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ABSTRACT

High-level programming models like Q# significantly simplify the

complexity of programming for quantum computing. These models

are supported by a set of foundation libraries for code develop-

ment. However, errors can occur in the library implementation,

and one common root cause is the lack of or incomplete checks

on properties like values, length, and quantum states of inputs

passed to user-facing subroutines. This paper presents Upbeat, a

fuzzing tool to generate random test cases for bugs related to input-

checking in Q# libraries. Upbeat develops an automated process to

extract constraints from the API documentation and the developer-

implemented input-checking statements. It leverages open-source

Q# code samples to synthesize test programs. It frames the test case

generation as a constraint satisfaction problem for classical comput-

ing and a quantum state model for quantum computing to produce

carefully generated subroutine inputs to test if the input-checking

mechanism is appropriately implemented. Under 100 hours of auto-

mated test runs, Upbeat has successfully identified 16 bugs in API

implementations and 4 documentation errors. Of these, 14 have

been confirmed, and 12 have been fixed by the library developers.

1 INTRODUCTION

The dawn of quantum computing has arrived. Like classical comput-

ers, quantum computers also require programmingmodels, develop-

ment libraries, and compilers for software development. These tools

allow developers to express program logic and transform human-

written code into executable instructions or quantum circuits to

run on quantum machines or simulators.

Q# is a C#-like programming model for quantum computing [22,

43, 58]. It supports two types of subroutines (referred to as callables

in Q#): operations and functions. The former is a routine that af-

fects quantum states, while the latter does not alter the quantum

state, being deterministic, and will always return the same result

for the same input. A core component of Q# is its Development Kit

Libraries, which provide common programming routines for clas-

sical mathematics, quantum error correction, and domain-specific

algorithms like quantum machine learning. Embracing a high-level

programming approach, Q# simplifies the expression of complex

quantum logic and operations, making it an ideal tool for exploring

novel algorithms for quantum computing.

Like many application developers in other domains, users of

Q# libraries typically treat the library implementation as a black

box and place their trust in the robustness of the library. However,

like any large software, Q# libraries are susceptible to bugs. A

common issue in Q# libraries is insufficient checks on the properties

of a user input passed into a callable ś a problem referred to as

boundary bugs in this work. These input properties might include

the numerical value range, array length, quantum bit (qubit) state,

or other assumptions made by library developers or defined in the

API specifications. A well-implemented library should generate

meaningful error messages at the earliest point to notify the library

user when their input does not meet the requirements, assisting

application developers in debugging their user code.

Boundary bugs in quantum libraries can arise if a callable does

not verify that the input qubit state matches the expected condi-

tions, leading to potential runtime crashes or incorrect results [52].

Such errors or crashes might also occur if the implementation for-

gets to check for overflow in an input qubit during measurement or

conversion before it is passed to a callable. These boundary errors

are often elusive, only happen under specific inputs, and often sur-

face much later when a user-facing callable is invoked. However,

they pose a significant challenge in debugging user code, especially

when the user input has participated in multiple operations where

the error only occurs on a different variable directly or indirectly

resulting from the user input. This is because when errors eventu-

ally emerge, they might not directly link back to the initial callable

inputs, making it difficult to trace and resolve the problem.

The current efforts of quantum software testing have been fo-

cused on the application-level algorithms [24, 32, 33, 38, 47, 61, 63]

or the compiler-based code translation for optimizing and generat-

ing quantum circuits [53, 62]. Although these efforts are important,

one critical area currently lacking sufficient attention is testing

boundary bugs of quantum libraries, a common issue for quantum

libraries. Doing so requires generating valid and invalid values and

properties for multiple arguments of a subroutine. While there is a

large body of work for conventional computers in automating soft-

ware testing [7, 17, 25, 27, 28, 51, 54, 67, 71, 75], these prior methods

are not immediately transferable to quantum libraries. Furthermore,

existing methods with qubit modeling [4, 61] are ineffective for test-

ing boundary bugs because it is difficult to generate bug-exposing

test inputs without knowing the assumptions that library devel-

opers made. Our work aims to fill this gap by taking Q# as a case

study. Addressing this testing gap is essential for improving the

usability and reliability of quantum libraries.
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Achieving our goal requires managing the unique characteristics

and requirements of quantum computing. In our case, these require

checking input properties at the programming language levels.

For instance, a qubit’s state can be represented as a point on the

surface of a sphere. In this context, describing such a state requires

specifying its position along the sphere’s X, Y, or Z axis and its

measured outcome (Zero or One), which exhibits a probability that

can fluctuate within a defined noise tolerance range.

We present Upbeat, the first automated and open-source frame-

work for testing boundary bugs of quantum libraries. Upbeat gen-

erates test cases ś executable Q# programs containing code and

callable-specific input data ś to exercise the input-checking mech-

anisms of the test target. To generate the test code, we first built

a corpus containing Q# API call sequences from Q# examples ex-

tracted from the library implementation, open-source projects, and

the API manual. From this corpus, Upbeat automatically assembles

call sequences to construct test code through program synthesis.

To generate test data to be passed to a callable, Upbeat first

automatically extracts, offline, the developer-implemented input

checks from assertion-like Q# statements such as Assert operations

and Fact functions from the source code of the test targets. It also

leverages constraint specifications expressed in plain texts from

the API document. We encode the input constraints of a qubit

state as a Q# quaternion using a four-element tuple, {axis, result,

probability, tolerance}. For instance, {Z-axis, Zero, 1.0,

0.0} signifies that the target qubit must be in the state |0⟩.

Based on the extracted constraints, Upbeat generates both valid

and invalid input for a test callable. Valid inputs comply with the li-

brary developer-implemented or document-defined constraints. They

should allow uninterrupted program execution if the input checks

implemented by the library developers are robust or if the API de-

scription is correct. Generating valid inputs also allows the test case

to progress beyond the implemented checks rather than terminat-

ing early before executing the deeper code segments, allowing us

to identify missing or incomplete checks. In contrast, invalid inputs

breach the developer- or document-defined constraints. A correct

implementation should thus recognize these violations, halt the

program, or trigger an exception when encountering such inputs.

To determine the input properties for classical computing con-

straints, Upbeat frames the input generation as a constraint sat-

isfaction problem [30]. It then employs a constraint solver [12] to

generate the valid and invalid inputs. For quantum constraints, it

first represents the constraint using quaternions for qubit states. It

then applies the quantum rotation operation to alter the qubit state

to create valid and invalid qubit inputs. The test code and input

data are assembled using a template, resulting in the final test case.

Generating inputs from the library developer-implemented checks

and document-defined constraints allows us to establish a test ora-

cle at the Q# language level. This is essential because relying solely

on differential testing [8, 18, 37] to run the test cases on multiple

quantum simulators [10, 26, 29, 76] might yield identical results

even if there is an implementation error at the Q# level. If no dis-

crepancies are found at the language level, Upbeat then applies

differential testing to identify inconsistencies at the circuit level by

executing a test case on multiple quantum simulators.

1 namespace HelloQuantum {

2 open M i c r o s o f t . Quantum . I n t r i n s i c ;

3 @EntryPoint ( )

4 o p e r a t i o n P r e p a r e B e l l S t a t e ( ) : Un i t {

5 use q u b i t s = Qubi t [ 2 ] ;

6 H( q u b i t s [ 0 ] ) ;

7 CNOT( q u b i t s [ 0 ] , q u b i t s [ 1 ] ) ;

8 DumpMachine ( ) ;

9 R e s e tA l l ( q u b i t s ) ; } }

Figure 1: A simple Q# program.

We have implemented a working prototype of Upbeat. We eval-

uated Upbeat by applying it to all four application domains sup-

ported by the Q# Development Kit Libraries: Standard, Chemistry,

Machine Learning, and Numerical Computation, covering 35 li-

braries and 881 operations and functions. Within 100 hours of auto-

mated test runs, Upbeat identified 20 unique boundary bugs across

all tested domains, covering 19 previously unknown bugs. Of all 20

reported bugs, 14 have been confirmed, and 12 bugs - including 4

API document bugs - have been fixed, leaving 6 newly discovered

bugs being examined by developers at the time of submission. We

also compare Upbeat to six prior quantum software testing meth-

ods [4, 21, 38, 53, 59, 62] and two variants of our techniques. Our

evaluation shows that Upbeat is highly effective in generating in-

put values for exposing boundary bugs for Q# libraries, uncovering

more boundary-checking bugs than the baseline methods within

the same testing time.

