
Large Language Models As Evolution Strategies
Robert Tjarko Lange

TU Berlin, Google DeepMind
Germany, Japan

robert.t.lange@tu-berlin.de

Yingtao Tian
Google DeepMind

Japan
alantian@google.com

Yujin Tang
Google DeepMind

Japan
yujintang@google.com

Figure 1: Left. Overview of EvoLLM procedure. An LLM proposes an ES search distribution update using a discretized search
space & solutions sorted by their performance (least-to-most). To combat the context length growth in the number of dimensions,
we can split the search dimensions into blocks and perform LLM batch queries. Right: Aggregated results across 8 BBOB [12]
settings, and 3 neuroevolution control problems. The results are averaged over ten and five independent runs, respectively.
LLM-based Evolution Strategies (green) outperform traditional baselines (blue).

ABSTRACT
Large Transformer models are capable of implementing a plethora
of so-called in-context learning algorithms. These include gradient
descent, classification, sequence completion, transformation, and
improvement. In this work, we investigate whether large language
models (LLMs), which never explicitly encountered the task of
black-box optimization, are in principle capable of implementing
evolutionary optimization algorithms. While previous works have
solely focused on language-based task specification, we move for-
ward and focus on the zero-shot application of LLMs to black-box
optimization. We introduce a novel prompting strategy, consist-
ing of least-to-most sorting of discretized population members
and querying the LLM to propose an improvement to the mean
statistic, i.e. perform a type of black-box recombination operation.
Empirically, we find that our setup allows the user to obtain an
LLM-based evolution strategy, which we call ‘EvoLLM’, that ro-
bustly outperforms baseline algorithms such as random search and
Gaussian Hill Climbing on synthetic BBOB functions as well as

ArXiv, February 2024, Preprint
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

small neuroevolution tasks. Hence, LLMs can act as ‘plug-in’ in-
context recombination operators. We provide several comparative
studies of the LLM’s model size, prompt strategy, and context con-
struction. Finally, we show that one can flexibly improve EvoLLM’s
performance by providing teacher algorithm information via in-
struction fine-tuning on previously collected teacher optimization
trajectories.

CCS CONCEPTS
• Computing methodologies→ Evolutionary Robotics.

KEYWORDS
evolution strategies, machine learning
ACM Reference Format:
Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. 2024. Large Language
Models As Evolution Strategies. https://doi.org/10.1145/nnnnnnn.nnnnnnn

ar
X

iv
:2

40
2.

18
38

1v
1

 [
cs

.A
I]

 2
8

Fe
b

20
24

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ArXiv, February 2024, Preprint Lange et al.

1 INTRODUCTION
Motivation. Recently, it has been demonstrated that language mod-
els trained on large text corpora are capable of impressive in-context
learning [2]. For example, given a prompt of pattern demonstra-
tions, LLMs can infer the underlying generating rules and even
propose sequence improvements [32]. Unlike fine-tuning this prop-
erty notably emerges with frozen model weights and only requires
online context information. Interestingly, this in-context improve-
ment property appears to be broadly applicable to abstract pattern
sequences: In the context of in-silico evolution, LLMs can out-of-
the-box act as code-level mutation [3], cross-over operations [31]
or be embedded into the context of genetic programming [23]. To
what degree can LLMs, trained on text, be generalized to behave
like an optimization algorithm? Is it possible to have an LLM train
the weights of a neural network as in evolutionary strategies (ES)?
Approach. Here, we leverage the recent advances in the under-
standing of LLMs as ‘general pattern machines’ [32] to construct a
prompt strategy, which turns an LLM into a recombination opera-
tor: A purely text-trained LLM processes fitness-sorted sequences
of function evaluations and their corresponding candidate solutions.
Afterwards, we can simply ‘ask’ the LLM to propose the next mean
statistic to sample from (see Figure 1, left). We term the resulting
LLM-based Evolution Strategy EvoLLM. Concretely, we also propose
to adapt in our approach integer-based, search space discretization,
least-to-most prompting [47] and decision transformer-style [4]
fitness improvement queries.
Results. Our experiments demonstrate that our proposed prompt-
ing strategy is sufficient to induce the LLM to conduct a recom-
bination operation. The resulting EvoLLM successfully performs
black-box optimization (BBO) on both synthetic BBOB [12] test
functions and small neuroevolution tasks [1, 19] with various search
space dimensions and evaluation budgets (see Figure 1, right). Fur-
thermore, we provide rigorous ablation to the prompt design and
provide general construction recommendations promoting better
optimization behavior. Interestingly, we observe that among our se-
lection of LLMs, there is a general trend indicating that smaller LLM
models tend to outperform larger ones. We also show that choosing
a sufficient solution representation is critical for in-context BBO
powered by LLMs. Finally, LLMs are capable of leveraging addi-
tional information provided by supporting teacher algorithms.
Contributions. Our contributions are summarized as follows:

(1) We introduce a general prompt approach that induces LLMs
to act as ES. The prompt is composed of a discretized solution
candidate representation, performance-based least-to-most
sorting and a fitness improvement query (Figure 1).

(2) We use a set of diverse LLMs and establish that language
models can robustly perform zero-shot optimization on clas-
sic BBO and small neural network control tasks.

(3) We investigate various prompting strategies and show that
a discretized solution space representation greatly outper-
forms common natural language-based instructions. Further-
more, the EvoLLM approach is largely robust to the choice
of search space discretization and context information.

(4) We show that EvoLLM’s performance can be improved by
fine-tuning the base LLM model on BBO trajectories gener-
ated by teacher algorithms.

