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Software engineering activities such as package migration, fixing errors reports from static analysis or testing,
and adding type annotations or other specifications to a codebase, involve pervasively editing the entire
repository of code. We formulate these activities as repository-level coding tasks.

Recent tools like GitHub Copilot, which are powered by Large Language Models (LLMs), have succeeded in
offering high-quality solutions to localized coding problems. Repository-level coding tasks are more involved
and cannot be solved directly using LLMs, since code within a repository is inter-dependent and the entire
repository may be too large to fit into the prompt. We frame repository-level coding as a planning problem and
present a task-agnostic framework, called CodePlan to solve it. CodePlan synthesizes a multi-step chain of
edits (plan), where each step results in a call to an LLM on a code location with context derived from the entire
repository, previous code changes and task-specific instructions. CodePlan is based on a novel combination of
an incremental dependency analysis, a change may-impact analysis and an adaptive planning algorithm.

We evaluate the effectiveness of CodePlan on two repository-level tasks: package migration (C#) and
temporal code edits (Python). Each task is evaluated on multiple code repositories, each of which requires
inter-dependent changes to many files (between 2–97 files). Coding tasks of this level of complexity have
not been automated using LLMs before. Our results show that CodePlan has better match with the ground
truth compared to baselines. CodePlan is able to get 5/6 repositories to pass the validity checks (e.g., to build
without errors and make correct code edits) whereas the baselines (without planning but with the same type
of contextual information as CodePlan) cannot get any of the repositories to pass them. We will release our
data and evaluation scripts at https://aka.ms/CodePlan.

CCS Concepts: • Computing methodologies→ Planning under uncertainty; • Software and its engi-
neering→ Software maintenance tools; Software evolution; Automatic programming.

Additional Key Words and Phrases: Automated coding, repositories, LLMs, static analysis, plan, chain of edits

1 INTRODUCTION
The remarkable generative abilities of Large Language Models (LLMs) [24, 28, 30, 35, 57, 73]

have opened new ways to automate coding tasks. Tools built on LLMs, such as Amazon Code
Whisperer [14], GitHub Copilot [38] and Replit [66], are now widely used to complete code

given a natural language intent and context of surrounding code, and also to perform code edits
based on natural language instructions [78]. Such edits are typically done for small regions of code
such as completing or editing the current line, or the body of the entire method.
While these tools help with the "inner loop" of software engineering where the developer is

coding in the editor and editing a small region of code, there are several tasks in the "outer loop" of
software engineering that involve the entire code repository. For example, if our code repository
uses a library 𝐿, and the API of library 𝐿 changes from version 𝑣𝑛 to version 𝑣𝑛+1, we need to migrate
our code repository to correctly invoke the revised version. Such a migration task involves making
edits not only to all the regions of repository that make calls to the relevant APIs in library 𝐿, but
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We use a Complex Numbers library that had the
following edit -
+ class Complex {
+ float real;
+ float imag;
+ dict<string, string> metadata;
+ }

− tuple<float, float> create_complex(float a,
float b)

+ Complex create_complex(float a, float b, dict
metadata)

Modify the code repository in accordance with this
change.
Fig. 1. Task instruction to migrate a code repository due
to an API change in the Complex Numbers library. Fig. 2. Overview of CodePlan.

tuple<tuple<float, float>, dict> func(float a,
float b) {

string timestamp = GetTimestamp(DateTime.Now);
var c = (create_complex(a,b), new

Dictionary<string, string>()"time",
timestamp);

return c;
}

Complex func(float a, float b) {
String timestamp = GetTimestamp(DataTime

.Now);
dict_metadata = new Dictionary<string,

string>(){"time", timestamp};
Complex c = create_complex(a, b,

metadata);
return c;

}

(a) Create.cs - Original (b) Create.cs - Modified (seed edit)
void process(float a, float b, float k) {
var c = func(a, b);
Console.WriteLine(c[0][0], c[0][1]);
float norm = compute_norm(c[0][0], c[0][1]);
Console.WriteLine(norm * k);

}

void process(float a, float b, float k) {
Complex c = func(a, b);
Console.WriteLine(c.real, c.imag);
float norm = compute_norm(c.real, c.imag

);
Console.WriteLine(norm * k);

}

(c) Process.cs - Original (d) Process.cs - Modified (derived edit)

Fig. 3. Relevant code snippets from our repository.

also to regions of the repository (across file boundaries) having transitive syntactic and semantic
dependencies on the updated code.

This is illustrated in Figure 1, which shows a change in the API for a Complex Numbers library.
Our task is to migrate our code repository in accordance with this change. The left side of Figure 3
shows relevant parts of our code repository that use the Complex Numbers library. Specifically, the
file Create.cs has the method func, which invokes the create_complex method from the library,
and Process.cs has the method process which invokes func.

We can pass the task description from Figure 1 and the body of func to an LLM to generate the
revised code for func as shown in the right side of Figure 3. As seen, the LLM has correctly edited
the invocation to the create_complex API so that it returns an object of type Complex instead of
a tuple of two floating point values. Note that this edit has resulted in a change to the signature of
the method func – it now returns an object of type Complex. This necessitates changes to callers of
method func such as the processmethod in file Process.cs, shown in the left-bottom of Figure 3.
Without a suitable change to the body of the process method, our code does not build! A suitable
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change to the process method which gets the repository to a consistent state, so that it builds
without errors, is shown in the bottom-right of Figure 3.

Problem Formulation. The migration task above is representative of a family of tasks that involve
editing an entire code repository for various purposes such as fixing error reports from static
analysis or testing, fixing a buggy coding pattern, refactoring, or adding type annotations or other
specifications. Each of these tasks involves a set of seed specifications such as the one shown in
Figure 1, which are starting points for the code editing task. These seed specifications typically
trigger other editing requirements on code, and such requirements need to be propagated across
dependencies in the code repository to perform other edits across the repository to complete the
coding task. Typically, such propagation of edits across dependencies is done manually.

Our goal is to construct a repository-level coding system, which automatically generates derived
specifications for edits such as one required for the process method in Figure 3, in order to get
the repository to a valid state. Here, validity is defined with respect to an oracle, which can be
instantiated to various ways of enforcing repository-level correctness conditions such as building
without errors, passing static analysis, passing a type system or a set of tests, or passing a verification
tool. We define an LLM-driven repository-level coding task as follows:

LLM-driven Repository-level Coding Task
Given a start state of a repository 𝑅𝑠𝑡𝑎𝑟𝑡 , a set of seed edit specifications Δ𝑠𝑒𝑒𝑑𝑠 , an oracle Θ such
that Θ(𝑅𝑠𝑡𝑎𝑟𝑡 ) = True, and an LLM 𝐿, the goal of an LLM-driven repository-level coding
task is to reach a repository state 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐸𝑑𝑖𝑡𝑠 (𝐿, 𝑅𝑠𝑡𝑎𝑟𝑡 , 𝑃) where 𝑃 is a chain of edit
specifications from Δ𝑠𝑒𝑒𝑑𝑠 ∪ Δ𝑑𝑒𝑟𝑖𝑣𝑒𝑑 where Δ𝑑𝑒𝑟𝑖𝑣𝑒𝑑 is a set of derived edit specifications so that
Θ(𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ) = True.

Proposed Solution. In this paper, we propose a method to compute derived specifications by
framing (LLM-driven) repository-level coding as a planning problem. Automated planning [37, 67]
aims to solve multi-step problems, where each step executes one action among many alternatives
towards reaching a target state. It is used in a wide range of areas such as motion planning [47],
autonomous driving [39], robotics [44] and theorem proving [26].

We present a task-agnostic framework, called CodePlan, which synthesizes a multi-step plan to
solve the repository-level coding task. As shown in Figure 2, the input to CodePlan is a repository,
a task with seed specifications expressed through a natural language instruction or a set of initial
code edits, a correctness oracle and an LLM. CodePlan constructs a plan graph where each node in
the graph identifies a code edit obligation that the LLM needs to discharge and an edge indicates
that the target node needs to be discharged consequent to the source node. CodePlan monitors the
code edits and adaptively extends the plan graph. The edits Δ𝑠𝑒𝑒𝑑𝑠 follow from the task description,
whereas the edits Δ𝑑𝑒𝑟𝑖𝑣𝑒𝑑 are identified and contextualized based on a novel combination of
an incremental dependency analysis, a change may-impact analysis and an adaptive planning
algorithm. The merge block merges the code generated by the LLM into the repository. Once all
the steps in a plan are completed, the repository is analyzed by the oracle. The task is completed if
the oracle validates the repository. If it finds errors, the error reports are used as seed specifications
for the next round of plan generation and execution.
Consider again, the example API migration task specified in Figure 1 on code in Figure 3.

CodePlan performs the edit of the method func using the instruction in Figure 1 as a seed specifi-
cation. By analyzing the code change between Figure 3(a)–(b), it classifies the change as an escaping
change as it affects signature of method func. The change may-impact analysis identifies that the
caller(s) of func may be affected and hence, the adaptive planning algorithm uses caller-callee
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dependencies to infer a derived specification to edit the method process, which invokes func.
Both the seed and derived changes are executed by creating suitable prompts for an LLM and the
resulting code repository passes the oracle, i.e., builds without errors. Note that this is a simple
example with only one-hop change propagation. In practice, the derived changes can themselves
necessitate other changes transitively and CodePlan handles such cases.
A simpler alternative to our planning is to use the oracle to infer derived specifications. For

example, the build system can find the error in the processmethod after the seed change is made in
Figure 3. This has important limitations. First, not all changes induce build errors even though they
result in behavioral changes, e.g., changing the return value from True to False without changing
the return type. Second, the build system is agnostic to cause-effect relationship when code breaks.
For example, if the signature of an overriding method is changed as per the seed specification then a
similar change is needed in the corresponding virtual method. However, the build system (when run
on the intermediate, inconsistent snapshot of the repository) blames the overriding method for not
conforming to the virtual method. Naïvely trying to fix the build error would end up reverting the
seed change. The static analysis and planning components of CodePlan overcome these limitations.
We experimentally compare CodePlan against a baseline that uses a build system to iteratively
identify breaking changes and uses an LLM to fix them. Our quantitative and qualitative results
show that CodePlan is superior to this kind of oracle-guided repair technique.

Contributions. To the best of our knowledge, the problem of monitoring the effects of code edits
made by an LLM to a repository and systematically planning a chain of inter-dependent edits has
not been identified and solved before.

