
Semantic Similarity Search for Source Code Plagiarism Detection:
An Exploratory Study

Fahad Ebrahim
Department of Computer Science

The University of Warwick
Coventry, UK

Fahad.Ebrahim@warwick.ac.uk

Mike Joy
Department of Computer Science

The University of Warwick
Coventry, UK

M.S.Joy@warwick.ac.uk

ABSTRACT
Source code plagiarism detection (SCPD) is a crucial challenge in
computer science education that affects academic integrity. It can
be considered as an Information Retrieval (IR) task. One of the IR
approaches is the Semantic Similarity Search (S-3), which aims to
retrieve related results, given a query. It can be applied to SCPD by
obtaining the most similar pairs given a large collection of codes.

The paper presents an exploratory study that examines the utili-
sation of S-3 in the context of the SCPD task. So, given the source
code reuse dataset (SOCO) written in Java/C++, the task is to re-
trieve the most similar (potentially plagiarised) pairs of codes. Tech-
nically, S-3 is based on vector search. So, embedding vectors gen-
erated by the major Code Pre-Trained Models (CodePTMs) were
used as features of the conducted experiments. The accuracy of
the S-3 approach exceeded the other SOCO-IR baselines in most
of the CodePTMs without any training in terms of F1 score. The
CodePTMs that incorporated multiple representations produced
robust embeddings.

For improved accuracy metrics, several experiments were con-
ducted to train the embedding models in both supervised and unsu-
pervised manners. The results concluded that overall performance
could improve slightly after supervised training due to the lim-
ited training set of the SOCO dataset. Unsupervised training tests
had a negative impact on accuracy. The advantage of the S-3 is
that it is lightweight and fast with the ability to produce excellent
performance.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Unsupervised learning; Supervised learning by classification; • Infor-
mation systems → Similarity measures; Language models; •
Software and its engineering;

KEYWORDS
Source Code Plagiarism Detection, Information Retrieval, Code
Pre-Trained Models, Software Engineering, Computer Science Edu-
cation, Code Similarity.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0600-4/24/07
https://doi.org/10.1145/3649217.3653622

ACM Reference Format:
Fahad Ebrahim and Mike Joy. 2024. Semantic Similarity Search for Source
Code Plagiarism Detection: An Exploratory Study. In Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2024), July 8–10, 2024, Milan, Italy. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3649217.3653622

1 INTRODUCTION
Plagiarism is one of the critical issues in computer science educa-
tion. Plagiarism in programming assignments can be denoted as
Source Code Plagiarism [8] where a student uses someone’s code
without permission or knowledge. Detecting plagiarism achieves
academic integrity and reduces the ethical and social consequences
of committing plagiarism. Automation of the process would be
time-efficient for instructors.

Source Code Plagiarism Detection (SCPD) can be viewed as a
classification task where pairs of codes are classified whether they
are plagiarised or not. SCPD can also be considered as a clustering
task, where similar files can be grouped into clusters. Therefore,
Machine Learning (ML) and Deep Learning (DL), whether in a
supervised or unsupervised manner, can be utilised in the field of
plagiarism detection. As the goal of SCPD is to identify the most
similar files, it can be treated as an Information Retrieval (IR) task.

Natural Language Processing (NLP) is a subfield of Artificial
Intelligence (AI) that seeks to make the machine understand natural
written text as humans do [6]. To understand text, machines need
to convert it into numbers or vectors, referred to as embeddings.
Word embeddings are commonly used in NLP as a pre-processing
step for different tasks to grab the context of a particular word.
Vector embeddings are one of the representations of the source
code [5].

The emergence of Pre-Trained Models (PTMs) greatly impacted
the area of NLP and created a research field of their own. PTMs aim
to train the models with large training data, which results in better
generalisation. Then, it can be fine-tuned for smaller downstream
tasks. There are several PTMs reported in the literature ([26],[35]).
One of the common PTMs is Bidirectional Encoder Representations
from Transformers (BERT) [9]. BERT aims to understand the con-
textual meaning of words. These can be tuned in the case of having
new small training data, as it was previously trained on a large
corpus of data. This is an advantage in SCPD, as finding large public
data is challenging due to the legal and ethical aspects.

Then, domain-specific pre-trained models for Programming Lan-
guages (PLs) or Software Engineering (SE) have been developed for
different tasks [27] as part of AI for Software Engineering (AI4SE).

