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Abstract
In this work, we evolve Assembly code for the CodeGuru competition. The goal is to
create a survivor—an Assembly program that runs the longest in shared memory, by
resisting attacks from adversary survivors and finding their weaknesses. For evolving
top-notch solvers, we specify a Backus Normal Form (BNF) for the Assembly language
and synthesize the code from scratch using Genetic Programming (GP). We evaluate
the survivors by running CodeGuru games against human-written winning survivors.
Our evolved programs found weaknesses in the programs they were trained against
and utilized them. To push evolution further, we implemented memetic operators that
utilize machine learning to explore the solution space effectively. This work has im-
portant applications for cyber-security as we utilize evolution to detect weaknesses in
survivors. The Assembly BNF is domain-independent; thus, by modifying the fitness
function, it can detect code weaknesses and help fix them. Finally, the CodeGuru com-
petition offers a novel platform for analyzing GP and code evolution in adversarial
environments. To support further research in this direction, we provide a thorough
qualitative analysis of the evolved survivors and the weaknesses found.
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1 Introduction

CodeGuru Xtreme Leshem and Eyzenberg (2012) is a coding competition where short
8086 Assembly programs, called survivors, are loaded into a random address in a vir-
tual computer memory arena. Their goal is to defeat all other survivors by staying the
last program to run. An opponent is defeated when it runs an illegal command caused,
e.g., by overwriting its memory. A screen-shot of the game is depicted in Figure 1. Each
survivor gets a different color in the arena, representing the bytes it wrote to the shared
memory. We elaborate on the game in Section 3.
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Figure 1: The CodeGuru Xtreme game. On the left are the survivors; on the center is
the code of the selected survivor; and on the right is the arena, i.e., the memory status.
Each survivor gets a different color in the arena, representing its written bytes.

In this work, we evolve winning survivors from scratch, i.e., from randomly gen-
erated Assembly code, and without access to the source code of known survivors. For
this task, we utilize Grammar-Guided Genetic Programming (G3P)—an evolutionary com-
putation technique that incorporates GP principles, employs context-free grammar and
operates directly with tree-based representations. G3P allows us to evolve Assembly
programs following grammar-type constraints. The goal of the individuals, embodied
by the fitness function, is to overtake adversaries and win the game. The evolved code
is represented using an Abstract Syntax Tree (AST) based on matching Assembly Backus
Normal Form (BNF) we defined. A BNF is a meta-syntax notation for context-free gram-
mar consisting of derivation rules. Since our BNF is general and domain-agnostic, the
approach applies to generating Assembly programs for other domains and processors.

No previous work has been done on the CodeGuru Xtreme game, except for an
undergraduate project Sysman and Leibu (2009) and some early work on the “Core
War” game Andersen (2001); Corno et al. (2003), which served as the basis CodeGuru
Xtreme (see Section 3). As elaborated in Section 2, some work has been done on the
evolution of low-level languages (i.e., Assembly and Java bytecode), and some work
has been done to improve existing Assembly code. Note that improving existing code
is a simpler task than generating new code from scratch, as the former’s state space is
much smaller Petke et al. (2018); Banzhaf (2018).

CodeGuru Xtreme competition has been running since 2005, with all past sur-
vivors publicly available. Thus, winning is considerably tricky and requires, among
other qualities, a good understanding of the 8086 Assembly language.

This work combines a fitness approximation approach based on machine learning
(ML) to overcome the expensive fitness evaluation. We utilize this approximation for
developing memetic operators—genetic operators that incorporate local search to en-
hance the exploration, leading to significant improvements in the overall evolutionary
computation.

Our work has implications for cyber-security. We utilize evolution to detect and
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exploit weaknesses in other survivors. Furthermore, understanding the Assembly lan-
guage is a necessity for some viruses. By modifying the fitness function, our approach
can be used for detecting weaknesses in code and help in fixing them, detecting sus-
picious adversarial code, or, on the contrary, can be intended to avoid security mech-
anisms by mutating the virus to avoid detection while keeping its functionality. In
Section 6, we use the CodeGuru Xtreme game and GP for mimicking Assembly viruses
and demonstrating how our method can be used for avoiding anti-virus detection.

The CodeGuru Xtreme competition provides a unique opportunity to analyze GP
and code evolution in adversarial environments. In order to encourage further research
in this area, we conducted a comprehensive qualitative analysis of the evolved sur-
vivors and identified their strengths and weaknesses. This analysis sheds light on the
effectiveness of the evolved code and provides valuable insights for future improve-
ments and advancements in the field.

The contributions of this work are:

• We develop a generic Assembly BNF.

• We demonstrate, for the first time, how evolution can evolve Assembly code in an
adversarial environment, completely from scratch.

• We provide a qualitative analysis of the evolved survivors and the weaknesses
found to facilitate further research in the field of cyber-security.