2 RELATEDWORK
In-Context Learning with Transformers. Various recent efforts
have investigated the possibility of training large models from
scratch to perform in-context learning. These methods rely on the
impressive sequence modeling capabilities of the Transformer archi-
tecture [41] to model long-range dependencies. For example Kirsch
et al. [13] show that Transformers can learn supervised in-context
image classification algorithms. Laskin et al. [21] investigated in-
context reinforcement learning and Lu et al. [29] considered state
space models for large-scale meta-reinforcement learning.
In-Context BBO with Autoregressive Models. Chen et al. [5]
trained RNN-based BBO algorithms using privileged access to gra-
dient computations of the fitness function at training time. Further-
more, Chen et al. [6], Dery et al. [7] used large pre-collected datasets
to directly train a T5 Encoder-Decoder architecture [35] for BBO,
called OptFormer. Krishnamoorthy et al. [15] later on investigated
the usage of generating offline data for training autoregressive BBO
models. All of these approaches trained large sequence models
leveraging large programmatically generated or augmented task
spaces to induce in-context learning across long timescales. While
this line of works is close to our proposed method, ours differs in
that we use text-trained large models and investigate their ability
to perform BBO without explicitly being trained on such tasks.
In-Context Learning with LLMs. LLMs are capable of few-shot
learning given little text examples in their prompt [2]. Various
prompting strategies and automation methods have subsequently
been developed to improve task-specific performance. E.g. these
include least-to-most sorting [47], chain-of-thought prompting [43]
or self-consistency [42]. More recently, Mirchandani et al. [32] have
shown that these LLM capabilities can also be elicited outside of
the text-based prompting context. Indeed LLMs appear to be able
to reason about abstract sequences of integers or even ASCII codes.
LLMs for Optimization. Related to our work, Nie et al. [33], Yang
et al. [45], Zhang et al. [46] show that LLMs can be turned into text-
based optimizers. Our work extends this line of work and shows that
they can also be transformed into a recombination operator for ES
and are capable of optimizing small neural networks. In the context
of computational evolution, LLMs can out-of-the-box act as code-
level or algorithm mutation [3, 27], cross-over operations [31], be
embedded into the context of genetic programming [23] or evolve
prompt strategies [10]. While preliminary work [26, 28] has started
to investigate LLMs for Evolutionary Optimization, our work is the
first to consider LLMs for ES, compares different base LLM models
and various prompt construction approaches.
Learned Black-Box Optimization. ES-update rules are inher-
ently set of operations, i.e. the order of the population members
within a generation should not affect the performed distribution
change. Self-attention provides a natural inductive bias for such
an operation. Previously, Lange et al. [16, 17] constructed ES and
GA algorithms, which used self- and cross-attention to process the
information within a single generation. The attention parameters
are meta-evolved on a small task distribution of BBO problems. As a
comparison, our proposed method does not meta-train a new BBO
algorithm but instead asks whether text-trained LLMs are capable
of performing optimization with discretized prompt information
provided.

Large Language Models As Evolution Strategies ArXiv, February 2024, Preprint

3 BACKGROUND
Black-Box Optimization (BBO). Given a function 𝑓 (x) : R𝐷 →
R with unknown functional form, i.e. we cannot compute its deriv-
ative (or it is not well behaved or empirically infeasible to compute),
BBO seeks to find its global optimum using only function evalua-
tions, without derivatives:

min
x
𝑓 (x), s.t. x𝑑 ∈ [𝑙𝑑 , 𝑢𝑑] ⊂ [−∞,∞],∀𝑑 = 1, . . . , 𝐷.

Throughout, we leverage a set of synthetic benchmark functions
(BBOB [12] and classic control tasks [1] to evaluate BBOs.
Evolution Strategies. Evolutionary Optimizers (EO) are a set of
BBO algorithms inspired by mechanisms of biological evolution.
Roughly speaking, EO algorithms can be grouped into Evolution
Strategies [36] and Genetic Algorithms, where the former focus
on mutating real-valued parameters and often use self-adaptation,
while the latter typically work with a population of binary-coded
solutions and rely on crossover and mutation operators. Here, we
focus on isotropic Gaussian ES. Given a population size 𝑁 and a
search distribution 𝝁 ∈ R𝐷 , Σ = 𝜎1𝐷×𝐷 ∈ R𝐷×𝐷 , ES sample a
population of candidate solutions 𝑋 = [𝑥1, . . . , 𝑥𝑁] ∈ R𝑁×𝐷 at
each generation. Afterwards, the performance (or fitness) of each
candidate is evaluated on the task of interest and one obtains fit-
ness scores 𝐹 = [𝑓1, . . . , 𝑓𝑁] ∈ R𝑁 (we denote [𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑁)]
as [𝑓1, . . . , 𝑓𝑁] for brevity). The search distribution is then updated
to increase the likelihood of sampling well-performing solutions,
𝝁′,𝝈 ′ ← UPDATE(𝝁,𝝈 , 𝑋, 𝐹, 𝐻), where 𝐻 denotes a set of sum-
mary statistics constructed from the search history. There exist
various types of ES including estimation-of-distribution [11], nat-
ural [38, 44] and finite-difference-based ES [37]. In this work, we
investigate whether an LLM can represent a UPDATE operator using
a context string constructed from 𝐻 .
Transformer-Based Language Models. The Transformer [41]
stacks blocks of multi-head self-attention (MHSA) operations, feed-
forward MLP transformation, dropout, and layer normalization.
At its core self-attention is a set operation that projects an input
matrix 𝑋 ∈ R𝑇×𝐷 onto 𝐷𝐾 -dimensional vectors 𝑄,𝐾,𝑉 ∈ R𝑇×𝐷𝐾
called queries, keys, and values, respectively:

Attention(𝑋) = softmax
(
𝑄𝐾𝑇 /

√︁
𝐷𝐾

)
𝑉

= softmax
(
𝑋𝑊𝑄 (𝑋𝑊𝐾)𝑇 /

√︁
𝐷𝐾

)
𝑋𝑊𝑉 .