360

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649217.3653622
https://doi.org/10.1145/3649217.3653622
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649217.3653622&domain=pdf&date_stamp=2024-07-03

ITiCSE 2024, July 8–10, 2024, Milan, Italy Fahad Ebrahim and Mike Joy

AI4SE tasks can be divided into code understanding and code gener-
ation. There are various tasks related to code understanding, such as
code summarisation, code completion, and code similarity detection.
One of the first AI4SE models was CodeBERT [10], which is an ex-
tension of BERT for source code tasks. CodeBERT was mainly used
for natural language code search and code documentation. These
code models can be called CodePTMs. Robust embeddings can be
extracted from these models and can serve as reliable features.

IR aims to obtain relevant results given a user request. One
stage related to IR is search. Search can involve lexicals and/or
semantics. Lexical search is limited to words, while semantic search
considers meaning and context. Semantic search can be symmetric
or asymmetric depending on the length of the text and the query.
If they have a similar length, they would be symmetric, otherwise
asymmetric. The task of SCPD can be represented as a symmetric
similarity search where the most similar pairs of codes need to
be retrieved. The IR process also involves similarity estimation,
matching, and ranking.

This work is an exploratory study that inspects the effective-
ness of Semantic Similarity Search (S-3) in the task of plagiarism
detection. The paper explores the embeddings generated by code
pre-trained models and uses them as vectors for the semantic simi-
larity search to extract the most similar pairs of codes. The work
also explores the impact of supervised and unsupervised training
of the embeddings on accuracy metrics. The approach taken is sim-
ple, lightweight, and yet produces competitive accuracy metrics.
All experiments are conducted on the public Source Code Reuse
(SOCO) dataset [12] containing two programming languages (PLs),
namely Java and C/C++.

The paper is organised as follows: section 2 covers the related
work, section 3 presents the experimental study, section 4 discusses
the results, and the paper ends with the conclusion, limitations, and
future work.

2 RELATEDWORK
2.1 SCPD surveys
There are several existing surveys on source code plagiarism de-
tection in the literature, such as a 2019 systematic review [2] of
plagiarism in programming assignments in an academic context,
which covered methods such as assignment design, grading meth-
ods, available tools, and several other strategies. Furthermore, ethi-
cal aspects related to these types of plagiarism were discussed. A
subsequent material survey [3] reviewed 32 articles in the field of
plagiarism. They reviewed obfuscation methods, SCPD approaches,
and explored available tools. The approaches were categorised on
the basis of metrics, texts, tokens, graphs, and dynamics along with
each similarity measurement. Another review paper [22] presented
an overview of similarity detection techniques and categorised
the techniques based on attribute counting, structure, and hybrid
methods, and surveyed the available approaches based on these
criteria. The study of [4] aimed to answer multiple questions re-
lated to SCPD. They explored techniques, PLs, and tools. A further
survey [30] reviewed the definitions, obfuscation techniques, tools,
algorithms, evaluations, and datasets of source code similarity de-
tection through a systematic review. The most recent study [45]

conducted a systematic review of the literature on source code simi-
larity and considered SCPD and code cloning as applications. Tools,
approaches, benchmarks, and datasets were discussed in depth.

2.2 SCPD Information Retrieval
Source code plagiarism detection approaches can be divided into
different categories of approach. String-based approaches (or token-
or text-based approaches) depend on treating the source code as
plain text. Strings and text are synonyms, and they can be divided
intomultiple tokens. These approaches can be divided into N-grams,
string-matching, and attribute-counting algorithms. An N-gram
is a way of repeating n sequences in a text, and comparing these
sequences can assist in plagiarism detection. String-matching algo-
rithms aim to identify certain similar patterns that can indicate pla-
giarism. Attribute counting captures certain features of the source
code by capturing the frequency of occurrences of various parts of
the source code, such as identifiers and keywords.

A method related to attribute counting is Information Retrieval
(IR). IR involves extracting a relevant piece of information from a
set of documents. The authors in [21] explored different IR methods
used in source code plagiarism. They initially created a dataset
consisting of 467 files from 7 introductory Java tasks. They com-
pared three methods: Vector Space Model (VSM), Latent Semantic
Indexing (LSI), and Language Model (LM) on their dataset. The
baseline was Running-Karp-Rabin Greedy-String-Tiling (RKRGST)
[41]. They concluded that VSM was the technique that performed
best compared to their baseline.

2.3 SOCO IR
Several works have used the SOCO dataset. Most of the papers
focused on treating code reuse as classification, but as this paper
is related to IR, only the works related to IR will be discussed and,
therefore, compared to our work.

One of the IR approaches in SOCO was [13], which created a
combination of a Java parser, an Abstract Syntax Tree (AST), and
bag-of-words to be the input to a Language Model (LM) for retrieval
on the Java set of the dataset. This work was named DCU.