• We demonstrate how CodeGuru and our approach can be utilized to mimic and
explore virus behavior.

2 Related Work

Low-level code evolution Several works have been done on low-level code evolu-
tion, some similar to Assembly, like Verilog (a hardware description language) and
Java bytecode.

Karpuzcu (2005) used Grammatical Evolution (GE) for evolving a simple program
of a one-bit full adder. In spite of the strong bias they employed, the success achieved
was only about 5.7%. Orlov and Sipper (2011) proposed a method for genetic im-
provement and repair of existing Java programs or any software that can be compiled
into Java bytecode. Although Java bytecode resembles Assembly, it has a simplified
representation and does not have direct memory access. This contrasts with Assem-
bly, which has a very strong correspondence between its instructions, the architecture’s
machine code instructions, and memory. Orlov and Sipper seeded the initial popula-
tion with copies of a single hand-crafted individual and improved it over generations
while we evolve Assembly code from scratch. Rosin (2019) synthesized simple pro-
grams with loops from input/output examples. They targeted a simplified low-level
language similar to Assembly, where each instruction consists of an opcode and a single
operand.

Limited Assembly code evolution Some works focused on constrained Assembly
evolution—specific routines, predefined input and output tables, and manually writ-
ten code parts. Serruto and Casas (2017) applied multi-objective linear GP for the au-
tomatic generation of specific Assembly driver routines. The evolved programs did
not contain jump instructions because they could form infinite loops, in contrast to our
wish to include them in the generated code. The results showed that the automatically
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generated microcontroller code for specific tasks can compete with a human program-
mer with a smaller code size or faster execution. We aim to recreate this result within
an adversarial environment. Similarly, Ferrel and Alfaro (2020) presented a method-
ology for writing Arduino programs using an automatic generator of Assembly lan-
guage routines based on a cooperative co-evolutionary multi-objective linear GP. They
decomposed the problem into sub-components, generating about 73% of the program,
and the remaining 27%, which are the main program and initial configuration routines,
are manually written. In our case, we cannot break the goal of winning an opponent to
sub-tasks without reading its code first, which we avoid. In addition, there is no clear
way to represent a winning result using an input-output table. We need to evolve from
scratch, a winning program, including jumps and loops, completely automatically.

Overview of Program Synthesis Methods Dominik Sobania (2021) surveyed recent
developments in program synthesis with evolutionary algorithms and found that the
most influential approaches in the field are stack-based GP (usually PushGP), G3P, and
Linear GP. PushGP produces code only in the Push language and cannot be used out-
side of a Push interpreter, while G3P and Linear GP can produce source code in any
language, including Assembly.

Pantridge et al. (2017) compared the synthesis capabilities of PushGP and G3P over
different programming languages. It was done on problems of two types: the first is
usually approached using machine code or Assembly language (basic execution mod-
els problems), while the second is usually approached using high-level languages (gen-
eral program synthesis benchmark suite). In the low-level field, the best-synthesized
program was in TerpreT—a probabilistic programming language designed for induc-
tive program synthesis. It was able to solve all the basic execution model problems, in
contrast to PushGP, which succeeded in 6 out of 8. Sadly, there were no gathered re-
sults for G3P in this field. In the high-level field, G3P was able to solve almost as many
problems as PushGP in the software synthesis benchmark suite.

All the related works present useful ideas for various research directions to achieve
our goal of Assembly code evolution. Yet, none achieved total success in evolving inde-
pendent Assembly programs from scratch. They all applied constraints and limitations
on the programs, removed language features, or started from an initial given code. We
aim to expand the above achievements.

GP usage in cyber-Security O’Reilly et al. (2020) stated that combining GP and com-
petitive co-evolutionary algorithms enables evolving complex behaviors to be used as
abstractions by adversaries. The paper presents the RIVALS framework, which serves
as a testbed for computational modeling and simulation of the dynamics of networks
under attack. Hu et al. (2020) describe the attack-defense relationship using LQRD
(Logit Quantal Response Dynamics). They describe how, by analyzing the evolution-
ary equilibrium, we can obtain the optimal defense strategy and demonstrate it on
WannaCry malware.

In addition to the works that use GP to obtain strategies, others utilize it to evolve
and modify malware. Noreen et al. (2009) developed a feature representation of the
Bagel malware family and, using GA and a few training samples, were able to evolve
new unknown variants. Castro et al. (2019) used GP to evade malware detection
by automatically finding code optimizations that, when injected into previously de-
tected malware, result in misclassification of the malware scanner. They implemented
their framework as a sandbox to track how the code samples behave. Murali and Ve-
layutham (2022) used novelty search in order to generate malware variants of greater
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diversity to evade detection. They used Assembly code samples and represented them
in linear or graph representations. Generic Assembly code transformation functions
are applied as operators: inserting fake instructions forced jmp, unreachable blocks,
and conditional jmps. They were able to evade over 98% of popular scanners using
this technique.

