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Prompts:
1. Beautiful waterfall in 

the rainforest. (nature)

2. Woman in the 

underwater aquarium 

watching the fish. (human)

3. Beautiful golden 

Labrador dog wagging his 

tail and smiling. (animal)

MOS: 61, 45, 73, ⋯

T2VQA-DB Generated Videos

Human Annotation

Videos

Video-Text Alignment 

Video Fidelity

T2VQA

Beautiful golden Labrador 

dog wagging his tail and 

smiling

clear, smooth, saturated

Good!

nature

other

object

human
animal

abstract

artificial

Figure 1: Overview of the proposed T2VQA-DB and T2VQA. T2VQA-DB has the largest scale among existing T2V datasets. T2VQA
achieves the SOTA performance in evaluating the quality of text-generated videos.

Abstract
With the rapid development of generative models, AI-Generated
Content (AIGC) has exponentially increased in daily lives. Among
them, Text-to-Video (T2V) generation has received widespread
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attention. Though many T2V models have been released for gener-
ating high perceptual quality videos, there is still lack of a method
to evaluate the quality of these videos quantitatively. To solve this
issue, we establish the largest-scale Text-to-Video Quality Assess-
ment DataBase (T2VQA-DB) to date. The dataset is composed of
10,000 videos generated by 9 different T2V models, along with each
video’s corresponding mean opinion score. Based on T2VQA-DB,
we propose a novel transformer-based model for subjective-aligned
Text-to-Video Quality Assessment (T2VQA). The model extracts
features from text-video alignment and video fidelity perspectives,
then it leverages the ability of a large languagemodel to give the pre-
diction score. Experimental results show that T2VQA outperforms
existing T2V metrics and SOTA video quality assessment models.
Quantitative analysis indicates that T2VQA is capable of giving
subjective-align predictions, validating its effectiveness. The dataset
and code are available at https://github.com/QMME/T2VQA.
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1 Introduction
Video generation, or video synthesis, has been fully developed in
the past few years. Text-to-Video (T2V) generation is one of the
most studied fields, where a user provides a text description as the
guidance for video generation. With the thriving of diffusion-based
models, high-fidelity videos can be generated. However, the quality
of text-generated videos is diverse which affects the experience
quality of subjects. Therefore, a subjective-aligned quality assess-
ment method for them is needed. Unfortunately, existing Video
Quality Assessment (VQA) models are unable to accomplish the
task well. On the one hand, distortions brought by T2V generation
models, such as jitter effect, irrational objects, are different from
distortions in natural videos. On the other hand, traditional VQA
models do not take text-video alignment into consideration, which
is a significant evaluation perspective for text-generated videos.

Besides, themost usedmetrics for T2V generation, such as IS [38],
FVD [44], and CLIPSim [48], fail to reflect real user preferences.
IS uses the Inception Network [42] to generate a distribution that
reflects image/video quality and diversity. It has been criticized for
its inability to evaluate image/video quality precisely. FVD com-
pares the I3D feature [4] distributions of the generated and natural
video pair. The drawback of FVD is that obtaining the reference
natural video is usually impractical. CLIPSim takes advantage of
CLIP [34] to calculate the similarity between the original text and
the generated video content. However, it only considers text-video
alignment from the image level, excluding the temporal information
and perceptual video quality.

To facilitate the development of a more comprehensive and accu-
rate metric, we establish the largest-scale subjective T2V dataset to
date, named Text-to-Video Quality Assessment DataBase (T2VQA-
DB). The dataset contains 10,000 videos generated by 9 represen-
tative T2V models using 1,000 text prompts. We also collect each
video’s Mean Opinion Score (MOS) by conducting a subjective
experiment, where 27 subjects score the overall quality of the gen-
erated videos. Fig. 2 shows video frames generated by the 9 T2V
models from the prompt “Sunset on the sea”. And we give more
detailed overviews of three examples.We anticipate that the T2VQA-
DB will benefit the development of subsequent models.

Based on T2VQA-DB, we propose a novel model equipped with
multi-modality foundation models for better Text-to-Video Qual-
ity Assessment (T2VQA). The model utilizes BLIP [29] and Video
Swin Transformer (Swin-T) [32] to extract features from text-video

Table 1: Summary of T2V datasets. [Bold: the best].