The core contribution of this paper is the first fuzzing tool to

test boundary bugs of quantum libraries. Our work provides a way

to extract test oracles and constraints from the API implementation

and document for effective test input generation.

2 BACKGROUND AND MOTIVATION

2.1 Quantum Computing
Quantum bits. Quantum computers store and process information

using qubits. A qubit can represent Zero1 and One simultaneously

due to its superposition property [36, 49]. A qubit will collapse into

either Zero or Onewith a probability once it is measured. The states

of multiple qubits can be entangled, meaning that altering the state

of one of them will immediately affect the states of the others.

Qubit states. In this work, we use the Dirac notation [13] to

encode the value of a qubit state. Specifically, we use |0⟩ and |1⟩

respectively to represent Zero and One along the Z-axis.

Quantum circuits.High-level quantum programs are usually com-

piled into low-level quantum circuits consisting of qubits and quan-

tum gates to be executed on a simulator or quantum hardware [35].

The gates manipulate the qubits and perform operations like rota-

tion, phase shifts, and entanglement.

Hybrid quantum computing. A quantum program is often im-

plemented in a hybrid mode by combining classical computing and

quantum algorithms. Code running on classical computers is often

used to prepare the input and output of the quantum algorithm and

control the execution of the quantum algorithm.
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IntToPauli function
1 Namespace:Microsoft.Quantum.Simulation
2 Package:Microsoft.Quantum.Standard
3 Converts a integer to a single-qubit Pauli operator.

6 Input
7 idx: Int
8 Integer in the range 0..3 to be converted to Pauli operators.
9 Output: Pauli
10 A Pauli operator given by [PauliI, PauliX, PauliY, PauliZ][idx].

4 Q# Copy

5 function IntToPauli (idx : Int) : Pauli

Figure 2: An example function defined in Q# API document.
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Figure 3: The proportion of boundary bugs in Q# libraries.

2.2 The Q# Programming Language

Figure 1 is a simple Q# program encapsulated within a namespace.

Within this program, a PrepareBellState operation applies the

Hadamard (H) and Controlled NOT (CNOT) gates on two qubits

before printing the qubit states by callingDumpMachine and release

the allocated qubits by invoking ResetAll.

Callables. Operations and functions are referred to as callables in

Q#. An operation is a subroutine containing quantum operations

that modify the state of the qubit register. In contrast, a function is

typically used to handle classical computation.

Execution. In this work, we execute a Q# program under the .NET

core with three built-in quantum simulators provided by QDK. This

is done by using the łdotnet run -s <simulator>ž command-line

interface to execute a program in a specific simulator, starting from

a callable with the ł@EntryPoint()ž annotation (line 3 in Figure 1).

Q# constraint statements.Q# has twoways to specify constraints:

facts (check conditions on the input values) and assertions (check

conditions on the input states of qubits). In addition, the API docu-

ment also describes the constraints for some APIs, as shown in line 8

in Figure 2, which may not be correctly implemented by the library

developers, or may be incorrectly described in the document.

Q# API document. Our work leverages information provide by

the official Q# API documents [42] to generate test code. For each

callable, this document describes the source (the Namespace and

Package it belongs to), the functionalities, its calling interface, the

types of parameters required, and the return values. Figure 2 shows

the Q# API document of the IntToPauli function.

2.3 Motivation

This work focuses on exposing boundary bugs in Q# libraries due

to the lack of or incomplete checks on the properties (e.g., values,

length, or qubit states) of an input passed to a user-facingQ# callable.

Our work is motivated by the observation that boundary bugs are

prevalent in quantum libraries, and such bugs can increase the

development cost of library users.

1We use Zero and One to represent 0 and 1 in quantum computing, respectively.

1 op e r a t i o n ApplyX . . . ( func : B i g In t , c o n t r o l R e g i s t e r : Qubi t

[ ] , t a r g e t : Qubi t ) : Un i t {

2 l e t v a r s = Length ( c o n t r o l R e g i s t e r ) ;

3 l e t maxValue = PowL ( 2 L , 2^ va r s ) ;

4 F a c t ( func >= 0L and func <maxValue , $ " . . . " ) ;

5 A s s e r tQub i t ( Zero , t a r g e t ) ;

6 . . .

7 l e t t a b l e = Encoded ( S i z eAd j u s t e dT ru t hTab l e ( . . . , v a r s ) ) ;

8 l e t spectrum = FastHadamard . . . ( t a b l e ) ;

9 . . . }

Figure 4: A buggy Q# operator that fails to check the

controlRegister input. Operation and function names are

shortened to aid clarity.

In our pilot study, we counted the bugs reported on two repre-

sentative Q# libraries hosted on GitHub: QuantumLibraries [46]

and qsharp-runtime [45]. We search for developer-verified GitHub

issues with bug-related labels - łKind-Bugž in QuantumLibraries

and łBugž in qsharp-runtime. We then manually examine all the

related issues to identify howmany bugs are attributed to be bound-

ary bugs. Figure 3 reports the number of bugs from 2019 to 2022.

We can observe that boundary bugs are consistently a problem

for Q# libraries, with an increasing percentage of boundary bugs

reported over the years as the library code base increased. This is

unsurprising; as the number of APIs provided grows and the in-

put types become more diverse, it becomes challenging to provide

robust input checks.

Figure 4 is a simplified operation from the Q# standard library,

and it contains a boundary bug identified by Upbeat. Specifically,

a runtime error will be thrown out when invoking the internal

FastHadamard function at line 8when the length of controlRegis-

ter is 0 (line 2). This happens because a 0-lengthy controlRegister

leads to an invalid input (table) to be passed to FastHadamard. Ask-

ing a library user to debug this runtime error would be challenging

as the error message does not directly correlate with the initial

operation inputs. Proper implementation requires examining the

properties of controlRegister and producing an error message

at the entry point of the user-facing ApplyX API should an invalid

input be given.

To generate a test case to expose the boundary bug, we need to

generate (1) valid values of func and target to pass the checks

enforced in lines 4 and 5 before reaching FastHadamard and (2)

invalid properties of controlRegister. Furthermore, an erroneous

implementation at this operation will lead to the same execution

outcomes on different Q# simulators, preventing differential testing

from uncovering the bug. Therefore, we must also establish a test

oracle in the Q# language level to capture such anomalies.

3 OUR APPROACH

Figure 5 provides an overview of Upbeat, an open-source frame-

work for testing boundary bugs of user-facing callables in Q# li-

braries. It is designed as a while-box fuzzer to be used by the library

developers, assuming the system can access the source code of the

testing Q# libraries.

Upbeat first gathers code segments from multiple sources, in-

cluding code samples in the API documents, source code of the

target Q# libraries, and open-source Q# programs hosted on GitHub

(Section 3.1). Next, it uses the extracted code segments as the build-

ing blocks to create the initial test code for certain Q# callables
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Figure 5: High-level overview of Upbeat, which tests the input checking mechanism for Q# libraries.

1 operation RippleCarryAdderNoCarryTTK

2 (xs : LittleEndian , ys : LittleEndian) : Unit is Adj + Ctl {

3 let nQubits = Length(xs!);①

4 EqualityFactB(nQubits == Length(ys!), true ,

5 "Input registers must have the same number of qubits ." );②

6 if (nQubits > 1) {

7 ApplyWithCA(ApplyOuterTTKAdder , a

8 ApplyInnerTTKAdder WithoutCarry , (xs , ys));}③

9 CNOT (xs![0], ys![0]) ;}④

(a) Basic segments extracted from the RipplCarryAdderNoCarryTTK operation.

xs:LittleEndian

nQubits:Int ys:LittleEndian

nQubits:Int
①

②

xs:LittleEndian ys:LittleEndian

③

xs:LittleEndian ys:LittleEndian

④

①② ②③ ③④

②③④①②③

①②③④

(b1) basic code segments (b2) merged code segments
window size=2

window size=3

window size=4

(b) Extracted code segments and their assembly constraints.