In our work, we demonstrate the ability to evade detection using GP with general
Assembly grammar and domain-independent operators. Unlike the described above
works, we do not create special operators for code obfuscation. We utilize CodeGuru
as an adversarial game framework to evolve Assembly code, which is able to evade an
adversary and is specially designed to overtake it based on a characterizing signature.
This resembles diverse forms of viruses that avoid malware scanners.

3 CodeGuru Xtreme

CodeGuru Xtreme by Leshem and Eyzenberg (2012) is a coding competition based
on “Core War”—a 1984 programming game created by D. G. Jones and A. K. Dewd-
ney Dewdney (1984). In CodeGuru Xtreme, short 8086 Assembly programs (at most
512 bytes long) of 16-bit commands, called survivors, are loaded into random space on
a virtual computer memory arena of size 64KB. Each survivor is loaded to a random
address with a stack of 2,048 bytes and a full set of registers. The distance between two
survivors and the arena’s edges is at least 1,024 bytes. The last survivor alive is the
winner and gets one point. If several survivors stay alive, the point is divided equally
between all. A survivor is disqualified if it runs an illegal command or attempts to
access a memory address outside the arena or its stack. A survivor can be forced to
run an illegal command due to a writing operation an opponent previously performed
on its code or on an address it reads from. Therefore, performing various writings to
memory enhances the chance of damaging opponents. Each battle of the game runs for
200,000 rounds or until only one survivor is left, whichever comes first. In every round,
the next command of each survivor is executed in a round-robin fashion. The order of
the survivor’s execution is changed randomly for each game. The memory arena im-
age and scoreboard that monitors the game’s progress are depicted in Figure 1. In most
cases, each participant has two programs, called parts, that can collaborate together.
Each part has its own registers and is loaded into a different place in memory, although
they both share a stack. The parts are executed separately, one after the other. Their
scores are joined together at the end of the battle and create the survivor’s score. This
allows the design of a survivor with two parts collaborating together via a shared stack
or with two parts completely independently running; both designs are used as a force
multiplier for maximizing the survivor’s abilities. The game includes the following
special commands: WAITx4 increases the survivor’s speed, allowing it to run several
opcodes in a single round, INT 0x86 writes 256 bytes into memory, and INT 0x87
re-writes a pattern of 4 bytes. The special commands allow performing several rounds
of actions in one round.

The CodeGuru competition has taken place every year since 2005 among outstand-
ing high-school students. Each year, the level rises, with more sophisticated survivors
written. This work aims to evolve survivors that will win the top survivors of previous
years by finding their weaknesses. Our goal is not to win the competition but rather to
show that GP can be utilized for evolving code in an adversarial environment. Thus,
we evolve a different survivor for each past survivor rather than evolving one survivor
that takes them all.
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4 Method

To evolve our survivors, we use Grammar-Guided Genetic Programming (G3P)—
a technique that incorporates Genetic Programming principles, employs context-free
grammar, often in a BNF form, and operates directly with tree-based representations.
G3P allows evolving Assembly programs following grammar type constraints and a
defined aim, overtaking adversary in this case. During the evolutionary process with
G3P, the evolved code is represented using an AST based on matching Assembly BNF
representation.

We now elaborate on the different parts of the evolutionary process.

4.1 Representation

Each individual consists of two programs, called parts (see Section 3), represented by an
AST that follows a grammar defined by a BNF. Since Assembly is a symbolic program-
ming language, it can be represented using it. The terminals are opcodes and operands,
and the functions are structures in the language (see listings 4 and 5 in the appendix).
We define our types and derivation rules based on Assembly language constraints. For
example, we define an unary command as a command consisting of an opcode that
takes only one operand. Notably, except for a few CodeGuru special operators, our
BNF is general and can match any 8086 Assembly code. There are Assembly com-
mands that are not supported by the game’s engine and were left out of the grammar
to preserve legal programs.

4.2 Fitness Function

We evaluate survivors’ fitness by running a CodeGuru game of 200 battles with the se-
lected human-written survivor the evolution performed against. The game’s engine is
an open-source Java program that outputs the final scores for each game. As previously
explained, the score is one point given to the last survivor alive. If several survivors
stay alive, the point is divided equally between all. We modified the engine to produce
more information about each game, as elaborated by the fitness function that has four
parts:

Engine score: the survivor’s average engine score in all played games.

fscore =
∑games

i=1 scorei
games

Lifetime: the normalized average number of rounds the survivor stayed alive.

flifetime = 0.1 log10 max
(
1,

∑games
i=1 reached roundi

games

)
Written bytes: the normalized average number of new bytes the survivor wrote.