Name Videos Prompts Models Annotators

Chivileva’s [5] 1,005 201 5 24
ECTV [30] 5,600 700 8 7
VBench [17] 6,984 1,746 4 -
FETV [31] 2,476 619 4 3
TVGE [57] 2,543 512 5 10

T2VQA-DB (ours) 10,000 1,000 9 27

alignment and video fidelity perspectives respectively. The features
are fused through a cross-attention module, then they are fed into
a frozen Large Language Model (LLM) to regress the predicted
score. We train and test T2VQA as well as other VQA models on
T2VQA-DB. Experimental results show that T2VQA outperforms
existing T2V generation metrics and state-of-the-art VQA models,
validating its effectiveness in measuring the perceptual quality of
text-generated videos. Fig. 1 shows the overview of the proposed
T2VQA-DB and T2VQA.

We summarize our contributions as follows:
(1) We establish the T2V dataset with the largest scale to date,

named T2VQA-DB, which includes 10,000 text-generated
video sequences and their corresponding MOSs gained from
27 subjects.

(2) We propose a novel transformer-based model for better eval-
uating the quality of text-generated videos, named T2VQA.
The model dissolves the problem from text-video alignment
and video fidelity perspectives, and then it leverages the abil-
ity of an LLM to give a subjective-aligned prediction of the
video quality.

(3) The proposed T2VQA outperforms existing T2V generation
metrics and SOTAVQAmodels on T2VQA-DB and other T2V
datasets, indicating the effectiveness of T2VQA. Qualitative
experiments show that T2VQA can benefit in measuring
the performance of T2V generation algorithms, giving it
practical application prospects.

2 Related Works
2.1 Text-to-video Dataset
To the best of our knowledge, only a few T2V datasets have been
proposed. They mainly have the following two issues: (1) Insuffi-
cient scale: Chivileva et al. [5] propose a dataset with 1,005 videos
generated by 5 T2V models following [27]. EvalCrafter [30] builds
ECTV using 700 prompts and 8 T2V models, resulting in 5,600
videos in total. Similarly, FETV [31] is composed of 2,476 videos
generated by 619 prompts, and 4 T2V models. VBench [17] has
a larger scale with in total of ∼1.7k prompts and 4 T2V models.
TVGE [57] uses the prompts from ECTV and uses 5 T2V model
for video generation. Such scales are not sufficient for the training
of deep learning-based models, and cannot represent current T2V
algorithms. (2) Limited human annotation: ITU-standard [18] re-
quires at least 15 human annotators for subjective study. The dataset
proposed by Chivileva et al.is the only one that meets the standard.
ECTV and FETV only have 3 users for annotation. VBench [17]
does not specify the number of human annotators.

https://doi.org/10.1145/3664647.3680868
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Text2Video-Zero [21] AnimateDiff [12] VidRD [11] AnimateDiff [12]. MOS: 62.62.

Tune-a-video [58] VideoFusion [33] LVDM [14] LVDM [14]. MOS: 53.78

ModelScope [45] Show-1 [63] LaVie [46] LaVie [46]. MOS: 77.57

(a) (b)

Figure 2: Video examples generated by prompt: Sunset on the sea. (a) Overview of video frames generated by 9 models. (b)
Videos generated by AnimateDiff [12], LVDM [14], LaVie [46], and their MOSs.

2.2 Metrics for T2V Generation
IS [38] and FVD [44] are the two most commonly used metrics for
evaluating the quality of generated videos. IS uses the Inception
feature to present both image/video quality. FVD measures the
distance between the generated video and the natural video. How-
ever, both metrics are criticized for poor correlation with human
visual perception. CLIPSim [48] measures the text-video alignment
by using CLIP [34]. After measuring the similarity between the
text and each video frame, it averages them to get the final score.
As a result, it only evaluates videos from the image level, losing
the information from the temporal domain. As well as it doesn’t
consider the video quality.

Though many works targeting the evaluation of text-generated
images have been proposed [22, 25–27, 59–61, 65], there are only a
few metrics tailored for text-generated video evaluation have been
proposed. Among them, ViCLIP [47] is a CLIP-based metric for
measuring text-video alignment. Chivileva et al. [5] proposes an
ensemble video quality metric that integrates text similarity and
naturalness. EvalCrafter [30] and VBench [17] build benchmarks
to evaluate text-generated video from 18 and 16 objective metrics
respectively. FETV [31] and T2V-Score [57] both propose separate
metrics for text-video alignment and video quality, without an
overall perceptual score for text-generated videos. There is still
lack of a simple and effective metric to evaluate the quality of
text-generated videos.