Permuting the rows of 𝑋 will apply the same permutation to
Attention(𝑋) [e.g., 14, 22, 39]. MHSA has quadratic complexity
with respect to the context length𝑇 . In this work, we leverage large
Transformer models trained on text data. Afterwards, we evaluate
their ability to implement evolutionary improvement operations
when presented with BBO trajectory information, i.e. discretized
solution candidates and their fitness or rank. Hence, we ask whether
in-context learning can resemble an efficient UPDATE operation.
Prompt Engineering & Vocabulary Tokenization. LLMs can be-
have sensitively concerning the specific context construction. This
has led to terms such as ‘prompt engineering’. Throughout our in-
vestigations, we consider various prompt construction approaches
to provide ablative insights into the underlying LLM mechanisms.
More specifically and motivated by computational resource con-
siderations, we conduct coordinate-wise evaluations in order to

extract a well-performing approach. There exist several automated
prompt tuning approaches including gradient-based soft prompt
optimization [24], which requires access to LLM weights. Random
search-based prompt optimization [30] and evolutionary optimiza-
tion of prompts [8, 10, 25] have recently shown promising result.

Language models pre-process raw language strings into vector
representations using so-called tokenizers. These tokenizers per-
form a type of compression based on natural language co-statistics.
Naturally, raw high-precision floating point numbers used in BBO
tend to be underrepresented. We therefore, propose a different
integer-based representation approach.

4 TURNING LLMS INTO ES ALGORITHMS
In the following, we outline a prompt strategy that enables LLM-
based optimization in the form of an Evolution Strategy. More
specifically, we establish a prompt design space used to construct
an LLM query, which makes the LLM represent the UPDATE oper-
ator for an ES. Afterwards, we show how this procedure can be
incorporated into the simple ‘ask-evaluate-tell‘ API common to
many popular black-box optimization algorithms [18].
High-Level EvoLLM Prompt Design Space. We follow the par-
adigm outlined in Mirchandani et al. [32] and construct a LLM
prompt by representing the solution candidates as integers result-
ing from a disretized search space with a pre-specified resolution
(Figure 1). Note, that we don’t use raw floating point numbers due
to the LLM tokenizer potentially returning different numbers of
tokens per individual number. This can hinder the LLM from in-
ferring improvement sequences. First, we sort the set of previous
population evaluations 𝐻 = {𝑋𝑔, 𝐹𝑔}𝐺𝑔=1 by their fitness within and
across generations. Afterwards, we select the top-𝐾 performing
generations and top-𝑀 solutions within each generation. We let the
LLM propose the next mean for a desired fitness level [4], 𝑓 queryLLM :

𝑓 ★𝐾,1 : 𝒙
★
1,𝐾 ; 𝒙𝐾,1, 𝒙𝐾,2, . . . , 𝒙𝐾,𝑀
. . .

𝑓 ★
𝑘,1 : 𝒙

★
1,𝑘 ; 𝒙𝑘,1, 𝒙𝑘,2, . . . , 𝒙𝑘,𝑀
. . .

𝑓 ★1,1 : 𝒙
★
1,1; 𝒙1,1, 𝒙1,2, . . . , 𝒙1,𝑀

𝑓
query
LLM : < LLM-Output >;

where 𝑥★
𝑘
, 𝑓 ★
𝑘

denotes the best-performing solution and its fitness
up to generation 𝑘 . We observed that LLMs robustly follow the pat-
tern outlined in the prompt above and continue the string format
by outputting a new mean 𝑥𝐿𝐿𝑀 with the delimiter ;. Afterwards,
we use the proposed mean to sample a new set of candidates, up-
date the context statistics 𝐻 and iterate the process. The LLM can
thereby in-context adapt to accumulated search information and
implement a novel type of recombination.
Detailed EvoLLM API. At each generation, ES samples a set of
candidates, evaluates the population on the task at hand and after-
ward updates the search distribution. Here, we let the LLM perform
the search update given text-context information 𝐻 . The general
procedure consists of the following steps (Figure 2):

ArXiv, February 2024, Preprint Lange et al.

Figure 2: EvoLLM prompt design space & API. We track all solution evaluations and their performance in a context buffer. The
buffer is used to construct query prompts for the LLM. After parsing the LLM output and sampling, we evaluate the resulting
population and add the new information to the buffer. We provide an example of the generated prompts in the appendix.

(1) Context Buffer Warm-Up/Seeding. We use standard BBO
algorithm (here: random search) to fill up a context data
buffer with an initial set of evaluations.

(2) Discretize & Augment Context Buffer. We represent the
solutions as discretized integers with a chosen resolution
and track the evaluation candidates and their fitness scores.

Given the initial buffer with discretized solutions, we construct a
string representation of the previous evaluations. The𝐾 generations
and corresponding𝑀 candidates are selected and sorted as follows:

(3) Select & Sort Context Generations.
(a) ‘Random’. The simplest option is to select previous gen-

erations from the buffer uniformly at random.
(b) ‘Last’. Alternatively, we select the most recent 𝐾 genera-

tions evaluated on the problem.
(c) ‘Best’. Finally, we considered the generations, which led

to the best-performing candidate solutions seen so far.
(4) Select & Sort Context Candidates.
(a) ‘Random’. From the 𝐾 selected generations we again

select𝑀 < 𝑁 random population members.
(b) ‘Best-Within-Generation’. Alternatively, we select the

best candidates evaluated within a given generation.
(c) ‘Best-Up-To-Generation’. Finally, we consider the en-

tire evaluation history and provide the top-𝑀 candidate
solutions evaluated up to the 𝑘-th generation.

Note, that the exact ordering of the generations and candidates can
affect the ease with which the LLM may infer improving directions
(e.g. momentum). Each generation of candidates is separated with
a line break and each member with a ,. Finally, we add a fitness
improvement query (ca. 2 times the best previously seen fitness
value). After querying the LLM, we parse the LLM-proposed mean
update back into a floating point representation:

(5) Query LLM for Search Improvement. We construct the
prompt repeatedly at each generation, sample a temperature
parameter and query the LLM. We pass the returned integer
output back into the mean for the next generation. Occa-
sionally, the parsing may fail. In this case, we use a back-up
strategy of sampling around the previous best evaluation.