That is, the writing was performed on a memory fragment, which was not written
before, or that the last one to write in was not the survivor itself.

fwritten bytes = 0.1 log10 max
(
1,

∑games
i=1 written bytesi

games

)
Writing rate: the average writing rate of the survivor.

fwriting rate = 0.1
∑games

i=1 written bytesi
max(1,

∑games
i=1 reached roundi)

× 1
games

The first two parts encourage evolution to win the competitions and survive for
longer periods (respectively). The last two parts encourage the evolution of programs
that write in different memory places, which enhances the chance of damaging op-
ponents. We refer to the score parameter as the most significant since it reflects the
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performance compared to the adversary. Nevertheless, the other parts are important
for guiding the evolution towards the different sub-goals and discriminating the in-
dividuals. Division by 10 and log10 were used on the original values of lifetime and
written bytes in order to normalize them to an easy-to-process range yet maintain the
tendency they represent. We also defined a bloat weight parameter, which equals 10−5.
It slightly lowers the fitness of large evolved trees in order to prevent them from bloat-
ing and yet allows large but powerful trees to evolve.

The fitness formula which performed the best was:

f = 2fscore + 0.2flifetime + 0.3fwritten bytes + 0.1fwriting rate

−10−5max(#part1 nodes,#part2 nodes)

It produces fitness values in the range of [0, 2.5], which does not produce sharp de-
viations. The chosen weights reflect the above-elaborated goals. The score is doubled
due to its significance, resulting in a value in the range of [0, 2]. The additional pa-
rameters were multiplied by weights, resulting in a mutual sum of 0.5 at most in order
not to overshadow the score. According to conducted experiments, the writing rate
parameter resulted in the smallest survivor’s improvement, thus receiving the lowest
weight. Experiments also showed that evolution was able to independently learn the
importance of the survivor’s lifetime, on the contrary to the importance of performed
writings, which it learned seldom. Thus, high and medium weights were given to writ-
ten bytes and lifetime parameters, respectively, to accelerate the improvement process.

4.3 Genetic Operators

We used Koza’s standard mutation and crossover operators Koza et al. (1994) that op-
erate on the survivors’ parts, which are represented as trees. Specifically, we used the
grow sub-tree (i.e., sub-part) mutation and the exchange sub-tree (sub-part) crossover.
We added two more operators. The duplicate-tree (part) mutation takes the best tree
(part) of a survivor and replaces the second part with it. The exchange-trees (parts)
crossover replaces one of the trees (parts) of the first individual with one of the trees
(parts) of the second.

4.4 Improvements

Below are several improvements to the basic setup that we tested.

4.4.1 Random Generator Pattern
We wish to add randomness to the BNF to allow our survivors to be unpredictable.
Thus, we add Pseudo-Random Number Generator (PRNG) patterns to our BNF. Specif-
ically, we added Linear Congruential Generator (LCG) and XOR-Shift Generators im-
plementation to our grammar as shown in Listing 6 in the appendix.

4.4.2 Fitness Approximation
One of our main hold-backs is the fitness calculation time. Raising the Java engine,
running 200 battles, and outputting the results into a file takes non-negligible time,
which prolongs the evolution that itself requires many hours to complete a run due to
G3P’s stochastic nature. To handle this issue, we combined a machine learning model,
as presented in Tzruia et al. (2023), that learns how to approximate the fitness value
without evaluating the individuals. Since their approach is designed for vector-based
representation, we first create a mapping between our AST representation into a float
vector form. For that, we use the AST’s size and the engine’s parameters (elaborated
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in Section 4.2). For example, if an individual has reached a score of 0.3, a lifetime of
3.21827, wrote 0.69897 bytes in a rate of 0.01, and its larger tree contains 25 nodes, its
vector representation will be [0.3, 3.21827, 0.69897, 0.01, 25]. During evolution, the
individuals’ vector representations and their actual fitness value are collected and used
for training the ML model. The ML model switches between actual and approximated
fitness according to defined conditions. In the actual fitness phase, it performs learning
on truly evaluated individuals until it reaches a sufficient level of correct prediction
and switches to approximation. In our case, we chose the switch condition to be based
on cross-validation (CV) error as it reaches 5% of the maximal possible fitness, which
equals 0.125 out of 2.5.

In each generation in the approximation phase, a certain percentage of the popu-
lation is still evaluated regularly to maintain the model and save the accurate results of
the best individual evolved so far. The percent which performed the best was 30%. Less
sampling resulted in non-convergence of the evolution, and more sampling increased
the evolution time.

4.4.3 Memetic Operators

As we will show, the use of fitness approximation dramatically reduced the computa-
tion time. Thus, we decided to utilize the fitness approximation to create smart memetic
operators that use local search for further improving evolution.

