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ABSTRACT
Data augmentation (DA) has gained widespread popularity in deep
speaker models due to its ease of implementation and significant ef-
fectiveness. It enriches training data by simulating real-life acoustic
variations, enabling deep neural networks to learn speaker-related
representations while disregarding irrelevant acoustic variations,
thereby improving robustness and generalization. However, a po-
tential issue with the vanilla DA is augmentation residual, i.e., un-
wanted distortion caused by different types of augmentation.

To address this problem, this paper proposes a novel approach
called adversarial data augmentation (A-DA) which combines DA
with adversarial learning. Specifically, it involves an additional
augmentation classifier to categorize various augmentation types
used in data augmentation. This adversarial learning empowers
the network to generate speaker embeddings that can deceive the
augmentation classifier, making the learned speaker embeddings
more robust in the face of augmentation variations. Experiments
conducted on VoxCeleb and CN-Celeb datasets demonstrate that
our proposed A-DA outperforms standard DA in both augmentation
matched and mismatched test conditions, showcasing its superior
robustness and generalization against acoustic variations.
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1 INTRODUCTION
Automatic speaker verification (ASV) is aimed at verifying the
claimed identity of a speech segment [1, 2]. Over decades of re-
search, current ASV systems have made significant strides, primar-
ily owing to the continuous accumulation of speech data and the
prevalence of speaker embedding models based on deep neural
networks (DNNs) [3–5]. The x-vector architecture and its variants
are among the most widely adopted deep embedding models [6, 7].
Recently, with carefully designed architectures and training tech-
niques, deep embedding models have achieved state-of-the-art per-
formance in numerous ASV evaluation tasks [8, 9].

Despite these significant advancements, current ASV systems
still encounter numerous challenges in terms of robustness when de-
ployed in real-world applications. One major challenge involves the
intricate interplay of speaker traits with complex and diverse acous-
tic variations, including background noise, music, multi-speaker
conversations, and more. These acoustic variations result in un-
predictable shifts in speaker embedding models, leading to perfor-
mance degradation.

To tackle this challenge, researchers have introduced a range of
methods. One of the most successful and widely used techniques
is data augmentation (DA) [6, 10], mainly due to its ease of imple-
mentation and significant effectiveness. The purpose of DA is to
enrich the quantity and diversity of the training data by simulating
complex acoustic variations. Current DA methods can generally
be categorized into two groups. One group involves operations on
the raw speech signal, such as adding additive noise and reverbera-
tion [11, 12], speed perturbation [13, 14], volume perturbation [15],
and more. The other group augments the spectrogram by applying
random masks in the time and frequency domains [16, 17].

All of these DA methods have been demonstrated effective, es-
pecially in DNN-based speaker embedding models. With a large
amount of augmented training data and guided by the training ob-
jective of maximizing the discrimination between different speakers,
DNNs can comprehensively learn speaker-related representations
while disregarding irrelevant acoustic variations [18]. This, in turn,
enhances the robustness and generalization of speaker embedding
models across various acoustic conditions.

However, despite the success of DA in enhancing the robustness
of speaker verification, current DA methods suffer from a potential
drawback known as augmentation residual. This means that when
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training with data augmented under a specific augmentation type,
the speaker embeddings might be systematically distorted. This is
because the speaker discrimination loss, e.g., cross-entropy, does
not impose any invariance constraint on the embeddings, and a
low cross entropy could be still obtained even with the distorted
embeddings. However, the unwanted distortionmay lead to reduced
generalizability.

To address the issue of augmentation residual, this paper pro-
poses a novel training strategy called adversarial data augmentation
(A-DA). This approach draws inspiration from the success of do-
main adversarial training in speaker recognition tasks, such as
unsupervised domain adaptation [19–21] and domain-invariant
representation learning [22, 23]. Generally, these domain adversar-
ial training methods employ a gradient reversal layer to remove
the domain variation and project different domain data into the
same subspace, resulting in domain-invariant and speaker-purified
representations.