In the space of repository-level coding tasks, two types of contexts have been found to be useful
for prompting LLMs: (1) spatial context to provide cross-file information to the model using static
analysis [9, 34, 51, 59, 61, 70, 71, 77] or retrieval [81, 85], and (2) temporal context to condition the
predictions on the history of edits to the repository [23, 40, 64, 76]. Since CodePlan monitors the
code changes and maintains a repository-wide dependency graph, we provide both these forms
of contexts in a unified framework. The existing techniques assume that the next edit location is
provided by the developer and do not account for the effect of an edit on the dependent code. In
contrast, by inferring the impact of each change, CodePlan propagates the changes to dependent
code, paving a way to automate repository-level coding tasks through chain of edits.

In summary, we make the following contributions in this paper:

(1) We are the first to formalize the problem of automating repository-level coding tasks using
LLMs, which requires analyzing the effects of code changes and propagating them across
the repository. There are currently no systematic and scalable solutions to this problem.

(2) We frame repository-level coding as a planning problem and design a task-agnostic frame-
work, calledCodePlan, based on a novel combination of an incremental dependency analysis,
a change may-impact analysis and an adaptive planning algorithm. CodePlan synthesizes a
multi-step chain of edits (plan) to be actuated by an LLM.

(3) We experiment with two repository-level coding tasks using the gpt-4-32kmodel: package
migration for C# repositories and temporal code edits for Python repositories. We compare
against baselines that use the oracles (a build system for C# and a static type checker
for Python) for identifying derived edit specifications (in contrast to planning used in
CodePlan). We use the same contextualization method as CodePlan in the baselines.

(4) Our results show that CodePlan has better match with the ground truth compared to
baselines. CodePlan is able to get 5/6 repositories to pass the validity checks, whereas the
baselines cannot get any of the repositories to pass them. Except for the 2 proprietary
repositories, we will release our data and evaluation scripts at https://aka.ms/CodePlan.
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2 DESIGN
In this section, we first give an overview of the CodePlan algorithm for automating repository-level
coding tasks (Section 2.1). We then present the static analysis (Section 2.2) and the adaptive planning
and plan execution (Section 2.3) components of CodePlan.

2.1 The CodePlan Algorithm

1 /* Inputs: R is the source code of a repository, Delta_seeds is a set of seed edit
specifications, Theta is an oracle and L is an LLM. */

3 CodePlan(R, Delta_seeds, Theta, L):
4 let mutable G: PlanGraph = null in
5 let mutable D: DependencyGraph = ConstructDependencyGraph(R) in
6 while Delta_seeds is not empty
7 IntializePlanGraph(G, Delta_seeds)
8 AdaptivePlanAndExecute(R, D, G)
9 Delta_seeds = Theta(R)

11 InitializePlanGraph(G, Delta_seeds):
12 for each ⟨B, I⟩ in Delta_seeds
13 AddRoot(G, ⟨B, I, Pending⟩)

15 AdaptivePlanAndExecute(R, D, G):
16 while G has Nodes with Pending status
17 let ⟨B, I, Pending⟩ = GetNextPending(G) in
18 // First step: extract fragment of code
19 let Fragmemt = ExtractCodeFragment(B, R, I) in
20 // Second step: gather context of the edit
21 let Context = GatherContext(B, R, D) in
22 // Third step: use the LLM to get edited code fragment
23 let Prompt = MakePrompt(Fragment, I, Context) in
24 let NewFragment = InvokeLLM(L, Prompt) in
25 // Fourth step: merge the updated code fragment into R
26 let R = Merge(NewFragment, B, R) in
27 let Labels = ClassifyChanges(Fragment, NewFragment) in
28 let D' = UpdateDependencyGraph(D, Labels, Fragment, NewFragment, B) in
29 // Fifth step: adaptively plan and propogate the effect of the edit on dependant code
30 let BlockRelationPairs= GetAffectedBlocks(Labels, B, D, D') in
31 MarkCompleted(B, G)
32 for each ⟨B’, rel⟩ in BlockRelationPairs
33 let N = GetNode(B) in
34 let M = SelectOrAddNode(B', Nil, Pending) in
35 AddEdge(G, M, N, rel)
36 D := D'

38 GatherContext(B, R, D):
39 let SC = GetSpatialContext(B, R) in
40 let TC = GetTemporalContext(G, B) in
41 (SC, TC)

Algorithm 1: The CodePlan algorithm to automate repository-level coding tasks. The data
structures and functions in Cyan and Orchid are explained in Section 2.2– 2.3 respectively.

The CodePlan algorithm (Algorithm 1) takes four inputs: (1) the source code of a repository 𝑅,
(2) a set of seed edit specifications for the task in hand, Δ𝑠𝑒𝑒𝑑𝑠 , (3) an oracle, Θ, and (4) an LLM, 𝐿.

The core data structure maintained by the algorithm is a plan graph 𝐺 , a directed acyclic graph
with multiple root nodes (line 4). Each node in the plan graph is a tuple ⟨𝐵, 𝐼, 𝑆𝑡𝑎𝑡𝑢𝑠⟩, where 𝐵 is
a block of code (that is, a sequence of code locations) in the repository 𝑅, 𝐼 is an edit instruction
(along the lines of the example shown in Figure 1),
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and 𝑆𝑡𝑎𝑡𝑢𝑠 is either 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 or 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 .
The CodePlan algorithm also maintains a dependency graph 𝐷 (line 5). Figure 4 illustrates the

dependency graph structure. We will discuss it in details in Section 2.2.1. For now, it suffices to
know that the dependency graph 𝐷 represents the syntactic and semantic dependency relations
between code blocks in the repository 𝑅.

The loop at lines 6–9 is executed untilΔ𝑠𝑒𝑒𝑑𝑠 is non-empty. Line 7 calls the InitializePlanGraph
function (lines 11–13) that adds all the changes in Δ𝑠𝑒𝑒𝑑𝑠 as root nodes of the plan graph. Each edit
specification comprises of a code block 𝐵 and an edit instruction 𝐼 .

The status is set to pending for the root nodes (line 13). The function AdaptivePlanAndExecute
is called at line 8 which executes the plan, updates the dependency graph with each code change
and extends the plan as necessary. Once the plan graph is completely executed, the oracle Θ is run
on the repository. It returns error locations and diagnostic messages which form Δ𝑠𝑒𝑒𝑑𝑠 for the next
round. If the repository passes the oracle’s checks then it returns an empty set and the CodePlan
algorithm terminates.
We now discuss AdaptivePlanAndExecute, which is the main work horse. It iteratively picks

each pending node and processes it. Processing a pending node with an edit specification for a
block 𝐵 with edit instruction 𝐼 involves the following five steps:

(1) The first step (line 19) is to extract the fragment of code to edit. Simply extracting
code of the block 𝐵 loses information about relationship of 𝐵 with the surrounding code.
Keeping the entire file on the other hand takes up prompt space and is often unnecessary.
We found the surrounding context is most helpful when a block belongs to a class. For such
blocks, we sketch the enclosing class. That is, in addition to the code of block 𝐵, we also
keep declarations of the enclosing class and its members. As we discuss later, this sketched
representation also helps us merge the LLM’s output into a source code file more easily.

(2) The second step (line 21) is to gather the context of the edit. The context of the edit
(line 38–41) consists of (a) spatial context, which contains related code such as methods
called from the block 𝐵, and (b) temporal context, which contains the previous edits that
caused the need to edit the block 𝐵. The temporal context is formed by edits along the paths
from the root nodes of the plan graph to 𝐵.

(3) The third step (lines 23–24) constructs a prompt for the edit using the fragment extracted
in the first step, the instruction 𝐼 from the edit specification and the context extracted in
the second step, and invokes the LLM using the prompt to get the edited code fragment.

(4) The fourth step (lines 26–28) merges the edited code back into the repository. Since
the code is updated, many dependency relationships such as caller-callee, class hierarchy,
etc. may need to change, and hence, this step also updates the dependency graph 𝐷 .

(5) Thefifth and final step (lines 30–35) does adaptive planning to propagate the effects
of the current edit on dependant code blocks. This involves classifying the change in
the edited block, and depending on the type of change, picking the right dependencies in the
dependency graph to traverse and locate affected blocks. For instance, if the edit of a method
𝑚 in the current block 𝐵 involves update to the signature of the method, then all callers
of𝑚 get affected (the scenario in Figure 3). For each affected block 𝐵′ and the dependency
relation rel connecting 𝐵 to 𝐵′ in the dependency graph, we get a pair ⟨𝐵′, rel⟩. If a node
exists for 𝐵′ in the plan graph and it is pending, then we add an edge from 𝐵 to 𝐵′ labeled
with rel to the plan graph. Otherwise, the edge is added to a newly created node for 𝐵′

(line 34). The block 𝐵 is marked as completed (line 31).
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Fig. 4. Illustration of the dependency graph annotated with relations as the edge labels.

2.2 Static Analysis Components
We now turn our attention to the static analysis components used in CodePlan. We will cover all
the data structures and functions in Cyan background from Algorithm 1.

2.2.1 Incremental Dependency Analysis. An LLM can be provided a code fragment and an instruc-
tion to edit it in a prompt. While the LLM may perform the desired edit accurately, analyzing the
impact of the edit on the rest of the repository is outside the scope of the LLM call. We believe static
analysis is well-suited to do this and propose an incremental dependency analysis for the same.

DependencyGraph. Dependency analysis [12] is used for tracking syntactic and semantic relations
between code elements. In our case, we are interested in relations between import statements,
methods, classes, field declarations and statements (excluding those that operate only on variables
defined locally within the enclosing method). Formally, a dependency graph D = (𝑁, 𝐸) where 𝑁
is a set of nodes representing the code blocks mentioned above and 𝐸 is a set of labeled edges
where the edge label gives the relation between the source and target nodes of the edge. Figure 4
illustrates all the relations we track as labeled edges. The relations include (1) syntactic relations
(ParentOf and ChildOf, Construct and ConstructedBy) between a block 𝑐 and the block 𝑝 that
encloses 𝑐 syntactically; a special case being a constructor and its enclosing class related by
Construct and ConstructedBy, (2) import relations (Imports and ImportedBy) between an import
statement and statements that use the imported modules, (3) inheritance relations (BaseClassOf
and DerivedClassOf) between a class and its superclass, (4) method override relations (Overrides
and OverridenBy) between an overriding method and the overriden method, (5) method invocation
relations (Calls and CalledBy) between a statement and the method it calls, (6) object instantiation
relations (Instantiates and InstantiatedBy) between a statement and the constructor of the object it
creates, and (7) field use relations (Uses and UsedBy) between a statement and the declaration of a
field it uses.