Besides the aforementioned metrics, VQA models can also be
used for the evaluation of text-generated videos. BVQA [24] trans-
fers knowledge from Image Quality Assessment (IQA) databases

and then trains on the target VQA database, e.g., KoNVid-1k[16].
SimpleVQA [41] extracts spatial and motion features to regress to
the final score. FAST-VQA [49] proposes “fragments” as a novel
sampling strategy and the fragment attention network to accom-
modate fragments as inputs. [8, 9, 23, 66, 69, 72, 73] are works for
the evaluation of enhanced videos and digital humans. DOVER [52]
proposes to view the quality assessment problem from technical
and aesthetic perspectives, while BVQI [50] and MaxVQA [51] inte-
grate text prompts (e.g., good, bad) into VQA.With the development
of Multi-modal Large Language Models (MLLMs), researchers have
started to leverage MLLMs to solve VQA problems, as they have
been trained on massive data. Q-Bench [53] proves that MLLMs
can address preliminary low-level visual tasks. Q-Align [55] pro-
poses to train a MLLM using text-defined levels (e.g., fine, poor)
and achieves SOTA results on IQA and VQA tasks. Though many
VQA models have been proposed, they are originally designed for
natural videos and do not consider text-video alignment.

2.3 Text-to-video Generation
T2V generation refers to a form of conditional video generation,
where text descriptions are used as conditioning inputs to generate
high-fidelity videos. A common practice is to extend pre-trained
Text-to-Image (T2I) models with temporal modules. CogVideo [15]
is based on CogView2 [7] and proposes a multi-frame-rate hier-
archical training strategy to better align text-video clips. Make-a-
video [39] adds effective spatial-temporal modules on a diffusion-
based T2I model (i.e., DALLE-2 [35]). VideoFusion [33] also lever-
ages the DALLE-2 and presents a decomposed diffusion process.
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(a) Word cloud of selected prompts.
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(c) The MOSz distributions of 10 T2V models.

Figure 3: (a) The word cloud of the prompts used in T2VQA-DB. (b) The distribution of the raw/Z-score MOS. (c) Z-score MOS
distributions of 10 T2V models. The model IDs represent sequentially Text2Video-Zero, AnimateDiff, Tune-a-video(1) , VidRD,
ModelScope, VideoFusion, LVDM, Show-1, Tune-a-video(2) , LaVie.
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Figure 4: Comparison of models performance on different
prompt types.

LVDM [14], Text2Video-Zero [21], Tune-A-Video [58], Animate-
Diff [12], Video LDM [2], MagicVideo[71], ModelScope [45], and
VidRD [11] are models that inherit the success of Stable Diffusion
(SD) [37] for video generation. Show-1 [63] integrates both pixel-
based and latent-based text-to-Video Diffusion Models (VDMs).
LaVie [46] extends the original transformer block in SD to a spatio-
temporal transformer. Recently, OpenAI releases Sora [3], a T2V
model that is capable of generating 60s high-fidelity videos, consid-
ered as a game changer in T2V generation.

3 Subjective-Aligned Text-to-Video Dataset
Tab. 1 shows most existing T2V datasets have relatively small num-
ber of videos, which is not sufficient to represent the diverse per-
formance of T2V generation models. Consequently, we propose a
Text-to-Video Quality Assessment DataBase, named T2VQA-DB,
including 10,000 videos generated by 9 different T2V models. 1,000
prompts are used and 27 subjects are invited to obtain the MOS of
each video. In this section, we will describe the establishment of
T2VQA-DB and the subjective experiment.

3.1 Data Preparation
3.1.1 Prompt Selection. To guarantee the diversity of the dataset,
the prompts used for T2V generation should cover as many aspects
as possible. Following [60], we use the same graph-based algorithm
from [40] for prompt selection. We first randomly sample 1 million

prompts from WebVid-10M [1], which contains 10 million video-
text pairs scraped from the stock footage sites. Each prompt is
encoded to a vector representation by Sentence-BERT [36]. The
graph-based algorithm integrates them into 𝑘 groups according to
cosine distance.𝑘 is a hyper-parameter andwe set𝑘 = 100, resulting
roughly 10,000 prompts in each group. Finally, we randomly sample
10 prompts in each group, forming the 1,000 prompts in T2VQA-DB.
Fig. 3a shows the word cloud of the collected prompts.