In this paper, we combine data augmentation with adversarial
training to improve the robustness of deep speaker models in the
presence of acoustic variations. Initially, the standard DA is applied
to diversify the training data fed into DNNs. Subsequently, two
objective losses are integrated. One is the speaker classification loss
with cross-entropy, used to distinguish between different speakers
in the training data. The other is the augmentation classification
loss with binary cross-entropy, used to categorize different acoustic
types applied during data augmentation. Then a gradient reversal
layer is involved in the back-propagation process of the acous-
tic classification loss. This process of adversarial learning allows
speaker embeddings generated by the network encoder, which are
augmented with different types of acoustic conditions, to deceive
the acoustic classifier. In other words, this enhances the capability
of the network to learn speaker embeddings that remain robust in
the face of acoustic variations.

Our experiments are firstly conducted on the VoxCeleb dataset [24]
and utilized noise, speech, and music from the MUSAN dataset [25]
for data augmentation. The results demonstrate that under the
training-matched augmentation conditions, our proposed A-DA
method is more robust compared to the standard DA method. Fur-
thermore, we use cafe and car noises from the THCHS-30 dataset [26]
and also the official CN-Celeb evaluation set [27] to validate the gen-
eralizability of the A-DA method against unseen augmentation test
conditions. Experimental results consistently show a performance
advantage for our proposed A-DA method in these unseen aug-
mentation test conditions, highlighting its superior generalization
against acoustic variations.

2 RELATEDWORK
In the field of speaker verification, researchers have explored vari-
ous methods of both data augmentation and adversarial training to
enhance model robustness.

Regarding data augmentation (DA), researchers perform a series
of manipulations on the raw data, such as adding additive perturba-
tion and making random disruptions [11–17]. These manipulations
are designed to simulate complex acoustic variations, effectively
increasing the volume and diversity of training data. By leveraging
the powerful feature learning capability of deep neural networks,

deep embedding models can learn speaker traits that are insensi-
tive to acoustic variations, thereby improving robustness in the
presence of complex acoustic conditions.

Adversarial training (AT) was initially applied in unsupervised
domain adaptation tasks in speaker verification to address the distri-
bution mismatch issue between the source and target domain [20].
The training objective involves minimizing speaker classification
loss in the source domain while maximizing the domain classifica-
tion loss between the source and target domains. This approach has
been further extended to multi-domain speaker verification, aim-
ing to learn domain-agnostic speaker representations that enhance
robustness across multiple domains.

However, the combination of DA and AT in the field of speaker
verification is a relatively under-explored research area. Recently,
Jaesung et al. [21] proposed an augmentation adversarial training
method for self-supervised speaker recognition. In this method,
which assumes without speaker labels, data augmentation and neg-
ative sampling are used for contrastive learning to extract speaker
discriminative representations. Additionally, adversarial training
is employed to explicitly guide the network in learning speaker
representations that are insensitive to augmentation, making the
learned speaker embeddings more robust.

The core idea of this paper is similar to Jaesung et al. [21] but
differs in two key aspects. Firstly, this paper focuses on the super-
vised speaker verification framework rather than self-supervised,
providing a more direct insight into the interplay between DA and
AT. Secondly, this paper goes beyond demonstrating the effective-
ness of the combination of DA and AT under seen augmentation
conditions; it also validates the generalization of their combination
in unseen augmentation conditions.

3 ADVERSARIAL DATA AUGMENTATION
This section describes the proposed adversarial data augmentation
method, as illustrated in Figure 1. We first introduce the data aug-
mentation module, followed by the presentation of the batch sam-
pler strategy for training. Subsequently, we describe the adversarial
training on augmented data, which leverages an augmentation
classifier and a gradient reversal layer in addition to the speaker
embedding extractor. Finally, the entire neural network is trained
with the dual objective of minimizing the speaker classification loss
and maximizing the augmentation classification loss.

3.1 Data augmentation
In this study, we implement DA using additive noises. Specifically,
we use three types of noises (noise, music, and speech) from the
MUSAN dataset [25] and and follow the augmentation process as
outlined in [6]. More details please refer to 1 and 2. Finally, we
essentially obtain a 4-fold data size by combining the original clean
data with three augmented copies.