Figure 6: An example for extracting code segments.

through code synthesis (Section 3.2). To generate the input argu-

ments of the test callable, Upbeat uses the information extracted

from the API documents and their implementations to generate

inputs with valid and invalid properties (Section 3.3). These inputs

and the test code are used to populate a template to assemble an

executable test case to invoke the test callable during execution (Sec-

tion 3.4). During testing, these test cases are compiled and executed

on quantum simulators to identify potential bugs (Section 3.5).

3.1 Type-directed Code Segment Collection

We collect code segments from API documents and source code

from 35 open-source Q# libraries and open-sourced Q# projects

hosted on GitHub. Specifically, we collected 3,378 code segments

with 12,518 lines of code in this work. This is a relatively small

corpus due to the smaller code base of quantum programs compared

to traditional programming languages like C and Java, as quantum

programming is still in its early stages.

3.1.1 API probing. Weextract the test targets (user-facing callables)

from the Q# API documents [42]. Specifically, we extracted the

name of the callable, namespace, input argument types, and return

types from metadata, which is stored in a JSON object, and then

generated input cases for test code. In summary, we gathered 881

out of all 1,017 APIs (excluding 136 deprecated callables), including

361 operations, 450 functions, and 70 user-defined data types from

35 libraries in the latest version of the official API documents.

3.1.2 Code segments collection. We collected Q# code segments

to assemble test programs using code synthesis. These callable

code segments were gathered from code samples in API documents,

the source code of QDK, and 12 GitHub open-source repositories

where Q# was the primary programming language. Subsequently,

we divided each collected callable into smaller candidate segments,

which were used to assemble entire segments for test code synthesis.

Extract code segments. We identified three types of basic seg-

ments from a Q# callable: (1) sequential statements that refer to

code segments consisting of single statements, e.g., the variable

declarations and reassignment; (2) API call statements that in-

voke a Q# callable; and (3) Q# control statements including while,

for, repeat-until, within-apply and if-elif-else. These ba-

sic code segments cover almost all the types of code supported by

Q#, which can generate test cases with richer semantics, contribut-

ing to testing deeper code branches of Q# libraries. We created a

Q# extractor to use regular expressions to extract code segments.

For each Q# program, our extractor first gathers all functions and

operations. Then, for each extracted callable, we apply regular ex-

pressions to divide the callable into small basic segments in order.

Additionally, we merge adjacent 𝑘 basic code segments into larger

segments using a sliding window to increase the diversity of the

candidate code segments within each callable. In our work, we set

𝑘 to range from 2 to the total number of basic segments. Finally,

we save basic and merged code segments to our Q# language cor-

pus. We also applied the same methodology to construct the code

segments from the code examples given in the API document.

Parse segment assembly conditions. When collecting code seg-

ments, we record the variable names and their types required during

the code segment assembly process in a segment assembly constraint.

This constraint is defined as a consumer-producer-like tuple [14]:

⟨pre-conds, post-conds⟩ where pre-conds specifies a set of vari-

able symbols and types necessary for the successful execution of

the code segment, and post-conds specifies the available variable

types. The segment assembly constraint ensures the assembled code

segments are well-typed. The rule of each condition can be rep-

resented as {var:type}, where var represents the variable name,

and type represents the variable type. To parse these conditions, we

retrieve all variables used in each segment. For all required variables

when executing a code segment, we record them and their types in

the pre-conds and save other variables in the post-conds.

Example. Figure 6 shows the code segment extraction process for

a Q# operation. We first divide the code into four basic segments,

including three API call statements (lines 3, 4-5, and 9) and an

if statement (lines 6-8). We number the basic segments from ①

to ④ according to the order in which the codes appear. Then, we

assemble these basic segments using merging windows with sizes 2

to 4. This gives 10 code segments as shown in Figure 6b. The merged
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code segment is also annotated with ⟨pre-conds, post-conds⟩,

where the pre-conds are the pre-conds of the first basic code

segment; the post-conds are the post-conds of the last basic code

segment. For example, {nQubits:Int; ys:LittleEndian} is the

pre-conds of the segment ②. The post-conds of the segment ③

are NULL. Finally, the constraint of the merged segment ②③ is

⟨{nQubits:Int; ys:LittleEndian}, {NULL}⟩.
3.2 Test Code Generation

We generate test code similar to a function bodywithin a namespace

for testing a Q# callable. The generated test code does not include

the variable declarations and diagnostic statements to dump the

execution outcomes (e.g., qubit states), which will be inserted at

the final stage of test case generation (Section 3.4). The test code

is synthesized via assembling type-directed code segments. The

synthesized test code contains one or more Q# callables supported

in the target Q# libraries.

Algorithm 1 outlines how Upbeat synthesizes test code via type-

directed segment assembly. The algorithm takes in a list of the gath-

ered code segments and the maximum number of code segments

used to assemble a test code. Each list element is an object consist-

ing of a code segment and its corresponding assembly constraint.

To synthesize a test code, Upbeat randomly selects a code segment

with at least one callable from the list as the assembly seed (line 2).

Within each iteration, Upbeat first determines if a code segment

can be merged with 𝑠𝑒𝑔 (line 4). The process for determining an

available code segment is shown as the SEARCHCODESEGMENT proce-

dure (lines 12ś28). Specifically, Upbeat searches the list to find the

code segments whose post-conds match the seed’s pre-conds,

i.e., when one of the variable types is matched (lines 15ś16). Other-

wise, it finds the matching code segments according to the seed’s

post-conds (lines 17ś18). Upbeat randomly chooses and returns a

matching code segment (lines 21ś24). If no suitable code segment is

found, it returns łNULLž (lines 25ś26). The returned code segment

and the seed code are merged into a large code segment (line 5).

The iteration concludes if the merged code segment has no more

pre-conds and post-conds left (lines 6ś7). Finally, a new assembly

code segment is returned (lines 10ś11).

3.3 Test Input Data Generation

Upbeat generates test inputs by first extracting the input con-

straints from the source code and API document.

3.3.1 Constraint extraction. The Q# library implementation fol-

lows the hybrid computing mode, using classical and quantum

constraints (Section 2.1). We express classical constraints as:

𝑒𝑥𝑝𝑟1Θ𝑒𝑥𝑝𝑟2Θ...Θ𝑒𝑥𝑝𝑟𝑖 , 1 ≤ 𝑖 ≤ ∞; Θ ∈ {&, | |} (1)

where 𝑒𝑥𝑝𝑟𝑖 denotes an inequality or equality and Θ is a collec-

tion of logical operators (e.g., & or ||). For instance, the constraints in

line 4 of Figure 4 can be expressed as 𝑓 𝑢𝑛𝑐 ≥ 0&𝑓 𝑢𝑛𝑐 < 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 .

In contrast, the quantum constraints model the qubit state. In this

work, we model the constraint C of the qubit 𝜒 as:

𝜒 ← {Ψ, 𝜙, 𝜌, 𝛿} (2)

𝜒 is a variable that must be in the state represented by the quater-

nion, such as |0⟩ or |1⟩. The quaternion signifies that the probability

of 𝜙 along the Ψ axis is 𝜌 within the tolerance of 𝛿 . Here, Ψ can

be one of the three axes on a sphere: X-axis, Y-axis or Z-axis. 𝜙

Algorithm 1 Type-directed Code Segments Assembly Algorithm

Input:
𝑠𝑒𝑔𝐿𝑖𝑠𝑡 : The list that stores the collected code segments.
𝑁 : Maximum number of code segments that assemble a test code.

Output:
𝑟𝑒𝑡 : The assembled test code.

