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Abstract
Solidity compiler plays a key role in enabling the development of
smart contract applications on Ethereum by governing the syn-
tax of a domain-specific language called Solidity and performing
compilation and optimization of Solidity code. The correctness of
Solidity compiler is critical in fostering transparency, efficiency, and
trust in industries reliant on smart contracts. However, like other
software systems, Solidity compiler is prone to bugs, which may
produce incorrect bytecodes on blockchain platforms, resulting in
severe security concerns. As a domain-specific compiler for smart
contracts, Solidity compiler differs from other compilers in many
perspectives, posing unique challenges to detect its bugs.

To understand the bugs in Solidity compiler and benefit future
research, in this paper, we present the first systematic study on 533
Solidity compiler bugs. We carefully examined their characteristics
(including symptoms, root causes, and distribution), and their trig-
gering test cases. Our study leads to seven bug-revealing takeaways
for Solidity compiler. Moreover, to study the limitations of Solidity
compiler fuzzers and bring our findings into practical scenarios, we
evaluate three Solidity compiler fuzzers on our constructed bench-
mark. The results show that these fuzzers are inefficient in detecting
Solidity compiler bugs. The inefficiency arises from their failure to
consider the interesting bug-inducing features, bug-related compi-
lation flags, and test oracles.
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1 Introduction
Smart contracts, as self-executing agreements built on blockchain
platforms like Ethereum, have revolutionized traditional contract
processes by automating and enforcing the terms and conditions of
agreements without the need for intermediaries. The significance
of smart contracts lies in their ability to enhance transparency,
efficiency, and trust in various domains, including finance, supply
chainmanagement, real estate, andmore. Smart contracts nowadays
manage over $47B digital assets as of November 2023 [25].

Existing smart contracts are mostly written in the Solidity lan-
guage (over 90% [30]) and compiled to bytecode running on an
Ethereum virtual machine (EVM). The quality of the compiler is
pivotal to the programming of smart contracts, their runtime per-
formance and trustworthiness. Like other compilers [34, 35, 46, 51,
58, 60, 62, 68, 71], smart contract compiler is not immune to bugs
that can affect performance, reliability, and security of the compiled
contracts, even when the source code is flawlessly crafted [3, 11, 21].
A notable reported smart contract compiler flaw was its inadver-
tent transformation of a well-implemented reentrancy guard at
the source code level into a malfunctioning version in the byte-
code. This concealed flaw remained undetected for over two years
until it was exploited by malicious entities in July 2023, culminat-
ing in a financial loss of approximately $73.5 million [33]. Hence,
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understanding the nuances of bugs in smart contract compilers,
particularly those impacting the accuracy of the compilation pro-
cess and the reliability of the resulting smart contracts, is essential
to safeguard the integrity of these contracts. Such understanding is
critical in preempting and mitigating potential vulnerabilities that
could compromise the security and efficacy of smart contracts in
real-world applications.

Our study on the Solidity compiler aims to provide a comprehen-
sive characterization of the symptoms and root causes of its bugs.
The Solidity compiler differs from conventional compilers in sev-
eral key aspects: First, unlike traditional compilers that mainly deal
with static memory allocation, the Solidity compiler additionally
manages on-chain persistent storage in compiled smart contracts.
Second, a unique and primary goal of the Solidity compiler is to
minimize gas consumption in smart contract execution. Each byte-
code instruction in a compiled smart contract consumes a specific
amount of gas, for which users pay at runtime. The compiler’s op-
timization strategies are tailored to reduce this cost. Moreover, the
Solidity compiler incorporates formal verification in its compilation
process, a feature not commonly found in conventional compilers,
to enhance the security of smart contracts. Due to these unconven-
tional features, the characteristics of bugs in the Solidity compiler
are likely distinct from those in traditional compilers. Conclusions
drawn from existing bug studies on conventional compilers may
not directly apply to the quality assurance of the Solidity com-
piler. Therefore, understanding the characteristics and distribution
of these bugs is essential for improving the overall quality of the
Solidity compiler and ensuring the integrity of smart contracts.

To this end, we conduct the first complete investigation of all
reported bugs in the Solidity compiler. Specifically, we collect all
1,210 GitHub issues before the end of Oct 16 2023 [31] labeled with
bug, exclude bugs that have no dedicated fix, and deduplicate the
remaining ones. Finally, 533 bugs are retained for further analysis.
We highlight five symptoms exhibited by Solidity compiler bugs
and delve into their twelve underlying root causes. We analyze
the correlation between the bug symptoms and root causes. Based
on the findings, we explore the challenges of triggering Solidity
compiler bugs and suggest potential solutions. To gain a deeper
insight into these challenges, it is also important to investigate to
what extent off-the-shelf Solidity compiler fuzzers address them.
Therefore, we evaluate off-the-shelf Solidity compiler fuzzers in
terms of bug detection. By analyzing the limitations of these fuzzers,
we can identify areas where our potential bug-detection solutions
can provide valuable assistance.

To facilitate the evaluation, we build a benchmark consisting of
108 reproducible bugs collected in our study and 36 correspond-
ing buggy versions. We included three publicly available fuzzers
tailored for Solidity compiler in our evaluation, including AFL-
compiler-fuzzer [44], solfuzzer [4], and Fuzzol [54]. The evaluation
results show that both of them are weak in detecting Solidity com-
piler bugs. They can detect only a single bug in the latest compiler
version and a total of 14 out of the 108 in the benchmark.

To sum up, we make the following major contributions.
• We conduct the first systematic study on Solidity compiler bugs
and present a classification of their symptoms and root causes.

• We offer a set of seven takeaways to facilitate Solidity compiler
bug detection.

• We develop a benchmark for the bug detection performance
evaluation on Solidity compiler. The benchmark is designed to be
extensible and serves as a valuable resource for future evaluations
of new Solidity compiler fuzzers.

• We assess the bug detection performance of the existing Solidity
compiler fuzzers, identify their weaknesses, and provide valuable
insights that lay the foundation for future research to enhance
the performance of bug detection for the Solidity compiler.

2 Background
Smart contracts are self-executing agreements with terms and con-
ditions in the form of code. They are designed to run on blockchain
platforms. In Solidity, smart contracts are defined as classes in
Object-Oriented Programming (OOP) and compiled into executable
bytecodes on EVM. Solidity compiler is responsible for carrying
out this compilation process.