3.2 Batch sampler
We then describe the batch sampler process for training. Each mini-
batch 𝐶 is composed of randomly selected 𝑆 speakers, and from
each speaker, 𝑁 utterances are sampled. In our experiments, each

1https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb
2https://gitlab.com/csltstu/sunine/-/tree/master/egs/voxceleb
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Figure 1: Illustration on the training strategy of our proposed adversarial data augmentation method.

speaker in𝐶 only samples with one utterance (𝑁 = 1). Subsequently,
DA with additive noise is applied to all the utterances in 𝐶 , using a
prior probability ratio of 6:4 between applying DA and not applying
DA. As depicted in the Batch sampler module in Figure 1, blocks of
the same shape represent utterances from the same speaker, and
blocks of the same color signify the same augmentation type. Blocks
with green color represent the raw clean data.

3.3 Training Objective
The training objective comprises two components: minimizing a
speaker loss 𝐿𝑠𝑝𝑘 and an adversarial augmentation loss 𝐿𝑎𝑑𝑣 .

For 𝐿𝑠𝑝𝑘 , both clean and augmented data from each speaker are
passed through the embedding extractor to generate corresponding
speaker embeddings. These embeddings are then used to compute
𝐿𝑠𝑝𝑘 by discriminating different speakers. This process is essentially
the same as the standard data augmentation training method.

Regarding 𝐿𝑎𝑑𝑣 , its purpose is to remove the augmentation infor-
mation from speaker embeddings. Firstly, the augmentation classi-
fier is employed to categorize different augmentation types. Follow-
ing that, a gradient reversal layer (GRL) is introduced between the
embedding extractor and the augmentation classifier. This GRL pe-
nalizes the ability of the augmentation classifier to correctly predict
whether speaker embeddings come from the same augmentation
types. This ultimately results in the computation of the adversarial
augmentation loss 𝐿𝑎𝑑𝑣 .

The overall loss is a linear combination of the speaker loss 𝐿𝑠𝑝𝑘
and the adversarial augmentation loss 𝐿𝑎𝑑𝑣 with a weight 𝜆. In
our experiments, 𝐿𝑠𝑝𝑘 utilizes AAM-Softmax loss [28], 𝐿𝑎𝑑𝑣 is com-
puted using binary cross-entropy, and 𝜆 is set to 0.01.

𝐿 = 𝐿𝑠𝑝𝑘 + 𝜆𝐿𝑎𝑑𝑣 (1)

In summary, this training objective effectively combines stan-
dard data augmentation with adversarial training to allow the deep
speaker model to learn speaker embeddings that are less sensi-
tive to augmentation variations. This enhances the robustness of
deep speaker models, making them more resilient to the impact of
acoustic variations.

4 EXPERIMENTS
In this section, we present a comparison between the standard data
augmentation (DA) and our proposed adversarial data augmenta-
tion (A-DA) on speaker verification under different test conditions.

4.1 Data
4.1.1 VoxCeleb [24]. This is a large-scale speaker dataset collected
by the University of Oxford, UK. In our experiments, we used the de-
velopment set of VoxCeleb2 (Vox2.dev) to train the x-vector models,
which includes a total of 5,994 speakers. In addition, VoxCeleb1-O
(Vox1.O) was employed as the validation trial set to select the opti-
mal models, and VoxCeleb1-E/H (Vox1.E/H) served as the test trial
sets to evaluate the model performance.

4.1.2 CN-Celeb [27]. This is a multi-genre speaker dataset col-
lected by Tsinghua University. We used its standard evaluation set
CNC.E, which consists of 200 speakers from 11 diverse genres, for
performance evaluation. Since the acoustic characteristics of CNC.E
differ significantly from the VoxCeleb datasets, CNC.E can be used
to validate the generalizability of the models.

4.1.3 MUSAN [25] and THCHS30 [26]. The MUSAN database was
used to sample interference signals for data augmentation, includ-
ing three types: noise, music and speech. Besides, we utilized the car
and coffee noises from the THCHS30 database to create augmented
test trials, which were used to assess the generalizability of the
models.

4.2 Settings
We followed the voxceleb/v2 recipe of the Sunine toolkit 3 to con-
struct the speaker embedding model, which accepts 80-dimensional
Fbanks as input features, adopts the ResNet34 topology for frame-
level feature extraction, and uses the attentive statistics pooling
(ASP) [29] to produce speaker representations of x-vectors. Once
trained, the 256-dimensional activations of the last fully connected
layer are read out as an x-vector. The simple cosine distance is used
to score the trials in our experiments.

3https://gitlab.com/csltstu/sunine/
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Table 1: EER(%) results on VoxCeleb1 under different test conditions.