3.1.2 Video Generation. We use in total 9 different models for
video generation, including Text2Video-Zero [21], AnimateDiff [12],
Tune-a-video [58], VidRD [11], VideoFusion [33], ModelScope [45],
LVDM [14], Show-1 [63], and LaVie [46]. For Tune-a-video, we
utilize two different pre-trained weights, resulting in a total of 10
models for generation. Compared to other T2V datasets, we utilize
current advanced T2V generation models as much as possible, mak-
ing T2VQA-DB more representative. Since the default resolution,
video length, and frame rate are different in each model, we unify
the video format as 512 × 512, 16 frames, and 4fps.

3.2 Subjective Study
To obtain the MOS of each video, we invite 27 subjects to score the
perceptual quality of each video. The subjects are asked to score
mainly from two aspects, in terms of text-video alignment and
video fidelity. Text-video alignment refers to how the generated
video content matches the text description. Video fidelity refers to
degrees of distortion, saturation, motion consistency, and content
rationality. The subjects use a slider ranging from 0 to 100 to give
the final score of each video. After having the raw MOS of each
subject, we conduct normalization to avoid inter-subject scoring
differences as Z-score MOS (MOSz). That is:

𝑀𝑂𝑆𝑧𝑖 =
1
𝑁

𝑁∑︁
𝑗=1

𝑅𝑒𝑠 (
𝑟𝑖 𝑗 − 𝜇 𝑗

𝜎 𝑗
) . (1)

𝑖 and 𝑗 refer to the index of videos and subjects. 𝑟 is the raw score,

and 𝜇 𝑗 = 1
𝑀

∑𝑀
𝑖=1 𝑟𝑖 𝑗 , 𝜎 𝑗 =

√︃
1

𝑀−1
∑𝑀
𝑖=1 (𝑟𝑖 𝑗 − 𝜇 𝑗 )2.𝑀 is the number

of videos scored by each subject. 𝑁 is the number of scores on one
video. 𝑅𝑒𝑠 (·) is the rescaling function, converting the distribution of
Z-scores into a mean of 50 and a standard deviation of 16.6. Fig. 3b
shows the distributions of raw MOS and Z-score MOS.
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Prompt: Aerial view 

of snow-covered

frozen winter forest.

Video Clip
Video Frames

Image 

Encoder
Self Attention

Cross Attention

Feed Forward

Alignment 

EncoderFrozen

Feed Forward

3D W/SW-MSA

Fidelity 

Encoder

𝑠𝑝𝑟𝑒𝑑

Self Attention

Cross Attention

Feed Forward

Concat

LLM

×N

×N
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Feature Fusion

Figure 5: Overview framework of T2VQA. Features from text-video alignment and video fidelity perspectives are extracted.
After a cross-attention based fusion, an LLM is utilized for regression.

3.3 Dataset Analysis
We conduct comprehensive experiments and analysis on T2VQA-
DB. We first investigate each model’s performance in T2VQA-DB.
The visualization of the Z-score MOS distributions of 10 models is
shown in Fig. 3c. LaVie has the highest average MOS of 66.9, while
two Tune-a-Video models have the lowest of 39.1 and 39.9. The
reason for the poor performance of Tune-a-Video is mainly the low
inter-frame consistency, as shown in Fig. 7c.

Based on the prompt contents, we classify the collected prompts
into 6 categories, including nature, human, artificial, animal, object,
and abstract. The ones that cannot be categorized into the 6 classes
are labeled as “others”. After classification, we have 327 prompts for
nature, 119 for human, 196 for artificial, 121 for animal, 66 for ob-
ject, 135 for abstract, and 36 for others. Subsequently, we compare
the models’ performance over different prompt types. As shown in
Fig. 4, LaVie outperforms the other models on all types of prompts.
Tune-a-video has the worst performance, which is consistent with
the analysis in Fig. 3c. LVDM has the second-worst performance
except in the “others” type. The performance of the rest models has
negligible differences. Fig. 4 also shows prompts labeled as human
have the worst performance in all models. The reason could be that
human faces and actions require more sophisticated modeling com-
pared with other categories. Some models also show a preference
for object and nature types of prompts to a small extent.