(6) Sample&EvaluateNewCandidates. We perturb themean
with isotropic noise and evaluate all population members.
Afterwards, we add the information to the context buffer.

Figure 3: Dimension-batched Querying of an LLM. As the
search space dimensionality grows, the context length can
exceed the feasibilities of the LLM.We split the solution space
into blocks and perform multiple LLM queries per update.

Scaling EvoLLMs to Larger Search Spaces. The context length
of the used prompt quickly increases with the number of dimen-
sions. Many LLMs have been trained with a context length with
limits their applicability to longer horizons. We found that once the

Large Language Models As Evolution Strategies ArXiv, February 2024, Preprint

Figure 4: EvoLLM performance (lower is better) on BBOB [12] functions with single LLM query. We compare different LLM
base models (marked in the lower box in the legend) and find that the behavior of EvoLLM is robust to the exact choice of LLM.
The results are averaged across 10 independent runs.

context becomes too long, the LLM may output non-informative
information. This in turn implies that either the number of context
generations or the number of considered context population mem-
bers per generation would have to be reduced to allow for large
search spaces. To avoid this limitation we use (block-)independent
LLM queries for batches of dimensions. More specifically, we group
a set of dimensions that fits into the context of the LLM and perform
multiple LLM queries per generation (Figure 3). Hence, we trade
off an increased LLM inference time with scalability to a larger
number of search dimensions. In the limit, each LLM call processes
a single dimension 𝑑 . Note that as the capabilities of LLMs to model
longer-range dependencies increase, EvoLLM will likely benefit
from such advances.

5 LLMS ARE ZERO-SHOT EVOLUTION
STRATEGIES

5.1 Evaluation on Synthetic BBO Functions
We start by evaluating the performance of the EvoLLM prompt
design on various BBOB [12] tasks with different numbers of search
dimensions and population sizes. We use the 𝐾 = 5 last generations
and 𝑀 = 5 best-seen evaluations throughout the optimization
trajectory to construct the context string. We use a set of 4 warm-
up generations using random search to seed the context buffer 𝐻 .
Afterwards, we use the LLM proposed mean update to perform
BBO and use a fixed perturbation strength, 𝜎 = 0.2. The default
prompt construction settings are summarized in Table 1.

To assess the performance of EvoLLM across various settings, we
consider four different tasks, which consist of the separable Sphere,

Setting Name Setting Choice
Context Generations 𝐾 = 5
Context Members 𝑀 = 5
Generation Selection ’last’
Candidate Selection ’best-across’
Generation Sorting ’improving’
Candidate Sorting ’improving’
Improvement Indicator
Uniqueness Filtering False
Improvement Querying True
Warm-up Generations 4
Warm-up Strategy Random Search

Table 1: EvoLLM Context Construction Settings.

moderate-condition number Rosenbrock, the high-condition num-
ber Discus, and the multi-modal Schwefel function. Figure 4 shows
that the LLM-based ES can outperform random search and Gaussian
Hill Climbing on these BBOB functions [12] with different search di-
mensions (𝐷 ∈ {3, 5}) and population sizes (𝑁 ∈ {5, 10}). On many
of the considered tasks, the LLM-based Strategy is even capable of
outperforming diagonal covariance ES such as SNES [38]. Further-
more, EvoLLM outperforms all baselines across all tasks for small
budget settings, i.e. less than 10 generations. We consider three dif-
ferent classes of differently sized pre-trained LLM models including
three PaLM2 models [9], OpenAI models [34], and the open-source
available Llama2 [40] models. We observe (Figure 1, right) that the
LLM model size inversely affects the downstream performance of
EvoLLM. Larger models (PaLM-L, Llama2-70B) tend to perform

ArXiv, February 2024, Preprint Lange et al.

Figure 5: EvoLLM performance (lower is better) on
BBOB [12] functions with multi-dimensional LLM query
splits. We consider text-davinci-003 and PaLM2-XS as base
LLM models and find that performance does not degrade
when using splits. Top: 10-dimensional Sphere problem.
Bottom: 10-dimensional Rosenbrock problem. Averaged
results over 5 independent runs.

worse than smaller models (PaLM-XS, Llama2-7B), negating a scal-
ing law trend. Interestingly, GPT-4 tends to perform similarly to
the smaller models potentially pointing towards the size of the
individual mixture of expert models.
Next, we scaled EvoLLMs to larger search spaces (𝐷 = 10) using
batched LLM queries for blocks of parameters. More specifically,
we considered different numbers of queries and dimension group-
ings, e.g. 5 times 2-dimensional versus 2 times 5-dimensional LLM
queries. Thereby, the resulting optimizer has to perform blocked
separable optimization and can not interpolate information from
other potentially correlated groups of dimensions. Figure 5 indicates
that the performance of the EvoLLM does not significantly decline
as we optimize the parameters in groups. Interestingly, this observa-
tion holds for both the separable quadratic fitness function as well
as the non-separable Rosenbrock function. Furthermore, it it robust
for two different model classes, PaLM2-XS and text-davinci-003.

Figure 6: EvoLLM performance (higher is better) on CartPole
& Acrobot [1, 19] control task with different neural network
architectures. LLM-based ES can optimize small networks
and even outperformbaselines in the small evaluation budget
regime. Averaged results over 5 independent runs.