Method Augtype Vox1.E Vox1.H

- - Clean Noise Music Speech ALL Clean Noise Music Speech ALL

Baseline - 1.363 2.876 1.843 2.423 2.213 2.300 4.866 3.322 4.131 3.778

DA
+noise 1.254 1.676 1.562 1.982 1.663 2.241 3.068 2.804 3.486 2.800
++music 1.267 1.740 1.517 1.795 1.660 2.289 3.166 2.757 3.254 2.792
+++speech 1.281 1.763 1.510 1.640 1.574 2.316 3.162 2.773 3.018 2.792

A-DA
+noise 1.248 1.689 1.554 1.982 1.680 2.290 3.089 2.830 3.491 2.837
++music 1.258 1.729 1.505 1.793 1.627 2.263 3.123 2.712 3.222 2.763
+++speech 1.244 1.737 1.499 1.624 1.571 2.188 3.098 2.683 2.960 2.739

4.3 Main results
In our experiments, we constructed three groups of systems: one
trained without DA (Baseline), one trained with standard data aug-
mentation (DA), and one trained with our proposed adversarial data
augmentation (A-DA). For DA and A-DA, we gradually increased
the diversity of augmentations to observe the performance trend.
The results in terms of equal error rate (EER) on the VoxCeleb
evaluation datasets are reported in Table 1.

Firstly, it can be seen that both DA and A-DA methods signifi-
cantly outperform the baseline, highlighting that the importance
of data augmentation in enhancing model robustness.

Furthermore, in nearly all test cases, A-DA consistently out-
performs DA. More interestingly, this advantage becomes more
pronounced with an increased diversity of augmentations. This
indicates that our proposed A-DA method can effectively mitigate
the interference bias introduced by augmentation, thus further
improving the robustness of the speaker embeddings.

4.4 Further analysis
To further validate the effectiveness of our proposed A-DA method,
we conducted a series of performance evaluations under conditions
of unseen augmentation types and more complex test conditions.
On one hand, we introduced additive noises using cafe and car
sounds from the THCHS-30 dataset into the VoxCeleb test sets. This
was used to test the model’s robustness to unseen augmentation
variations. On the other hand, we used the multi-genre CN-Celeb
evaluation set, which has significantly different acoustics compared
to the VoxCeleb training set and contains complex test conditions,
such as multi-genre tests and cross-genre tests. This aimed to assess
the model’s generalization performance. The experimental results
are reported in Table 2 with EER as the performance metric.

Firstly, it can be seen that both DA and A-DA outperform the
baseline under these more complex test conditions, providing fur-
ther evidence for the effectiveness of the data augmentation tech-
nique.

Secondly, we can observe that for both unseen augmentation
variations and the more complex multi-genre CNC.E test condition,
A-DA still achieves a consistent performance advantage compared
to DA, as indicated by the bold numbers. This demonstrates the
strong robustness and generalization capability of A-DA compared
with pure DA.

Table 2: EER(%) results under unseen augmentation varia-
tions and multi-genre test conditions

Method Augtype Vox1.E Vox1.H CNC.E

- - Car Cafe Car Cafe -

Baseline - 1.423 2.274 2.518 3.897 13.461

DA
+noise 1.250 1.676 2.251 3.030 11.850
++music 1.278 1.666 2.301 3.067 12.228
+++speech 1.286 1.667 2.340 3.095 12.397

A-DA
+noise 1.260 1.672 2.304 3.068 11.749
++music 1.270 1.660 2.260 3.026 11.963
+++speech 1.254 1.639 2.320 3.066 12.154

Finally, as the diversity of augmentation increased, DA and A-DA
did not always achieve incremental improvements. This suggests
that the learned speaker embeddings still contain some traces of
augmentation variations, limiting their generalization to complex
acoustic variations. More appropriate training methods to address
this augmentation residual issue should be explored for future
research.