  

Figure 1: Workflow of Solidity compiler

Figure 1 illustrates the workflow of Solidity compiler. The fun-
damental process is represented by the blue flow in solid boxes and
lines: once the Solidity program successfully passes the frontend’s
checks, it undergoes conversion into bytecode that is executable on
the EVM. Alongside the bytecode, an Application Binary Interface
(ABI) is generated for the contract. This ABI enables external enti-
ties to comprehend how to interact with the functions and events
of this contract. The green flow in dashed boxes and lines involves
Yul, an intermediate language that can be compiled to bytecode for
different backends. Yul comes into play when the Solidity program
includes inline assembly or when specific compilation flags (e.g.,
–optimize-yul) are used to explicitly invoke Yul. The red flow in
dotted boxes and lines focuses on formal verification within Solidity
compiler. As a security-oriented tool, the compiler offers model
checkers that assist in conducting automated mathematical proofs,
ensuring that the Solidity program adheres to a specific formal
specification. This verification process enhances the overall secu-
rity and reliability of the program. The Yul and formal verification
components can be optionally activated using compilation flags.
All these flows are prone to bugs. We will introduce them in §4.

3 Bug Collection and Classification
To conduct this study, we first collect the bugs from Solidity com-
piler and classify them based on their symptoms and root causes.
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This section introduces this procedure and details the results. Fig-
ure 2 shows the overview of this procedure.

  Figure 2: The Overview of Bug Collection and Classification

3.1 Bug Collection
We collect Solidity compiler bugs by extracting all closed issues
tagged as “bug” by Solidity compiler developers. In total, we obtain
a collection of 1,210 issues on GitHub. Then, we exclude unresolved
andmisreported issues from the dataset as they do not reveal any ac-
tual bugs. We also exclude issues from our dataset that are duplicate
reports for the same bug in the compiler. Furthermore, to effectively
understand the root cause of bugs from their code patches, we re-
move the GitHub issues where bugs are inadvertently fixed by
unrelated commits. Additionally, we exclude issues involving the
collective patching of multiple bugs, as it is difficult to isolate each
bug and its corresponding patch for root cause analysis in our study.
In total, 533 unique bugs are obtained for subsequent analysis.

3.2 Bug Classification
We classify the collected bugs in multiple iterations following the
open coding practice [56]. In each iteration, 50 bugs are randomly
sampled and two researchers independently examine them and
label the symptoms and root causes of each bug. Afterward, the
two researchers jointly validate their results by comparing and
discussing the differences in their labels. To increase accuracy, the
validation process includes a third researcher with expertise in So-
lidity smart contracts. After finishing the validation, a new iteration
begins on 50 bugs that have not been analyzed yet. This iteration
continues until a consensus is reached on all the labels for the 533
bugs. Following existing works [48, 58], we observe Cohen’s Kappa
coefficient [64] to measure the inter-rater agreement. After label-
ing the first 50 bugs, the Cohen’s Kappa coefficient is close to 0.
After discussing the disagreement and the validation process, the
coefficient rises to 72% after labeling the next 50 bugs and remains
constantly above 95% after labeling 150 bugs.

Figure 3: Bug Distribution Over Symptoms

3.2.1 Symptoms. In total, there are five symptoms in all the col-
lected Solidity compiler bugs. The bug distribution over symptoms
is presented in Figure 3.
Symptom 1: Crash. Crash refers to an unexpected termination
or abnormal termination of a program during its execution. It man-
ifests as the sudden halting of the program’s functionality, often
accompanied by error messages or system notifications. Crashes
can occur due to various reasons, such as memory leaks, resource
exhaustion, etc. When a crash occurs, it signifies a failure in the
software’s stability and reliability. Like other compilers[34, 58, 71],
the crash symptom is the major issue among all collected bugs in
Solidity compiler, occupying 373 out of 533 bugs. More granularly
speaking, the crash symptom consists of two sub-symptoms: 1)
Valid Program Rejection and 2) Uninformative Error Message.

TypeError : C on s t r u c t i on c o n t r o l f low ends wi thout i n i t i a l i z i n g
a l l immutable s t a t e v a r i a b l e s .

−−> t e s t s / r em i x _ t e s t s _ t e s t . s o l : 1 0 : 9 :
10 return ;

Note : Not i n i t i a l i z e d :
−−> t e s t s / r em i x _ t e s t s _ t e s t . s o l : 1 5 : 5 :
15 u i n t public immutable baked = 1 2 3 ;

Example 1: Valid Program Rejection (Issue #12379 [18])

Valid Program Rejection. Given a valid test program following
Solidity’s grammar, Solidity compiler rejects it with an informative
error message (e.g., Example 1). This symptom takes up 241 out of
373 crash bugs.

Uncaught e x c ep t i on :
Dynamic e x c ep t i on type : s t d : : b a d_ c a s t
s t d : : e x c e p t i on : : what : s t d : : b a d_ c a s t

Example 2: Uninformative Error Message (Issue #13101 [17])

Er ro r : Expec ted an i n l i n e tup l e , not an e xp r e s s i o n o f a t u p l e
type . −−> t e s t 1 . s o l : 1 0 : 3 2 :

10 a b i . en codeCa l l ( t h i s . f , g0 ( ) ) ; / / b a d_ c a s t

Example 3: Informative Error Message After Fixing

Uninformative Error Message. An uninformative Error Message
refers to the crash symptom where the thrown error message is not
informative enough for debugging. In other words, the crash should
occur due to errors in the contract code, but users of the compiler
desire a more informative error message to help them troubleshoot.
As shown in Example 2, Solidity compiler only reports that the
crash is triggered by a bad_cast without extra information for
debugging, e.g., where the bad cast occurs in the contract code.
After fixing this compiler bug, Solidity compiler can pinpoint the
crash-triggered line in the contract as well (Example 3).
Symptom 2: Incorrect Output. Incorrect Output refers to the
symptom where the output generated by Solidity compiler deviates
from the expectation. The outputs include SMT-LIB Script [29],
helper/warning messages [28], bytecodes [26], returned values [2],
Application Binary Interface (ABI) [1], etc.

Example 4 shows an example of incorrect ABI generation. The
following code is a Solidity contract that defines two functions:
emptyStringRevert and test. The emptyStringRevert function
is a pure function that reverts the transaction with an empty string
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1 contract Reve r tR e a s onPa r s e rT e s t {
2 function emp tyS t r i ngReve r t ( ) e x t e r n a l pure {
3 r e v e r t ( " " ) ;
4 }
5
6 function t e s t ( ) e x t e r n a l view r e t u r n s ( by t e s memory , u i n t 2 5 6 )

{
7 t r y t h i s . emp tyS t r i ngReve r t ( ) {
8 } c a t ch ( by t e s memory rea son ) {
9 return ( reason , r ea son . l e ng t h ) ;
10 }
11 }
12 }

Example 4: Incorrect Output (Issue #10170 [1])

as the revert reason. The test function is a view function that calls
the emptyStringRevert function using a try-catch statement and
returns the revert reason and its length as a tuple of bytes and
uint256. ABI is a standard way to interact with contracts in the
Ethereum ecosystem, both from outside the blockchain and for
contract-to-contract interaction. The revert reason in the above
code is ABI-encoded as if it were a call to a function Error (string).
Solidity compiler performs the incorrect ABI encoding and gener-
ates an unexpected extra 32 bytes, which corrupts the interaction.
Symptom3: Error Omission. Error omission refers to a situation
where an expected error or exception condition is not properly
detected, reported, or handled within a software system. In the
context of Solidity compiler, it incorrectly remains silent and does
not report any error when receiving an ill-formed test program.
There are 42 bugs of this symptom.
Symptom 4: Performance Issue. A performance issue refers to
a situation where the bytecode generated by Solidity compiler does
not meet the expected or desired level of performance in terms of
speed, responsiveness, or resource utilization due to improper opti-
mizations performed by Solidity compiler. There are 7 performance
issues, and 5 of them are due to optimization errors.
Symptom 5: Hang. A hang symptom refers to a situation where
a software system or application becomes unresponsive or frozen.
8 bugs exhibit this symptom.