ConstructDependencyGraph. The dependency relations are derived across the source code
spread over the repository through static analysis. We represent the source code of a repository as a
forest of abstract syntax trees (ASTs) and add the dependency edges between AST sub-trees. A file-
local analysis derives the syntactic and import relations. All other relations require an inter-class,
inter-procedural analysis that can span file boundaries. In particular, we use the class hierarchy
analysis [32] for deriving the semantic relations.

ClassifyChanges. As discussed in Section 2.1, in the fourth step, CodePlan merges the code
generated by the LLM into the repository. By pattern-matching the code before and after, we classify
the code changes. Table 1 (the first and second columns) gives the types of atomic changes and
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Atomic
Change

Label Dependency Graph Update Change May-Impact Analysis

Modification Changes
Body of
method M

MMB Recompute the edges incident on the
statements in the method body.

If an escaping object is modified then
Rel(D, M, CalledBy) else Nil.

Signature of
method M

MMS Recompute the edges incident on the
method.

Rel(D, M, CalledBy), Rel(D, M, Over-
rides), Rel(D, M, OverriddenBy), Rel(D′,
M, Overrides), Rel(D′, M, Overrid-
denBy)

Field F in class
C

MF Recompute the edges incident on the
field.

Rel(D, F, UsedBy), Rel(D, C, Construct-
edBy), Rel(D, C, BaseClassOf), Rel(D, C,
DerivedClassOf)

Declaration of
class C

MC Recompute the edges incident on the
class.

Rel(D, C, InstantiatedBy), Rel(D, C, Base-
ClassOf), Rel(D, C, DerivedClassOf),
Rel(D′, C, BaseClassOf), Rel(D′, C, De-
rivedClassOf)

Signature of
constructor of
class C

MCC No change. Rel(D, C, InstantiatedBy), Rel(D, C, Base-
ClassOf), Rel(D, C, DerivedClassOf)

Import/Using
statement I

MI Recompute the edges incident on the
import statement.

Rel(D, I, ImportedBy)

Addition Changes
Method M in
class C

AM Add new node and edges by analyzing
themethod. If C.M overrides a base class
method B.M then redirect the Calls/-
CalledBy edges from B.M to C.M if the
receiver object is of type C.

Rel(D, C, BaseClassOf), Rel(D, C, De-
rivedClassOf), Rel(D′, M, CalledBy)

Field F in class
C

AF Add new node and edges by analyzing
the field declaration.

Rel(D, C, ConstructedBy), Rel(D, C,
BaseClassOf), Rel(D, C, DerivedClas-
sOf)

Declaration of
class C

AC Add new node and edges by analyzing
the class declaration.

Nil

Constructor of
class C

ACC Add new node and edges by analyzing
the constructor.

Rel(D, C, InstantiatedBy), Rel(D, C, Base-
ClassOf), Rel(D, C, DerivedClassOf)

Import/Using
statement I

AI Add new node and edges by analyzing
the import statement.

Nil

Deletion Changes
Method M in
class C

DM Remove the node for M and edges in-
cident on M. If C.M overrides a base
class method B.M then redirect the Call-
s/CalledBy edges from C.M to B.M if the
receiver object is of type C.

Rel(D, M, CalledBy), Rel(D, M, Over-
rides), Rel(D, M, OverriddenBy)

Field F in class
C

DF Remove the node of the field and edges
incident on it.

Rel(D, F, UsedBy), Rel(D, C, Construct-
edBy), Rel(D, C, BaseClassOf), Rel(D, C,
DerivedClassOf)

Declaration of
class C

DC Remove the node of the class and edges
incident on it.

Rel(D, C, InstantiatedBy), Rel(D, C, Base-
ClassOf), Rel(D, C, DerivedClassOf)

Constructor of
class C

DCC Remove the edges incident on the class
due to object instatiations using the con-
structor.

Rel(D, C, InstantiatedBy), Rel(D, C, Base-
ClassOf), Rel(D, C, DerivedClassOf)

Import/Using
statement I

DI Remove the node of the import state-
ment and edges incident on it.

Rel(D, I, ImportedBy)

Table 1. Rules for updating the dependency graph and for change may-impact analysis for atomic changes.
We refer to the dependency graphs before and after the updates by D and D′ respectively.
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their labels. Broadly, the changes are organized as modification, addition and deletion changes, and
further by which construct is changed. We distinguish between method body and method signature
changes. Similarly, we distinguish between changes to a class declaration, to its constructor or to
its fields. The changes to import statements or the statements that use imports are also identified.
These are atomic changes. An LLM can make multiple simultaneous edits in the given code fragment,
resulting in multiple atomic changes, all of which are identified by the ClassifyChanges function.

UpdateDependencyGraph. As code generated by the LLM is merged, the dependency relations
associated with the code at the change site are re-analyzed. Table 1 (the third column) gives the
rules to update the dependency graph D to D′ based on the labels inferred by ClassifyChanges. For
modification changes, we recompute the relations of the changed code except for constructors.
A constructor is related to its enclosing class by a syntactic relation which does not have to be
recomputed. For addition changes, new nodes and edges are created for the added code. Edges
corresponding to syntactic relations are created in a straightforward manner. If a change simulta-
neously adds an element (an import, a method, a field or a class) and its uses, we create a node for
the added element before analyzing the statements that use it. Addition of a method needs special
handling as shown in the table: if an overriding method C.M is added then the Calls/CalledBy edges
incident on the matching overriden method B.M are redirected to C.M if the call is issued on a
receiver object of type C. The deletion of an overriding method requires an analogous treatment as
stated in Table 1. All other deletion changes require removing nodes and edges as stated in the
table.

2.2.2 Change May-Impact Analysis. In the fifth step, CodePlan identifies the code blocks that may
have been impacted by the code change by the LLM. Let Rel(D, B, rel) be the set of blocks that are
connected to a block B via relation rel in the dependency graph D. Let D and D′ be the dependency
graph before and after the updates in Table 1.

GetAffectedBlocks. The last column in Table 1 tells us how to identify blocks affected by a
code change for each type of change. When the body of a method M is edited, we perform escape
analysis [22, 29] to identify if any object accessible in the callers of M (an escaping object) has
been affected by the change. If yes, the callers of M (identified through Rel(D, M, CalledBy)) are
identified as affected blocks. Otherwise, the change is localized to the method and there are no
affected blocks. If the signature of a method is edited, the callers and methods related to it through
method-override relation in the inheritance hierarchy are affected. The signature change itself
can affect the Overrides and OverridenBy relations, e.g., addition or deletion of the @Override
access modifier. Therefore, the blocks related by these relations in the updated dependency graph
D′ are also considered as affected as shown in Table 1 (the row with MMS label). When a field F
of a class C is modified, the statements that use F, the constructors of C and sub/super-classes of
C are affected. When a class is modified, the methods that instantiate it and its sub/super-classes
as per D and D′ are affected. A modification to a constructor has a similar rule except that such
a change does not change inheritance relations and hence, only D is required. When an import
statement I is modified, the statements that use the imported module are affected.

The addition and deletion changes are less complex than the modification changes, and their rules
are designed along the same lines as discussed above. In the interest of space, we do not explain
each of them step-by-step. We assume that there is no use of a newly added class or an import in
the code. Therefore, adding them does not result in any affected blocks. In our experiments, we
have found the rules in Table 1 to be adequate. However, CodePlan can be easily configured to
accommodate variations of the rules in Table 1 if necessary.
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2.3 Adaptive Planning and Plan Execution
We now discuss the data structures and functions from Algorithm 1 in the Orchid background.

2.3.1 Adaptive Planning. Having identified the affected blocks (using GetAffectedBlocks),CodePlan
creates change obligations that need to be discharged using an LLM to make the dependent code
consistent with the change. As discussed in Section 2.1, this is an iterative process.

PlanGraph. A plan graph P = (𝑂,𝐶) is a directed acyclic graph with a set of obligations 𝑂 , each of
which is a triple ⟨𝐵, 𝐼, 𝑠𝑡𝑎𝑡𝑢𝑠⟩ where B is a block, I is an instruction and status is either pending
or completed. An edge in 𝐶 records the cause, the dependency relation between the blocks in the
source and target obligations. In other words, the edge label identifies which Rel clause in a change
may-impact rule in Table 1 results in creation of the target obligation.

ExtractCodeFragment. As discussed in the first step in Section 2.1, simply extracting code for a
block B is sub-optimal as it loses context. The ExtractCodeFragment function takes the whole class
the code block belongs to, keeps the complete code for B and retains only declarations of the class
and other class members. We found this to be useful because the names and types of the class
and other members provide additional context to the LLM. Often times the LLM needs to make
multiple simultaneous changes. For example, in some of our case studies, the LLM has to add a
field declaration, take an argument to a constructor and use it within the constructor to initialize
the field. Providing the sketch of the surrounding code as a code fragment to the LLM allows the
LLM to make these changes at the right places. The code fragment extraction logic is implemented
by traversing the AST and "folding" away the subtrees (e.g., method bodies) that are sketched. As
stated in Section 1, this sketched representation also allows us to place the LLM generated code
back into the AST without ambiguity, even when there are multiple simultaneous changes.

GetSpatialContext. Spatial context in CodePlan refers to the arrangement and relationships of
code blocks within a codebase, helping understand how classes, functions, variables, and modules
are structured and interact. It’s crucial for making accurate code changes. CodePlan utilizes the
dependency graph to extract spatial context, representing code as nodes and their relationships
as edges. This graph enables CodePlan to navigate codebases, identify relevant code blocks, and
maintain awareness of their spatial context. As a result, when generating code edits, the dependency
graph empowers CodePlan to make context-aware code modifications that are consistent with the
code’s spatial organization, enhancing the accuracy and reliability of its code editing capabilities.

GetTemporalContext. The plan graph records all change obligations and their inter-dependences.
Extracting temporal context is accomplished by linearizing all paths from the root nodes of the plan
graph to the target node. Each change is a pair of the code fragments before and after the change.
The temporal context also states the "causes" (recorded as edge labels) that connect the target node
with its predecessor nodes. For example, if a node A is connected to B with a CalledBy edge, then
the temporal context for B is the before/after fragments for A and a statement that says that "B
calls A", which helps the LLM understand the cause-effect relation between the latest temporal
change (change to A) and the current obligation (to make a change to B).

2.3.2 Plan Execution. CodePlan iteratively selects a pending node in the plan graph and invokes
an LLM to discharge the change obligation.

MakePrompt. Having extracted the code fragment to be edited along with the relevant spatial and
temporal context, we construct a prompt to pass to the LLM with the structure given below. We
open with the task specific instructions p1 followed by listing the edits made in the repository so
far p2 that are relevant to the fragment being edited. The next section p3 notes how each of the
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fragments present in p2 are related to the fragment to be edited. This is followed by the spatial
context p4 and the fragment to the edited p5 .