1: Let 𝑠𝑒𝑔, 𝑡𝑒𝑚𝑝 be the empty objects;
2: 𝑠𝑒𝑔← selectCodeSegmentwithAPI(𝑠𝑒𝑔𝐿𝑖𝑠𝑡 );
3: for 𝑖 = 0 : 𝑁 − 1 do
4: 𝑡𝑒𝑚𝑝← SEARCHCODESEGMENT(𝑠𝑒𝑔, 𝑠𝑒𝑔𝐿𝑖𝑠𝑡 );
5: 𝑠𝑒𝑔← AssembleCodeSegments(𝑠𝑒𝑔, 𝑡𝑒𝑚𝑝);
6: if 𝑠𝑒𝑔.𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑠 & 𝑠𝑒𝑔.𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑠 == NULL then
7: break;
8: end if
9: end for
10: 𝑟𝑒𝑡 = 𝑠𝑒𝑔.𝑐𝑜𝑑𝑒 ;
11: return ret;
12: procedure SearchCodeSegment(𝑠𝑒𝑔, 𝑠𝑒𝑔𝐿𝑖𝑠𝑡 )
13: Let 𝑝𝑜𝑠𝑡𝐿𝑖𝑠𝑡 , 𝑝𝑟𝑒𝐿𝑖𝑠𝑡 be empty lists;
14: for 𝑡 ∈ 𝑠𝑒𝑔𝐿𝑖𝑠𝑡 do
15: if satisfy(𝑡 .𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑠, 𝑠𝑒𝑔.𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑠) then
16: 𝑝𝑜𝑠𝑡𝐿𝑖𝑠𝑡 .append(𝑡 );
17: else if satisfy(𝑡 .𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑠, 𝑠𝑒𝑔.𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑠) then
18: 𝑝𝑟𝑒𝐿𝑖𝑠𝑡 .append(𝑡 );
19: end if
20: end for
21: if 𝑝𝑜𝑠𝑡𝐿𝑖𝑠𝑡 .𝑙𝑒𝑛𝑔𝑡ℎ > 0 then
22: return RandomSelect(𝑝𝑜𝑠𝑡𝐿𝑖𝑠𝑡 );
23: else if 𝑝𝑟𝑒𝐿𝑖𝑠𝑡 .𝑙𝑒𝑛𝑔𝑡ℎ > 0 then
24: return RandomSelect(𝑝𝑟𝑒𝐿𝑖𝑠𝑡 );
25: else
26: return NULL;
27: end if
28: end procedure

Please generate a quaternion via the inputs below without any comments.

Inputs:
The parameter name is <arg_name>, its type is <arg_type>, and the constraint 
description is “<arg_desc>”.

Requirements:
The output is expressed as ({axis}, {result}, {probability}, {tolerance}), where 
{axis} may be X-axis, Y-axis, or Z-axis; {result}  may be One or Zero;  
{probability} is a float number from 0.0 to 1.0; and {tolerance} is a float number. 
For example, the quantum state |0> can be expressed as (Z-axis, Zero, 1.0, 0.0).

Please generate Boolean expressions via the inputs below without any comments.
 

Inputs:
The parameter name is <arg_name> , its type is <arg_type>, and the constraint 
description is “<arg_desc>”.

Requirments:
1. The Boolean expressions can contain Q# API callables, for example, use the 
'Length(arg_name)' format to express the length of an array;
2. The binary operators include >, <, >=, <=, == and !=;
3. The logical operators include & or ||.

Descriptions 
of the inputs

Output 
requirements

Generation 
target

Descriptions 
of the inputs

Output 
requirements

Generation 
target

(a) Prompt paradigm for extracting the classical constraints.

Please generate a quaternion via the inputs below without any comments.

Inputs:
The parameter name is <arg_name>, its type is <arg_type>, and the constraint 
description is “<arg_desc>”.

Requirements:
The output is expressed as ({axis}, {result}, {probability}, {tolerance}), where 
{axis} may be X-axis, Y-axis, or Z-axis; {result}  may be One or Zero;  
{probability} is a float number from 0.0 to 1.0; and {tolerance} is a float number. 
For example, the quantum state |0> can be expressed as (Z-axis, Zero, 1.0, 0.0).

Please generate Boolean expressions via the inputs below without any comments.
 

Inputs:
The parameter name is <arg_name> , its type is <arg_type>, and the constraint 
description is “<arg_desc>”.

Requirments:
1. The Boolean expressions can contain Q# API callables, for example, use the 
'Length(arg_name)' format to express the length of an array;
2. The binary operators include >, <, >=, <=, == and !=;
3. The logical operators include & or ||.

Descriptions 
of the inputs

Output 
requirements

Generation 
target

Descriptions 
of the inputs

Output 
requirements

Generation 
target

(b) Prompt paradigm for extracting the quantum constraints.

Figure 7: GPT template prompts.

can be One or Zero - two possible values defined as Result type

in Q# language. 𝜌 is a floating-point number within the range of

0 to 1, and 𝛿 can take any arbitrary float number. For example,

the constraint in line 5 of Figure 4 can be expressed as 𝑡𝑎𝑟𝑔𝑒𝑡 ←

{Z-axis, Zero, 1.0, 0.0}, where 𝑡𝑎𝑟𝑔𝑒𝑡 should be |0⟩.

Upbeat extracts the constraints offline from (1) the Q# API im-

plementations via regular expression matching and (2) parameter

descriptions in the API document. The latter helps collect relevant

constraints because the constraints of many APIs are described as

plain texts in their respective documents. Collecting information

from the API document also enables Upbeat to check the discrep-

ancies in the developer manual and the library implementation. In

our implementation, if a constraint is only documented or imple-

mented, we check if valid and invalid inputs yield the expected

behaviors during execution. Conversely, when constraints are both

implemented and documented, we check for consistency between

the documentation and implementation.
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Extract constraints from source code. To extract constraints

from the API source code, Upbeat first analyzes which APIs contain

statements used to specify constraints (facts and assertions). Up-

beat gathers constraint statements using regular expressions. Then,

Upbeat transforms the constraint statements into either Boolean

expressions or quaternions. Specifically, to extract classical con-

straints, Upbeat extracts the conditional expression or combines

several variables using logic connectors to transform them into con-

straint expressions. To extract quantum constraint, Upbeat obtains

variables in the argument list and supplies the remaining items

in the quaternion based on the meaning of the assertions. During

extraction, Upbeat runs a data flow analysis to align local variables

of the constraint expressions with input arguments passed to the

callable. For the example in Figure 4,𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 in the Fact function

will be replacedwith PowL(2L,2ˆLength(controlRegister)). This

process captures how the input arguments affect the outcome of

the input checking.

Extract constraints from API documents.We utilize GPT-4 [50]

to transform constraint expressions from API documents through

two template prompts: a zero-shot prompt used for extracting the

classical constraints (Figure 7a) and a few-shot prompt for extract-

ing the quantum constraints (Figure 7b). We use a script to first

populate the parameters in the prompt inputs, e.g., the arg_name,

arg_type, and arg_desc, using the API document texts. Subse-

quently, the prompt is sent to the GPT-4 API to retrieve and store

the generated responses in a database.

3.3.2 Callable input generation. Upbeat solves the extracted clas-

sical or quantum constraints to generate callable inputs.

Classical inputs.We built a solver based on Z3 [12] to generate

valid and invalid inputs for classical computing constraints. Our im-

plementations supports all relational operations, including >, ≥, <,

≤,== and≠.We simplify the constraint expressions using SymPy [2],

a Python library for symbolic mathematics. For instance, constraints

ł𝑎 > 0&𝑎 ≥ 1&𝑏 < 𝑎+5ž will be simplified to ł𝑎 ≥ 1&𝑏 < 𝑎+5ž. The

simplified constraint expressions are then broken down into several

inseparable sub-constraints, e.g., ł𝑎 ≥ 1&𝑏 < 𝑎 + 5ž will be divided

into ł𝑎 ≥ 1ž and ł𝑏 < 𝑎+5ž with the logical łANDž relation. Next, we

find if there are sub-constraints with the binary operators like ł==ž,

ł≤ž, or ł≥ž by using regular expressions (e.g., ł𝑎 ≥ 1ž). If it exists,

the operator of the sub-constraints will be replaced with ł==ž (e.g.,

ł𝑎 == 1ž), and then it and the remaining sub-constraints are input

into Z3 to generate the valid test inputs; otherwise, the simplified

constraints are fed into Z3 to solve for values that fulfill the con-

straints. The invalid inputs are generated following the above steps

after inverting the constraints. Some special constraints may con-

tain Q# callables, e.g., PowL in line 3 of Figure 4. Before solving such

constraints, we first convert it into a mathematical expression based

on its semantic, e.g., PowL(2L,2ˆLength(controlRegister))will

be replaced with 2ˆ(2ˆ(Length(controlRegister))).