  
Figure 4: Bug Distribution Over Root Causes.

3.2.2 Root Causes. In total, all the bugs can be grouped into 12
classes of errors. The name of each error implies the root cause.
The frequency of each root cause is presented in Figure 4. Formal
verification errors and Yul analysis errors are unique to Solidity
compiler. Though other root causes spread around other compil-
ers, Solidity compiler brings its flavors into them. For instance,
the special memory management system on blockchain platforms
induces special memory-related keywords and features in Solidity
compiler, triggering 44 bugs. Such flavors introduce new challenges

in bug-revealing that cannot be addressed by previous studies. We
will discuss them in §4.1. Below is a detailed description of all the
root causes, in descending order of their frequency of occurrence.
Root Cause 1: Semantic Analysis Error. Semantic analysis goes
beyond checking the syntax and focuses on extracting knowledge
about the program from built-up contexts (e.g., type system, control
flow), understanding its intended behavior, and verifying it. For
instance, given a type-contained abstract syntax tree (AST) node,
the semantic analyzer consults the type system implementation
about its expected type(s) and compares the actual type with the
expected one(s). This process, conventionally named type check-
ing [10], is a part of semantic analysis. In addition, the analyzer
also cares for variables’ scopes [27], object-oriented programming
(OOP) features [20], control flow [12], etc.

1 l i b ra ry L {
2 function p r i v a t e F u n c t i o n ( uint ) pr ivate { }
3 }
4 using { L . p r i v a t e F u n c t i o n } for un i t ;

Example 5: Semantic Analysis Error (Issue #13764 [27])

Example Bug. Example 5 reveals a silent semantic analysis error. In
particular, on line 4, variables of type uint are mistakenly granted
access to the function privateFunction, thereby exposing the
private function’s scope beyond the intended private field. However,
the compiler throws no error message on this misbehavior.
Root Cause 2: Formal Verification Error. Security issues in-
side the compiled smart contracts can result in costly consequences,
such as irreversible economic losses [42, 50, 55]. Therefore, iden-
tifying security issues in the Solidity code is significant. To this
end, Solidity compiler provides a formal verification component
to perform model checking on the to-be-compiled code. The error
that happened inside this component while being related to the
model checking process is named formal verification error.

1 contract C {
2 uint v ;
3 boo l guard = t r u e ;
4
5 function dec ( ) public r e t u r n s ( uint ) {
6 i f ( guard ) return 0 ;
7 −−v ;
8 return v ;
9 }
10
11 function f ( ) public r e t u r n s ( uint ) {
12 guard = f a l s e ;
13 uint r e t = t h i s . dec ( ) ;
14 guard = t r u e ;
15 return r e t ;
16 }
17 }

Example 6: Formal Verification Error (Issue #14111 [32])

Example Bug. Example 6 detects a formal verification error in a
constrained horn clauses (CHC) model checker. Specifically, guard
is initialized with true (line 3), and v is assigned an initial value 0
implicitly (line 2). The value of guard is switched to false on line 12,
and the call to this.dec will decrease the value of the unsigned
int v by one (line 7) since guard is false (line 6). However, CHC fails
to build a call edge from f to dec in call graph building, and thus
does not report the underflow error.



Towards Understanding the Bugs in Solidity Compiler ISSTA ’24, September 16–20, 2024, Vienna, Austria

Root Cause 3: Code Generation Error. Code generation is the
process of automatically generating code based on a set of rules
and specifications. Within Solidity compiler, the code generation
process involves producing several formats, including IR, EVMASM
(Ethereum Virtual Machine Assembly), bytecode, WebAssembly
(Wasm), and JSON-format AST.

1 contract C {
2 function C ( ) {
3 f ( ) ;
4 }
5 function f ( ) i n t e r n a l {
6 uint x = 4 2 ;
7 }
8 }

Example 7: Code Generation Error (Issue #3271 [5])

Example Bug. Example 7 detects a code generation error when
generating bytecode. Specifically, the bytecode for the internal
function f is incorrectly included in the deployed bytecode, which
abuses the visibility of f.
Root Cause 4: Type System Error. Like other general program-
ming languages and domain-specific languages (DSLs) [34], Solid-
ity’s type system is ideally sound in theory but practically bug-
prone in implementation [47]. Specifically, the type system defines
allowable types in Solidity, permissive operations on these types,
and type relations (e.g., whether type conversion or type coercion
is allowed between two types). Beyond these hardcoded rules, in
addition to its primary functions, a type system within a compiler
has the capability to perform type inference, allowing it to deduce
the resulting type after an operation is performed.

1 contract C {
2 function h ( ) public {
3 in t x ;
4 ( ( x ∗ ∗ − 3 ) ) ;
5 }
6 }

Example 8: Type System Error (Issue #9548 [9])

Example Bug. Example 8 shows a bug-triggered test case for a
typical type system error. The yellow strip above the code snippet
highlights the line where the bug was triggered. In this instance,
Solidity compiler forgets to disallow the use of the negative number
type during type inference for the resultant type of exponentiation.
Root Cause 5: ExceptionHandling Error. The exception-handling
component is responsible for responding to unexpected events dur-
ing execution. This component is helpful for bug localization and
guidance. Therefore, errors in exception handling can confuse the
users and complicate the bug isolation process for developers.

1 contract C {
2 s t ruc t S {
3 function ( ) a ;
4 }
5 function f ( S [ 2 ] c a l l d a t a ) { }
6 }

Example 9: Exception Handling Error (Issue #11610 [14])

Example Bug. Example 9 reveals an exception handling error.
Specifically, line 5 includes an internal type S in a public function,
which disrespects the visibility of S and should trigger an infor-
mative error reporting, but it does not. The error is a misleading
message like "std::exception::what: [solidity::util::tag_comment*] =".
After a code patch, Solidity compiler can correctly report "TypeEr-
ror 4103: (56-69): Internal type is not allowed for public or external
functions" to complain about the incorrect use of S[2].
Root Cause 6: Memory-Related Error. A memory-related error
in a compiler refers to problems related to allocating, managing,
and using memory during the compilation process. These issues can
arise from various factors, such as excessive memory consumption,
leaks, or inefficient memory utilization. Memory-related errors can
lead to compiler crashes, slow performance, or unexpected outputs
during compilation.