5.2 Evaluation on Neuroevolution Tasks
The previous BBO results indicate that LLM-based ES are capable of
optimizing various classic functions with different characteristics
(conditioning, single/multi-modal optima structure, etc.). However
recent work has shown that benchmarking on such functions can be
of limited relevance for machine learning tasks [20]. Therefore, we
wondered whether EvoLLMs can also be applied to neuroevolution
tasks. If this is indeed the case, LLMs may be a viable future option
for large-scale autonomous optimization which potentially can in-
clude various text-based information. We consider the CartPole-v1
and Acrobot-v1 discrete control tasks using a single hidden layer
MLP policy. In this case, the EvoLLM has to evolve the parameters
of the feedforward network used to output the agent’s action at
every episode timestep. The considered networks contain between
16 and 40 weights and biases to be optimized. We again batch the
parameters into groups and optimize the neural network param-
eters using 32 population members and 8 stochastic rollouts for
fitness evaluation. Figure 6 provides evidence that EvoLLM can
indeed evolve such neural network-parametrized policies for both
considered tasks. More specifically, it is again capable of even out-
performing competitive baselines in the small budget regime. We
note that optimization becomes more challenging as the number
of optimized parameters increases. This result is of importance
because it provides an intriguing perspective on LLM-based agents:
In principle, they can optimize neural network artifacts using a
gradient-free implicit optimization procedure implemented by their
internal activations.

6 EVOLLM ABLATION STUDIES
After having established that LLMs are capable of acting as im-
provement operators for ES, we next investigate the importance of
the prompt design, discretization resolution, and context length.

6.1 Prompt Strategy Ablations
We consider the following 4 different prompt design decisions:

(1) Uniqueness of mean for the selected generations: We
either filter the context generations by the uniqueness of
their mean in the sequence or not (Figure 7, left).

(2) Selection criteria for context generations/candidates:
We compare the base selection setting (Table 1) with ran-
domly selected generations (’G-R’) and members (’C-R’).

(3) Sorting criteria for selected generations/candidates: We
compare the base sorting setting (Table 1) with randomly
sorted generations (’G-R’) and members (’C-R’).

(4) Fitness information provision & improvement request:
We either add the desired fitness query or not.

Figure 7 considers two different BBOB settings (Sphere, Rosen-
brock) and two different base LLM models (GPT-4, PaLM-XS). It is
not beneficial to filter the selected generations by mean uniqueness.
Furthermore, EvoLLM remains largely robust concerning the selec-
tion of context candidates and members. The sorting criterion, on
the other hand, has strong effects on the downstream performance.
Sorting generations and members randomly decreases performance
substantially. Furthermore, not providing fitness information de-
creases GPT-4’s performance. This suggests that different LLM
models can behave differently in the context of BBO.

Large Language Models As Evolution Strategies ArXiv, February 2024, Preprint

Figure 7: Different Prompt Constructions on two different BBOB problems. Left: Impact of generation uniqueness filtering.
Middle: Impact of selection and sorting of generations and candidates. Right: Impact of providing fitness information and
improvement query. The EvoLLM prompt is largely robust to all individual choices, but the performance drops if we do not
include the fitness information or filter for improving generation sequences. Averaged results over 5 independent runs.

6.2 Raw text vs. discretized representation
One key aspect of the EvoLLM is our usage of discretized inte-
ger representations instead of raw floating point number strings.
In preliminary experiments, we observed that the vocabulary tok-
enizer of LLMs struggles with representing high-precision numbers.
Different numbers may result in different numbers of tokens (Fig-
ure 13), which in turn makes it challenging for the LLM to infer
improvements. Most common tokenizers (e.g. SentencePiece) rep-
resent integer numbers up to 1000 as a single token. We therefore
chose to translate raw solutions into integer representations and
map the LLM output back into the corresponding floating point. To
illustrate the impact of this choice, we compare the performance
of our EvoLLM with the raw text-based prompting strategy out-
lined in Zhang et al. [46]. Using the same LLM backend model we
repeatedly observe that the text-based approach is not capable of
’zooming into’ optima and instead performs too large perturbations
to progress after initial improvements.

6.3 Impact of Resolution & Context Length
Next, we considered how the chosen discretization resolution im-
pacts the EvoLLM performance. Intuitively, a resolution that is too
coarse will not allow the optimizer to discover very narrow optima
basins, while a too-high resolution will hurt the LLM’s ability to
infer improvements from the context. We used the template out-
lined in Table 1 and discretized an optimization range from -3.0 to
3.0 into {50, 100, 1000, 10000} bins. In Figure 11 we indeed observe
the hypothesized behavior for two different PaLM2 models: As
we increase the resolution up to 1000, performance improves. For
10000, on the other hand, it decreases again. For the Rosenbrock
problem, on the other hand, this trend is not clear. This may be due
to the optimizer not finding the global optimum but preemptively

Figure 8: EvoLLM versus text-based optimization prompting
performance. Our proposed discretized solution representa-
tion is capable of improvements even for longer optimiza-
tion trajectories. Text-based prompting, on the other hand,
quickly saturates. Averaged results over 5 independent runs.

converging in a broader local optimum basin. This indicates that
the optimal resolution parameter is indeed problem-specific.

Finally, we wondered how much context information is required
for the LLM to infer beneficial updates to the mean statistic. In
Figure 12 we considered different amounts of context generations
and members. We find that even with extremely limited informa-
tion, the EvoLLM can make improving updates to the mean. Often
more context generations appear to be beneficial compared to more
context members. This may be due to the clear improvements in the
sequence, which makes it easier for the LLM to infer continuation
patterns such as momentum.

ArXiv, February 2024, Preprint Lange et al.

Figure 9: Instruction fine-tuning using the Hill-Climbing algorithm improves EvoLLM’s performance on unseen BBOB tasks
(lower is better). Results are averaged over 5 independent runs.

