 97.05±0.35
L2 50.23±9.28 86.05±0.97 77.70±0.88 89.43±0.98 79.90±1.22 96.78±0.39
L3 50.62±9.00 96.16±0.19 93.78±0.30 97.27±0.39 94.84±0.34 97.37±0.60
L4 51.25±9.38 86.25±1.16 77.77±1.14 89.92±1.14 80.51±1.36 95.67±1.36
L5 51.92±9.51 96.26±0.21 94.35±0.50 97.25±0.39 94.91±0.49 98.32±0.35
L6 50.45±7.88 91.10±0.87 85.80±0.43 93.50±1.05 88.15±0.91 97.03±0.32

Among all datasets, our method achieves best performance

on Fashion, surpassing the second best models in all settings

with a relative improvement of up to 9.1%.

• When there are more class outliers (i.e., setting 2 and 4), the

performance of competitors is obviously degenerated. This

is mainly due to their lacking of attention to class outliers or

the inability of detecting class outliers in boundary situations.

In contrast, our method could achieve much higher AUCs on

these settings, which indicates the superiority of our method

when detecting class outliers. The performance degradation

of baselines under different ratios of class-attribute outliers is

less obvious. The reason might be that such outliers are also

detectable based on their abnormal attributes in some views.

Nevertheless, our method still outperforms the baselines in

settings with more class-attribute outliers (i.e., setting 1 and

3), which can be attributed to the enhanced detection of

class-attribute outliers based on view inconsistency.

• Despite CL can directly deal with partial multi-view data,

it is originally designed only for the detection of class out-

liers. This results in its poor performance in the presence of

attribute and class-attribute outliers.

4.3 Sensitivity Analysis
Our method contain several important hyperparameters includ-

ing the balancing factor 𝜆1, 𝜆2, 𝜇, and the sampling rate 𝜂 for the

memory bank. We then analyze their sensitivity when the missing

rate is 0.3 and all the outlier ratios are 0.05. As a scheduler of 𝜇 is

adopted in the training, we only vary 𝜇1 used in the warm-up stage

which empirically has more impact on the results.

Impact of 𝜆1 and 𝜆2. As shown in the first two subplots of Fig. 4,

a relatively large value of 𝜆1 and 𝜆2 would be beneficial. But when

they are assigned with excessively large values with 𝜇 unchanged,

the performance of RCPMOD will significantly decrease due to the

overfitting to outliers.

Impact of 𝜂. From the third subplot, we see that the performance

is relatively stable within the whole range. Note that the curves

roughly peak at an 𝜂 value of 0.05 or 0.1, which is close to the ratio

of class-related outliers in datasets.

Impact of 𝜇. The last subplot of Fig. 4 demonstrates the perfor-

mance tends to decrease when this value is increased. Apparently it

shows that a large 𝜇 is not a good choice, suggesting that arbitrarily

pushing away the points can negatively affect both the performance

and stability of the model.

From the above results, we can observe that L𝑎𝑟 , L𝑜𝑎 , and L𝑛𝑎
play equally significant roles. Therefore, setting both 𝜆1 and 𝜆2 to 1

can achieve optimal performance. However, 𝜇 might induce larger

performance change and thus requires careful selection.

4.4 Ablation Study
The ablation results of each loss module are shown in Table 5. From

ablated variants (C), (D) and (E), we can observe that removing

anyone of Loa, Lna and Lsr will clearly degrade the performance,

indicating that all losses are indispensable in our method. On the

other hand, the impact of each loss component varies across the
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Table 4: The detection AUC (%) on different datasets under the missing rates of 0.3 and 0.45.