1 s t ruc t S {
2 uint x ;
3 }
4 contract C {
5 S s S t o r a g e ;
6 function f ( ) e x t e r n a l {
7 S [ ] memory sMemory ;
8 sMemory [ 0 ] = s S t o r a g e ;
9 }
10 }

Example 10: Memory-Related Error (Issue #12558 [19])

Example Bug. Example 10 detects a memory copy error. sStorage
is a variable that reside in storage, a long-term storage space avail-
able in the Ethereum blockchain. sMemory is a variable located
in memory, a temporary storage area used during the execution
of functions. Line 8 performs copying storage structs to memory
arrays, leading to a memory copy error that is manifested as a crash.
Root Cause 7: Optimization Error. Optimization on smart con-
tracts can efficiently reduce both the size of the deployed bytecode
and execution cost, i.e., the required gas for contract deployment
and calls to the contract. As a special optimization target, gas is
an artificially designed measurement of computation to prevent
denial-of-service attacks and ensure that the Ethereum network
remains secure and efficient. The existence of gas makes the op-
timization in Solidity compiler unique and requires special care.
Incorrect optimization may lead to compilation crashes or even
incorrect bytecode generation.

1 {
2 foo ( 2 )
3 function foo ( x )
4 {
5 mstore ( 0 , s h l ( 1 , s h l ( not ( 0 ) , x ) ) )
6 }
7 }

Example 11: Optimization Error (Issue #6246 [7])

Example Bug. Example 11 is a Yul code that reveals an optimization
error. The optimizer should have simplified line 5 to mstore(0,0),
but instead, it reduces it to mstore(0,2). mstore is the instruction
that stores a value (the 2𝑛𝑑 argument) to a memory location (the
1𝑠𝑡 argument). Since the inferred value of a bitwise shift expression
(shl(1,shl(not(0),x))) is incorrect, the optimized instruction
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stores the wrong value tomemory location 0 and leads to generating
incorrect bytecode.
Root Cause 8: Syntactic Analysis Error. Syntax refers to a
sequence of characters or tokens that are intended to be written in
a particular programming language. Compilers leverage grammar
to constrain the occurrences of tokens. Incorrect syntax analysis
may lead to accepting programs that violate the grammar or early
compilation crashes. In total, we collect 30 syntactic analysis errors.

1 in te r face Foo { }
2 in te r face Bar {
3 event MyEvent ( Foo indexed indexed indexed some ) ;
4 }

Example 12: Syntactic Analysis Error (Issue #13681 [6])

Example Bug. Example 12 shows a syntactic analysis error. Multiple
indexed entries are syntactically invalid, but the compiler omits
this error.
Root Cause 9: Doc Error. Natspec is short for Natural Specifica-
tion, which refers to a documentation system used in Solidity smart
contracts. Natspec allows developers to write human-readable doc-
umentation and explanatory comments directly within the Solidity
code. Errors contained in Natspec are named doc error, and the
number of them is 10.
Root Cause 10: Read-write Error. Solidity compiler can com-
municate with operating systems by reading from/writing into
source files and input/output buffers. In total, nine bugs are about
read-write errors.
Root Cause 11: Yul Analysis Error. Similar to the code analysis
for the Solidity source codes, the Yul component also provides
analysis for Yul code. Six bugs are contained in the Yul component
when analyzing the Yul code.
Root Cause 12: Others. The root causes of six bugs are rare and
do not fall into any other root cause.

4 Bug Analysis
This section aims to answer the following research questions:
RQ1 (Bug Characteristics) What is the correlation between
symptoms and root causes? How do all bugs distribute over
the three compiler components? The correlation between symp-
toms and root causes reveals how compiler bugs manifest them-
selves. Understanding it is crucial for effective problem diagno-
sis, troubleshooting, and efficient resolution of issues. Besides, the
bug-proneness of different compiler components may be different.
Investigating the bug distribution over components offers insights
for testing on one specific component.
RQ2 (Test Case Characteristics) What are the primary charac-
teristics of bug-revealing test cases? Bug-revealing test cases for
a specific root cause may contain common characteristics, which
may guide effective compiler testing.
RQ3 (Test Oracle Requirement) What test oracles are re-
quired for revealing bugs? Test oracles help reveal bugs triggered
by test cases. A non-negligible portion (30.02%) of our collected 533
bugs does not result in a crash. Designing effective test oracles is
essential to identify many compiler bugs.

4.1 RQ1: Bug Characteristics
4.1.1 Correlation between Symptoms and Root Causes. Table 1
presents the correlation between symptoms and root causes. We
highlight several interesting figures with wrapped boxes around
the numbers. From these figures, we have the following findings.
Error Omission and Semantic Analysis Error. Among the 42
bugs categorized under the error omission symptom, a significant
majority, accounting for 54.76%, are attributed to semantic analysis
errors. The remaining error omissions are evenly distributed across
other root causes. This observation implies that when localizing
uninformative and hard-to-pinpoint error omissions, it can be ben-
eficial to initially narrow down the search to files associated with
semantic analysis.
Incorrect Output and Code Generation Error. Different from
other root causes, triggering a code generation error requires a
careful inspection of the generated code. Among 59 collected bugs,
24 are of symptom Incorrect Output. Code generation errors have
a significantly higher proportion of Incorrect Output symptom
compared to the average (38.98% v.s. 18.91%), implying that the
detection of bugs under this root cause requires special test oracles
on the generated code.
Crash and Exception Handling Error. 82.35% of exception-
handling errors manifest themselves as crashes, while 57.14% of
such crashes are actually Uninformative Error Message, implying
that more than half of the crashes caused by exception-handling
errors are expected to happen, but should be accompanied by more
informative messages.
Crash and Optimization Error. Due to the fact that improper
optimizations tend to affect the generated bytecodes instead of
raising crashes, only 22.86% of optimization errors display crash
symptoms, much lower than the average proportion (i.e., 69.98%) of
this primary symptom. Therefore, special test oracles are required
for the generated output, performance, and running time.
Hang and Optimization Error. While hang is not typically
considered a core symptom of bugs in Solidity compiler, it can be
troublesome in practice due to its lack of informative details. Hangs
often occur without providing a stack trace or error message, mak-
ing it challenging to isolate and address them effectively. However,
it is worth noting that among the 8 hangs observed, 5 of them are
caused by optimization errors. This observation can potentially aid
in localizing and pinpointing the causes of hangs, offering valuable
insights for bug localization and resolution in such scenarios.