Prompt Template

p1 Task Instructions: Your task is to . . .

p2 Earlier Code Changes (Temporal Context): These are edits that have been made in
the code-base previously -

Edit 1:
Before: «code_before»
After: «code_after»
· · ·

p3 Causes for Change: The change is required due to -

«code_to_be_edited» is related to «code_changed_earlier» by «cause»
· · ·

p4 Related Code (Spatial Context): The following code maybe related -

«related_code_block-1»
· · ·

p5 Code to be Changed Next: The existing code is given below -

«code_to_be_edited»

Edit the "Code to be Changed Next" and produce "Changed Code" below. Edit the "Code
to be Changed Next" according to the "Task Instructions" to make it consistent with
the "Earlier Code Changes", "Causes for Change" and "Related Code". If no changes are
needed, output "No changes."

Oracle and Plan Iterations. Once all the nodes in the plan graph are marked as completed and no
new nodes are added, an iteration of repository-level code edits is completed. As shown in Figure 2,
the oracle is invoked on the repository. If the oracle flags any errors (e.g., build errors), the error
locations and diagnostic messages are added as seed changes for the next iteration and the adaptive
planning resumes once again. If the oracle does not flag any errors, CodePlan terminates.

3 IMPLEMENTATION
In this section, we provide a detailed overview of the implementation components that constitute
the core of our method.

Dependency Graph Construction. At the core of the CodePlan methodology lies the Dependency
Graph, which is instrumental in representing the intricate relationships between code blocks. To
build this Dependency Graph from a code repository, we adopt a systematic approach. Initially, we
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Fig. 5. AST structure for a C# code snippet produced by tree-sitter.

parse all the code files within the repository, utilizing the tree-sitter library [25] to generate an
AST-like structure. This structured representation simplifies the identification of various funda-
mental code blocks within the codebase. For instance, Figure 5 exemplifies an AST structure for a
C# code snippet produced by tree-sitter. Code blocks are identified at different levels, including
Classes, Methods, import statements, and non-class expressions. For instance, in Figure 5, the
subtree rooted at the class_declaration node corresponds to the SyncSubscriberTest class.

Relation Identification in C#. In the context of C# repositories, the establishment of edges within
the Dependency Graph involves the careful tracing of relationships within the AST.We have devised
custom logic for each type of relationship outlined in Figure 4, encompassing vital connections
such as caller-callee, overrides-overridden, base class-derived class, and others. To illustrate, for
the Caller/Callee relationship, we search for invocation_expression nodes within the AST.
Subsequently, we process the sub-tree beneath these nodes to resolve essential details such as the
target class and the invoked method’s name. Armed with this information, we create Calls/CalledBy
relation links between the code block initiating the method call and the corresponding method
block within the target class. While we have implemented custom logic for these relations, it’s
important to note that alternative dependency analysis tools for C# such as Language Servers for
C# (LSP) [5], CodeQL [2], or similar solutions can also be integrated into our system, owing to its
inherent flexibility.

Relation Identification in Python. For Python repositories, we use Jedi [4] - a static analysis tool
which discovers references and declarations of symbols throughout the codebase. These capabilities
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are harnessed to identify edges in the Dependency Graph for relationships such caller-callee,
overrides-overridden, and base class-derived class.

Integration of GPT-4 for Code Edits. CodePlan leverages the remarkable capabilities of GPT-4 [57]
to perform code edits effectively. During the construction of input data for the edit model, we
meticulously provide temporal context, spatial context, and the actual code to be edited in the form
of code snippets. These code snippets represent classes or methods that contain the edit site and
are meticulously structured in a sketched representation, as stated in Section 2.1. This sketched
representation ensures that the model is enriched with a substantial context for each edit site,
significantly enhancing the quality and accuracy of the edits it generates.

Language Extensibility. While our current implementation proficiently supports C# and Python
repositories, extending support to repositories in other programming languages is a straightforward
endeavor. It primarily entails creating a dependency graph with the relations identified in Figure 4
and incorporating it into the CodePlan framework, thereby allowing for seamless adaptation to a
diverse array of programming languages.

4 EXPERIMENTAL DESIGN
In this section, we’ll explain how we conducted our experiments to test CodePlan. We’ll start by
talking about the different sets of data we used. Then, we’ll discuss the methods we compared
CodePlan to, which are like our reference points. Finally, we’ll explain how we measured the results
to see how well CodePlan performed compared to the other methods.

4.1 Datasets
In our experiments, we utilized diverse datasets representing a wide spectrum of code reposito-
ries with varying complexities and sizes. These datasets allowed us to thoroughly evaluate the
performance of CodePlan in different real-world scenarios.

Internal Repositories (Int-1 and Int-2). These repositories are proprietary and belong to a large
product company. They are characterized by their large size, complex patterns, and are typical of
production-level codebases. The primary task we focused on here was the migration of these repos-
itories from a legacy logging framework to a modern logging framework. This migration involved
non-trivial changes, including creating service-specific loggers using a logging factory, passing the
logger through call chains, managing class hierarchies, storing logger references at different scopes
(class, method, etc.), and handling loggers at both static and non-static classes/methods. These two
production repositories, Int-1 and Int-2, were chosen for their distinct coding styles and design
patterns, providing a comprehensive internal dataset for our evaluation.

External Repositories (Public GitHub).We also considered external repositories from GitHub
to diversify our dataset. These repositories were chosen to represent two different coding tasks:
Migration and Temporal Edits (discussed next).

Migration Task. This task involves migrating APIs or addressing breaking changes within a
codebase. Examples include updating dependencies, adapting to changes in external libraries, or
aligning code with new coding standards. It is characterized by its complexity, often requiring
consistent updates across numerous code files and dependencies. To select these repositories, we
looked for those containing commits and pull requests related to various kinds of migrations (API,
frameworks, etc.). We filtered for repositories with at least 50 files.

Temporal Edits Task. This task involves orchestrating a sequence of code changes given some
initial code-change. Many code-changes can be characterised as temporal edits including refactoring
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Migration
(C#)

Temporal Edits
(Python)Repositories Int-1 Int-2 Ext-1 T-1 T-2 T-3

Number of files 91 168 55 21 137 4
Lines of code 8853 16476 8868 3883 20413 1874
Number of files changed 47 97 21 2 2 3
Number of seed changes 41 63 42 2 1 1
Number of derived changes 110 375 16 0 8 3 10
Size of diff (lines) 1744 4902 1024 104 15 39
Size of seed edits (lines) 242 242 379 76 4 1
Prompt template size (lines) 81 81 81 75 75 75
URL - - [7] [8] [1] [3]

Table 2. Dataset statistics. Int-1,2 are internal (proprietary) repositories, Ext-1 and T-1,2,3 are external (public
GitHub) repositories.

or addition/removal of functionality. A temporal edit task is specified by a set of initial edits (usually
made by the user) along with derived edits precipitated by the seed edits. The task for the tool is to
infer the derived edits from the set of initial edits. An example temporal edit task can be where
the initial edit is adding an argument to a method and the derived edits are changes to all the
places where this method is called. We identify temporal edit tasks from commits made in public
repositories on GitHub. We consider python repositories with permissive licenses, sort by stars,
filter out documentation/tutorial related repositories and from amongst candidates with at least
10,000 stars, we select commits made after 1st November 2021 (after the cut-off date for training
data of GPT-4) containing multiple related changes.

Source/Target/Predicted Repositories. To collect the code changes for the migration and temporal
edit tasks, we obtained files from GitHub before and after the commits. We refer to these as the
Source repository (before commit) and Target repository (after commit). Analyzing these changes
allowed us to identify seed changes through manual inspection. For instance, in the NUnit to
XUnit migration, one of the seed edits involved replacing Console.WriteLine with writing to an
ITestOutputHelper object. With the Source repository and seed change instructions, CodePlan
was tasked with making the necessary changes to the Source repository, resulting in what we call
the Predicted repository. If CodePlan successfully executed all changes, the Predicted repository
should match the Target repository, providing a robust evaluation of its capabilities.

Preprocessing Source and Target Repositories.When dealing with large repositories, it’s common
for multiple developers to contribute code, resulting in various coding styles driven by individual
preferences. For instance, one developer might consistently use the this qualifier to reference
class members, while another may not. When CodePlan executes changes through LLM prompting,
it tends to establish a uniform style throughout the codebase, which may involve enforcing the
consistent use of the this qualifier, among other things. While these changes ensure functional
equivalence, they can impact evaluation metrics when comparing the Predicted repository with
the Target repository. To address these issues, we employ a manual preprocessing step on both the
Source and Target repositories. This preprocessing aims to establish uniformity across various files
within the repository. By doing so, we provide a fair basis for comparing CodePlan’s performance
against the ground truth in these diverse codebases.
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Table 2 summarizes the dataset statistics for both Migration (C#) and Temporal Edits (Python)
repositories, including the names of repositories (both internal and external) and various key
statistics including their size, code changes, and other relevant metrics:

• Number of Files: The total count of files in each repository.
• Lines of Code: The cumulative number of lines of code across all files.
• Number of Files Changed: The count of files that have undergone changes between the
source and target repositories.

• Number of Seed Changes: The number of initial edits, often considered as the starting point
of code changes.

• Number of Derived Changes: The count of subsequent edits that follow the initial seed
changes.

• Size of Diff : The number of lines that differ between the source and target repositories.
• Size of Seed Edits: When the seed edits are made directly on the code, it represents the
number of lines of initial edits. When the seed edits are made through LLM instruction, it
denotes the size of the instruction text.

• Prompt Template Size: This number represents the size of the LLM prompt template used
by CodePlan. The same template is employed for all the migration repository tasks, and
another similar template is utilized for all the Temporal Edit repository tasks.

These metrics not only offer a comprehensive overview of the dataset characteristics but also
highlight the considerable advantages of using CodePlan over manual processes, especially for
large repositories. In manual scenarios, human effort is required to painstakingly identify dependent
changes and implement each modification. Notably, metrics such as "Size of Diff" and "Size of Seed
Edits" provide insights into the developer effort involved. CodePlan, on the other hand, automates
these changes, effectively reducing the burden on developers. Furthermore, it’s worth noting that
the effort required to craft LLM instructions for CodePlan is significantly less than the extensive
manual labor required for making all the code changes. These metrics collectively demonstrate
the efficiency and effectiveness of CodePlan across diverse codebases, emphasizing its potential to
streamline development workflows and save valuable developer time.