7 EVOLLMWITH TEACHER FINE-TUNING
Finally, we investigate the impact of fine-tuning the LLM using
BBO trajectories generated by a teacher algorithm. More specifi-
cally, we use two BBOB functions (Sphere and Rosenbrock) and
collect BBO rollouts using a simple Gaussian Hill Climbing algo-
rithm. Afterwards, we discretize the solution candidates and con-
struct sequences of EvoLLM instructions according to the prompt
template outlined in Section 4. We then train the LLM ‘backend’ to
predict the discretized integer representation of the teacher’s search
distribution update. To that end, we used the standard next-token
prediction cross-entropy loss and fine-tuned it for a short amount
of training steps (Figure 14). Afterwards, we deploy the EvoLLM
and evaluate its performance on the BBO tasks. Our results focus on
the PaLM-XS model. Figure 9 demonstrates the effect of fine-tuning
on four different tasks (Sphere and Rastrigin with 2 and 5 search di-
mensions). For all cases, we observe a small but robust performance
increase after instruction-based fine-tuning. In almost all consid-
ered cases, the tuned LLM outperforms both the teacher algorithm
and the non-tuned LLM. Figure 10 provides further evidence that
this result extends also to more challenging neuroevolution tasks.
In summary, this highlights the potential for text-based LLMs to
potentially distill teacher algorithms. One promising future direc-
tion may want to explore tuning the tokenizer vocabulary to better
accommodate the representation of floating point numbers.

8 DISCUSSION
Summary. We outline a prompt strategy that enables purely text-
trained LLMs to robustly act as an ES on various BBO tasks. Fur-
thermore, we provide several ablations highlighting the importance
of careful solution representation and context construction. Finally,
we successfully demonstrate that the LLMs capabilities can be im-
proved by fine-tuning on teacher algorithm sequences.
Limitations. We expect EvoLLM’s performance to differ based

Figure 10: Instruction fine-tuning using Hill-Climbing im-
proves EvoLLM’s performance on unseen CartPole task.

on pretraining & fine-tuning protocols. Understanding how these
details affect BBO performance is a key open challenge. Going
forward LLMs capable of long context reasoning may be required
to scale to larger search spaces. In preliminary experiments, we
extended the prompt strategy to non-isotropic ES. The LLM had to
additionally output an update to the diagonal covariance. This did
not yield significant improvements.
Future Work. A potential direction is the construction of an LLM-
specific BBO benchmark capturing various optimization abilities.
This could enable directed progress for this specific LLM capability.
Furthermore, we want to explore tokenization techniques tailored
for numerical representations. Finally, we expect EvoLLM to be able
to harness all future advances of LLMs going forward, e.g. longer
context windows.
Ethical Considerations. LLMs are powerful black-box tools that
require careful monitoring of their agency. This is especially true
when used for autonomous optimization purposes as the ones out-
lined in our work.

Large Language Models As Evolution Strategies ArXiv, February 2024, Preprint

REFERENCES
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech

Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in
neural information processing systems 33 (2020), 1877–1901.

[3] Angelica Chen, David M Dohan, and David R So. 2023. EvoPrompting: Language Models for Code-Level Neural
Architecture Search. (2023).

[4] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas,
and Igor Mordatch. 2021. Decision transformer: Reinforcement learning via sequence modeling. Advances in
neural information processing systems 34 (2021), 15084–15097.

[5] Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap, Matt Botvinick,
and Nando Freitas. 2017. Learning to learn without gradient descent by gradient descent. In International Conference
on Machine Learning. PMLR, 748–756.

[6] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya Kawakami, Greg
Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. 2022. Towards learning universal hyperparameter
optimizers with transformers. Advances in Neural Information Processing Systems 35 (2022), 32053–32068.

[7] Lucio M Dery, Abram L Friesen, Nando De Freitas, Marc’Aurelio Ranzato, and Yutian Chen. 2022. Multi-step
Planning for Automated Hyperparameter Optimization with OptFormer. arXiv preprint arXiv:2210.04971 (2022).

[8] Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel. 2023. Prompt-
breeder: Self-referential self-improvement via prompt evolution. arXiv preprint arXiv:2309.16797 (2023).

[9] Rohan Anil Google and, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping
Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder,
Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul
Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry,
Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa
Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag,
Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao
Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music
Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni,
Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew
Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan
Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone,
Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli,
Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov,
and Yonghui Wu. 2023. PaLM 2 Technical Report. (2023). arXiv:cs.CL/2305.10403

[10] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu Yang.
2023. Connecting large language models with evolutionary algorithms yields powerful prompt optimizers. arXiv
preprint arXiv:2309.08532 (2023).

[11] Nikolaus Hansen. 2006. The CMA evolution strategy: a comparing review. Towards a new evolutionary computation:
Advances in the estimation of distribution algorithms (2006), 75–102.

[12] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. 2010. Real-parameter black-box optimization
benchmarking 2010: Experimental setup. Ph.D. Dissertation. INRIA.

[13] Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. 2022. General-purpose in-context learning by
meta-learning transformers. arXiv preprint arXiv:2212.04458 (2022).

[14] Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal. 2021. Self-attention
between datapoints: Going beyond individual input-output pairs in deep learning. Advances in Neural Information
Processing Systems 34 (2021), 28742–28756.

[15] Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. 2022. Generative pretraining for black-box
optimization. arXiv preprint arXiv:2206.10786 (2022).

[16] Robert Lange, Tom Schaul, Yutian Chen, Chris Lu, Tom Zahavy, Valentin Dalibard, and Sebastian Flennerhag. 2023.
Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference. 929–937.

[17] Robert Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder Singh, and Sebastian
Flennerhag. 2023. Discovering evolution strategies viameta-black-box optimization. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computation. 29–30.