  

Figure 5: Bug Distribution Over Components
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Table 1: Correlation between Symptoms and Root Causes

Root Causes
Symptoms Crash Incorrect Output Error Omission Performance Issue Hang TotalsymptomValid Program Rejection Uninformative Error Message

Semantic Analysis Error 56 61 14 23 1 1 156
Formal Verification Error 59 4 7 5 - - 75
Code Generation Error 27 6 24 2 - - 59
Type System Error 27 13 7 4 - 1 52
Exception Handling Error 18 24 8 1 - - 51
Memory-Related Error 22 12 9 1 - - 44
Optimization Error 8 - 15 2 5 5 35
Syntactic Analysis Error 12 5 9 3 1 - 30
Doc Error 5 2 3 - - - 10
Read-write Error 3 3 3 - - - 9
Yul Analysis Error 3 1 1 1 - - 6
Others 1 1 3 - - 1 6

Totalcauses 241 132 103 42 7 8 533

4.1.2 Bug Distribution over Components. Figure 5 shows the bug
distribution over symptoms in three different components shown
in Figure 1. Several conclusions can be drawn from this figure.
• The primary symptom observed across all components is the
crash symptom (i.e., Valid Program Rejection plus Uninformative
Error Message). However, the proportion of this symptom varies
among the different components.

• The distribution of bugs across symptoms in the base component
is comparable to that observed in the entire compiler.

• In the formal verification component, the symptom of rejecting
valid programs is considerably more prevalent compared to oth-
ers, occupying 78.02% of all the bugs inside this component. This
observation suggests that bug detection in formal verification
may not require highly specialized test oracles. Nevertheless, to
effectively conduct fuzzing on this component, it is crucial to
take into account additional bug-exposing factors (§4.2.2).
In addition to symptoms, bugs in different components have

distinct underlying causes. All root causes are present in the base
component, while in the Yul component, the major root causes are
Yul analysis error and optimization error, accounting for 70.97% of
all bugs. In the formal verification component, the primary root
cause is formal verification error, constituting 82.42% of all bugs.
Semantic analysis error also occurs in this component due to the
requirement of semantic analysis for encoding by the SMT encoder.

Takeaway 1: Formal Verification, being a distinctive component
of the compiler, demonstrates distinct patterns in the distribution
of bug symptoms and root causes.

4.2 RQ2: Test Case Characteristics
4.2.1 Bug-Revealing Code Patterns. This section presents four bug-
revealing code patterns that are usable for detecting specific errors.
Trigger Semantic Analysis Error. Of the 156 collected semantic
analysis errors, it is worth mentioning that 47 of them pertain to
scope issues, including the bug triggered by Example 5. In their
bug-revealing tests, several scope-defining and scope-changing
features are used, such as 1) the use of private, public, and external
in function declaration; 2) the involvement of OOP-related features;
3) the use of using for directive to attach in new functionalities to a
specific type; 4) function overloading; and 5) variable shadowing.

Another prominent subcategory is the type-checking issue. The
semantic analyzer verifies the correctness of node information in
the AST by checking statements. Type checking, such as a simple
variable.isLibraryFunctionParameter(), should be actively
incorporated to handle corner cases, unsuggested behavior, and
misbehavior. However, type-checking issues, such as the absence of
a required checking, lead to 61 bugs out of 156 bugs under semantic
analysis errors. The combinatory use of types (e.g., mapping from
a public view function to a struct) is probable to detect such bugs.

Takeaway 2: Valid stacking of Solidity’s scope-related features
(e.g., qualifiers such as external, scope changer such as using for,
etc) and type combinations is beneficial for detecting semantic
analysis errors.

Trigger Formal Verification Error. The incorrect model checker
implementation, as shown in Example 6, occupies 25 out of 75 bugs
under Formal Verification Error root cause. The bug-triggered test
inputs for such bugs contain well-designed and obscure data flows
that require complete analysis. Besides the implementation prob-
lem in model checkers, the rest 50 bugs are located in the SMT
encoder. The SMT encoder encodes solidity expressions into SMT
expressions for model checkers to resolve. Specifically, the encoder
first decomposes a solidity expression into pieces and then gener-
ates a suitable SMT abstraction for each piece. Finally, the decoder
integrates these SMT abstractions into complete SMT expressions.
The encoder errors lie in the decomposition and generation phases,
triggered by difficult-to-encode solidity expressions, such as arrays,
array slices, tuples, and mappings. These four elements are present
in 33 out of 50 bugs.

Takeaway 3: Well-designed data flows plus the presence of key
elements in Solidity (static array, dynamic array, array slice, tuple,
and mapping) is important for detecting Formal Verification Error.

Trigger Memory-Related Error. Memory-related keywords, fea-
tures, and operations are the key to triggering memory-related
errors. In Solidity, keywords such as memory, calldata, features
such as dynamic array, inline assembly about direct memory
management (e.g., mstore), operations such as defining large-size
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arrays and out-of-bound member access can all induce memory-
related errors. 36 out of 44 memory-related errors are triggered
by the above elements. The remaining eight bugs are about null
pointer dereferences during implementation.

Takeaway 4: Memory-related keywords (e.g., memory, calldata)
and operations (e.g., memory copy between memory locations
defined by memory-related keywords) are required for triggering
memory-related errors.

Trigger Optimization Error. Among 35 optimization errors,
nearly half (16) leads to incorrect bytecode generation. Similar
to the code generation error, special test oracles are required for
detecting optimization errors by inspecting the generated bytecode.
Besides, triggering optimization errors requires the use of Yul code
as input. 18 out of 35 optimization errors are revealed by Yul code.

Takeaway 5: Yul code is required for efficiently detecting opti-
mization errors. We can involve it in Solidity’s inline assembly or
in an independent input file.

4.2.2 Bug-Revealing Compilation Flags. Triggering special bugs
(e.g., bugs of incorrect output symptom, bugs inside the formal verifi-
cation component, and the Yul component) require special cautions,
such as traversing compilation flags. Solidity compiler provides com-
pilation flags to invoke specialized code generations or to involve
specific compiler components. For instance, –asm and –asm-json
are flags for generating EVM assemblies; –ir, –ir-ast-json,
–ir-optimized, and –ir-optimized-ast-json are flags for gen-
erating Yul codes; –abi is used to produce ABIs. When designing
a fuzzer to detect bugs characterized by incorrect output symp-
toms, these flags become necessary. To invoke the Yul component,
–optimize-yul, –yul-optimizations are required. Regarding for-
mal verification, the compiler provides 13 compilation flags to cus-
tomize the verification processes. Intelligently utilizing these flags
and traversing different combinations with them is important for
specific bug detection in Solidity compiler.

Takeaway 6: Special compilation flags are required for testing
formal verification component and Yul component.