Whenever we apply the basic genetic operators described above, we run them five
times and choose the best individual according to the approximated fitness.

5 Experiments and Results

We carried out a comprehensive set of experiments aimed at winning the top human-
written survivors. Our code is written in Python, using the EC-KitY toolkit Sipper et al.
(2023). Our code and data are at Assembly code generation. The code for the human-
written survivors we compete with can be found at Leshem and Eyzenberg (2012).

Experiments were conducted on a shared cluster of 96 nodes and a total of 5,408
CPUs (the most powerful processors are AMD EPYC 7702P 64-core, although most
have lesser specs). 64 CPUs and 150 GB RAM were allocated for each evolutionary
run (against one human adversary) to parallelize the evaluation. In practice, each run
without the fitness approximation took approximately two days.

The specific hyperparameters utilized in the experiments and their chosen values
are detailed in Table 1. The population size was chosen to be 192 to optimize the need
for diversity, considering the resources of 64 CPUs and assigned time per evolutionary
run. The Grow mutation probability was chosen to be 0.7 as the experiments that were
conducted showed a clear tendency to better results with a high mutation rate, yet this
rate allows evolution to perform a significant learning process.

The operators were sequentially applied to individuals with different probabilities
(Table 1). The evolution was set to terminate when 2K generations were reached, or be-
fore, depending on whether convergence between best and average fitness values was
achieved in addition to a monotonic non-increasing winning strike of 200 generations.

We repeated each experiment ten times to test consistency. Our individuals’ aver-
age fitness and standard deviation against each of the past years’ winners are in Table 2.
We consider an average engine score higher than 0.5 a winning result for our individ-
ual. Notably, evolution managed to evolve Assembly programs, which won almost
78% of past years’ human-written winners.
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Table 1: Evolutionary hyper-parameters.

Representation Grammar-based GP
Mutation Grow sub-tree and duplicate tree †

Recombination Exchange of sub-trees and trees †

Grow mutation probability 0.7
Duplication mutation probability 0.2

Exchange sub-tree recombination probability 0.3
Replacement recombination probability 0.2

Parent selection Tournament with k = 4

Survivor selection Generational replacement
Population size 192

Termination 2,000 generations or convergence
with a winning strike

† The operators are described in Section 4.3.

Table 2: Test average fitness and standard deviation over ten experiments of our best
individuals against past years’ winners.

Year Human survivor #Wins Avg. Engine’s Score SD

2006 Zeus 8/10 0.675 0.162
2007 HutsHuts 10/10 0.960 0.048
2008 APOCALYPSE 9/10 0.741 0.170
2009 XLII 9/10 0.891 0.174
2010 FSM 3/10 0.481 0.147
2011 Mamaliga 9/10 0.738 0.132
2012 Zorg 9/10 0.692 0.171
2013 Snake 10/10 0.736 0.136
2014 IamAA 6/10 0.478 0.220
2014 Paranoia 9/10 0.890 0.190
2015 SilentError 9/10 0.684 0.127
2016 LoudBugFix 2/10 0.402 0.078
2017 Memz 10/10 0.997 0.006
2018 Barvaz’sAngles 10/10 0.991 0.008
2019 Nuki’sDemons 5/10 0.666 0.286
2020 GreeniEs 10/10 0.984 0.020
2021 BlocksOfGuru 10/10 0.753 0.118
2022 TheHeapMen 4/10 0.494 0.102
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1 @ s t a r t :
2 and cl , [ bx + 0x68 + 0 x104 + 0 x246 ]
3 div WORD [ bx ]
4 l8293849 :
5 r c l dl , c l
6 r c l ax , 1
7 r o l si , c l
8 push WORD [ s i ]
9 shl dh , c l

10 l8293850 :
11 and WORD [ di + 0 x222 ] , 0x92
12 wait
13 wait
14 mov WORD [di], 0x196
15 jns l8293850
16 @end :

(a) Part 1

1 @ s t a r t :
2 sub bh , [ bx + 0x30 + @ s t a r t ]
3 div WORD [ bx ]
4 l8293858 :
5 r o l dl , c l
6 shr di , 1
7 dw 0x144 inc sp
8 push ds add [0xDA80 ] , bx
9 sbb dl, 0x34 xor al , 0xD3

10 sar ax, cl c l c
11 l8293859 :
12 and WORD [ s i + 0 x246 + 0 x230 ] , 0 x264
13 push bx
14 pop WORD [di]
15 and WORD [ s i + 0 x206 + 0 x202 + 0 x220 + 0

x−14 + 0x−20 + 0x32 ] , 0 x144
16 jmp l8293859
17 @end :

(b) Part 2

Listing 1: Evolved survivor against Zorg (2012 winner). The two parts of the evolved
survivor utilized Zorg’s Achilles’ heel by writing data to a part of its program. Strike-
through text denotes run-time changed code.