5 CONCLUSION
This paper introduces a new method that combines data augmen-
tation with adversarial training, referred to as A-DA. It aims to
address the issue of augmentation residual in vanilla data aug-
mentation (DA), thereby improving robustness against complex
acoustic variations. A-DA incorporates an augmentation classi-
fier and utilizes a gradient reversal layer for adversarial training
to decouple speaker information from augmentation variations,
resulting in environment-invariant speaker embeddings. Experi-
mental results demonstrated that A-DA outperforms DA in nearly
all the test conditions, particularly in a more complex multi-genre
condition represented by the CN-Celeb dataset, showcasing its ro-
bustness and generalization capability. Future work may involve
augmenting with more complex acoustic variations (such as using
AudioSet [30] for augmentation), and exploring techniques (e.g.,
mixed training [31]) to further remove the acoustic variations from
speaker embeddings.



Adversarial Data Augmentation for Robust Speaker Verification ICCIP 2023, December 14–16, 2023, Lingshui, China

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (NSFC) under Grants No.62171250 and No.62301075,
and also the Huawei Cloud Research Program under project
No.TC20220615035.

REFERENCES
[1] Joseph P Campbell. Speaker recognition: A tutorial. Proceedings of the IEEE,

85(9):1437–1462, 1997.
[2] JohnHLHansen and TaufiqHasan. Speaker recognition bymachines and humans:

A tutorial review. IEEE Signal processing magazine, 32(6):74–99, 2015.
[3] Douglas A Reynolds. An overview of automatic speaker recognition technology.

In 2002 IEEE international conference on acoustics, speech, and signal processing,
volume 4, pages IV–4072. IEEE, 2002.

[4] Tomi Kinnunen and Haizhou Li. An overview of text-independent speaker
recognition: From features to supervectors. Speech communication, 52(1):12–40,
2010.

[5] Zhongxin Bai and Xiao-Lei Zhang. Speaker recognition based on deep learning:
An overview. Neural Networks, 140:65–99, 2021.

[6] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev
Khudanpur. X-vectors: Robust DNN embeddings for speaker recognition. In 2018
IEEE international conference on acoustics, speech and signal processing (ICASSP),
pages 5329–5333. IEEE, 2018.

[7] Daniel Garcia-Romero, David Snyder, Gregory Sell, Alan McCree, Daniel Povey,
and Sanjeev Khudanpur. X-vector DNN refinement with full-length recordings
for speaker recognition. In INTERSPEECH, pages 1493–1496, 2019.

[8] Seyed Omid Sadjadi, Craig Greenberg, Elliot Singer, Lisa Mason, and Dou-
glas Reynolds. The 2021 NIST speaker recognition evaluation. arXiv preprint
arXiv:2204.10242, 2022.

[9] Jaesung Huh, Andrew Brown, Jee-weon Jung, Joon Son Chung, Arsha Nagrani,
Daniel Garcia-Romero, and Andrew Zisserman. VoxSRC 2022: The fourth Vox-
Celeb speaker recognition challenge. arXiv preprint arXiv:2302.10248, 2023.

[10] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. ECAPA-TDNN: Em-
phasized channel attention, propagation and aggregation in tdnn based speaker
verification. arXiv preprint arXiv:2005.07143, 2020.

[11] Mohammad Mohammad Amini and Driss Matrouf. Data augmentation versus
noise compensation for x-vector speaker recognition systems in noisy environ-
ments. In 2020 28th European Signal Processing Conference (EUSIPCO), pages 1–5.
IEEE, 2021.

[12] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev
Khudanpur. A study on data augmentation of reverberant speech for robust
speech recognition. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5220–5224. IEEE, 2017.

[13] Hitoshi Yamamoto, Kong Aik Lee, Koji Okabe, and Takafumi Koshinaka. Speaker
augmentation and bandwidth extension for deep speaker embedding. In INTER-
SPEECH, pages 406–410, 2019.

[14] Zhengyang Chen, Bing Han, Xu Xiang, Houjun Huang, Bei Liu, and Yanmin
Qian. Build a SRE challenge system: Lessons from VoxSRC 2022 and CNSRC
2022. arXiv preprint arXiv:2211.00815, 2022.

[15] Chien-Lin Huang. Exploring effective data augmentation with TDNN-LSTM
neural network embedding for speaker recognition. In 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 291–295. IEEE,
2019.

[16] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D
Cubuk, and Quoc V Le. Specaugment: A simple data augmentation method for
automatic speech recognition. arXiv preprint arXiv:1904.08779, 2019.

[17] Shuai Wang, Johan Rohdin, Oldřich Plchot, Lukáš Burget, Kai Yu, and Jan Čer-
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