4.2 Oracles and Baselines

Oracles. Recall that our definition of repository-level coding tasks is centered around satisfying an
oracle that can determine the validity of our solution. In our experiments, we consider two specific
instatiations of such an oracle. For the C# migration tasks, we define the oracle as passing the C#
build tools without any errors. For temporal edits scenario, we use Pyright [6], a static checker for
python as the oracle.

Oracle-Guided Repair. Both of these oracles take a codebase as input and can output a list of
errors in that codebase. This leads naturally to the formulation of baseline approaches to our tasks
which we term as Oracle-Guided Repair. These are simple reactive approaches where at each step
we attempt to rectify the errors flagged by the oracle. For the C# migration scenario, the baseline is
Build-Repair and for temporal edits it is Pyright-Repair according to the oracles used in both.

The oracle-guide repair works in the following steps:
(1) Initial Edit: The process begins with application of the initial seed edit to the codebase.
(2) Build and Error Detection: After the seed edits, we invoke the oracle which detects errors in

the codebase arising from the seed edits.
(3) Error Message Analysis: The error messages generated by the oracle is then parsed to

precisely identify the location of the error within the code.
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(4) LLM Patching: Subsequently, the error message, along with the code fragment from the
flagged location, is passed to an LLM. The LLM leverages its code generation capabilities to
generate a patch or fix for the identified error. For fair comparison with CodePlan, we use
our implementation for spatial and temporal context extraction in oracle-guided repair. That
is, the key difference between CodePlan and oracle-guided repair is that CodePlan uses
adaptive planning whereas oracle-guided repair uses the diagnostic information generated
by the oracle, but they use the same contextualization machinery.

Note that Oracle-Guided Repair approaches are reactive and lack a comprehensive "change
may-impact analysis." This means that they may not thoroughly assess how the proposed code
changes could affect other parts of the codebase. As a result, the fixes generated by such approaches
may be incomplete or incorrect, especially when dealing with complex coding tasks.

Alternate Edit Model: Coeditor [76]. CodePlan by default leverages the text and code processing
abilities to LLMs to make local edits to code fragments given proper context. However, in theory, the
incremental dependancy analysis, change may-impact analysis and adaptive planning components
of CodePlan can be used in conjunction with any tool or model that can make localized edits to
code following some provided intent. Coeditor [76] is a transformer based model fine-tuned to edit
code snippets while taking into account prior edits made in the repository. Such a model is good fit
for the Temporal Edits task, where we need to make a sequence of edits from a set of seed edits,
where each edit is dependant on some subset of the previous edits. Indeed, Coeditor is evaluated on
the Temporal Edits task in [76]. In order to demonstrate the generality of our analysis and planning,
we evaluate how our approach performs in the temporal edits scenario, when replacing gpt-4-32k
with Coeditor as the edit model.

4.3 Evaluation Metrics
The evaluation metrics employed in our study are aimed at assessing how effectively CodePlan (or
a baseline) propagates changes across the entire code repository and the correctness of each of
these changes. To achieve this, we rely on two key metrics: Block Metrics and Edit Metrics.

Block Metrics. Block Metrics help us understand CodePlan’s ability to accurately identify code
blocks in need of modification. These metrics include:

• Matched Blocks: These are code blocks that exist in the Source Repository, have been edited
in the Target Repository, and have also been edited in the Predicted Repository. Essentially,
these are blocks that CodePlan successfully identifies for change.

• Missed Blocks: Missed Blocks refer to code blocks present in the Source Repository that
have been edited in the Target Repository but were not edited in the Predicted Repository.
In other words, these are blocks that CodePlan failed to modify when it should have.

• Spurious Blocks: Spurious Blocks are code blocks found in the Source Repository that were
not edited in the Target Repository but were incorrectly edited byCodePlan in the Predicted
Repository. These represent edits that CodePlan made unnecessarily.

The ideal outcome is to have a high number of Matched Blocks and low numbers of Missed and
Spurious Blocks.

Edit Metrics. While Block Metrics assess the identification of code blocks, Edit Metrics delve into
the correctness of the modifications made by CodePlan. These metrics include:

• Levenshtein Distance: Levenshtein Distance measures the edit distance at the file level
between the Predicted Repository and the Target Repository. It calculates howmany changes
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were made to transform one file into the other. A higher Levenshtein Distance indicates
that CodePlan did not make the correct changes to the repository.

• Diff BLEU : Typically, we use BLEU [58], a common metric in Natural Language Processing,
to measure text similarity. However, when applied in our tasks, BLEU can produce overly
high similarity scores because code edits for specific tasks often involve only a small portion
of the file. To address this issue, we compute Diff BLEU: a modified version of the BLUE
score, denoted as BLUE(DIFF(Source repo file, Target repo file), DIFF(Source
repo file, Predicted repo file)). Here, DIFF calculates the differences (diff hunks)
between two files. What sets Diff BLUE apart is its focus on comparing the modified sections
of code between the Predicted and Target Repositories while disregarding common code.
When the modifications in Predicted and Target Repositories match precisely, Diff BLUE
yields a score of 1.0, indicating a high level of correctness and alignment in handling code
modifications.

In summary, these evaluation metrics provide a comprehensive assessment of CodePlan’s perfor-
mance, both in terms of identifying code blocks for modification and ensuring that the modifications
made are correct.

5 RESULTS AND ANALYSIS
In this section, we present empirical results to answer the following research questions:

RQ1: HowwellCodePlan is able to localize andmake the required changes to automate repository-
level coding tasks?

RQ2: How important are the temporal and spatial contexts for CodePlan’s performance?
RQ3: What are the key differentiators that allow CodePlan to outperform baselines in solving

complex coding tasks?

5.1 RQ1: How well CodePlan is able to localize and make the required changes to
automate repository-level coding tasks?

Motivation. The research question addressing the effectiveness of the CodePlan framework in
automating repository-level coding tasks is of paramount importance in the context of modern
software engineering. Several key motivations drive the significance of this inquiry:

• Complexity of Repository-Level Tasks: Software engineering activities, such as pack-
age migration and temporal code edits, often transcend the scope of local code changes.
Repository-level coding tasks involve pervasive modifications across the entire codebase.
This level of complexity necessitates novel approaches to ensure efficiency and correctness.

• Real-world Relevance: In practice, software repositories frequently encounter the need
for large-scale changes. For instance, package migration involves updating dependencies
across multiple files and dependencies, while temporal code edits require tracking and
managing evolving codebase. These tasks are not only time-consuming but also error-prone
when done manually.

• Evaluation against Baselines: The assessment of CodePlan against baseline methods
is crucial. Baseline methods, such as "Oracle-Guided Repair", are common in software
development but may lack efficiency when dealing with repository-level tasks. Evaluating
CodePlan against baselines provides a benchmark for measuring its effectiveness and
highlights areas where it excels. We also study how our system behaves when using a
different edit model by evaluating a combination of Coeditor andCodePlan on the Temporal
Edits Task.
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• Large-scale Repositories: The research considers not only isolated coding problems but
evaluates CodePlan’s performance on large internal and external repositories. This broad
scope ensures that the framework’s effectiveness is tested under diverse and challenging
real-world scenarios.

Experimental Setup.
To study how well CodePlan is able to localize and make the required changes for repository-

level tasks, we evaluate it in the context of the tasks described in 4.1. For both the C# Migration
and Temporal Edits tasks, we start with the repository in its Source state without any edits having
been made. We apply the seed edits on top of the Source state at which point CodePlan (or the
baseline being evaluated) takes over to complete the the edit across the repository. In the case of C#
Migrations, the seed edits themselves are performed using the LLM with a suitable prompt, while
for Temporal Edits, we the seed edits for each repository task are stored a-priory and applied as
patches. CodePlan performs incremental dependency analysis on the repository after the seed edit,
identifies code that may be impacted by it, plans which edit to be made next, queries the LLM with
a suitable prompt and merges the result back into the repository. CodePlan does this iteratively
until it finds that there are no more sites to be edited.

At times, multiple iterations become necessary due to the inherent variability in Large Language
Model (LLM) responses. We initiate the first iteration, known as "Iter 1," to kickstart the code
editing process using LLMs. However, occasional inaccuracies in LLM responses may introduce
erroneous code changes and subsequent build errors. To address these challenges, the second
iteration, referred to as "Iter 2," becomes important. During this phase, CodePlan actively identifies
and acknowledges any build errors from the previous iteration, and re-engagement with the LLM
to obtain more precise responses for correcting the initial errors.
Alongside CodePlan, we also evaluate a series of baselines on the same repositories. For C#

migration we evaluate Build-Repair and for Temporal Edits we evaluate Pyright-Repair, the setup
for both of which is presented in 4.2. Pyright-Strict-Repair is a variant in which we use the Pyright
tool with strict mode enabled. In all the Repair baselines, we provide the same context (temporal
and spatial) as in CodePlan, the only difference being that the localisation of sites to edit is using
the oracle. We also evaluate using Coeditor instead of gpt-4-32k as the edit model as described
in 4.2. In all Coeditor baselines, contextualisation is performed as in [76], with the localisation of
next edit site being done through either CodePlan or using the oracle.
We evaluate all of these approaches for how well they localise the site to be edited using the

Matched, Missed and Spurious Blocks metrics and the correctness of the overall modification using
Levenshtein Distance and Diff BLEU as described in 4.3. We also determine whether the state of the
repository after the approach is finished executing passes the validity check – that is whether it
satisfies the oracle and makes the correct edit according to the ground truth.

Results Discussion. The experimental results in Table 3 demonstrate the effectiveness of the
CodePlan framework in automating repository-level coding tasks.