Quantum inputs.We generate valid and invalid inputs for a quan-

tum constraint to be passed to a callable. The former leads to qubit

states that satisfy the quaternions defined in Equation 2, while the

latter would violate the quaternion. Unlike classical constraints

generated using Z3, we generate quantum constraint inputs by

applying the quantum rotation operation to alter the qubit state.

Specifically, given a constraint C for qubit 𝜒 , the valid inputs can

1 F a c t ( t o >= from , $ "`to ` must be l a r g e r than `from` " ) ;

2 F a c t ( t o − from <= 0 x07FFFFFFFFFFFFFFEL , $ " d i f f e r e n t between `

to ` and `from` i s too l a r g e " ) ;

(a) Constraint-related statements in SequenceL.

1 to >= from

2 to − from <= 0 x07FFFFFFFFFFFFFFEL

(b) Extracted Boolean expressions of (a).

1 l e t from = 0L ;

2 l e t t o = 9223372036854775806 L ;

(c) Generated valid values.

1 l e t from = 0L ;

2 l e t t o = 9223372036854775807 L ;

(d) Generated invalid values.

Figure 8: Example of extracted classical constraints and the

Upbeat-generated input data.

1 As s e r tA l l Z e r o ( r e s ! ) ;

(a) Constraint-related statements.

1 res <−−{ Pau l iZ , One , 0 . 0 , 0 . 0 }

(b) Extracted constraints of (a).

1 use qs1 = Qubi t [ 2 ] ;

2 l e t t h e t a = 2 . 0 ∗ ArcS in ( S q r t

( 0 . 0 ) ) ;

3 Ry ( the t a , qs1 ) ;

4 l e t r e s = L i t t l e E n d i a n ( qs1 ) ;

(c) Generated valid values.

1 use qs1 = Qubi t [ 2 ] ;

2 l e t t h e t a = 2 . 0 ∗ ArcS in ( S q r t

( 0 . 0 ) ) + 0 . 1 ;

3 Ry ( the t a , qs1 ) ;

4 l e t r e s = L i t t l e E n d i a n ( qs1 ) ;

(d) Generated invalid values.

Figure 9: Example of extracted quantum constraints and the

Upbeat-generated input data.

be generated by adding the rotation operation as:
{

𝜃 = 2 arcsin
√︁

𝜌 + 𝛿 𝑜𝑟 𝜃 = 2 arcsin
√︁

𝜌 − 𝛿 ;

𝑅𝑖 (𝜃, 𝜒), 𝑖 ∈ Ψ; 𝜙 = Zero
(3)

The first term of Equation 3 leverages the extracted constraint C

to calculate the rotation angle 𝜃 . Then, a rotation operation 𝑅𝑖
in the second term is applied to the target qubit 𝜒 for a given

rotation angle 𝜃 . 𝑅𝑖 is determined based on the axis Ψ. For example,

if Ψ is Z-axis, then 𝑅𝑖 can be 𝑅𝑥 or 𝑅𝑦 , meaning rotating 𝜒 by 𝜃

degrees along the 𝑥 or 𝑦 axis. On the contrary, the invalid values

are generated by rotating 𝜒 with a randomly chosen angle smaller

or larger than 𝜃 . Note that 𝜃 in Equation 3 is derived when the qubit

state 𝜙 equals Zero. Thus, the state of the qubit 𝜒 needs to be Zero

before applying the rotation operation.

Random input generation. To generate test inputs for callables

that do not implement assertion-like statements or no constraint

specification was given in the API document, Upbeat generates

inputs for three classical computing types. Specifically, we define

seven values for Int (0, ±1, 63, 64, −263 and 263 − 1), five values for

BigInt (0𝐿, ±1𝐿, −263𝐿 and 263𝐿 − 1𝐿) and six values for Double

(0.0, NaN, ±∞ and ±1.79..𝐸308). These special values are gathered

from the historical test cases that exposed Q# bugs. For other input

data types,Upbeat generates random values or simply copies inputs

from the code segments in the collected corpus.

3.3.3 Examples of generated inputs. We now present some inputs

generated by Upbeat for classical and quantum constraints.

Classical constraint inputs. Figure 8a are two Fact statements

extracted from the SequenceL function. To generate the valid val-

ues that satisfy the classical constraints defined in the statements,

Upbeat first transforms the constraints into the Boolean expression

shown in Figure 8b. The Boolean expression is then divided into

two sub-expressions: ł𝑡𝑜 ≥ 𝑓 𝑟𝑜𝑚ž and ł𝑡𝑜 − 𝑓 𝑟𝑜𝑚 ≤ 0x07F..ELž.

Next, the second sub-expression is modified to ł𝑡𝑜 − 𝑓 𝑟𝑜𝑚 ==

0x07F..ELž for solving the inputs. Finally, the altered sub-expression
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1 namespace Test {

2 <Open directives >; // Necessary namespaces

3 <Callable declarations >;

4 // Parameters for type function (Optional)

5 @EntryPoint ()

6 operation main() : Unit {

7 <Variable declarations >; // Boundary values

8 <Test code >; // Assembled code segments

9 <Diagnostic statements >; // Output statements

10 }

11 }

Figure 10: The template used for synthesizing test cases.

and ł𝑡𝑜 ≥ 𝑓 𝑟𝑜𝑚ž are fed into Z3, producing the valid inputs shown

in Figure 8c. To generate the invalid inputs, Upbeat first negates

ł𝑡𝑜 − 𝑓 𝑟𝑜𝑚 ≤ 0x07F..ELž to ł𝑡𝑜 − 𝑓 𝑟𝑜𝑚 > 0x07F..ELž and then re-

peats the above solving process, resulting in the outcomes shown

in Figure 8d.

Quantum constraint inputs. Figure 9a is a quantum constraint

that checks qubit states of res in the ComputeReciprocalI opera-

tion. It uses the AssertAllZero statement to check if the state of

𝑟𝑒𝑠 is |0⟩. 𝑟𝑒𝑠 is a qubit register that encodes an unsigned integer in

little-endian order. The ł!ž keyword takes the content encapsulated

in 𝑟𝑒𝑠 without changing the qubit state. Thus, the constraints of

𝑟𝑒𝑠 can be expressed as 𝑟𝑒𝑠 ← {Z-axis, One, 0.0, 0.0} shown in Fig-

ure 9b. To generate a valid input, Upbeat first defines 𝑞𝑠1, a qubit

array with a random initialization length (2 in line 1 of Figure 9c).

It then calculates the rotation angle 𝜃 (line 2) to derive the valid

input (line 3). The rotation operation 𝑅𝑦 is used because Ψ in the

constraint is Z-axis. Finally,𝑞𝑠1 is cast to LittleEndian according

to the prototype of ComputeReciprocalI (line 4 in Figure 9d).

3.4 Test Case Assembly
Test case template. We use a code template, as depicted in Fig-

ure 10, as a skeleton to generate the Q# test case that includes

code statements and data to drive the testing. This template com-

prises three key components: (1) variable declarations (line 7), (2) a

test code (line 8) containing API call statements to test Q# library

callables, and (3) diagnostic statements (line 9) for outputting the

execution results. In certain test cases, Upbeat may also generate

parameters for type functions (line 3) required by the test callables.

Test case generation. To generate a test case, Upbeat firstly pop-

ulates the template with the test code synthesized (Section 3.2) and

variable declarations generated ( Section 3.3). Upbeat then inserts

the remaining elements in the code template. It starts by importing

the necessary namespaces of the API used. The namespace informa-

tion is retrieved from the JSON file generated during API probing

(Section 3.1.1). Then, if an API requires a callable as a parameter,

it searches the JSON file created during the API probing stage to

obtain a proper API name. Additionally, we store functions and

operations as described in Section 3.1.2, which can be added to test

cases and passed to relevant APIs. Upbeat insert Q# subroutines,

Message and DumpMachine to output diagnostic information for dif-

ferential testing. Here, Message is used for classical variables, and

DumpMachine outputs the status of all currently allocated qubits.