Another work [14] used a method of two stages: IR and classifi-
cation. Bag-of-words, LM, and AST were used to index candidates
and then a classifier was applied to get the best pair of similar codes.
They named the models LM, LM_AST, and FLM_AST based on the
index type. This work experimented only with the Java subset of
the dataset.

2.4 SCPD Software
Several softwares have been developed to assist with source code
plagiarism detection. JPlag [34] is open-source software available
for public use, and currently supports 11 PLs. Some of the supported
languages are Java, C++, C, Python, and R. The comparison algo-
rithm used is Greedy String Tiling [41], which basically compares
substrings of codes with other strings. Another software is MOSS
(Measure of Software Similarity). MOSS supports more than 24
PLs. MOSS employs a document fingerprinting algorithm known as
Winnowing [39] where the document fingerprint is generated using
the concept of hashing. The most recently developed software is
Dolos [25]. Dolos utilises a hybrid approach containing tree-sitter

361

Semantic Similarity Search for Source Code Plagiarism Detection: An Exploratory Study ITiCSE 2024, July 8–10, 2024, Milan, Italy

parsers, a string-matching algorithm and indexing These parsers
convert the code into an AST that captures the structure of the
code. The fingerprint is generated using the concepts of hashing,
k-grams and the Winnowing algorithm

2.5 Code Pre-Trained Models
There are different ways to represent source codes, as surveyed
in [38]. One way to represent codes is through tokenisation and
encoding to vectors. These vectors can be sparse, containing a large
number of zeros, or dense, containing a compressed representation
of the code. The pre-trained models have the ability to generate
contextual dense vectors.

General PTMs can be divided into various categories. One cate-
gory involves static models such as Word2vec [7], Glove [33] and
FastText [20]. The other category involves contextual models such
as BERT [9], RoBERTa [24], BART [23], T5 [36], and GPT-4 [32].
The capabilities of the latter category are higher with more robust-
ness and semantic representations. In two articles [35],[26], lists of
PTMs have been explored.

Then, domain-specific models for source code have been derived
from the general NLP models. CodeBERT [10], GraphCodeBERT
[17], and UniXcoder [16] follow the same architecture as BERT,
PLBART [1] was derived from BART, CodeBERTa [42] was derived
from RoBERTa, and CodeT5 [40] was derived from T5. These mod-
els were trained on huge source code corpora and have been used
for various downstream tasks such as code summarisation, doc-
umentation, and bug detection. This work would focus on these
six models. The following papers discuss the source code PTM
[27–29, 43, 44, 46] and various tasks related to these models.

A comparison between the models selected for this work can
be seen in Table 1 based on the number of programming lan-
guages (#PL), the input, whether it is PL or Natural Language
(NL) or another representation, the number of parameters (in mil-
lions), the training dataset(s) and the architecture (Encoder or En-
coder/Decoder). All these models have a maximum length of 512,
12 layers, 768-dimensional hidden states, and 12 attention heads,
except CodeBERTa, which has 6 layers. All models except PLBART
were trained mainly on the CodeSearchNET dataset, which is a
large corpus of six programming languages [19] (Python, Java, Go,
JavaScript, PHP, and Ruby). GraphCodeBERT considers the seman-
tic structure of the code with a data flow graph. UniXcoder takes
comments and AST into the representation of the source code and
has two variations based on the number of PLs whether they are 6
or 9. PLBART considers the data flow graph along with the style in
the overall representation of the code.

3 EXPERIMENTAL STUDY
3.1 Semantic Similarity Search
The Semantic Similarity Search approach in this work follows three
stages. Firstly, the source codes were converted into embeddings
extracted from the models. Secondly, the similarity between the
embeddings was measured. Thirdly, the scores, along with the pairs,
were ranked and obtained as seen in Figure 1. The embeddings were
extracted with the sentence transformers [37] via mean pooling.

Measurement of semantic similarity was estimated using cosine
similarity. It is one of the most widely used metric to estimate

Figure 1: S-3 stages

similarity in NLP. It is the angle (𝜃) calculated by multiplying two
vectors A and B and dividing them by the product of their norms ac-
cording to Equation 1. Higher values mean more similarity between
two vectors.

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠 (𝜃) = 𝐴.𝐵

| |𝐴| |.| |𝐵 | | (1)

Another similarity measurement that will be used later in the
paper in supervised training is the Euclidean distance. Euclidean dis-
tance is the square root of the summation of the squared difference
of two points in an𝑀 dimensional space according to Equation 2.
A lower value of the distance means a shorter distance and greater
similarity between a pair of files.