(a) AUC on BDGP and SCENE15 with a missing rate of 0.3

CL MODDIS NCMOD SRLSP MODGD Ours

B1 50.31±3.06 88.02±0.66 85.90±0.58 87.22±0.62 72.20±1.57 96.97±0.46
B2 50.72±3.45 81.20±0.89 79.25±1.17 82.09±0.81 66.15±1.23 95.17±0.83
B3 49.34±1.86 95.35±0.78 94.75±0.66 93.39±1.68 80.95±1.90 96.83±0.32
B4 49.92±1.90 81.73±0.62 80.75±0.19 83.93±1.23 70.01±0.97 89.48±3.08
B5 48.69±3.53 95.62±0.23 94.18±0.79 94.79±0.62 86.07±1.03 96.69±0.55
B6 48.03±2.85 88.32±0.43 87.46±0.52 89.57±0.63 80.87±1.49 92.30±1.14

S1 47.68±2.70 91.39±0.54 87.88±1.29 94.07±0.69 81.66±0.41 96.06±0.61
S2 48.01±2.33 86.90±1.24 81.36±1.36 90.67±1.74 74.14±4.52 96.10±0.27
S3 46.81±2.47 94.59±0.88 95.69±0.82 93.98±0.38 92.21±0.16 96.21±0.77
S4 48.07±2.69 87.65±1.42 81.59±1.12 91.33±1.98 74.73±2.44 94.40±0.66
S5 47.97±1.83 94.39±1.42 95.29±0.43 94.51±0.43 93.18±0.20 96.74±0.43
S6 48.50±1.25 92.51±0.72 89.85±0.57 94.58±1.25 83.48±0.38 95.69±0.33

(b) AUC on BDGP and SCENE15 with a missing rate of 0.45

CL MODDIS NCMOD SRLSP MODGD Ours

B1 50.28±3.62 87.24±0.72 86.31±0.56 85.81±0.79 69.15±1.83 95.97±0.40
B2 51.09±4.33 81.86±3.84 78.48±0.89 82.46±4.16 67.17±5.47 95.01±0.26
B3 51.25±2.43 95.01±0.44 94.88±0.70 93.61±0.85 78.42±2.16 97.03±0.53
B4 49.70±1.87 80.50±0.75 79.82±1.02 82.24±1.04 67.82±1.27 88.19±1.99
B5 51.56±2.19 95.10±0.40 95.13±0.39 93.90±1.11 83.55±1.12 96.42±0.56
B6 48.95±2.59 88.37±0.29 88.20±0.75 89.38±0.39 78.96±0.76 91.20±1.62

S1 46.97±2.16 91.78±1.98 86.57±1.46 93.45±0.27 82.04±4.02 93.92±0.84
S2 46.58±3.00 86.12±0.49 80.46±1.65 90.01±0.45 72.93±0.57 95.42±0.83
S3 46.55±0.90 94.58±1.03 94.45±0.53 93.38±0.18 91.30±0.35 94.51±0.94

S4 48.11±1.45 87.06±0.56 80.89±0.84 91.53±0.64 74.10±0.62 94.43±0.79
S5 46.55±0.87 95.36±0.56 94.55±0.47 94.42±0.29 92.67±0.28 95.79±0.24
S6 48.42±1.82 92.69±0.33 88.88±0.80 95.11±0.46 83.62±0.29 96.09±0.64

(c) AUC on Fashion and LandUse21 with a missing rate of 0.3

MODDIS MODDIS NCMOD SRLSP MODGD Ours

F1 44.97±6.51 90.94±0.64 92.06±0.58 92.05±0.32 83.46±0.41 97.67±0.24
F2 46.32±3.92 86.47±0.28 87.40±0.26 87.60±0.44 74.29±0.48 96.65±0.12
F3 45.26±8.27 95.44±0.35 96.32±0.12 96.27±0.35 93.03±0.26 98.71±0.17
F4 45.96±6.49 88.27±0.88 85.65±1.78 87.73±2.79 75.68±1.37 96.17±0.48
F5 44.83±9.97 96.31±0.59 96.78±0.18 97.05±0.49 90.24±4.55 98.49±0.24
F6 46.67±6.36 92.22±0.45 92.50±0.23 93.13±0.36 82.99±2.66 97.15±0.21