In the context of the C# Migration Task on Internal (Proprietary) Repositories, the results table
provides a comprehensive view of the performance of two approaches: CodePlan and Build-Repair.
Notably, CodePlan demonstrates superior capabilities in several key aspects. It excels in "Matched
Blocks", achieving perfect results with 151 matched blocks for both "Int-1 (Logging)" and 438
matched blocks for "Int-2 (Logging)" datasets. This indicates CodePlan’s exceptional precision in
accurately identifying and addressing intended code changes. Moreover, CodePlan impressively
exhibits zero "Missed Blocks" ensuring that no crucial code modifications are overlooked, thus
minimizing the risk of functional issues. Equally noteworthy is the absence of "Spurious Blocks"
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Dataset Approach Matched
Blocks

Missed
Blocks

Spurious
Blocks

Diff
BLEU

Levenshtein
Distance

Validity
Check

C# Migration Task on Internal (Proprietery) Repositories

Int-1
(Logging)

CodePlan (Iter 1) 151 0 0 0.99 60 ✗ (4)
CodePlan (Iter 2) 151 0 0 1.00 0 ✓ (0)
Build-Repair 82 69 13 0.81 6465 ✗ (46)

Int-2
(Logging)

CodePlan (Iter 1) 438 0 0 0.99 90 ✗ (6)
CodePlan (Iter 2) 438 0 0 1.00 0 ✓ (0)
Build-Repair 337 101 25 0.66 7496 ✗ (68)

C# Migration Task on External (Public) Repositories
Ext-1
(NUnit-
XUnit)

CodePlan (Iter 1) 58 0 0 1.00 0 ✓ (0)
Build-Repair 52 6 1 0.94 530 ✗ (8)

Python Temporal Edit Task on External (Public) Repositories

T-1
CodePlan (Iter 1) 8 2 0 0.90 1044 ✗
Pyright-Repair 5 5 0 0.76 1090 ✗

Pyright-Strict-Repair 8 2 0 0.90 1045 ✗
Coeditor-CodePlan 8 2 0 0.90 1160 ✗

Coeditor-Pyright-Repair 5 5 0 0.66 1205 ✗
Coeditor-Pyright-Strict-Repair 5 5 0 0.65 1139 ✗

T-2
CodePlan (Iter 1) 4 0 0 0.86 248 ✓
Pyright-Repair 1 3 0 0.00 344 ✗

Pyright-Strict-Repair 1 3 0 0.00 344 ✗
Coeditor-CodePlan (Iter 1) 3 1 0 0.82 254 ✗
Coeditor-Pyright-Repair 1 3 0 0.00 344 ✗

Coeditor-Pyright-Strict-Repair 1 3 0 0.00 344 ✗

T-3
CodePlan (Iter 1) 11 0 0 0.92 358 ✓
Pyright-Repair 1 10 0 0.00 798 ✗

Pyright-Strict-Repair 1 10 0 0.00 798 ✗
Coeditor-CodePlan (Iter 1) 10 1 0 0.78 717 ✗
Coeditor-Pyright-Repair 1 10 0 0.00 798 ✗

Coeditor-Pyright-Strict-Repair 1 10 0 0.00 798 ✗

Table 3. Comparison of CodePlan’s repository edit metrics with Build-Repair baseline. Higher values of
Matched Blocks, Diff BLEU, and lower values of Missed Blocks, Spurious Blocks, Levenshtein Distances are
better.

introduced by CodePlan, signifying its ability to maintain codebase cleanliness and integrity. In
contrast, Build-Repair falls behind with 82 matched blocks for "Int-1 (Logging)" and 437 for "Int-2
(Logging)", while also missing a substantial number of blocks (69 and 101, respectively). Additionally,
Build-Repair introduces 13 spurious blocks for "Int-1 (Logging)" and 25 for "Int-2 (Logging)", which
can increase code complexity and error potential. These findings underscoreCodePlan’s superiority
over Build-Repair, not only in terms of matched blocks but also in its ability to avoid missed and
spurious code changes, ultimately offering a more precise and reliable solution for the C# Migration
Task on internal repositories.

CodePlan vs Build-Repair. The comparative analysis reveals why Build-Repair falls behind
CodePlan. One crucial factor contributing to its performance gap is its reliance on "build er-
ror location" as an indicator for code correction. Build errors often pinpoint the location where an
error is detected, but they may not necessarily coincide with the actual required fix location. For
instance, an error may manifest in a derived class’s overridden function signature mismatch, but the
fix is necessitated in the base class’s virtual function signature, causing Build-Repair to misinterpret
the correction site. Additionally, the build process in the context of compiler optimizations may
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obscure subsequent errors, only displaying selected errors at a given time. This can lead to an
incorrect identification of the correction location and hinder the proper propagation of changes,
further exacerbating the performance gap between CodePlan and Build-Repair. These limitations
underscore the challenges faced by Build-Repair in accurately pinpointing and addressing code
modifications in complex migration tasks.

Multiple Iterations. We can see the necessity for multiple iterations to handle the inherent
variability in Large Language Model (LLM) responses as illustrated with the 4 build errors after
"Iter 1" of CodePlan in the "Int-1" dataset. To rectify this, "Iter 2" plays a vital role. In this phase,
CodePlan identifies and acknowledges the build errors from the previous iteration and re-engages
with the LLM to obtain more accurate responses for correcting the initial errors. It is noteworthy
that there are no changes to the block metrics between the two iterations since CodePlan correctly
identifies the blocks requiring correction and engages the LLM for modification. However, the LLM
corrections in "Iter 1" were erroneous, leading to a lower Levenshtein distance metric. This iterative
refinement process significantly contributes in mitigating the impact of occasional inaccuracies in
LLM outputs during the code editing phases.

Performance on Ext-1. In the comparison between CodePlan and the Build-Repair baseline
method on the "Ext-1" dataset, we observe a significant difference in their performance. CodePlan
successfully identified and updated 58 code blocks, achieving a perfect DiffBLEU score of 1.00,
indicating that it made changes identical to the target repository. In contrast, Build-Repair, the
baseline method, fell short by missing six blocks and generating eight build errors. This discrepancy
highlights a critical limitation of Build-Repair—the lack of comprehensive change may-impact
analysis capabilities. Specifically, Build-Repair failed to update constructor blocks required for
initializing the newly added ITestOutputHelper _output class member. This omission went
unnoticed because the absence of initialization didn’t trigger build errors, causing a cascading effect
on the callers of this constructor. In contrast, CodePlan successfully handled the initialization of the
newly added ITestOutputHelper _output class member. This achievement can be attributed to
its robust change-may impact analysis, which accurately identified the necessary modifications to
the constructor block upon the addition of a new field. As a result, CodePlan seamlessly updated the
constructor and all its callers, preventing any missed blocks or build errors. This finding underscores
the importance of CodePlan’s advanced planning abilities, which ensure a more thorough and
accurate approach to repository-level code edits. Further details and qualitative analysis are provided
in RQ3 (Figure 11) of our study.

CodePlan vs Pyright-Repair. In context of the Temporal Edits task, we can see that CodePlan
is able to successfully identify all the derived edit location in 2 repos (T-2, T-3) and is almost
successuful in the third (T-1). This is in contrast to the baseline Pyright-Repair approach which fails
to identify any of the derived edits in two repos (T-2, T-3). We find that using Pyright on a strict
checking mode yields improved results, but only on one repo (T-1) where it peforms just as well as
CodePlan. Overall we observe that the Pyright-Repair baseline falls short in identifying location
to edit. This is also reflected in the DiffBLEU score which is consistently higher for CodePlan
and Levenshtein Distance (L.D.) which is consistently lower. Note that since the LLM does not
necessarily make the exact edit present in the ground truth, both DiffBLEU and L.D. may not have
perfect 1.0 and 0 values respectively.
For both T-2 and T-3 we see that the Pyright-Repair baseline is unable to identify any derived

edits. In both of these repos Pyright does not flag any errors in the codebase once the seed-edit has
been made. In the case of T-2, the seed edit involves adding an argument to a method as shown in
Figure 6 However this new parameter is also assigned a default value. Due to the presence of a
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def load_mbd_ckpt(
file_or_url_or_id: Union[Path, str],

+ filename: tp.Optional[str] = None,
cache_dir: tp.Optional[str] = None

):
return _get_state_dict(

file_or_url_or_id,
− filename="all_in_one.pt",
+ filename=filename,

cache_dir=cache_dir
)

Fig. 6. Seed edit for T-2.

def send_request(data):
api_key = data.pop("api_key")
api_type = data.pop("api_type")

+ api_endpoint = data.pop("api_endpoint")
...

Fig. 7. Seed edit for T-3.

default value for this argument, Pyright does not flag any of the call sites of this method as errors.
However in the ground truth, the developer does follow up and edit the call sites. CodePlan’s
change may-impact analysis identifies these call-sites as "might requiring" edit and so we pass
them to the LLM to edit.
In the case of T-3, the seed edit involves modifying the body of the function as describe in

Figure 6. After the seed edit, the method now expects the dictionary being passed as argument
to contain a new key "api_endpoint". Pyright will not flag any errors in the repo at this stage
however it is clear that this may require modification to the callers of send_request. CodePlan
does detect this and is able to identify and make edits at 10 derived sites present in the ground
truth.
In both of these scenarios, we do not know a-priory whether the call-sites need editing. Thus

CodePlan leaves this decision upto the LLM to decide given the context. In contrast, the Oracle-
Guided baseline does not even detect that a change maybe needed. This can be attributed to the
fact that Oracles such as Pyright, or Build aim to detect errors and hence will only flag code that
violates certain rules. This is not aligned with the task of propagating changes across a repo, as
there may be many cases where a change may need to be propagated but the repo with the change
applied does violate any of the oracle’s rules.

Coeditor Evaluation. When comparing CodePlan with Coeditor-CodePlan, we can see that it
performs on par on T-1 but lags slightly behind on T-2 and T-3 missing one edit site in each. While
both approaches are using the same analysis and planning, the local edits made in CodePlan are
more in-line with the ground-truth compared to those by Coeditor, reflected in the the lower
DiffBLEU scores and higher L.D. exhibited by Coeditor-CodePlan in T-2 and T-3. This can be due
to the difference in context-understanding abilities between gpt-4-32k and Coeditor. For example,
opting to instantiate an argument to a method instead of adding a parameter to the caller can
mean missing out of edits resulting from the signature change to the caller. Being a significantly
more powerful model, gpt-4-32k is better at understanding the context of the temporal edits, hence
the edits it makes are more aligned with the ground truth as compared to Coeditor. This is also
observed when comparing the Pyright-Strict-Repair and Coeditor-Pyright-Strict-Repair on T-2,
where incorrect local edits by Coeditor lead to missing of edit sites and worse DiffBLEU and L.D.

In conclusion, the experimental results substantiate that CodePlan’s planning-based approach is
highly effective in automating repository-level coding tasks, offering superior matching, complete-
ness, and precision compared to traditional baseline methods. Its ability to handle complex coding
tasks within large-scale repositories signifies a significant advancement in automating software
engineering activities.
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5.2 RQ2: How important are the temporal and spatial contexts for CodePlan’s
performance?

Motivation.: The motivation behind RQ2 lies in recognizing that Large Language Models (LLMs)
require both temporal and spatial contexts to provide accurate and contextually relevant code
update suggestions. Temporal context is vital for understanding the sequence and timing of code
changes, allowing LLMs to make suggestions that align with the code’s evolution and maintain
consistency. Without this temporal awareness, LLMs might offer solutions that conflict with earlier
or subsequent modifications, leading to code errors. Spatial context, on the other hand, enables
LLMs to comprehend the intricate relationships and dependencies between different parts of the
codebase. This understanding is crucial for pinpointing where updates are needed and ensuring that
they are applied in a way that preserves code functionality. Therefore, investigating the importance
of these contexts in CodePlan’s planning is fundamental to harnessing the full potential of LLMs
in automating repository-level coding tasks effectively.