Finally, Upbeat removes test cases that fail to compile.

3.5 Test Case Execution

The test oracles of Upbeat come from (1) language-level test-

ing via constraints implemented in the source code or specified

in the API document or (2) differential testing by executing the

same test case on three Q# simulators: QuantumSimulator [40],

SparseSimulator [26], and ToffoliSimulator [41]. We can es-

tablish the oracle for test cases via language testing when the inputs

are generated from input constraints. We run these test cases on

QuantumSimulator to check if the program behavior is as expected.

If no anomalous behavior is caught, the test case will continue to

be executed using differential testing. For test cases with randomly

generated inputs, Upbeat also leverages differential testing to es-

tablish the test oracle.

3.5.1 Anomalies identification. We consider four types of anom-

alies during test runs. The first is BoundError, where we can es-

tablish the test oracle from the extracted constraints. This happens

when Upbeat runs a test case with valid inputs but captures an

exception or, conversely, when Upbeat executes a test case with

invalid inputs but the program finishes without errors. We note Q#

does not support optional types, and we consider it a potential bug

to successfully execute invalid inputs without exceptions. While

the library implementation may choose not to throw out errors

for invalid inputs, it is still worth flagging this potential issue to

the developers. We also consider the Inconsistency of execution

outcomes observed during differential testing. This occurs when

the outcomes vary across multiple simulators. Finally, Crash and

Timeout occur when using a single simulator or in the context of

differential testing. We set a timeout threshold to 2 minutes, which

is sufficient for our test cases.

3.5.2 Postprocessing of differential testing. The Upbeat test case

template uses the Q# DumpMachine callable to output the states of

all allocated qubits (Section 3.4), which are then compared against

the results collected during differential testing. We developed a

script to post-process the output to align the qubit states across

simulation outputs.

4 EXPERIMENTAL SETUP

Our experiments were designed to answer the following research

questions (RQs):

• RQ1: How effectively Upbeat is on detecting boundary bugs in

Q# libraries (Section 5.1)?

• RQ2: How does Upbeat compare with prior methods and base-

lines on bug detection (Section 5.2)?

• RQ3: How do individual components of Upbeat contribute to

its overall performance (Sections 5.3)?

• RQ4: How effective is Upbeat in extracting constraints from Q#

libraries and API documents (Section 5.4)?

4.1 Competitive Baselines

We compare Upbeat against six baselines, including a generative

fuzzer [59] and five mutational methods [4, 21, 38, 53, 62]. We also

implement a variant by combining all the above mutation methods

and a variation of Upbeat. These lead to a total of eight evaluation

baselines, described as follows.

Qsharp-Fuzz. This is a deep-learning-based fuzzer for testing

Q# compiler implementations [59]. We use the default parameters
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defined in Qsharp-Fuzz to train its generation model using its

training programs and code samples collected in this work.

Quito. This tool tests quantum programs written in high-level

quantum languages [4]. It performs mutation analysis to assess the

effectiveness of the generated test cases in finding faults.

QSharpCheck. This is a property-based testing framework for

Q# programs [21]. It uses mutation analysis to evaluate the effec-

tiveness of the generated test cases.

Muskit. This is a mutation-based analysis tool for generating

quantum programs written in Qiskit [38].

QDiff. This is a mutational method [62] starts from a set of quan-

tum programs written in Qiskit. It applies a set of equivalent gate

transformation rules and leverages the K-S test [57] to compare

execution results among a set of equivalent test cases.

MorphQ. This is a metamorphic testing method [53] combines

template-based and grammar-based code generation. It provides

ten quantum-specific metamorphic rules to generate test cases.

Upbeat-M. In this baseline, we combine all the mutation operators

used by Quito [4], QSharpCheck [21], and Muskit [38] to create

a stronger mutator upon on the testing framework of Upbeat.

Upbeat-R. This variant of Upbeat generates Q# test codes by

randomly assigning values to variables and combining code seg-

ments instead of leveraging the segment assembly conditions and

the input constraints.

We implemented themutators of Quito,Muskit,QSharpCheck,

QDiff, MorphQ and Upbeat-M on top of Upbeat by replacing

Upbeat’s input generation module with a mutation module. We

provided these mutation-based methods with the same test codes

generated by Upbeat that random input generation (rather than

Upbeat’s test input generation) as the seed programs.

4.2 Evaluation Methodology

We consider the two quantified metrics, code coverage and bug-

exposing capability when comparing Upbeat with the competitive

baselines. The code coverage measures the code coverage for the Q#

library APIs. It is useful as poorly generated test cases can contain

many non-executed code blocks. We use dotnet-coverage [39] to

collect the coverage information from the instrumented repository

QuantumLibraries [46] for line and block coverage. We also count

the number of unique anomalies identified during test case execu-

tions. All duplicated anomalies were removed via manual analysis.

Therefore, each of them indicates a potential bug.

4.3 Evaluation Systems

We implemented Upbeat in around 10K lines of Python code. We

test Upbeat on QDK version 0.24, running in .Net core version 6.0.3.

Test cases were executed on three Quantum simulators from QDK

(Section 3.5). We perform test runs on a multi-core workstation

running the Ubuntu 18.04 operating system and an AMD EPYC

7532 32-core processor with 128GB of RAM. We run the test cases

concurrently using docker containers.

5 EXPERIMENTAL RESULTS

Highlights of our experiments are:

Table 1: Bug list exposed by Upbeat.

No. Buggy APIs Namespace State Feature Category

1 Binom Math F 23

2 HalfIntegerBinom Math F 23

3 Sin Math C 2

4 Ceiling Math C 3

5 Truncate Math S 3

6 IncrementPhaseByModularInteger Arithmetic S ∗
7 IdenticalPointPosFactFxP Arithmetic F ∗
8 Chunks Arrays F 2

9 SequenceL Arrays S 2

10 IntAsBoolArray Convert F 2

11 Parity Bitwise F 2

12 PurifiedMixedStateRequirements Preparation F 3

13 AssertQubitWithinTolerance Diagnostics S ∗
14 DumpMachine Diagnostics F ∗
15 DumpRegister Diagnostics S ∗
16 Adjoint ApplyAnd Canon S ∗

Impl.

17 Padded Arrays F -
18 Last - F -
19 ApproximateFactorial Math F 2

20 _ComputeJordanWignerBitString Chemistry F -

Doc.

• Upbeat has uncovered 16 implementation bugs and 4 API doc-

ument errors, covering all the quantum features described in

Section 2.1 (RQ1);

• Upbeat outperforms the competing baselines by providing better

code coverage and identifying more potential bugs with the same

test time (RQ2);

• The Upbeat components all positively contribute to the bug-

exposing capability of the framework (RQ3);

• Upbeat is capable of extracting the majority of constraints from

both source code and API documents with high accuracy (RQ4).

5.1 Bug Summary

Table 1 summarizes the implementation bugs and documentation

errors found by Upbeat. The bugs were identified within less than

100 hours of execution runs using 12K test cases generated by

Upbeat. Upbeat discovered a total of 20 boundary bugs, including

16 API implementation bugs and 4 documentation bugs.

In the table, we note the namespace a buggy API comes from and

the state of the submitted bug report, which corresponds to either

Submitted (pending confirmation), Confirmed, or Fixed. In the

feature column, we summarize the cause of the bug to link it with

the mismanagement of qubit states (∗), errors in the mathematical

calculation (2), hybrid computing (3), or other features (-).