L1 48.09±7.75 89.86±0.94 85.38±0.17 92.05±0.65 86.03±0.57 95.54±1.66
L2 47.36±5.38 83.76±1.33 78.31±0.97 87.13±1.20 78.62±0.87 95.86±1.11
L3 47.69±6.00 96.07±0.94 94.58±0.25 96.65±0.80 93.78±0.66 97.18±0.59
L4 48.31±5.12 84.82±1.64 79.18±0.59 88.20±1.67 79.81±1.11 94.36±1.01
L5 50.64±7.06 96.22±0.96 94.15±0.11 97.01±0.73 94.57±0.40 98.17±0.28
L6 50.10±5.80 90.80±1.07 87.17±0.14 93.03±0.89 88.02±0.84 96.24±0.48

(d) AUC on Fashion and LandUse21 with a missing rate of 0.45

MODDIS MODDIS NCMOD SRLSP MODGD Ours

F1 44.41±5.71 92.23±1.90 92.16±0.30 90.56±0.96 85.26±3.00 97.80±0.24
F2 46.77±3.65 86.94±0.42 88.14±0.29 87.23±0.48 74.67±0.46 96.58±0.24
F3 43.94±8.34 95.69±1.09 94.51±2.26 95.88±0.33 92.00±2.40 98.87±0.16
F4 46.87±4.27 89.38±1.28 84.92±3.19 87.83±2.96 77.12±2.17 95.99±0.48
F5 43.58±9.37 97.16±0.56 88.18±3.67 96.80±1.22 86.16±4.52 98.47±0.11
F6 45.76±6.86 92.71±0.39 93.20±0.37 92.96±0.36 84.68±0.42 96.79±0.13

L1 44.72±7.02 89.81±1.12 84.50±1.15 91.43±0.72 83.76±1.43 94.72±0.65
L2 45.09±5.97 84.08±0.88 77.23±0.48 87.25±0.83 75.65±1.22 94.43±0.73
L3 46.82±5.21 96.03±0.36 93.16±0.40 96.35±0.47 92.13±0.99 97.02±0.81
L4 46.83±6.43 84.88±1.29 78.65±0.56 88.34±1.13 77.72±1.50 93.42±0.83
L5 48.81±5.08 96.27±0.42 94.14±0.25 96.81±0.40 93.43±0.43 96.62±1.12

L6 48.29±3.48 91.11±1.05 86.34±0.65 93.26±0.58 86.99±0.72 95.47±0.86

Figure 4: Sensitivity analysis over 𝜆1, 𝜆2 𝜂 and 𝜇 on different datasets.

Table 5: Ablation study on loss components.

Loa Lna Lsr BDGP SCENE15 LandUse21

(A) 21.70 22.59 36.59

(B) ✓ 92.65 88.46 94.20

(C) ✓ ✓ 94.84 90.46 95.37

(D) ✓ ✓ 92.38 92.60 94.64

(E) ✓ ✓ 86.66 91.43 93.37

(F) ✓ ✓ ✓ 95.16 93.35 96.27

datasets. Results of variant (B) and (E) on BDGP and LandUse21

indicate that Loa is the most important factor in improving de-

tection ability on these datasets, while according to variants (C)

and (D), we can find that the regularizer have a large impact on

detection in SCENE15, which can also be observed in Fig. 3a. Due

to space limitations, we present some results such as the time ef-

ficiency comparison and computation method comparison in the

supplementary materials.

5 CONCLUSION
In this paper, we propose a novel contrastive partial MVOD method

named RCPMOD. Specifically, we design an outlier-aware con-

trastive loss with a potential outlier memory bank, ensuring that

outliers are distinctly featured during the training process. A neigh-

bor alignment contrastive loss is also proposed to learn shared local

structural connections between views and this loss also enhances

the effect of Cross-view Relation Transfer adopted to impute miss-

ing samples in our framework. Besides, to addresss the observed

outlier overfitting phenomenon, we adopt a spreading regulariza-

tion as a solution. Notably, the proposedmethod could also deal with

outliers in the complete multi-view setting. Experimental results

on four benchmarks show that it can achieve the best performance

under various outlier ratios and view missing rates.
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