4.3 RQ3: Test Oracle Requirement
This section discusses the test oracles required to detect special
Solidity compiler bugs.
Output-Aware Test Oracle. Among 533 bugs, 103 bugs are of
Incorrect Output symptom. Such a symptom occurs quietly without
an unexpected termination and thus needs special care. For instance,
as is implied by §4.1.1, an output-aware test oracle is required for
effectively detecting code generation errors and optimization errors
since such bugs are highly related to incorrect compilation output.
Error-Message-Aware Test Oracle. About 24.76% of 533 bugs are
of Uninformative ErrorMessage symptom. This particular symptom
distinguishes itself from a typical crash by being an expected oc-
currence. The fixes for such bugs are about refining error messages
by providing more bug information or changing the severity level.
For instance, as is suggested by §4.1.1, an error-message-aware test
oracle is required for revealing exception handling errors efficiently.

Takeaway 7: To effectively resolve 24.76% of 533 bugs, an error-
message-aware test oracle is required to determine whether the
error message is misleading, or whether the error message lacks
debugging-required information (e.g., stack trace).

Validity-Aware Test Oracle. Since there are 42 bugs of Error
Omission symptom, a validity-aware test oracle is needed for such
bugs by judging the validity of the Solidity code and catching silent
response from Solidity compiler to an invalid test input.

5 Evaluation on Solidity compiler Fuzzers
Following the discoveries in the bug analysis (§4), it is vital to
examine the effectiveness of off-the-shelf Solidity compiler fuzzers
and delve into their limitations. This investigation plays a crucial
role in comprehending howwe can leverage our insights to enhance
the efficacy of fuzzing strategies. To this end, this section presents
the evaluation process and analyzes potential improvements for
Solidity compiler fuzzers.

5.1 Fuzzer Selection
The primary criterion for selecting a fuzzer revolves aroundwhether
it is specifically designed for Solidity compiler or tailored to suit its
specific features. We have chosen three modified general fuzzers,
namely AFL-compiler-fuzzer [44], solfuzzer [4], and Fuzzol [54].
These fuzzers are variations of AFL [23], customized and adapted to
enhance fuzzing efficiency for Solidity compiler. To uphold the prin-
ciple of fairness in this experiment, we unify the hyperparameter
MAP_SIZE in the three fuzzers. MAP_SIZE limits the number of In-
strumentations and thus influences coverage results. We configure
MAP_SIZE as 16, aligning with the suggestion from AFL.
AFL-compiler-fuzzer. AFL-compiler-fuzzer aids AFL with sev-
eral language-agnostic mutation rules (e.g., rewriting conditions in
if statements, removing statements, etc) specifically for conven-
tional code structures. Besides, AFL-compiler-fuzzer can compose
code pieces into new test cases to both enrich seed pool and reuse
bug-revealing code fragments.
solfuzzer. solfuzzer is an open-source fuzzer integrated within
Solidity compiler. It uses the AFL executable to carry out the fuzzing
process. During the fuzzing loop, solfuzzer extends the capabili-
ties of AFL by trying out different compilation flags, in order to
cover new code paths and increase the bug-revealing possibility.
It is proved that several bugs only exhibit with the normal solc
executable and can not be detected by the mere AFL [8].
Fuzzol. Unlike AFL-compiler-fuzzer and solfuzzer, Fuzzol stands
out by incorporating language-specific mutators. It begins by ana-
lyzing the ASTs of Solidity test cases and then applies the mutators
to AST nodes. For example, Fuzzol can substitute an AST node
with another node of the same type or modify the arguments of
an opcode within the inline assembly node. This approach enables
Fuzzol to provide more targeted and language-aware mutations to
enhance the effectiveness of the fuzzing process.

5.2 Benchmark Construction
To evaluate the performance of the three Solidity compiler fuzzers,
we construct a benchmark using all the bugs collected by this work.
Each bug in the benchmark is associated with four elements: bug
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description, code patch, test cases, and the version of the compiler
that introduced the bug. To facilitate compiler fuzzer evaluation, for
each bug, we use the nearest buggy release version as the subject for
fuzzing test. We collect both the test cases and the compiler version
if the bug is reproducible on the buggy version. However, we only
consider reproducible bugs with crash symptoms in our fuzzer
evaluation benchmark since the three fuzzers are not equipped
with test oracles to identify other symptoms, such as analyzing
the generated bytecode or ABI, determining the expected error
messages, analyzing poor performance, or detecting runtime hangs.
In total, we collect 108 reproducible bugs and 36 buggy release
versions.

5.3 Seed Selection
Fuzzers have their own preferences for seeds. For instance, Fuz-
zol prefers small test cases with less than 1KB in size, while AFL-
compiler-fuzzer prefers code templates (i.e., code snippets with
placeholders) and code fragments (i.e., the concrete representation
of placeholders in Solidity) extracted from test cases. In the experi-
ment, we evaluate these fuzzers in two settings. In the first setting,
for each fuzzer, we used the seed collection procedure mentioned in
its documentation or original paper. Specifically, for AFL-compiler-
fuzzer, we collect test cases from Solidity compiler and exclude test
cases that trigger bugs in the benchmark. Then, we employ comby-
decomposer [24] to decompose these test cases into fine-grained
templates and fragments for invoking the code composition of AFL-
compiler-fuzzer. We obtain 5,812 test cases, 25,305 fragments, and
39,978 templates. On average, each test case contains 32.9 lines of
code (LOC). The seed pool construction for solfuzzer can be ac-
complished by executing isolate_tests, which is an automatic test
case collector for solfuzzer. In total, 308 test cases are collected for
solfuzzer, each containing 41.0 LOC. As for Fuzzol, we follow its
experimental setup and collect seeds from its public repository [13].
In total, 1,466 test cases are collected for Fuzzol, each containing
only 13.6 LOC on average. In the second setting, we use the same
seeds for all the three fuzzers. Specifically, we choose 5,812 test
cases for AFL-compiler-fuzzer to build the common seed pool for
the three fuzzers. This seed pool includes all unit test cases for
the latest version of Solidity compiler except for bug-revealing test
cases in the benchmark. We consider the number of bug-revealing
test cases generated from this shared seed pool as a metric to assess
the bug-detection abilities of each fuzzer concerning bugs in the
benchmark.

5.4 Fuzzing Loop
Our fuzzing loop is built around the latest version of Solidity com-
piler. In each fuzzing iteration, each fuzzer selects a seed and mu-
tates it in order to generate new test input. This process aims to
enhance code coverage on the latest version of Solidity compiler.
In particular, we turn on the comby server for AFL-compiler-fuzzer
to splice fragments and templates in the seed pool. As the fuzzing
target, the latest version plays two roles.
A bug-contained individual. As a bug-contained individual,
the number of crashes inside the latest version identified by these
three fuzzers serves as a robust indicator of their effectiveness in
uncovering bugs in Solidity compiler.