𝑑 =

√√√
𝑀∑︁
𝑖=1

(𝑥2𝑖 − 𝑥1𝑖)2 (2)

For ranking and retrieval, the highest similarity scores were
selected among all unique combinations of files for evaluation.

3.2 Dataset
There is a dearth of public source code plagiarism datasets due
to ethical issues in data collection. Therefore, this work uses the
public SOCO dataset that contains two sets: training and testing,
two programming languages (Java and C++/C), and six scenarios
per PL (A1, A2, B1, B2, C1, and C2). Details of the dataset can be seen
in Table 2. The experiments did not include scenarios C1 and C2
in Java and C/C++, respectively, as there were no reuse cases. The
ratio of instances where reuse occurs to instances where it does not
is minimal, which makes the task challenging. Another challenge is
the limited training data, as the number of examples is 259 and 79
in Java and C/C++, respectively. We denote the maximum number
of similar codes in the same group by 𝐾 . The value of 𝐾 in the Java
test set was equal to 2 in all scenarios. The value of 𝐾 in the set of
tests in C/C++ was 4 for A1 and A2 and 3 for the rest. We denote
the number of reuse cases per scenario by 𝑁 .

3.3 Evaluation
The evaluation of the results was based on the classification accu-
racy metrics. The metrics used were Precision (P), Recall (R), and
the F1 score in equations 3, 4, and 5. The authors of the dataset [12]
provided an evaluation script that was used to obtain the metrics
values. Scores were ranked according to the F1 score.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (4)

𝑓 1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅 (5)

362

ITiCSE 2024, July 8–10, 2024, Milan, Italy Fahad Ebrahim and Mike Joy

Model #PL Input #parameters Training Dataset Architecture
CodeBERT 6 NL+PL 125M CodeSearchNET Encoder (BERT)

GraphCodeBERT 6 NL+PL+Data flow 125M CodeSearchNET Encoder (BERT)
UniXcoder 6/9 NL+PL+Comment+AST 125M CodeSearchNET + C4 + Stackoverflow Encoder/Decoder
PLBART 7 NL+PL +Data flow+Style 140M Github + Stackoverflow Encoder (BART)
CodeT5 6 NL+PL 220M CodeSearchNET + BigQuery Encoder/Decoder (T5)

CodeBERTa 6 NL+PL 84M CodeSearchNET Encoder (RoBERTa)
Table 1: Code Pre-Trained Models

Lang/Set
Train Test

Files Re-use A1 A2 B1 B2 C1 C2 Overall

Files Re
use Files Re

use Files Re
use Files Re

use Files Re
use Files Re

use Files Re
use

Java 259 84 3241 54 3093 47 3268 73 2266 34 124 0 88 14 12080 222
C++/C 79 26 5408 99 5195 86 4939 86 3873 43 335 8 145 0 19895 322

Table 2: SOCO Dataset details

3.4 Experimental Setup
Several experiments were conducted to answer the following ques-
tions:

RQ1: What is the effectiveness of source code plagiarism
detection when utilising cosine similarity to compare
vector representations from various pre-trained code
models and selecting the pairs with the highest simi-
larity?

RQ2: Could the performance of the task be enhanced through
the application of supervised learning?

RQ3: What impact would unsupervised training with Sim-
CSE have on the task’s performance?

The following are the summarised steps of the S-3 approach used
for the evaluation of the models without any training.

(1) Encode the codes into vector representations.
(2) Compare each code with all other codes and obtain the simi-

larity score. Select each code as a query and get the top-K
results.

(3) The output of the previous steps represents a table of code 1,
code 2, and similarity score.

(4) Sort the table in descending order and retrieve the highest
N pairs after removing duplicates.

(5) Use the evaluation script provided by the authors of the
SOCO dataset to get the values of the classification accuracy
metrics.

The goal of training the embeddings is to get similar codes closer
in the vector space, while dissimilar codes farther apart in the
vector space. The training set in the dataset is used for that purpose.
Only the extracted embeddings of the models would be fine-tuned
keeping the model weights intact.

For supervised training, the loss was the triplet loss [18] accord-
ing to Equation 6. The components of the equation are the anchor
𝐴, which represents the reference point, 𝑃 is a positive point that
has the same class as 𝐴, 𝑁 is a negative point, and 𝛼 represents a
margin. The distance metric (𝑑) used here is the Euclidean distance.

The aim of the triplet loss is to maximise the distance between
the positive and negative points related to an anchor. There are
different types of triplet loss. The one used in the experiments per-
formed was the batch-all-triplet loss, which computes the loss of
all possible triplets. Other configured parameters were the number
of epochs equal to 1, and the batch size was 16.