Experimental Setup.: To assess the importance of temporal and spatial contexts in CodePlan’s
planning (RQ2), a specific experimental setup is employed. Recall that temporal contexts are tracked
by CodePlan through the maintenance of a list of previous related changes, and these contexts are
subsequently incorporated into the Large Language Model (LLM) prompt.
To measure the significance of these contexts, a controlled experiment is carried out. In this

experiment, the tracking of temporal changes is intentionally halted, and no temporal or spatial
contexts are provided to the LLMduring codemodification tasks. This enables a detailed examination
of how LLM responses are impacted when these essential contexts are omitted. The experiment
also encompasses a comprehensive assessment of various metrics, including code consistency
(block metrics) and code correctness (Diff BLEU and Levenshtein distance). By comparing the
outcomes between CodePlan’s setup with temporal and spatial contexts and the experimental
setup without them, the research aims to precisely quantify the importance of these contexts in
CodePlan’s planning process and their influence on the quality of automated code modifications.

Results Discussion.:
The results regarding the importance of temporal and spatial contexts for CodePlan’s planning

(RQ2) reveal critical insights. As observed in Table 2, when temporal contexts are not considered,
there is a noticeable increase in missed blocks during the code modification process. This increase is
attributed to the Large Language Model (LLM) not making necessary changes to certain code blocks
due to its inability to comprehend the need for those modifications in the absence of temporal
context.

An illustrative example in Figure 8 exemplifies this issue. In this scenario, a correction is required
in the base class’s virtual method based on changes to the overridden method’s signature in the
derived class. However, the LLM, lacking temporal context, does not possess information about the
derived class’s method, leading it to believe that no changes are necessary to the base class method.
This highlights the critical role that temporal context plays in understanding code dependencies
and ensuring accurate updates.

Furthermore, Figure 9 provides another instance where the absence of temporal context impacts
the code modification process. In this case, a "Context" parameter needs to be added to the "Create-
Service()" call within the "Startup()" method. However, since the LLM lacks temporal context, it is
unaware of the signature change to "CreateService()" and, consequently, fails to recognize the need
for updates to all the callers. This omission results in numerous missed updates throughout the
codebase.
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Dataset Approach Matched
Blocks

Missed
Blocks

Spurious
Blocks

Diff
BLEU

Levenshtein
Distance

Oracle
Verdict

C# Migration Task on Int-1 with Temporal and Spatial Contexts

Int-1 CodePlan
(Iter 1 + Iter 2) 151 0 0 1.00 0 ✓ (0)

C# Migration Task on Int-1 without Temporal and Spatial Contexts

Int-1
CodePlan (Iter 1) 112 39 4 0.73 3674 ✗ (34)
CodePlan (Iter 2) 121 30 52 0.53 4522 ✗ (68)
CodePlan (Iter 3) 121 30 54 0.51 4524 ✗ (69)

Table 4. Ablation study with and without temporal/spatial blocks. Without temporal/spatial contexts,
CodePlan is unable to make correct edits.

Fig. 8. Illustration of importance of temporal context. Failure to update LogacyLogger to ModernLogger in
Initialize() method is the results of missing missing temporal context.

It’s crucial to highlight another significant observation: the increase in the count of spurious
blocks when spatial context is insufficient. This phenomenon occurs because, in the absence of
adequate spatial context, the Large Language Model (LLM) may incorrectly perceive missing code
elements and attempt to create them, leading to the generation of spurious code blocks.

An illustrative example in Figure 10 demonstrates this issue. In this scenario, the task is to modify
the "AuthorizeUser()" method by migrating the logging calls from an old logging framework to
a new one. However, due to the lack of spatial context that would specify the existence of the
"GetUserSubscription()" method and the "CurrentUser" property, the LLM attempts to create these
elements as well. Consequently, not only is the logging migration addressed, but the LLM also
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Fig. 9. Illustration of importance of temporal context. Failed update to Startup() method is the results of
missing missing temporal context.

Fig. 10. Illustration of importance of spatial context. Spurious blocks, highlighted in yellow are the results of
missing missing spatial context.

introduces unnecessary code blocks, such as the creation of the "GetUserSubscription()" method
and the addition of "CurrentUser" as a class-level object.
This observation underscores the critical role of spatial context in guiding the LLM’s under-

standing of code structure and relationships. Providing comprehensive spatial context can help
prevent the generation of superfluous code blocks and ensure that code modifications are precise
and aligned with the intended changes.
In summary, the experimental results emphasize the essential nature of temporal and spatial

contexts in CodePlan’s planning. The increase in missed and spurious updates due to the absence
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of temporal and spatial contexts underscores the significance of providing the LLM with a com-
prehensive understanding of code evolution and dependencies through these contexts to ensure
accurate and effective code modifications.

5.3 RQ3: What are the key differentiators that allow CodePlan to outperform baselines
in solving complex coding tasks?

Motivation.: RQ3 seeks to uncover the key differentiators that empower CodePlan to excel in
tackling intricate coding tasks compared to baseline approaches. This research question is moti-
vated by the need to identify and understand the factors that contribute to CodePlan’s superior
performance. Given the increasing complexity of coding tasks, especially those at the repository
level, it becomes crucial to pinpoint the specific aspects that set CodePlan apart from traditional
methods. By discerning these differentiators, the research aims to shed light on the strengths and
advantages of CodePlan, offering valuable insights into how it effectively addresses the challenges
posed by complex coding tasks.

Experimental Setup.: The primary focus here is on qualitative analysis. After conducting code
modifications with both CodePlan and the baseline methods, the results are meticulously examined
through manual inspection. This entails a detailed examination of the changes made by each
approach, with the aim of gaining qualitative insights into the decision-making processes and
the nuances of code modifications. By manually eyeballing and comparing the alterations, the
research seeks to uncover subtle yet crucial distinctions that illuminate the strengths and underlying
mechanisms that give CodePlan its edge in addressing the challenges posed by intricate coding
tasks. This qualitative approach provides a comprehensive understanding of how CodePlan excels
in this context and what sets it apart from conventional methods.

Results Discussion.:

CodePlan’s Strategic Planning and Context Awareness:.
CodePlan’s exceptional performance in handling complex coding tasks can be attributed to its

powerful features, notably its incremental analysis and change-may-impact analysis. These capa-
bilities set it apart from baseline methods like Build-Repair, which primarily focus on maintaining
syntactic correctness while overlooking critical contextual details. To illustrate this, let’s delve
into an example from repository Ext-1 illustrated in Figure 11, where CodePlan is tasked with
migrating the Console.WriteLine method to ITestOutputHelper.WriteLine. This migration
involves a series of changes 1 to 4 as described in the Figure 11. These cascading changes start
from introducing ITestOutputHelper _output as a class-level member, accomplished via LLM
updates.

CodePlan’s change-may-impact analysis proves invaluable in this scenario. It recognizes that
the addition of a new field necessitates modifications to the constructor to ensure proper initializa-
tion. As a result, CodePlan schedules the necessary constructor modification. Consequently, the
constructor Subscriber(...) is correctly updated to accept ITestOutputHelper as a parameter
and initialize the class member _output. This in turn results in a series of changes through the
repository as explained in steps 1 to 4 in the Figure 11.

This example demonstrates how CodePlanmakes methodical and contextually-aware changes to
the repository, thanks to its ability to do change impact analysis and incorporate temporal contexts.
In contrast, Build-Repair, reliant solely on syntactic correctness, fails to even detect the need for
modification in the Subscriber’s constructor. Given that all syntactic rules are adhered to, it does
not prompt a build error and consequently fails to implement changes in steps 2 to 4, as illustrated
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Fig. 11. Illustration of the CodePlan’s plan execution.

in Figure 4. Instead, it solely executes the modification outlined in step 1, resulting in incomplete
code updates.

CodePlan’s distinctive advantage lies in its holistic understanding of code relationships and its
meticulous planning, which ensures the integrity and functionality of the codebase are maintained
throughout complex coding tasks. This qualitative analysis highlights how CodePlan’s nuanced
approach outperforms baselines in handling intricate coding challenges.

Incremental Analysis: Maintaining Relationships with Dependency Graph:.
CodePlan’s exceptional performance in tackling complex coding tasks is attributed to its incre-

mental analysis, which effectively links edits with the underlying dependency graph. Unlike a static
snapshot of code, which may result in an incomplete representation of dependencies, our incre-
mental analysis method ensures that relationships within the dependency graph are maintained
until the affected blocks are modified.
Consider a scenario where a caller function undergoes a renaming process. Traditional static

snapshots would struggle to preserve the caller-callee relationship because, in their view, the caller
has already been renamed. However, CodePlan’s incremental analysis steps in, preserving the
caller-callee relation until the caller function itself undergoes an update. This dynamic approach
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ensures that critical relationships aren’t prematurely severed, allowing for more accurate and
context-aware code modifications.
Another instance of CodePlan’s prowess lies in handling modifications to import statements.

Suppose an import statement originally reads as import numpy, and it’s modified to import numpy
as np. In a static snapshot, this alteration could result in the loss of the "ImportedBy" relationship.
However, CodePlan’s incremental analysis ensures that such vital relationships are maintained,
facilitating precise and comprehensive code updates.

Incremental Analysis: Enhanced Spatial and Temporal Context Extraction:.
CodePlan’s remarkable success in complex coding tasks can be attributed to its proficiency in

extracting spatial context more accurately, thanks to incremental analysis. Attempting to extract
spatial context without the support of incremental analysis often leads to a loss of accuracy and
completeness.

Consider a scenario where a method within the codebase constructs an object of a class, let’s say
"A." However, at some point in the code’s history, "A" was renamed to "B." Traditional methods that
lack incremental analysis may struggle with this situation. When attempting to extract the class
definition, they may encounter a roadblock because, in the current static snapshot, "A" no longer
exists.
However, CodePlan’s incremental analysis comes to the rescue by establishing the crucial link

between the historical context and the present state. It accurately extracts the class definition,
recognizing that the object is now of class "B" due to the earlier temporal edit (the renaming
of "A" to "B"). This holistic approach ensures that spatial context extraction is both precise and
comprehensive, allowing CodePlan to make informed and context-aware code modifications.