5.1 Qualitative Analysis of Evolved Survivors

In this section, we inspect the code of the evolved solvers. The inspection reveals that
the evolved survivors managed to win complex and long survivors using a relatively
small code fragment. Although GP frequently evolves long code, sometimes only a
small part of it is used in the program run flow and yet manages to win. As we will
demonstrate, this shows how evolution found the Achilles’ heel in the opponents’ code
and utilized it for its benefit.

5.1.1 Utilizing Achilles’ heel
One of the clearest examples is Zorg—the 2012 winner. Zorg writes an important code
fragment for its future run on memory address zero. The evolution process noticed it
in about 100 generations and overridden this memory by addressing di, which holds
the value zero, depriving Zorg of winning (see line 14 in both parts of Listing 1, which
includes the dw translation to Assembly commands and the effect on the following com-
mands). Zorg’s code is significantly longer and more complicated than the evolved
fragment that overtook it. The evolved survivor manages to win Zorg in about 70%
of the battles in a game (according to the average engine’s score) despite the weakness
finding due to the randomness in the game’s execution order.

5.1.2 Concentrated vs. Scattered Memory Writes
During evolution, we noticed several spikes in the best fitness. For example, when
training against BlocksOfGuru, there were spikes in the fitness of the best individuals
in generations 206 and 256 (see Figure 2). To analyze these spikes, we ran a game with
BlocksOfGuru against these individuals and the overall best individual (from genera-
tion 1,769). The results and memory image are depicted in Figure 3. We can see that
most memory writes were made by the second part of the 1,769 and 256 individuals
that cover the arena with scattered green and pink dots. 206’s second part performed
less, yet a significant number of writes in yellow are concentrated in several areas. All
of the first part performed little to no new memory writes. Inspecting their cleared
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Figure 2: BlocksOfGuru (2021)

Figure 3: The memory image of BlocksOfGuru vs. best individuals from generations
206, 256, and 1,769. The scattered green and pink dots are memory bytes written by
the 1,769 and 256 individuals, respectively. The concentrated yellow dots are memory
bytes written by the 206 individual.

runnable code (Listings 2 and 3) reveals that the first parts of 256 and 1,769 run in the
loop written in their bottom, which keeps the individual alive but does not perform
attacking actions—as seen in the lack of their color in the arena. In 206, both parts run
in a loop due to jmp ax at the end, which jumps into the beginning of the code. Most
memory writes of all individuals are performed using addressing si, yet with adding
different constants to si. 256 and 1,769 use special constants like 65,535 and @start,
while 206 does not. The first two exceed the bounds of word data, and the computa-
tion is thus written to an address defined as the special constant modulo 216, which
results in scattered writes. The evolutionary process discovered that scattered writing
has more chances to encounter adversary code, as reflected in their higher scores, and
it is reflected in runs against other survivors as well.

5.1.3 Vertical vs. Horizontal Memory Writes
Another interesting pattern we detected in evolved survivors was writing vertical bytes
into memory. That is, sequentially writing a byte every 256 bytes, creating a vertical line
in the memory state. This contrasts with human-written survivors, who usually write
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1 @ s t a r t :
2 not WORD [ bx+65535]
3 cmc
4 and [ s i +0x252 ] , di
5 xchg bx , [ s i +0x051E ]
6 jnc l268089
7 l268089 :
8 add [ s i +0x0802

+65535] , bx
9 sbb cl , 0 x−14

10 loop l268090
11 l268090 :
12 mov [ s i +@ s t a r t +0

x03B4 ] , cx
13 r c r si , 1
14 and [ s i ] , ax
15 jmp ax
16 @end :

(a) 206 part 1

1 @ s t a r t :
2 inc WORD [ bx+65535]
3 cmc
4 and [ s i +0x252 ] , cx
5 xchg bx , [ s i +0x051E ]
6 jnc l268094
7 l268094 :
8 add [ s i +0x0814

+65535] , bx
9 sbb cl , 0 x124

10 loop l268095
11 l268095 :
12 mov [ s i +0x152 ] , cx
13 r c r si , 1
14 and [ s i ] , ax
15 jmp ax
16 @end :

(b) 206 part 2

1 @ s t a r t :
2 dec WORD [ bx

+65535]
3 cmc
4 and [ s i +0x252 ] , dx
5 xchg bx , [ di+0

x05FC ]
6 l376145 :
7 sub [ s i ] , c l
8 jmp l376145
9 @end :

(c) 256 part 1

1 @ s t a r t :
2 inc WORD [ bx+0x260

+65535]
3 cmc
4 and [ s i +0x252 ] , di
5 xchg bx , [ s i +0x0802

+65535]
6 jnc l376150
7 l376150 :
8 add [ s i +0x0802

+65535] , bx
9 sbb cl , 0 x−14

10 loop l376151
11 l376151 :
12 mov [ s i +@ s t a r t +0x03B4

] , cx
13 r c r si , 1
14 and [ s i ] , ax
15 jmp ax
16 @end :

(d) 256 part 2

Listing 2: Comparing the code of best individuals against the BlocksOfGuru survivor.