L(𝐴, 𝑃, 𝑁) = max{𝑑 (𝐴, 𝑃) − 𝑑 (𝐴, 𝑁) + 𝛼, 0} (6)
One of the first unsupervised embedding training techniques was

SimCSE [15]. SimCSE trains embeddings using contrastive learning.
The loss was the Multiple Negative Ranking (MNR) referred to by
InfoNCE [31] according to Equation 7. The notations used in the
equation are: 𝑠𝑖𝑚 which represents a similarity function (cosine
similarity) of the embeddings, and (𝜏) which represents a tempera-
ture. The numerator in the logarithm represents the positive points
while the denominator represents the negative points. Positive pairs
are created with data augmentation. The aim is to have the mini-
mum loss by imposing a penalty on the model when the similarity
between similar sentences is low and providing a reward when
the similarity is high. The maximum function would ensure zero
output in case of negative values. For the SimCSE experimental
setup, the configurable parameters were the following: the number
of epochs was 10, the batch size was 16, and the learning rate was
5 × 10−5.

LSimCSE (𝑥𝑖 , 𝑥 𝑗) = − log
exp(sim(𝑓 (𝑥𝑖), 𝑓 (𝑥 𝑗))/𝜏)∑𝑁

𝑘=1 exp(sim(𝑓 (𝑥𝑖), 𝑓 (𝑥𝑘))/𝜏)
(7)

4 RESULTS
All results of the experiments can be seen in Table 3. The table rep-
resents the classification accuracy metrics for each dataset scenario
and the overall metrics for all scenarios for both programming
languages (Java and C/C++) using various CodePTMs in three
different setups (without training, supervised training, and unsu-
pervised training). It can be seen that all the metrics values are
equal (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑓 1) . This is due to the retrieval of

363

Semantic Similarity Search for Source Code Plagiarism Detection: An Exploratory Study ITiCSE 2024, July 8–10, 2024, Milan, Italy

Tests/PL Model
Accuracy Metrics (P/R/F1)

Java C/C++
A1 A2 B1 B2 C2 Overall A1 A2 B1 B2 C1 Overall

Without
Training

CodeBERT 0.574 0.511 0.658 0.529 1 0.608 0.424 0.372 0.419 0.488 0.625 0.422
GraphcodeBERT 0.630 0.574 0.685 0.559 1 0.649 0.485 0.419 0.430 0.535 0.75 0.466

UniXcoder 0.611 0.596 0.781 0.765 1 0.712 0.475 0.453 0.442 0.465 0.75 0.466
CodeBERTa 0.648 0.648 0.781 0.794 1 0.734 0.465 0.395 0.419 0.488 0.750 0.444
CodeT5 0.648 0.596 0.740 0.706 1 0.698 0.434 0.407 0.442 0.488 0.750 0.444
PLBART 0.667 0.681 0.836 0.824 1 0.770 0.434 0.349 0.442 0.442 0.750 0.422

Supervised
Training

CodeBERT 0.574 0.532 0.658 0.500 1 0.608 0.434 0.384 0.407 0.465 0.750 0.425
GraphcodeBERT 0.685 0.638 0.726 0.559 1 0.689 0.475 0.430 0.465 0.535 0.750 0.475

UniXcoder 0.741 0.723 0.781 0.735 1 0.766 0.525 0.500 0.442 0.512 0.750 0.500
CodeBERTa 0.704 0.660 0.767 0.794 1 0.748 0.475 0.419 0.419 0.488 0.750 0.453
CodeT5 0.648 0.596 0.726 0.706 1 0.694 0.455 0.430 0.419 0.465 0.625 0.444
PLBART 0.685 0.745 0.808 0.824 1 0.779 0.465 0.430 0.442 0.512 0.750 0.463

Unsupervised
Training
(SimCSE)

CodeBERT 0.556 0.511 0.671 0.529 1 0.608 0.313 0.302 0.360 0.442 0.250 0.339
GraphcodeBERT 0.519 0.489 0.616 0.500 1 0.572 0.444 0.360 0.407 0.488 0.250 0.413

UniXcoder 0.611 0.617 0.712 0.618 1 0.671 0.444 0.384 0.360 0.465 0.500 0.410
CodeBERTa 0.648 0.617 0.795 0.735 1 0.725 0.455 0.372 0.407 0.512 0.750 0.435
CodeT5 0.611 0.574 0.712 0.706 1 0.676 0.424 0.360 0.395 0.442 0.500 0.404
PLBART 0.611 0.638 0.740 0.618 1 0.685 0.364 0.314 0.360 0.419 0.500 0.360

Table 3: S-3 SOCO All results

the exact N pairs of the plagiarised candidate pairs. Therefore, the
number of output pairs is equal to the number of actual plagiarism
cases.