4 Subjective-Aligned T2V Metric
Based on T2VQA-DB, we propose a novel model that leverages
transformer-based architecture for Text-to-video Quality Assess-
ment (T2VQA). The model dissolves the task into two perspectives,
in terms of text-video alignment and video fidelity. After feature
extraction and feature fusion, an LLM is used for quality regression.
Fig. 5 shows the overview of the architecture of T2VQA. We will
introduce the detailed design of T2VQA below.

4.1 Text-video Alignment Encoder
Text-video alignment refers to the conformity between the video
content and the text description. CLIP [34] and BLIP [29] have
strong abilities for zero-shot text-image matching. [48] proposes
CLIPSim, which uses CLIP to calculate the similarities between
text and each frame of the video and then take the average value.
However, former works [5, 17, 30, 31] and results in Tab. 2 show that
simply using CLIP or BLIP has a low correlation with the authentic
subjective scores. Following works of MLLMs [6, 28, 62], we use
the pre-trained BLIP image encoder as the video frame encoder. We
freeze the weights of the image encoder that encodes each frame
separately. We use the BLIP text encoder as the alignment encoder.
The alignment encoder takes the encoded text and video frame as
inputs. They interact through the cross-attention module and the
encoder eventually outputs a feature representing the text-frame
similarity.We concatenate features from each text-frame pair. Given
a set of 𝑁 video frames {𝑣𝑖 ∈ R3×𝐻×𝑊 }𝑁

𝑖=1 and the text prompt 𝑡 ,
we have:

𝑓𝑏 = 𝑐𝑎𝑡 ({BLIP(𝑡, 𝑣𝑖 )}𝑁𝑖=1), (2)

where 𝑐𝑎𝑡 is short for concatenation.

4.2 Video Fidelity Encoder
Video fidelity refers to the perception of distortion from spatial
and temporal domains. In the spatial domain, common distortion
types include blurriness, noises, low/high contrast, etc.Temporal
distortions include jitter, stall, motion blur, etc.In this perspective,
the task can be seen as a common VQA task. Swin-T [32] has
been proven for its excellent ability in various VQA tasks [49, 52].
By using 3D-shifted window-based multi-head self-attention (SW-
MSA), Swin-T has a strong ability to analyze videos from spatial and
temporal domains. Therefore, we utilize Swin-T as the backbone of
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Table 2: Performance of the SOTA models and T2VQA. The best model is highlighted in each column. [Bold: the best].

Type Models
T2VQA-DB Validation ECTV Testing TVGE Testing Sora Testing

SRCC ↑ PLCC ↑ KRCC ↑ RMSE ↓ SRCC ↑ PLCC ↑ SRCC ↑ PLCC ↑ SRCC ↑ PLCC ↑

zero-shot

CLIPSim [34] 0.1047 0.1277 0.0702 21.683 0.3111 0.3175 0.2765 0.3013 0.2116 0.1538
BLIP [29] 0.1659 0.1860 0.1112 18.373 0.3841 0.3877 0.3437 0.3696 0.2126 0.1038

ImageReward [60] 0.1875 0.2121 0.1266 18.243 0.5192 0.5107 0.4740 0.4879 0.0992 0.0415
ViCLIP [47] 0.1162 0.1449 0.0781 21.655 0.4130 0.4105 0.3429 0.3691 0.2567 0.1844

UMTScore [31] 0.0676 0.0721 0.0453 22.559 0.2406 0.2214 0.2155 0.2199 0.2594 0.0840

finetuned

SimpleVQA [41] 0.6275 0.6338 0.4466 11.163 0.1959 0.1391 0.3297 0.2219 0.0340 0.2344
BVQA [24] 0.7390 0.7486 0.5487 15.645 0.2929 0.2829 0.4283 0.4229 0.4235 0.2489

FAST-VQA [49] 0.7173 0.7295 0.5303 10.595 0.3101 0.3246 0.3335 0.3466 0.4301 0.2369
DOVER [52] 0.7609 0.7693 0.5704 9.8072 0.3118 0.3289 0.3943 0.4058 0.4421 0.2689
Q-Align [55] 0.7601 0.7768 0.5860 10.9911 0.4356 0.4401 0.5317 0.5209 0.3109 0.1997