Upbeat identified 6 and 2 bugs in the Math and Arithmetic

libraries respectively. These bugs are largely due to the missing or

incomplete inputs checking when implementing the quantum op-

erations. This is also observed in Array and Diagnostics libraries,

indicating that boundary bugs are prevalent in Q# libraries. Upbeat

has identified bugs related to all features described in Section 2.1,

where the highest number of bugs are related to the mismanage-

ment of qubit states or errors in mathematical computations. At the

time of submission, 14 Upbeat-identified bugs have been confirmed

by the library developers, of which 12 have been fixed, including 8

implementation bugs and all documentation bugs. There are still

6 recently discovered bugs that have not been confirmed. This is

because the repositories where we submitted bugs have been dep-

recated since January 2024 and they have been replaced by a newly

developed Q# repository [44] hosted on GitHub.



UPBEAT: Test Input Checks of Q#Quantum Libraries

0 5 10 15 20
0

10

20

30

40

50

0 5 10 15 20
0

10

20

30

40

L
in

e
 C

o
v

e
r
a

g
e
 (

%
)

Time (in hours)

 QSHARP-FUZZ    QUITO   QSHARPCHECK   UPBEAT-M 

 MUSKIT   QDIFF   MORPHQ  UPBEAT-R   UPBEAT

B
lo

c
k

 C
o

v
e
r
a

g
e
 (

%
)

Time (in hours)

Figure 11: Comparison results of line and block coverage.
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Figure 12: Anomalies discovered by compared baselines.

5.2 Comparison with Baselines

We now compare Upbeat to the eight baselines outlined in Sec-

tion 4.1 using the metrics defined in Section 4.2. In this experiment,

we allocated a budget of 24 hours of concurrent test runs for each

baseline, excluding the time for test case generation. Each method

runs individually on our evaluation platform for a fair comparison.

5.2.1 Code Coverage. Figure 11 shows how the line and block cov-

erage ratios change as testing time increases. The line and block

coverage of mutation-based approaches gradually increased as the

test progressed and finally stabilized. The coverage of Upbeat and

its variant Upbeat-R consistently increased but has not yet reached

a plateau during the test. This is largely because the vast majority

of test cases generated by Upbeat and Upbeat-R are syntactically

correct. In contrast, many of the test cases generated by the mu-

tational fuzzers have errors due to passing the incorrect inputs.

During testing, the API callables in the invalid test cases cannot

be executed, resulting in lower code coverage rates. In contrast,

QDiff andMorphQ achieve higher line and block coverage than

other mutation-based tools. This is because their transformation

rules generate the syntactically correct test cases. However, the

specific-designed transformation rules decrease the diversity of

the generated test cases, resulting in reaching a plateau of code

coverage earlier than other baselines. The line and block coverage

rates of Qsharp-Fuzz are less than 10%, the lowest values among

all compared baselines. This is because its deep-learning-based

generator synthesizes many identical test cases.

ComparedUpbeatwithUpbeat-R, we see that the callable inputs

generated based on classical and quantum constraints are effective

in discovering new code branches, helping Upbeat achieve the

highest code coverage. The mutation variant of Upbeat, Upbeat-

M, gives a line coverage of 20% and a block coverage of 14%, lower

than the corresponding coverage rates of Muskit. This is caused by

theQuito’s mutation rules in Upbeat-M, which are inefficient in

generating valid test cases with correct syntax. This suggests that

a simple combination of mutators may reduce the code coverage.

5.2.2 Bug-exposing capability. In this evaluation, we compare the

number of bugs found by Upbeat and five representative baselines:

Upbeat-Rś a generation-based approach, Upbeat-M and QDiff ś

two mutation-based approaches, QSharp-Fuzz ś a deep-learning-

based method,MorphQ ś a metamorphic testing method, within

the same 24-hour test case execution time. We omit the results of

Quito, Muskit, and QSharpCheck because Upbeat-M already

includes all the mutation methods used by these three methods, and

they individually did not discover potential bugs that Upbeat-M

failed to find.

The Venn diagram in Figure 12 summarizes the overlapping and

unique anomalies exposed by each method. We group the Upbeat

identified anomalies found through test oracles established from

implemented or documented constraints (Figure 12a) and those

discovered through differential testing (Figure 12b).

With the input generation method described in Section 3.3.2,

Upbeat discovered 6 anomalies, covering the majority of anomalies

discovered by other baselines. Upbeat also identified a total of 5

anomalies that failed to be discovered by others through language-

level test oracles and differential testing. The baseline methods

identified four anomalies that Upbeat did not detect. Among these,

Qsharp-Fuzz discovered two. The first occurs when a special value

is returned from a return statement. Upbeat does not capture this

because it eliminates return statements during the collection of

code segments, ensuring the correctness of assembled test codes.

The second anomaly results from a unique code segment generated

by Qsharp-Fuzz that is absent in Upbeat’s code base. In contrast,

the sole anomaly unique to Upbeat-R arises from randomly gener-

ated inputs, while Upbeat-M’s distinct anomaly is identified by its

Replace Arithmetic Operatormutation operation. Nevertheless,

Upbeat identified a total of 13 potential bugs, which is at least 2×

more in detecting anomalies over the baseline methods.

5.3 Ablation Study

In an attempt to quantify the contribution of Upbeat’s individual

components, we evaluate two variants of Upbeat, corresponding

to the two key components of the framework: (1) a type-directed

code segment assembler that synthesizes test codes (Section 3.2)

and (2) a test inputs generator to generate inputs from constraints

(Section 3.3). We implemented Upbeat-A and Upbeat-B, where

Upbeat-A removes the inputs generator and keeps other parts

of Upbeat unchanged. On the contrary, Upbeat-B removes the

code segment assembler and keeps other components. For a fair

comparison, we compared Upbeat with all two variants using the

same seed programs within a test time budget of 48 hours.

Figure 13 reports the number of bugs discovered by two variants

and Upbeat, where bugs are grouped into four categories: bound-

ary errors (BoundError), Inconsistency, Crash, and Timeout. Up-

beat-A discovered six bugs, indicating the effectiveness of assem-

bled test codes. Four of themwere triggered by Crash, and the other

two were found to be Inconsistency and Timeout, respectively.

It is demonstrated that many corner cases are still not handled and

result in serious execution results in Q# APIs. Upbeat-B discovered

three bugs, all of which are boundary errors, indicating that it is

effective in generating test inputs to cover the edge cases that are

likely to be overlooked by library developers. The results suggest

that the individual components of Upbeat are all essential.
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Figure 13: Bugs discovered by Upbeat and its variants.

Table 2: Analysis results for constraints extraction.

Source Type Recall Precision

Classical Constraints 100% 93%
Source Code

Quantum Constraints 100% 96%
Classical Constraints 80% 81%

API Document
Quantum Constraints 90% 84%

5.4 Constraint Extraction

To evaluate the completeness and correctness of Upbeat-extracted

constraints, we randomly selected 10 Q# libraries and conducted a

manual verification. We use two metrics: Recall and Precision. The

first computes the ratio of Upbeat-recognized constraints to the

total number of constraints. It answers questions like łOf all the

constraints, how many are extracted by Upbeat?ž. The second metric

computes the ratio correctly extracted constraints samples to the

total number of constraints. It answers questions like łOf all the

test constraints, how many are correctly extracted by Upbeat?ž

We group the analysis results based on the source of the con-

straints, as shown in Table 2. Overall, Upbeat recognized all con-

straints for all APIs from their source code implementation. Upbeat

did not extract all constraints from the API document because the

description of constraints in the API document is scattered in sev-

eral fields or paragraphs, making it challenging for the language

model to locate the complete constraint chains. Upbeat achieves

a precision of over 90% in extracting constraints from API source

code and over 80% from the API document, suggesting that most of

the constraints were correctly extracted. Upbeat can struggle to

extract constraints in APIs that have complex code dependencies

becauseUpbeat cannot convert them into complete Boolean expres-

sions or when the language-model-based extractor misinterprets

the constraint descriptions.

5.5 Examples of Bugs Found by Upbeat

Classical constraint bug. Listing 1 exposes an incorrect constraint

implementation in the SequenceL function. This constraint expects

from to be less than to, and to-from to be under 0x07F..EL. As

explained in Section 3.3, Upbeat generates valid and invalid in-

puts based on the developer-implemented input constraints. Yet,

even when to-from meets the criterion, the test case triggers an

exception when 𝑡𝑜 − 𝑓 𝑟𝑜𝑚 == 922...6𝐿. This execution result is

contradicted by the test oracle, indicating a potential bug.