[18] Robert Tjarko Lange. 2022. evosax: JAX-based Evolution Strategies. arXiv preprint arXiv:2212.04180 (2022).
[19] Robert Tjarko Lange. 2022. gymnax: A JAX-based Reinforcement Learning Environment Library. (2022). http:

//github.com/RobertTLange/gymnax
[20] Robert Tjarko Lange, Yujin Tang, and Yingtao Tian. 2023. NeuroEvoBench: Benchmarking Evolutionary Optimizers

for Deep Learning Applications. arXiv preprint arXiv:2311.02394 (2023).
[21] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald, DJ Strouse, Steven

Hansen, Angelos Filos, Ethan Brooks, et al. 2022. In-context reinforcement learning with algorithm distillation.
arXiv preprint arXiv:2210.14215 (2022).

[22] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. 2019. Set transformer: A
framework for attention-based permutation-invariant neural networks. In International conference on machine
learning. PMLR, 3744–3753.

[23] Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley. 2023. Evolution
through large models. In Handbook of Evolutionary Machine Learning. Springer, 331–366.

[24] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691 (2021).

[25] Yujian Betterest Li and Kai Wu. 2023. SPELL: Semantic Prompt Evolution based on a LLM. arXiv preprint
arXiv:2310.01260 (2023).

[26] Fei Liu, Xi Lin, Zhenkun Wang, Shunyu Yao, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. 2023. Large
language model for multi-objective evolutionary optimization. arXiv preprint arXiv:2310.12541 (2023).

[27] Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. 2023. Algorithm Evolution Using Large Language
Model. arXiv preprint arXiv:2311.15249 (2023).

[28] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. 2023. Large Language Models as
Evolutionary Optimizers. arXiv preprint arXiv:2310.19046 (2023).

[29] Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and Feryal Behbahani.
2023. Structured state space models for in-context reinforcement learning. arXiv preprint arXiv:2303.03982 (2023).

[30] Yao Lu, Jiayi Wang, Sebastian Riedel, and Pontus Stenetorp. 2023. Prompt Optimisation with Random Sampling.
arXiv preprint arXiv:2311.09569 (2023).

[31] Elliot Meyerson, Mark J Nelson, Herbie Bradley, Arash Moradi, Amy K Hoover, and Joel Lehman. 2023. Language
Model Crossover: Variation through Few-Shot Prompting. (2023).

[32] Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas, Kanishka
Rao, Dorsa Sadigh, and Andy Zeng. 2023. Large Language Models as General Pattern Machines. arXiv preprint
arXiv:2307.04721 (2023).

[33] Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. 2023. Importance of Directional Feedback
for LLM-based Optimizers. In NeurIPS 2023 Foundation Models for Decision Making Workshop.

[34] OpenAI. 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023). https://arxiv.org/abs/2303.08774
[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,

and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal
of Machine Learning Research 21, 1 (2020), 5485–5551.

[36] Ingo Rechenberg. 1978. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie. Springer, 83–114.
[37] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017. Evolution strategies as a scalable

alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017).
[38] Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. 2011. High dimensions and heavy tails for natural

evolution strategies. In Proceedings of the 13th annual conference on Genetic and evolutionary computation. 845–852.

[39] Yujin Tang and David Ha. 2021. The sensory neuron as a transformer: Permutation-invariant neural networks for
reinforcement learning. Advances in Neural Information Processing Systems 34 (2021), 22574–22587.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288 (2023).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

[42] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171 (2022).

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing
Systems 35 (2022), 24824–24837.

[44] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber. 2014. Natural
evolution strategies. The Journal of Machine Learning Research 15, 1 (2014).

[45] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. 2023. Large
language models as optimizers. (2023).

[46] Michael Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. 2023. Using Large Language Models
for Hyperparameter Optimization. In NeurIPS 2023 Foundation Models for Decision Making Workshop.

[47] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui,
Olivier Bousquet, Quoc Le, et al. 2022. Least-to-most prompting enables complex reasoning in large language
models. arXiv preprint arXiv:2205.10625 (2022).

https://arxiv.org/abs/cs.CL/2305.10403
http://github.com/RobertTLange/gymnax
http://github.com/RobertTLange/gymnax
https://arxiv.org/abs/2303.08774

ArXiv, February 2024, Preprint Lange et al.

A ADDITIONAL RESULTS
A.1 Impact of Search Space Resolution

Figure 11: EvoLLM performance for different search reso-
lutions. It struggles to zoom into optima basins for low-
resolutions, while high resolutions degrade performance due
to tokenization. Averaged results over 5 independent runs.

A.2 Context Members & Generations

Figure 12: EvoLLMperformance for different amounts of con-
text information. Even with limited information the LLM is
capable of inferring improving sequence patterns. Averaged
results over 5 independent runs.

B PROMPT CONSTRUCTION EXAMPLE: 2 DIM.
SPHERE / 5 POPULATION MEMBERS

Below we show an example of the EvoLLM prompt outlined in
Table 1 for a 2-dimensional Sphere task with 5 population members.
We start with a randomly initialized mean and 4 random search
warm-up generations:
𝜇 = [2.93851025 − 1.77656265], 𝑓 ★ = 0.4378929557544995

================ Generation 0 =================

0.44 : 397539; 14792, 0, 0302, 0, 186346, 0, 419685, 0, 397539, 0

0.39 :⇒ 𝜇 = [−0.619395150.2329004], 𝑓 ★ = 0.438

================ Generation 1 =================

1.29 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
0.44 : 397539; 14792, 0, 0302, 0, 186346, 0, 419685, 0, 397539, 0

0.29 :⇒ 𝜇 = [−0.619395150.2329004], 𝑓 ★ = 0.438

================ Generation 2 =================

6.03 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
1.29 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
0.44 : 397539; 14792, 0, 0302, 0, 186346, 0, 419685, 0, 397539, 0

0.29 :⇒ 𝜇 = [−0.619395150.2329004], 𝑓 ★ = 0.438

================ Generation 3 =================

6.03 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
2.48 : 397539; 748280, 0, 316687, 0, 419685, 0, 670417, 0, 397539, 0
1.29 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
0.44 : 397539; 14792, 0, 0302, 0, 186346, 0, 419685, 0, 397539, 0