Ours T2VQA 0.7965 0.8066 0.6058 9.0221 0.5694 0.5823 0.6898 0.6912 0.6485 0.3124

the fidelity encoder to extract features that represent video fidelity.
Given a video clip 𝑣 ∈ R3×𝑁×𝐻×𝑊 , we have:

𝑓𝑠 = SWIN(𝑣) . (3)

4.3 Feature Fusion
Inspired by BLIP-2 [28] and InstructBLIP [6], after having the fea-
tures from perspectives of text-video alignment and video fidelity,
we design a transformer-based fusion module to fuse those two
features. The module includes 𝑁 blocks with self-attention, cross-
attention, and feed-forward layers in each block. The fidelity feature
𝑓𝑠 first goes through self-attention layers, and then it interacts with
the alignment feature 𝑓𝑏 in cross-attention layers (and every other
transformer block). The fusion module helps the model to unify
the features from two perspectives to have a more comprehensive
understanding of the video characteristics. We initialize the fusion
module using BERT𝑏𝑎𝑠𝑒 [20].

4.4 Quality Regression
LLMs have been proven to be competitive on quality assessment
tasks [54–56, 67, 68]. Inspired by them, we also utilize an LLM as
the quality regression module in T2VQA. We first design a text
instruction prompt, i.e., “Please rate the quality of this video.”, to
guide the LLM. The encoded instruction and the fused feature
are concatenated as the input of the LLM. Following [55, 64], we
supervise the LLM to output one among five ITU-standard [18]
levels (bad, poor, fair, good, and excellent) to represent the quality
of the videos, denoted as <level>. We assign them weights of
1 − 5 in order. Since the logit at <level> in LLM is the probability
distribution of all tokens, it can be used to represent how the LLM
predicts the quality of the video. Therefore, a softmax for each
token is calculated and multiplied by its weight. We have the final
predicted score as:

𝑠𝑝𝑟𝑒𝑑 =

5∑︁
𝑖=1

𝑖 × 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜆𝑖 ) =
5∑︁

𝑖=1
𝑖 × 𝑒𝜆𝑖∑5

𝑗=1 𝑒
𝜆 𝑗
, (4)

where 𝜆𝑖 is the probability distribution of the i-th <level> token.

5 Experiments and Results
5.1 Implement Details
5.1.1 Train-test splitting. When training and testing on T2VQA-
DB, we follow the common practice of dataset splitting by leaving
out 80% for training, and 20% for testing. To eliminate the bias in
one single split, we randomly split the dataset 10 times, and use the
average results for performance comparison.

5.1.2 Training Settings. We utilize the large model of BLIP for the
extraction of text-video alignment feature. We initialize the fidelity
encoder using Swin-T pre-trained on Kinetics-400 [19] dataset. For
the LLM, we use the 7B model of Vicuna v1.5 [70], which is fine-
tuned from Llama 2 [43]. It is worth noting that both BLIP image
encoder and LLM are frozen during training.

During training and testing, we first uniformly sample 8 frames
out of an input video, and then we resize them to 224× 224. We use
Adam optimizer initialized by a learning rate of 1𝑒 −5. The learning
rate decays under a cosine scheduler from 1 to 0. We train T2VQA
for 30 epochs under a batch size of 4 on a server with one NVIDIA
GeForce RTX 4090.

5.1.3 Loss Function. Following [49], we use differentiable Pear-
son Linear Correlation Coefficient (PLCC) and rank loss as loss
functions. PLCC is a common criterion used for evaluating the
correlation between sequences, while rank loss is introduced to
help the model distinguish the relative quality of videos better. The
final loss function is defined as:

𝐿 = 𝐿𝑝𝑙𝑐𝑐 + 𝜆 · 𝐿𝑟𝑎𝑛𝑘 . (5)

𝜆 is a hyper-parameter for balancing, and is set to 0.3 in training.

5.1.4 Evaluation Metrics. Along with PLCC, we include Spear-
man’s Rank-order Correlation Coefficient (SRCC), Kendall’s Rank-
order Correlation Coefficient (KRCC), and Root Mean Square Error
(RMSE) as performance criteria. Better models should have larger
SRCC, KRCC, and PLCC scores, but conversely for RMSE. Before
calculating PLCC, we follow [10] to map the objective score to the
subject score using a four-parameter logistic function.
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Figure 6: Scatter plots of the predicted scores vs. MOSs. The curves are obtained by a four-order polynomial nonlinear fitting.
The brightness of scatter points from dark to bright means density from low to high.