Table 2: Fuzzing Result

Fuzzer #Crash𝑙 #Bug𝑏 Map Density

AFL-compiler-fuzzer 1 8 80.12% (⇑ 6.11%)
solfuzzer 0 0 88.22% (⇑ 3.70%)
Fuzzol 0 5 81.00% (⇑ 13.02%)

Fuzzol𝑎𝑐𝑓 0 1 80.45% (⇑ 6.44%)
solfuzzer𝑎𝑐𝑓 - - -

#Crash𝑙 : the number of revealed crashes in the latest version of Solidity compiler
#Bugs𝑏 : the number of detected bugs inside the benchmark
Map Density: Map density indicates how many branch tuples we have hit. It is
in proportion to edge coverage [22]
Fuzzol𝑎𝑐𝑓 and solfuzzer𝑎𝑐𝑓 : Fuzzol and solfuzzer that fuzzes from AFL-compiler-
fuzzer’s seeds

A fuzzing proxy. Given the fact that the collected 108 bugs are
distributed across 36 compilers of distinct versions, instrumenting
all of these compilers and carrying out the fuzzing loops on each of
them independently is resource-consuming and time-consuming.
To address this practical challenge, we adopt a strategy known
as "fuzzing by proxy" inspired by recent advancements in fuzzing
techniques [41, 45, 57]. The proxy refers to a typical software under
test that can guide the mutation in the fuzzing loop to generate
a representative set of test inputs for all similar software. In our
approach, the proxy is the latest version of Solidity compiler. The
efforts paid by the three fuzzers on increasing code coverage on
the latest version of Solidity compiler help expand the diversity of
the generated mutants. After collecting a swarm of mutants, we
examine the bug-revealing ability of the generated mutants on the
collected buggy versions.

5.5 Fuzzing Result
Table 2 presents the fuzzing results of 20-day executions on a server
with AMD Ryzen Threadripper 3970X 32-Core Processor, and 256G
RAM, coordinated with 64-bit Ubuntu 22.04 OS.

In the first experimental setting, where each fuzzer utilizes its
preferred seeds, AFL-compiler-fuzzer ranks first by uncovering
eight bugs. Fuzzol follows closely in second place, detecting five
bugs. solfuzzer does not find any bug in this particular setting.While
utilizing the seeds of AFL-compiler-fuzzer, Fuzzol detects a bug
that is previously undetected by the AFL-compiler-fuzzer. However,
Fuzzol does not detect this particular bug using its preferred seeds.
On the other hand, solfuzzer encounters difficulties in loading these
seeds and ultimately reports a timeout. Note that bugs detected
by Fuzzol under two experimental settings do not overlap with
bugs detected by AFL-compiler-fuzzer, suggesting that these two
effective fuzzers explore distinct opportunities for revealing bugs.

We further explore the root causes of bugs detected by the AFL-
compiler-fuzzer and Fuzzol under two experimental settings. Pos-
itively, these fuzzers perform well in detecting memory-related
errors. Out of 12 such errors collected in the benchmark, five have
been revealed. However, they are comparably inefficient in detect-
ing semantic analysis errors and formal verification errors, which
are the two major root causes that constitute 43.40% of the overall
533 bugs studied. Out of 24 semantic analysis errors and 36 formal
verification errors collected in the benchmark, the three fuzzers
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could detect only one semantic analysis error and five formal veri-
fication errors. Detection of semantic analysis errors requires pre-
cise and meticulous mutators to manipulate fine-grained program
elements like scope, as highlighted in takeaway 2. However, nei-
ther Fuzzol nor AFL-compiler-fuzzer incorporates mutators of this
nature, such as lifting the scope of a variable. To detect formal
verification errors, fuzzers should focus on modifying data flows,
especially among contracts, since the formal verification compo-
nent aims at inspecting data and revealing data corruption issues,
such as integer overflow. Both fuzzers lack specific mutators to
achieve this modification.

5.6 Enhancing Bug Detection
Findings and insights in our study can benefit fuzzers from the fol-
lowing aspects. First, as indicated by takeaways 2, 3, and 4 in §4.2,
the proposition of designing mutators based on scope, type, and
data flow, along with generating varied code snippets incorporating
these elements, is beneficial in detecting semantic analysis errors
and formal verification errors. These two categories are identified as
the primary root causes of bugs in Solidity compiler. A program syn-
thesizer generating such code snippets can enrich error-revealing
seeds and thus invoke fuzzers’ bug-detection effectiveness.

Furthermore, the three chosen baselines all consider crash as the
test oracle. However, code generation errors, exception handling
errors, and optimization errors often manifest as non-crashes or
uninformative-error-messages (according to §4.1.1). Hence, fuzzers
should examine error messages, warning messages, and outputs to
effectively detect Solidity compiler bugs. Moreover, Solidity com-
piler fuzzers can learn from partial compiler fuzzers [53, 59] that
specialize in examining special components or compilation phrases.
Our findings on bug distributions among compiler components aid
fuzzers in effectively allocating their power budget.

6 Discussion
6.1 Bugs in Solidity compiler v.s. Bugs in Other

Compilers
In this section, we compare Solidity compiler bugs with the bugs
in other popular compilers, including C/C++ compilers [60, 60, 76],
and deep learning compilers [58]. We make three major observa-
tions to inspire follow-up research in Solidity compiler testing.

Figure 6: The Distribution of Formal Verification Errors over
Years and Its Kernel Density Estimate

Formal Verification Component. The formal verification com-
ponent is unique to the Solidity compiler and does not exist in other
compilers like C or deep learning compilers. Such unique compo-
nent comes with unique bugs that may not occur in other compilers.
In our study, we found that formal verification error accounts for

a significant portion of all the bugs, indicating its prevalence and
importance. Noteworthy, we also found that the number of formal
verification error reports has increased rapidly since 2020, corre-
sponding to the emerging blockchain hacks recently (Figure 6). The
formal verification errors contribute to 31.57% of the bugs collected
in the last year (Oct/16/2022 - Oct/16/2023). The percentage is more
than twice the ratio (14.07%) of formal verification errors among
all bugs. This indicates that security issues in smart contracts have
raised more attention to the formal verification feature of the So-
lidity compiler. However, the formal verification component still
has much room for improvement. Due to the absence of a formal
verification component, bug knowledge and testing knowledge for
the existing compilers does not apply to Solidity compiler. Our
study offers insights and guidance for the testing of the formal
verification component in the compiler (Section 4.2 and 4.3). We
call for more future research on improving the quality of the formal
verification component in Solidity compiler.
Inline Assembly. Inline assembly is widely used in smart con-
tracts and Solidity compiler often suffers from relevant bugs. Ac-
cording to our findings, 11.63% Solidity bugs are triggered by in-
line assembly. Bugs induced by the inline assembly are not well
studied in the literature of traditional compilers (e.g., GCC/LLVM).
Our study fills this gap by categorizing the types of compiler bugs
that are more likely to be triggered with inline assembly (e.g., the
memory-related error and optimization error), and offers insights
into more effective test input generation of Solidity compiler (§4.2).
Gas Optimization. Optimizations in Solidity compiler signifi-
cantly differ from other compilers. It is designed to minimize gas
consumption, a key metric for evaluating the computational effort
required for smart contract execution. Disparities in the motiva-
tions behind optimizations between Solidity compiler and other
compilers can potentially invalidate the application of prior op-
timization bug findings [76] to the optimization bugs in Solidity
compiler. Our study uncovers the connection between optimization
errors and symptoms like crashes or hangs, which have not been
extensively discussed in the current literature.
Summary. The disparities between Solidity compiler and other
compilers hinder transferring the knowledge of conventional com-
piler bugs to Solidity compiler. Our study brings a new perspective
beyond the existing ones on bugs in traditional compilers and deep
learning compilers.