0.34 :⇒ 𝜇 = [−0.6180.234], 𝑓 ★ = 0.339

================ Generation 4 =================

6.03 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
2.48 : 397539; 748280, 0, 316687, 0, 419685, 0, 670417, 0, 397539, 0
1.29 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
0.44 : 397539; 14792, 0, 0302, 0, 186346, 0, 419685, 0, 397539, 0
0.34 : 413543; 388557, 0, 448604, 0, 397539, 0, 399504, 1, 413543, 1

0.25 :⇒ 𝜇 = [−0.5220.258], 𝑓 ★ = 0.249

================ Generation 5 =================

6.03 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
2.48 : 397539; 748280, 0, 316687, 0, 419685, 0, 670417, 0, 397539, 0
1.29 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
0.34 : 413543; 388557, 0, 448604, 0, 397539, 0, 399504, 1, 413543, 1
0.25 : 423531; 417564, 0, 399504, 0, 413543, 0, 415522, 1, 423531, 1

0.20 :⇒ 𝜇 = [−0.4620.186], 𝑓 ★ = 0.15

Large Language Models As Evolution Strategies ArXiv, February 2024, Preprint

================ Generation 6 =================

6.03 : 397539; 559140, 0, 186346, 0, 419685, 0, 670417, 0, 397539, 0
2.48 : 397539; 748280, 0, 316687, 0, 419685, 0, 670417, 0, 397539, 0
0.34 : 413543; 388557, 0, 448604, 0, 397539, 0, 399504, 1, 413543, 1
0.25 : 423531; 417564, 0, 399504, 0, 413543, 0, 415522, 1, 423531, 1
0.15 : 436506; 413543, 0, 415522, 0, 423531, 0, 487564, 1, 436506, 1

0.09 :⇒ 𝜇 = [−0.3840.036], 𝑓 ★ = 0.101

================ Generation 7 =================

2.48 : 397539; 748280, 0, 316687, 0, 419685, 0, 670417, 0, 397539, 0
0.34 : 413543; 388557, 0, 448604, 0, 397539, 0, 399504, 1, 413543, 1
0.25 : 423531; 417564, 0, 399504, 0, 413543, 0, 415522, 1, 423531, 1
0.15 : 436506; 413543, 0, 415522, 0, 423531, 0, 487564, 1, 436506, 1
0.10 : 447499; 434527, 0, 487564, 0, 436506, 0, 439514, 1, 447499, 1

0.07 :⇒ 𝜇 = [−0.318 − 0.006], 𝑓 ★ = 0.040

================ Generation 8 =================

0.34 : 413543; 388557, 0, 448604, 0, 397539, 0, 399504, 1, 413543, 1
0.25 : 423531; 417564, 0, 399504, 0, 413543, 0, 415522, 1, 423531, 1
0.15 : 436506; 413543, 0, 415522, 0, 423531, 0, 487564, 1, 436506, 1
0.10 : 447499; 434527, 0, 487564, 0, 436506, 0, 439514, 1, 447499, 1
0.04 : 472481; 436506, 0, 439514, 0, 442500, 0, 447499, 0, 472481, 1

0.03 :⇒ 𝜇 = [−0.168 − 0.114], 𝑓 ★ = 0.018

================ Generation 9 =================

0.25 : 423531; 417564, 0, 399504, 0, 413543, 0, 415522, 1, 423531, 1
0.15 : 436506; 413543, 0, 415522, 0, 423531, 0, 487564, 1, 436506, 1
0.10 : 447499; 434527, 0, 487564, 0, 436506, 0, 439514, 1, 447499, 1
0.04 : 472481; 436506, 0, 439514, 0, 442500, 0, 447499, 0, 472481, 1
0.02 : 478495; 465474, 0, 472481, 0, 476519, 1, 479485, 1, 478495, 1

0.01 :⇒ 𝜇 = [−0.132 − 0.03], 𝑓 ★ = 0.018

================ Generation 10 =================

0.15 : 436506; 413543, 0, 415522, 0, 423531, 0, 487564, 1, 436506, 1
0.10 : 447499; 434527, 0, 487564, 0, 436506, 0, 439514, 1, 447499, 1
0.05 : 478495; 483467, 0, 472481, 0, 476519, 0, 479485, 0, 478495, 0
0.04 : 472481; 436506, 0, 439514, 0, 442500, 0, 447499, 0, 472481, 1
0.02 : 478495; 465474, 0, 472481, 0, 476519, 1, 479485, 1, 478495, 1

0.01 :⇒ 𝜇 = [−0.132 − 0.03], 𝑓 ★ = 0.018

C FLOATING POINT NUMBER
TOKENIZATION

Below we show that the number of tokens used for a floating point-
ing number linearly increases with the number of digits. The num-
bers are sampled randomly:

Figure 13: SentencePiece Tokenizer floating point number
digits versus resulting tokens used for the language model.

D HILL CLIMBING INSTRUCTION
FINE-TUNING

Figure 14: Fine-tuning loss and accuracy for instruction fine-
tuning using Hill Climbing teacher algorithm trajectories on
PaLM-XS.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Turning LLMs into ES Algorithms
	5 LLMs are Zero-Shot Evolution Strategies
	5.1 Evaluation on Synthetic BBO Functions
	5.2 Evaluation on Neuroevolution Tasks

	6 EvoLLM Ablation Studies
	6.1 Prompt Strategy Ablations
	6.2 Raw text vs. discretized representation
	6.3 Impact of Resolution & Context Length

	7 EvoLLM with Teacher Fine-Tuning
	8 Discussion
	References
	A Additional Results
	A.1 Impact of Search Space Resolution
	A.2 Context Members & Generations

	B Prompt Construction Example: 2 Dim. Sphere / 5 Population members
	C Floating Point Number Tokenization
	D Hill Climbing Instruction Fine-Tuning