1 @ s t a r t :
2 xchg bp , [ bp+0x0130 ]
3 and [ di+0x072C ] , dx
4 xchg di , [ di+0x05FC ]
5 l7388834 :
6 or [ s i ] , bl
7 jmp l7388834
8 @end :

(a) 1,769 part 1

1 @ s t a r t :
2 inc WORD [ bx+0x260 +65535]
3 c l i
4 and [ s i +0x252 ] , di
5 xchg bx , [ s i +0x0802 +65535]
6 jnc l7388849
7 l7388849 :
8 add [ s i +0x0802 +65535] , bx
9 sbb cl , 0 x−14

10 loop l7388850
11 l7388850 :
12 mov [ s i +@ s t a r t +0x03B4 ] , cx
13 r c r si , 1
14 and [ s i ] , ax
15 jmp ax
16 @end :

(b) 1,769 part 2

Listing 3: Comparing the code of best individuals against the BlocksOfGuru survivor.

(a) Evolution vs. GreeniEs (2020) (b) Evolution vs. Zeus (2006)

Figure 4: Vertical vs. horizontal memory write. Horizontal writings of evolved sur-
vivors (in purple and yellow) “cut” the human-written adversaries that write in hori-
zontal lines (green and red) by writing on their code before they reach their code.
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Year Human Survivor w/o Random w/ Random
Avg. Score #Victories Avg. Score #Victories

2010 FSM 0.481 3/10 0.483 5/10
2014 IamAA 0.478 6/10 0.377 3/10
2016 LoudBugFix 0.402 2/10 0.483 6/10
2022 TheHeapMen 0.494 4/10 0.496 5/10

Table 3: Test game results with and without randomness.

memory in horizontal lines (consecutive bytes). As a result, the evolved survivors were
able to “cut” the adversary by writing on its code before the adversary reached its code.
This is depicted, for example, in the memory state of our evolved individuals against
Zeus (2006) and GreeniEs (2020) (see Figure 4). The evolved survivors, in purple and
yellow, write their code in vertical lines, thus cutting their adversaries’ horizontal writ-
ing (in red and green). Writing vertically assures reaching the opponent’s code faster
because most submitted survivors take advantage of the maximum allowed code size,
thus filling at least one memory row entirely. Therefore, filling one or a few columns
will be faster than filling complete rows. A similar pattern was found in many runs
against other survivors.

The presented patterns of utilizing weak points, scattered and vertical writings
are expressed in a significant part of the performed evolutionary runs against all the
survivors, although not all the runs of each survivor have used the same pattern.

5.2 Random Generator Pattern

The original program had difficulties overtaking a few previous years’ winners, specif-
ically FSM 2010, IamAA 2014, LoudBugFix 2016, and TheHeapMen 2022, resulting in
an average score lower than 0.5. We assumed that the BNF extension of random gen-
erator patterns may improve our evolved survivors. We ran the evolution against the
above adversaries again for ten runs each.

As Table 3 shows, using randomness improved the number of games evolution
won and the average score in three out of four cases. The majority of the best-evolved
individuals contained at least one of the random patterns. However, in some, the pat-
tern appears in an unreachable code segment or outside the loop, meaning it only
executes once. We believe it helped the evolution process, even though the winning
survivor does not actively use it.

The use of randomness enhanced the use of scattered writing patterns for some of
the survivors and evolved a combined horizontal-vertical writing pattern for others, in
contrast to the vertical-only pattern. The random pattern allowed for the combination
of the described patterns together, resulting in scattered writing in horizontal lines that
expand vertically, as seen in Figure 5. We can see the yellow and purple memory cells
that are being filled horizontally at the beginning. Afterward, the created lines expand
vertically, and everything is done using scattered writing.

5.3 Fitness Approximation and Memetic Operators

For the ML-based fitness approximation approach (Section 4.4.2), we used the Ridge
model over Lasso (see Tzruia et al. (2023)) as it helps reduce overfitting that results
from model complexity and doesn’t set the value of the coefficient to absolute zero.
The complete fitness-approximation hyperparameters are given in Table 4, and they
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Figure 5: Scattered, horizontal, and vertical writing in the survivor, which evolved
using randomness patterns against FSM (2010).

Table 4: ML hyper-parameters.

switch condition CV Error
switch threshold 0.125

sample rate 30%
model Ridge
alpha 0.3

gen weight sqrt

are used with the parameters described in Table 1.
The combination of the approximation model in our evolution led to about a 30%

decrease in total evolution time while preserving the winning results achieved before
(see Table 2). For example, the evolution vs Mamaliga (2011) previously took about 77
hours and was decreased to 56 hours with the same amount of generation until winning
was achieved.