6.2 Solidity Compiler Bugs and Security Issues
The main objective of Solidity compiler is to compile smart con-
tracts written in Solidity into bytecodes executable on Ethereum
Virtual Machine (EVM). In the Ethereum blockchain, every node
launches EVM to execute bytecodes that are derived from smart
contract compilation. Unsafe bytecode emitted by Solidity com-
piler can cause security issues in the blockchain. Take a hashing
error [16] on the list of known security-relevant bugs [15] as an ex-
ample. The legacy optimizer in Solidity compiler can save runtime
costs by computing an instruction in the inline assembly region
at compile time and caching the result. The cached value will be
reused directly if the same instruction occurs subsequently. This
optimization reduces redundant computation but also invokes a
hashing error when computing two Keccak-256 hashes of two data
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with the same effective content, while one of them has extra zero
bytes. The second hash value is unexpectedly the same as the first
one though their hashing contents are of different lengths. Attack-
ers can use this bug to bypass security checks that are forged from
these two hash values. Therefore, the solidity community has as-
signed a medium severity tag to this bug. It is noteworthy that all
the 77 security-relevant bugs in this list are non-crash bugs. Among
them, 24 require the use of legacy optimizer, Yul optimizer, and
ABI encoder/decoder for reproduction. Our findings in non-crash
symptoms and calls for test oracles for detecting them (§4.1, §4.3)
encourages new research efforts to address potential security issues
induced by Solidity compiler.

6.3 Guidance for beyond Bug Detection
Besides guidance for fuzzing Solidity compiler and uncovering its
bugs, this study also provides hints for employing compiler vali-
dation approaches and program analysis on Solidity compiler. In
compiler verification, our findings can integrate with Equivalence
Modulo Inputs (EMI) [51]. For example, Takeaway 4 emphasizes the
significance of memory-related keywords and operations in detect-
ing memory-related errors. This insight helps establish memory-
related ground truth, verifying that data transfer between storage
and memory on the blockchain does not impact data values. We can
verify this ground truth on the Solidity compiler by comparing the
values of the same data in two compiled smart contracts that only
differ in memory-related operations. For analyzing compilers, our
findings about bug distribution over components help mitigate the
scalability issues of program analyzers on heavyweight compilers,
letting them allocate more power to bug-rich components.

6.4 Threats to Validity
A threat to external validity lies in the representativeness of the
collected bugs. The representativeness issue may be caused in two
ways: 1) inadequate bugs or poor sampling strategy and 2) too
many unanalyzable bugs in the collection. Therefore, to minimize
the external threat, we consider all available GitHub issues labeled
with “bug” in Solidity compiler repository. In addition, We only
collect bugs associated with a detailed description or discussion
and a dedicated bug fix. In this way, all the collected bugs are
conducive to manual analysis and further classification. The threat
to internal validity mainly lies in the manual inspection, analysis,
and categorization. The categorization is subjective to the analyzer
and thus can introduce bias and even errors [58]. To mitigate and
even eliminate this threat, we conduct an iterative cross-validation
strategy between two experienced researchers and also introduce
another Blockchain expert for conducting extra discussions on
disagreements and executing finalization. The nomenclature for
symptoms and root causes generally follows previous compiler
bug studies [34, 58] and employs a concise and consistent naming
scheme to accurately represent bug characteristics that are exclusive
to Solidity compiler (e.g., Formal Verification Error).

7 Related Work
Understanding bug characteristics is crucial for various purposes,
including automated testing [36, 39, 52, 60, 67, 69, 75] and debug-
ging [37, 61, 63, 66, 70, 72–74]. Empirical bug studies primarily

focus on investigating and extracting these bug characteristics to
enhance the understanding of the bugs under consideration.

Certain literature concentrates on comprehending specific types
of bugs. For instance, Lu et al. [52] characterize concurrency bugs.
Franco et al. [38] and Wang et al. [67] study real-world numerical
bugs. Dietz et al. [39] investigate integer overflow bugs. Moreover,
certain literature is dedicated to examining bugs within a particular
real-world software system. Jia et al. [49] analyzed bug patterns
inside the Tensorflow System. Chen et al. [36] carried out a compre-
hensive bug study for four popular DL libraries. Garcia et al. [43]
conducted a bug study on autonomous vehicles. Islam et al. [48],
Wang et al. [67], and Zhang et al. [75] studied bugs in deep learning
systems. Wan et al. [65] investigated bugs in blockchain systems.

The most relevant works to our studies are the compiler bug
studies. Certain compiler bug studies investigate thewhole compiler.
For instance, Sun et al. [60] conducted a comprehensive study on
LLVM and GCC, analyzing their bugs in several aspects including
duration, priority, code patches, locations, etc. Shen et al. [58] and
Du et al. [40] analyzed deep learning compiler bugs and expose
their important features such as symptoms, root causes, locations,
etc. Other compiler bug studies focus on bugs in a compilation stage.
For instance, Chaliasos et al. [34] concentrated on analyzing type-
related compiler bugs in four JVM-based compilers. Zhou et al. [76]
studied the optimization-related bugs inside LLVM and GCC. This
paper focuses on bugs inside the whole Solidity compiler and it
is different from previous works. As shown in Figure 1, Solidity
compiler have different structures than traditional compilers (e.g.,
LLVM and GCC) and deep learning compilers. These distinctions
introduce a novel bug distribution and unique bug characteristics
(§6.1). This paper reveals these distinctions and further provides
practical guidelines for future bug detection and isolation within
the compiler.

8 Conclusion
This paper introduces the first empirical study on 533 compiler
bugs, examines their properties, presents seven key findings for
efficient bug detection, and assesses three Solidity compiler fuzzers.
The study specifically focuses on labeling bug symptoms, summa-
rizing their underlying causes, and exploring their interconnections.
Additionally, the research delves into test case characteristics and
the requirements for effective test oracles, providing practical rec-
ommendations for testing. The evaluation of the fuzzers involves a
20-day experiment for each fuzzer, analyzing their limitations and
suggesting practical improvements based on the findings.

9 Data Availability
We release the bug classification results, benchmarks, experimental
data, and the instructions for replicating the evaluation on https:
//github.com/haoyang9804/ISSTA24-Solidity-Study.
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