1 namespace Tes t {
2 open M i c r o s o f t . Quantum . I n t r i n s i c ;
3 open M i c r o s o f t . Quantum . Arrays ;
4 @EntryPoint ( )
5 o p e r a t i o n main ( ) : Un i t {
6 l e t from = 0L ;
7 l e t t o = 9223372036854775806 L ;
8 mutab le r e s u l t = SequenceL ( from , to ) ;
9 Message ( $ " { r e s u l t } " ) ; } }

Listing 1: Test case for exposing incorrect classical constraint

implementation of SequenceL.

Quantum constraint bug. Listing 2 is a test case generated by Up-

beat. It exposes a missing quantum constraint checking in Adjoint

ApplyAnd for inversing the ApplyAnd operation, which requires a

separate API implementation. The qubit state of the operation’s

inputs,q1 and q2, were set randomly to |1⟩ and |1⟩, while the qubit

state of res is initialized to |0⟩. This input is łvalidž according to the

quantum constraint implementation in Adjoint ApplyAnd. When

executing this test case using differential testing, the output of

ToffoliSimulator is |111⟩, whereas the other simulators yield |110⟩.

This is due to a bug in the low-level implementation of Adjoint

ApplyAnd in ToffoliSimulator.

1 namespace Tes t {
2 open M i c r o s o f t . Quantum . I n t r i n s i c ;
3 open M i c r o s o f t . Quantum . D i a g n o s t i c s ;
4 open M i c r o s o f t . Quantum . Canon ;
5 open M i c r o s o f t . Quantum . Math ;
6 @EntryPoint ( )
7 o p e r a t i o n RunProgram ( ) : Un i t {
8 use q1 = Qubi t ( ) ; X ( q1 ) ;
9 use q2 = Qubi t ( ) ; X ( q2 ) ;
10 use r e s = Qubi t ( ) ;
11 l e t t h e t a = 2 . 0 ∗ ArcS in ( S q r t ( 0 . 0 ) ) ;
12 Ry ( the t a , r e s ) ;
13 Ad j o i n t ApplyAnd ( q1 , q2 , r e s ) ;
14 DumpMachine ( ) ;
15 R e s e tA l l ( [ q1 , q2 , r e s ] ) ; } }

Listing 2: A Upbeat-generated test case that uncovers a

missing input checking in Adjoint ApplyAnd for qubit inputs.

API document bug. Listing 3 exposes a documentation description

error for parameter 𝑛 in the ApproximateFactorial math func-

tion. The document defines the scope of 𝑛 to be AbsD(n)<170.0

by ignoring the sign of 𝑛. However, the implementation (correctly)

assumes ł0 ≤ 𝑛 < 170ž. Upbeat generates a łvalid" input for 𝑛 with

a value of -2 according to the API description and expects the test

case to run without issues. However, an unexpected exception was

thrown, indicating a potential bug.

1 namespace Tes t {
2 open M i c r o s o f t . Quantum . I n t r i n s i c ;
3 open M i c r o s o f t . Quantum . Math ;
4 @EntryPoint ( )
5 o p e r a t i o n main ( ) : Un i t {
6 l e t n = −2 ;
7 mutab le r e s u l t = App r o x ima t e F a c t o r i a l ( n ) ;
8 Message ( $ " { r e s u l t } " ) ; } }

Listing 3: A Upbeat-generated test case that signifies an

inconsistent constraint between the API document and the

actual implementation of ApproximateFactorial.

6 RELATED WORK

6.1 Test Case Generation

Upbeat generates random test cases to test input checks of API

implementation. Random test case generation typically relies on

program generation or mutation. Many program generation meth-

ods use stochastic context-free grammar [6, 60, 69]. With this ap-

proach, a fuzzer utilizes a grammar that defines the syntax of the

target language to generate syntactically correct programs. These

programs are crafted in such a way that their expressions adhere

to a specific probability distribution associated with the grammar’s

productions. Upbeat can benefit from carefully designed rules for

increasing the diversity and coverage of the generated test cases.
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Mutation-based testing modifies a set of seed programs to gen-

erate test cases [19, 20, 74]. For example, Langfuzz [20] mutates

test cases by inserting code segments that previously exposed bugs.

CodeAlChemist breaks the seed programs into fragments and uses

the fragments to assemble new test programs [19]. Upbeat builds

upon these past foundations by combining program generation and

mutation methods. It first collects Q# code samples and then uses

these samples to synthesize the test code.

Methods have been proposed to specifically target testing bugs

at quantum programs [5, 16, 47], using assertion tool [32], as well

as generation [61, 64] and mutation [15, 38] methods. These works

typically require a well-defined specification to detect unexpected

behavior of the test programs. None of them targets the input-

checking mechanism of quantum libraries nor leverages the con-

straint implementation to generate test inputs like Upbeat.

6.2 Constraint Extraction

Upbeat leverages the developer-implemented and document-specific

input constraints to generate test inputs and establish the test or-

acle. Jdoctor [9] combines natural language parsing and seman-

tic matching techniques to extract constraints from documents

to generate input data. Similarly, DASE [65], Comfort [70], and

Docter [68] leverage natural language processing techniques and

heuristics to extract input constraints from documents or language

specifications. ACETest [56] identifies the input validation paths

in the source code of DL operators, extracts the constraints related

to the user inputs, and sends them into the Z3 solver to get various

sets of solutions. Upbeat builds upon these prior works but extends

the analysis and representation to extract constraints from source

code to generate test inputs by capturing the unique characteristics

of quantum computing (e.g., how to represent the qubit state).

6.3 Quantum Software Testing

Recent work has targeted testing quantum compilers and back-

ends [48, 53, 62]. However, little work has been considered on

testing the input-checking mechanism of quantum libraries. Up-

beat aims to bridge this research gap. Furthermore, differential

tests performed on low-level compilers and simulators cannot ex-

pose bugs at the high-level implementation, as these errors lead to

the same compilation and execution outcome. Upbeat addresses

this issue using the developer-implemented and document-defined

constraints to establish the test oracle via language-level testing.

Other works investigate ways to model the correctness of non-

deterministic quantum program execution [4, 21, 48], generate

quantum benchmarks [11, 31, 55, 66, 73] or study the bug patterns

in quantum programs [23, 24, 34, 72] and in quantum computer

platform [52]. Upbeatwill benefit from the findings and techniques

developed in these works.

7 THREATS TO VALIDITY

Our work takes Q# as a case study. However, we found that bound-

ary bugs also exist in other mainstream quantum programming

models, including IBM’s Qiskit [1]. Extending Upbeat to other

quantum programming models would require adapting our tools to

collect code segments and constraint information and the template

used for synthesizing test cases. However, our key idea of leverag-

ing constraints to generate test input and establish the test oracle

remains applicable.

We developed a simple yet effective tool to collect code segments

using regular expressions. A better approach would be developing

a compiler parser to achieve the tasks, allowing us to handle more

complex data flows and dependencies.

Upbeat relies on successful runtime execution or exception to

capture abnormal behavior. It does not check if the execution re-

sults are incorrect. As quantum program execution outcomes are

not deterministic, establishing a test oracle for execution results

would require modeling the probability distribution of qubit mea-

surements. Therefore, techniques for assessing the correctness of

quantum program executions are orthogonal to Upbeat [3, 53].

8 CONCLUSION

We have presented Upbeat, a framework to test the input-checking

mechanism of functions and operations for Q# quantum libraries.

Upbeat automatically generates test Q# programs and inputs and

executes the generated test cases to identify abnormal behaviors.

Upbeat achieves this by leveraging code samples from the library

implementations, open-source projects, and API documents to syn-

thesize test code. It then leverages input constraints implemented

in the source code described in the API documents to generate valid

and invalid input test data. We evaluate Upbeat by applying it to

the Q# development kit libraries. Within 100 hours of automated

test runs, Upbeat has identified 16 API implementation bugs and 4

bugs in the official Q# library documents. Among these, 14 have

been confirmed, and 12 have been fixed by the developers.
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