5.2 Performance Comparison
5.2.1 Reference Algorithms. We use CLIPSim [48], BLIP [29], Im-
ageReward [60], ViCLIP [47], UMTScore [31], SimpleVQA [41],
BVQA [24], FAST-VQA [49], DOVER [52], and Q-Align [55] as the
reference algorithms. Q-Align is considered the SOTA VQAmethod
to date. CLIPSim averages the similarity values between the text
and each video frame. We adopt the same operation on BLIP and
ImageReward to tune IQA metrics into VQA metrics. ViCLIP and
UMTScore are metrics designed for measuring text-video alignment.
SimpleVQA, BVQA, FAST-VQA, DOVER, and Q-Align are models
designed for general VQA tasks. We use the pre-trained weights of
CLIPSim, BLIP, and ImageReward for zero-shot testing, since they
are originally designed for generated content. SimpleVQA, BVQA,
FAST-VQA, DOVER, and Q-Align are originally designed for UGC
videos, so we finetune them on T2VQA-DB. All results are averaged
after ten-fold splitting.

5.2.2 Results Analysis. The first four columns of number in Tab. 2
show the performance comparison between T2VQA and other
SOTA models on T2VQA-DB. Results show that T2VQA performs
best in SRCC, surpassing Q-Align by 4.79% in SRCC and 3.84% in
PLCC. The zero-shot models all have relatively low scores. They
either only consider the text-video alignment or don’t analyze the
temporal domain information within video frames. The VQA mod-
els have higher scores, indicating that video fidelity heavily affects
the assessment of text-generated video quality. However, a single
perspective from video fidelity cannot address the problem properly,
as there are circumstances where a high-fidelity video is generated
but does not match the prompt.

Fig. 6 shows scatter plots between the predicted scores and the
Z-Score MOSs of BLIP [29], ImageReward [60], ViCLIP [47], Sim-
pleVQA [41], BVQA [24], FAST-VQA [49], DOVER [52], and T2VQA.
The figure uses 1,000 videos, which are randomly sampled from the
testing set in one split of T2VQA-DB. A better model should have

a fitted curve close to the diagonal and have less dispersed scatter
points. As shown in Fig. 6, T2VQA also outperforms the others.

5.2.3 Cross-dataset Validation. ECTV [30] and TVGE [57] are the
only two T2V datasets that have released their subjective scores.
We randomly sample 800 videos from each dataset for cross-dataset
validation. Besides, Sora [3] has been considered the SOTA T2V
generation model. We collect the videos generated by Sora from its
official website to validate the generalization of T2VQA and other
models on high-fidelity videos. We invite 20 annotators to score
the quality of each Sora video. T2VQA and other reference VQA
models are trained on T2VQA-DB and tested on the sampled ECTV,
TVGE, and Sora videos. We report the SRCC and PLCC between
the models predictions and the ground truth MOSs. The results are
listed in the six columns on the right side of Tab. 2.

Experimental results show that T2VQA has the best generaliza-
tion ability among all models. Noticed that there is a performance
drop between the validation on T2VQA-DB and the testing on other
datasets. That’s because videos from the other datasets have the at-
tributes of high resolution, high frame rate, and long length, which
current open-sourced T2V models are not able to generate. We will
include videos with high fidelity in T2VQA-DB in future work.

5.2.4 Qualitative Analysis. We also conduct a qualitative analysis
on three examples with good, fair, and poor quality. We use Sim-
pleVQA [41], BVQA [24], FAST-VQA [49], DOVER [52], and T2VQA
to predict their quality. Fig. 7 presents the prompts, video frames,
and model predictions on the three examples, and Tab. 3 lists the
models’ predictions and MOSs. Results show that T2VQA has more
subjective-aligned predictions. Fig. 7a shows an example with a rel-
atively high score. The scene in the video matches the description
in the prompt well, and the video frames are clear and consistent.
Fig. 7b is a medium-level example. Though the video matches the
prompt basically, the video frames suffer from blurriness, which
is reflected in the MOS and T2VQA’s prediction. Fig. 7c shows the
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Table 3: T2VQA and other models predictions on 3 example
videos. Colored numbers represent the distance between pre-
dictions and the ground truths. Red: the best.