For the results related to the use of the models’ embeddings
without any training, CodeBERT had the lowest metrics. For the
other models, they produced excellent metrics. The highest perfor-
mance in Java was with PLBART (0.77), while in C/C++ UniXcoder
performed the best (0.466). CodeBERT was plainly trained on code
with masking and, therefore, does not capture well the semantics
of codes. The developers of PLBART and UniXcoder focused on
creating robust embeddings for unseen data and tested the gener-
alisation of the embeddings. One of the tasks that UniXcoder was
tested on was the zero-shot search, where embeddings can be used
for unseen data for code search. These are the reasons behind the
high performance of these two models in the SCPD task. It can also
be seen that the models that have more representation of the source
code, such as PLBART and UniXcoder, generated robust contextual
embeddings.

For supervised training, two models, namely CodeBERT and
CodeT5, did not benefit from training in Java. Training of CodeBERT
should be done using Masked Language Modelling (MLM), and
training the embeddings would not yield better results. CodeT5
uses an encoder/decoder architecture, and training only the encoder
part limits its capabilities. PLBART remained the bestmodel for Java,
yielding an accuracy of 0.779. The accuracy metrics were slightly
improved with supervised training given the limited training set
of the SOCO dataset. UniXcoder was the model that benefited the
most from the training in C/C++ reaching an accuracy of 0.5. Other
models also achieved higher accuracy metrics compared to using
them out-of-the-box.

Again, unsupervised training had no effect on CodeBERT for
the same reasons. However, it had a negative effect on the other

models in Java and C/C++, reducing their performance. The main
reason is that SimCSE focuses on positive pairs, which are limited
in the training set. Furthermore, the high imbalance of the dataset
affected the performance of SimCSE.

Several works, as mentioned previously, have used IR approaches
for the SOCO dataset. There are two baselines: (1) JPlag and (2)
the work of [11] that measured the cosine similarity of 3-grams
of source codes. The two baseline results were reported in the
original dataset paper [12]. Moreover, the work of DCU [13] created
a language model based on parsing, AST and LM. Also, the work
of [14] created three models LM (based on IR), LM_AST (indexing
with AST) and FLM_AST (indexing with an IR field value and AST).
This work would also compare MOSS and Dolos software using
them with the same setup by selecting the highest N pairs in terms
of similarity with the default parameters, as different setups with
different parameters can lead to different results.

For the Java test set as seen in Figure 2, the maximum F1 score
was 0.692 in the DCU. Without any training, all the models ex-
ceeded this score except CodeBERT and GraphCodeBERT. With the
supervised training, the maximum score reached was 0.779 using
PLBART-tuned embeddings.

For the C/C++ test set as seen in Figure 3, this work would be
compared only to the baselines, MOSS, and Dolos. The maximum
F1 score belonging to MOSS was 0.5. The maximum score reached
with supervised training was 0.5 which is the highest score on a
par with MOSS.

Therefore, this work’s simple approach exceeds all these works
in terms of the F1 Score in Java and results in the highest F1 Score
in C/C++, along with MOSS.

364

ITiCSE 2024, July 8–10, 2024, Milan, Italy Fahad Ebrahim and Mike Joy

Figure 2: SOCO Java results

Figure 3: SOCO C/C++ results

After conducting various experiments with six code pre-trained
models and three different scenarios (no training, supervised train-
ing, and unsupervised training), we would be able to answer the
research questions raised in this work:
RQ1: What is the effectiveness of source code plagiarism

detection when utilising cosine similarity to compare
vector representations from various pre-trained code
models and selecting the pairs with the highest simi-
larity?
• The simple S-3 method achieved an excellent performance
compared to the other approaches.

• CodeBERT had the lowest F1 score in both PLs.
• Models having multiple representations, such as PLBART
and UniXcoder, produced better features.

• Although the models were not initially trained in C/C++,
they provided excellent performance, especially UniX-
coder and PLBART.

• The small CodeBERTa model achieved excellent accuracy,
even with its smaller number of configurable parameters.

RQ2: Could the performance of the task be enhanced through
the application of supervised learning?
• Supervised learning had no effect onCodeBERT andCodeT5
in both Java and C/C++.

• The other models had benefited from supervised learning,
achieving better overall scores.

• The model that was highly affected by the training was
UniXcoder.