Change-may-impact analysis propagates subtle behavioral changes..
One of the key factors differentiating CodePlan’s superior performance in complex coding tasks

is its adeptness at detecting subtle behavioral changes through extensive change-may-impact
analysis. While certain code edits, like modifying method signatures, result in obvious breaking
changes that can be detected by build tools, others induce more nuanced behavioral shifts without
directly breaking the build. These subtle alterations, often overlooked, can significantly affect code
correctness and functionality. For instance, a seemingly minor change in a method’s return value,
from True to False, may invalidate assertions in unit tests.

CodePlan excels in identifying such subtle behavioral transformations that may elude oracles
such as build or static checking tools. Its thorough change-may-impact analysis delves beyond
surface-level modifications, proactively recognizing these inconspicuous shifts. This capability sets
CodePlan apart from baseline methods, which primarily focus on changes related to build success.
Consequently, CodePlan emerges as a powerful solution for addressing complex coding tasks,
ensuring that even the most subtle alterations are meticulously considered, ultimately enhancing
code quality.

Change may-impact analysis maintains cause-effect relationship.. One of CodePlan’s differ-
entiators lies in its proficiency in preserving the cause-effect relationship when handling complex
coding tasks. Traditional build tools are effective at pinpointing breaking changes but often fall
short in identifying the underlying causes and their corresponding effects. For instance, if a method
signature is altered within an overridden method, a typical build tool would flag the issue at the
overridden method’s location, where the error is observed. However, this approach fails to recognize
the underlying cause—the change in the method signature, which should ideally lead to an update
in the corresponding virtual method in the base class.
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In contrast, CodePlan’s change-may-impact analysis excels in maintaining the causal link be-
tween code modifications. When a breaking change is introduced, CodePlan not only identifies
the error but also traces it back to the root cause, establishing the need for subsequent changes.
In the aforementioned example, CodePlan recognizes that the change in the overridden method’s
signature necessitates an update to the corresponding virtual method in the base class. This metic-
ulous preservation of cause and effect sets CodePlan apart from baseline methods, which often
treat issues in isolation without considering the broader context.

Incremental static analysis is lightweight and easy to deploy.. One of the key distinguishing
features that enables CodePlan to outperform baselines in tackling complex coding tasks is its
utilization of lightweight and readily deployable incremental static analysis. In real-world software
development, build systems often prove to be complex and resource-intensive. Traditional build
processes can be quite expensive in terms of computational resources and time, especially when
dealing with large and intricate codebases.

In contrast,CodePlan’s incremental static analysis offers a more efficient and practical alternative.
By focusing on analyzing only the code portions that have been modified, CodePlan significantly
reduces the computational overhead associated with build processes. This approach not only
accelerates the repository-wide editing but also minimizes the resources required for each editing
task.

In summary, CodePlan’s exceptional performance in complex coding tasks can be attributed
to several key differentiators. Firstly, its strategic planning, coupled with its deep understanding
of temporal and spatial contexts, enables CodePlan to make methodical and context-aware code
modifications. Additionally, the system’s ability to maintain relationships within the dependency
graph through incremental analysis ensures the preservation of code correctness and functionality.
CodePlan’s enhanced spatial and temporal context extraction further aids in accurately updating
code elements. Notably, the change-may-impact analysis not only identifies subtle behavioral
changes but also maintains a clear cause-effect relationship between code modifications. Finally,
CodePlan’s lightweight and easily deployable incremental static analysis offer practical advantages,
reducing resource overhead in complex software projects. These combined differentiators empower
CodePlan to excel in solving intricate coding challenges.

6 LIMITATIONS AND THREATS TO VALIDITY
While CodePlan demonstrates significant capabilities, there are certain limitations and potential
threats to the validity of its results. One crucial factor for CodePlan’s success lies in the quality
of the dependency analysis. In statically typed languages like C# and Java, rich code dependency
information can be extracted effectively. However, in dynamically typed languages such as Python
(without type hints) or JavaScript, establishing semantically rich relationships between code blocks
can be more challenging due to the dynamic nature of the code.
Our current implementation of CodePlan primarily handles relations between code blocks

through static analysis. In real-world software systems, numerous dynamic dependencies exist,
including data flow dependencies, complex dynamic dispatching (via virtual functions and dynamic
castings), algorithmic dependencies (e.g., when input lists are expected to be sorted), and various
execution dependencies (such as multi-threading and distributed processing). Addressing these
dynamic dependencies will be a crucial focus of our future work.
We selected multiple repositories across two challenging tasks (migration and temporal edits)

and two languages (C# and Python) to evaluate the generality of CodePlan. These repositories
and tasks are representative of real-world usecases. However, given the complexity of setting up
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each experiment, our evaluation is restricted to a few repositories. More experimentation will be
required to probe the strengths and weaknesses of CodePlan.

WhileCodePlan excels in planning and editing for programming language repositories, enterprise
software systems often comprise various other artifacts like configuration files, metadata files,
project setting files, external dependencies, and more. A comprehensive repository-level editing
approach, particularly for tasks like software migrations, necessitates the ability to edit these
additional artifacts. This calls for an evolution of dependency graphs to include nodes and relations
encompassing all these diverse artifacts, and change-may-impact analysis that spans across them.

CodePlan currently relies on Large Language Models (LLMs) to utilize the necessary context
information for making code edits. It trusts the LLM’s response for change-may-impact analysis. In
cases where the LLM response is incorrect or spurious, it may lead to erroneous updates in the
repository. While running CodePlan in multiple iterations in our experiments helped rectify such
issues, there may be instances where this approach may not suffice.
In terms of CodePlan’s update strategy, it currently focuses on updating one block at a time.

While this approach aligns with our current design choices, there may be scenarios where it would
be more efficient or necessary to implement multiple simultaneous changes. More sophisticated
techniques for handling multiple block updates (within the same file or across different files) and
change propagation will be a key area of exploration in our future work.
Although our current methodology employs zero-shot prompting, there exists potential for

extension to include few-shot examples, Chain of Thought (CoT), and other techniques. These
extensions represent a promising avenue for future research.

7 RELATEDWORK

LLMs for Coding Tasks. A multitude of LLMs [10, 19, 21, 24, 28, 30, 35, 57, 73–75, 80] have been
trained on large-scale corpora of source code and natural language text. These have been used to
accomplish a variety of coding tasks. A few examples of their use include program synthesis [50, 56],
program repair [11, 43, 79], vulnerability patching [60], inferring program invariants [62], test
generation [69] and multi-task evaluation [72]. However, these investigations are performed on
curated examples that are extracted from their repositories and are meant to be accomplished
with independent invocations of the LLM. We consider a different class of tasks posed at the
scale of code repositories, where an LLM is called multiple times on different examples which
are inter-dependent. We monitor the results of each LLM invocation within the repository-wide
context to identify future code change obligations to get the repository to a consistent state, e.g.,
where the repository is free of build or runtime errors.

Automated Planning. Automated planning [37, 67] is a well-studied topic in AI. Online plan-
ning [67] is used when the effect of actions is not known and the state-space cannot be enumerated a
priori. It requires monitoring the actions and plan extension. In our case, the edit actions are carried
out by an LLM whose results cannot be predicted before-hand and the state-space is unbounded.
As a consequence, our adaptive planning is an online algorithm where we monitor the actions and
extend the plan through static analysis. In orthogonal directions, [42] uses an LLM to derive a plan
given a natural language intent before generating code to solve complex coding problems and [86]
performs lookahead planning (tree search) to guide token-level decoding of code LMs. Planning
in our work is based on analyzing dependency relations and changes to them as an LLM makes
changes to a code repository.

Analysis of Code Changes. Static analysis is used for ensuring software quality. It is expensive to
recompute the analysis results every time the code undergoes changes. The field of incremental
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program analysis offers techniques to recompute only the analysis results impacted by the change.
Specialized algorithms have been developed for dataflow analysis [18, 68], pointer analysis [84],
symbolic execution [63], bug detection [52] and type analysis [27]. Program differencing [16, 46, 48]
and change impact analysis [17, 41] determine the differences in two program versions and the
effect of a change on the rest of the program. The impact of changes has been studied for regression
testing [65], analyzing refactorings [33] and assisting in code review [13, 36]. We analyze the code
generated by an LLM and incrementally update the syntactic (e.g., parent-child) and dependency
(e.g., caller-callee) relations. We further analyze the likely impact of those changes on related code
blocks and create change obligations to be discharged by the LLM.

Spatial and Temporal Contextualization. As discussed in the Introduction, LLMs benefit from
relevant context derived from other files in the repository and from past edits. We provide both
these pieces of information to the LLM by tracking the code changes and dependency relations.

Learning Edit Patterns. Many approaches have been developed to learn edit patterns from
past edits or commits in the form of rewrite rules [31], bug fixes [15, 20], type changes [45],
API migrations [49, 82] and neural representations of edits [83]. Approaches such as [53] and
[54] synthesize context-aware edit scripts from user-provided examples and apply them in new
contexts. Other approaches observe the user actions in an IDE to automate repetitive edits [55] and
temporally-related edit sequences [87]. We do not aim to learn edit patterns and we do not assume
similarities between edits. Our focus is to identify effects of code changes made by an LLM and to
guide the LLM towards additional changes that become necessary.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced CodePlan, a novel framework designed to tackle the challenges of
repository-level coding tasks, which involve pervasive code modifications across large and inter-
dependent codebases. CodePlan leverages incremental dependency analysis, change may-impact
analysis, and adaptive planning to orchestrate multi-step edits guided by Large Language Models.
We evaluated CodePlan on diverse code repositories with varying complexities and sizes, including
both internal proprietary repositories and public GitHub repositories in C# and Python for migration
and temporal edit tasks. Our results demonstrated that CodePlan outperforms baseline methods,
achieving better alignment with the ground truth. In conclusion, CodePlan presents a promising
approach to automating complex repository-level coding tasks, offering both productivity benefits
and accuracy improvements. Its success in addressing these challenges opens up new possibilities
for efficient and reliable software engineering practices.
While CodePlan has shown significant promise, there are several avenues for future research

and enhancements. First, we aim to expand its applicability to a broader range of programming
languages and code artifacts, including configuration files, metadata, and external dependencies,
to provide a more holistic solution for repository-level editing. Additionally, we plan to explore
further customization of CodePlan’s change may-impact analysis. This could involve incorporating
task-specific impact analysis rules, either through rule-based methods or more advanced machine
learning techniques, to fine-tune its editing decisions for specific coding tasks. Furthermore, we will
address the challenge of handling dynamic dependencies, such as data flow dependencies, complex
dynamic dispatching (via virtual functions and dynamic castings), algorithmic dependencies (e.g.,
when input lists are expected to be sorted), and various execution dependencies (such as multi-
threading and distributed processing), to make CodePlan even more versatile in addressing a wider
range of software engineering tasks.
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