Model Prompt 1 Prompt 2 Prompt 3
SimpleVQA [41] 72.89−5.33 61.59+3.88 49.95+17.39

BVQA [24] 73.12−5.1 60.37+2.66 45.68+13.12
FAST-VQA [49] 85.28+7.06 44.19−13.52 38.91+6.35
DOVER [52] 89.11+10.89 51.93−5.78 36.66+4.1
T2VQA(Ours) 81.61+3.39 57.11−0.6 29.07−3.49

MOS (gt) 78.22 57.71 32.56

(a) Prompt: Castle ruins on the hill in the middle of a beautiful landscape.

(b) Prompt: Underwater world with different fishes, corals, and stones.

(c) Prompt: In a hot cast-iron cauldron, the cook pours oil to fry the meat (liver).

Figure 7: Three videos with good, fair, and poor quality.

worst case. The video fails to accurately present the description
in the prompt. Besides, it loses consistency between video frames.
Although it has a high definition in each frame separately, it still
has low scores in both MOS and T2VQA’s prediction.

5.3 Ablation Studies
To validate the effectiveness of each module in T2VQA, we conduct
thorough ablation studies, including the alignment and fidelity
encoder, the fusion module, and the regression module. Results are
listed in Tab. 4. All results are averaged after 10-fold splitting.

5.3.1 Alignment Encoder. T2VQA utilizes the BLIP image encoder
and text encoder as the alignment encoder. CLIP is another widely
used text-image encoder. It has a similar structure and ability to
measure text-video alignment as BLIP. We replace the BLIP image
and text encoder in T2VQA with CLIP to determine which one has
the better performance.

Experimental results show that using CLIP as the alignment
encoder suffers from severe performance degradation. The reason
could be that the image and the text are encoded separately in CLIP.
While in BLIP, the encoded image and the text features interact in
the cross-attention module.

Table 4: Results of ablation studies. [Keys: Bold: the best].

Models
Validation

SRCC ↑ PLCC ↑ KRCC ↑ RMSE ↓
T2VQA-CLIP 0.7296 0.7347 0.5385 10.5141
T2VQA-resnet 0.7610 0.7730 0.5715 9.8152
T2VQA-cat 0.7734 0.7854 0.5839 9.4034

T2VQA-linear 0.7808 0.7919 0.5891 9.3011
T2VQA-nonlinear 0.7850 0.7983 0.5954 9.1755
T2VQA(Ours) 0.7965 0.8066 0.6058 9.0221

5.3.2 Fidelity Encoder. In T2VQA, we use the Swin-T as the back-
bone of the fidelity encoder. To investigate the effectiveness of the
transformer-based architecture, we conduct the control experiment
by using the convolution-based 3D ResNet [13] as the fidelity en-
coder. The results show that Swin-T has a superior performance to
ResNet, validating its effectiveness.

5.3.3 Fusion and Regression Modules. Besides, we compare our
cross-attention fusion strategy with the simple concatenation fu-
sion. The latter is the simplest yet most commonly used fusion
strategy. In T2VQA, we take advantage of the strong ability of
an LLM for quality regression. We test the commonly used linear
regression and non-linear regression to compare with the LLM re-
gression in T2VQA. For linear regression, we use two full-connected
layers with 128 neurons in the first layer and 1 neuron in the second.
For non-linear regression, we use two 1D convolution blocks with
kernel size set to 1. We also set the channel number to 128 in the
first block and 1 in the second.

Results in Tab. 4 show that T2VQA achieves the best performance
in all evaluating metrics, indicating its effectiveness. The models
using concatenation, linear regression, and non-linear regression
have similar performance, yet they are all inferior to T2VQA, in-
dicating that the cross-attention fusion and LLM have achieved
non-negligible improvement to the model.

6 Conclusion
In conclusion, in this paper, we are dedicated to giving a subjective-
aligned prediction of the quality of a text-generated video. For
that purpose, we establish a T2V dataset with the largest scale,
named T2VQA-DB. The dataset includes 10,000 videos generated
by 9 advanced T2V models. We also conduct a subjective study to
obtain the MOSs on the overall video quality. Based on T2VQA-
DB, we propose a novel transformer-based model for text-to-video
quality assessment, named T2VQA. The model extracts features of
a video from text-video alignment and video fidelity perspectives
respectively. After fusing the features, an LLM is utilized to regress
the final prediction. The experimental results indicate that T2VQA
is effective in evaluating the quality of text-generated videos.
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