RQ3: What impact would unsupervised training with Sim-
CSE have on the task’s performance?
• Unsupervised training with SimCSE had a negative im-
pact on the performance on all models on both Java and
C/C++ except CodeBERT which had no effect. This could
be attributed to the fact that there were few positive pairs
as the dataset was imbalanced.

5 CONCLUSION
Source code plagiarism is a common issue in the field of computer
science education. Semantic search is about having a query and
retrieving similar code files. In this work, given a collection of
source codes, semantic similarity was applied to retrieve the most
similar pairs of codes. This work started by exploring the robustness
of the embeddings generated by Code Pre-Trained Models based on
the source code reuse dataset (SOCO). The impact of supervised and
unsupervised training training was investigated. The embeddings
without any training exceeded the accuracy of plagiarism detection
software (JPlag) and other information retrieval methods on the
same dataset. Supervised training had a positive impact on accuracy,
while unsupervised training with SimCSE had a negative impact
on accuracy.

A limitation of semantic search is that it always returns results
and scores, even if there are no relevant answers to a query. Another
limitation is that the values of K and N are better known from the
start. These limitations could be eliminated by using a similarity
threshold, which can be an idea for future work. Moreover, there
are different ways to train embedding models in an unsupervised
manner. Therefore, more experiments could be conducted to check
the effect of these techniques. Also some other techniques, like re-
ranking and chunking, can also be explored. Moreover, instead of a
similarity search with the calculation of cosine similarity, vector
search would be an excellent application for SCPD and can be
further investigated. This work focused on pre-ChatGPT datasets
and is not compatible with detecting ChatGPT-generated code. A
new research field of AI-generated text detection is currently active,
and another field specific to code would be an interesting area for
future work.

ACKNOWLEDGMENTS
The authors express their gratitude to the anonymous reviewers for
providing constructive feedback that helped enhance the quality of
the paper. Additionally, they would like to extend their thanks to
Rien Maertens, one of the developers of the Dolos software, for his
valuable assistance in providing the script required to benchmark
the SOCO dataset.

365

Semantic Similarity Search for Source Code Plagiarism Detection: An Exploratory Study ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668. https://doi.org/10.18653/v1/2021.naacl-main.211

[2] Ibrahim Albluwi. 2019. Plagiarism in programming assessments: a systematic
review. ACM Transactions on Computing Education (TOCE) 20, 1 (2019), 1–28.

[3] Cîmpeanu Alexandra-Cristina and SL Alexandru Olteanu. 2022. Material Survey
on Source Code Plagiarism Detection in Programming Courses. In 2022 Interna-
tional Conference on Advanced Learning Technologies (ICALT). IEEE, 387–389.

[4] Rodrigo C Aniceto, Maristela Holanda, Carla Castanho, and Dilma Da Silva.
2021. Source Code Plagiarism Detection in an Educational Context: A Literature
Mapping. In 2021 IEEE Frontiers in Education Conference (FIE). IEEE, 1–9.

[5] Zimin Chen and Martin Monperrus. 2019. A literature study of embeddings on
source code. arXiv preprint arXiv:1904.03061 (2019).

[6] KR1442 Chowdhary. 2020. Natural language processing. Fundamentals of artificial
intelligence (2020), 603–649.

[7] Kenneth Ward Church. 2017. Word2Vec. Natural Language Engineering 23, 1
(2017), 155–162.

[8] Georgina Cosma and Mike Joy. 2008. Towards a definition of source-code plagia-
rism. IEEE Transactions on Education 51, 2 (2008), 195–200.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

[11] Enrique Flores, Alberto Barrón-Cedeno, Paolo Rosso, and Lidia Moreno. 2011.
Towards the detection of cross-language source code reuse. In International
Conference on Application of Natural Language to Information Systems. Springer,
250–253.

[12] Enrique Flores, Paolo Rosso, Lidia Moreno, and Esaú Villatoro-Tello. 2014. On
the detection of source code re-use. In Proceedings of the Forum for Information
Retrieval Evaluation. 21–30.

[13] Debasis Ganguly and Gareth JF Jones. 2014. DCU@ FIRE-2014: an information
retrieval approach for source code plagiarism detection. In Proceedings of the
Forum for Information Retrieval Evaluation. 39–42.

[14] Debasis Ganguly, Gareth JF Jones, Aarón Ramírez-De-La-Cruz, Gabriela Ramírez-
De-La-Rosa, and Esaú Villatoro-Tello. 2018. Retrieving and classifying instances
of source code plagiarism. Information Retrieval Journal 21, 1 (2018), 1–23.

[15] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. In Empirical Methods in Natural Language
Processing (EMNLP).

[16] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
Unixcoder: Unified cross-modal pre-training for code representation. arXiv
preprint arXiv:2203.03850 (2022). https://doi.org/10.48550/arXiv.2203.03850

[17] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[18] Alexander Hermans, Lucas Beyer, and Bastian Leibe. 2017. In defense of the
triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017).

[19] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[20] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. 2016. Fasttext. zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[21] Oscar Karnalim, Setia Budi, Hapnes Toba, and Mike Joy. 2019. Source Code
Plagiarism Detection in Academia with Information Retrieval: Dataset and the
Observation. Informatics in Education 18, 2 (2019), 321–344.

[22] Oscar Karnalim, William Chivers, et al. 2019. Similarity detection techniques
for academic source code plagiarism and collusion: a review. In 2019 IEEE In-
ternational Conference on Engineering, Technology and Education (TALE). IEEE,
1–8.

[23] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational

Linguistics, Online, 7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703
[24] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[25] Rien Maertens, Charlotte Van Petegem, Niko Strijbol, Toon Baeyens, Arne Carla
Jacobs, Peter Dawyndt, and Bart Mesuere. 2022. Dolos: Language-agnostic
plagiarism detection in source code. Journal of Computer Assisted Learning 38, 4
(2022), 1046–1061.

[26] Mourad Mars. 2022. From Word Embeddings to Pre-Trained Language Models:
A State-of-the-Art Walkthrough. Applied Sciences 12, 17 (2022), 8805.

[27] Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng. 2022. Deep learning meets
software engineering: A survey on pre-trained models of source code. arXiv
preprint arXiv:2205.11739 (2022).

[28] Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, Jidong Ge, and Bin Luo.
2023. An Empirical Comparison of Pre-Trained Models of Source Code. arXiv
preprint arXiv:2302.04026 (2023).

[29] Changan Niu, Chuanyi Li, Vincent Ng, and Bin Luo. 2023. Comparing the
Pretrained Models of Source Code by Re-pretraining Under a Unified Setup. IEEE
Transactions on Neural Networks and Learning Systems (2023).

[30] Matija Novak, Mike Joy, and Dragutin Kermek. 2019. Source-code similarity
detection and detection tools used in academia: a systematic review. ACM
Transactions on Computing Education (TOCE) 19, 3 (2019), 1–37.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[32] OpenAI. 2023. GPT-4 Technical Report. https://doi.org/10.48550/ARXIV.2303.
08774

[33] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[34] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. 2002. Finding plagiarisms
among a set of programs with JPlag. Journal of Universal Computer Science 8, 11
(2002), 1016.

[35] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
2020. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences 63, 10 (2020), 1872–1897.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[37] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019). https:
//doi.org/10.48550/arXiv.1908.10084

[38] Hazem Peter Samoaa, Firas Bayram, Pasquale Salza, and Philipp Leitner. 2022.
A systematic mapping study of source code representation for deep learning in
software engineering. IET Software 16, 4 (2022), 351–385.

[39] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. 76–85.

[40] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[41] Michael J Wise. 1993. String similarity via greedy string tiling and running
Karp-Rabin matching. Online Preprint, Dec 119, 1 (1993), 1–17.

[42] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019). https://doi.org/10.48550/arXiv.1910.03771

[43] Man-Fai Wong, Shangxin Guo, Ching-Nam Hang, Siu-Wai Ho, and Chee-Wei
Tan. 2023. Natural Language Generation and Understanding of Big Code for
AI-Assisted Programming: A Review. Entropy 25, 6 (2023), 888.

[44] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[45] Morteza Zakeri-Nasrabadi, Saeed Parsa, Mohammad Ramezani, Chanchal Roy,
and Masoud Ekhtiarzadeh. 2023. A systematic literature review on source code
similarity measurement and clone detection: Techniques, applications, and chal-
lenges. Journal of Systems and Software (2023), 111796. https://doi.org/10.1016/j.
jss.2023.111796

[46] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program under-
standing and generation. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 39–51.

366

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.48550/arXiv.2203.03850
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.1016/j.jss.2023.111796
https://doi.org/10.1016/j.jss.2023.111796

	Abstract
	1 Introduction
	2 Related Work
	2.1 SCPD surveys
	2.2 SCPD Information Retrieval
	2.3 SOCO IR
	2.4 SCPD Software
	2.5 Code Pre-Trained Models

	3 Experimental Study
	3.1 Semantic Similarity Search
	3.2 Dataset
	3.3 Evaluation
	3.4 Experimental Setup

	4 Results
	5 Conclusion
	Acknowledgments
	References