As the approximated fitness was relatively accurate, we decided to utilize it against
the human-written survivors we were not able to overtake Table 3. We did that using
the memetic operators described in Section 4.4.3, running 10 evolutionary processes
against each opponent to establish our results, similar to the method described in Sec-
tion 4.2. We also used the random-pattern extension in these experiments.

As Table 5 shows, there was a great improvement, and a win was achieved against
all human-written survivors we were not able to win before. Furthermore, in all games
in the test phase that resulted in winning, they achieved the best possible score of 1.0.
They did not win all games, hence the average score of 0.8 and 0.9.

During the experiment, the ML model was able to learn the parameter weights
in each run. The highest weight was given consistently to the score parameter, as ex-
pected, and the size parameter was approximately ignored in all cases. We also noticed
that the writing rate weight varied among the survivors, while the other weights had
close values.
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Table 5: Test game results with the memetic operators and random patterns.

Year Human Survivor w/o memetic operators w/ memetic operators
Avg. Score #Victories Avg. Score #Victories

2010 FSM 0.481 3/10 0.8 8/10
2014 IamAA 0.478 6/10 0.9 9/10
2016 LoudBugFix 0.402 2/10 0.9 9/10
2022 TheHeapMen 0.494 4/10 1 10/10

6 Application to Cyber Security

Signatures are widely used in anti-virus programs as a technique to detect known mal-
ware. They work by comparing specific patterns or characteristics of files against a
database of known malware signatures. If a match is found, the anti-virus program
can take appropriate action to quarantine or remove the malicious file. To bypass those
techniques, malware developers have devised methods to alter their code in a man-
ner that avoids detection by the signatures while still maintaining the malware’s func-
tionality. This perpetuates the ongoing battle between protectors and attackers in an
endless cycle.

The adversarial environment of CodeGuru is an interesting platform for analyzing
the ability of evolution to overcome tools designed especially against it, like the ability
of malware developers to overcome signatures. As mentioned in Section 3, there is
a special opcode INT 0x87 in the game. It looks for a 4-byte sequence identical to
the values stored in the registers AX:DX and replaces them with the values stored in
BX:CX. The search is performed in the memory starting from address DI:ES moving
up or down, determined by the direction flag. Therefore, if a command from a survivor
is stored in AX:DX, it can be found and replaced by the adversary to an illegal command
stored in BX:CX, causing the survivor to run it and be disqualified. This simulates the
identification of malware by a signature.

We conducted an experiment utilizing the INT 0x87 command to simulate
signature-based anti-virus. The adversaries chosen were XLII (2009) and GreeniEs
(2020), both of which we had previously defeated and that incorporate INT 0x87 in
their code. We subjected them to a complete evolutionary process, with a minor ad-
justment of halting evolution once the evolved population achieved a consistent win,
indicated by an average fitness of 1.1, signifying a winning score (refer to Section 4.2).
During this halt, we manually altered the adversaries’ AX:DX values to match the com-
mands relied upon by the best-evolved individuals. Subsequently, we resumed the
evolution, introducing the evolved population to a bespoke adversary.

In both cases shown in Figure 6, the fitness initially dropped in the following
generation due to encountering an improved adversary. However, as evolution pro-
gressed, it managed to recover and even improve the fitness results to levels achieved
before. The evolutionary process successfully replaced the targeted commands with
different ones that exhibited similar behavior. These results demonstrate the capabil-
ity of evolution to confront tools specifically designed to counter it. Furthermore, the
use of a domain-independent Assembly grammar, coupled with the prevalence of mal-
ware written in Assembly, suggests that these findings could be leveraged to modify
malware for evading signature-based anti-virus systems.
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(a) Evolution vs. modified XLII (2009) (b) Evolution vs. modified GreeniEs (2020)

Figure 6: The fitness dropped in generation 241 and 38, respectively, after the tailor-
made adversary was created.

7 Conclusion

This work focused on evolving Assembly code for the CodeGuru competition with the
objective of creating a survivor program that can run the longest in shared memory
while withstanding attacks from adversary survivors. By defining a Backus Normal
Form (BNF) for the Assembly language and employing Genetic Programming (GP) to
synthesize the code, the study aimed to develop top-notch solvers. The evaluation
of the evolved programs involved running CodeGuru games against human-written
winning survivors, leading to the identification and exploitation of weaknesses in the
opponent programs.

To enhance the evolutionary process, we presented three enhancements. Specif-
ically, we added random patterns to the BNF to allow our survivors to be less pre-
dictable; we dramatically cut the overall training time approximating the fitness us-
ing a machine-learning (ML) approach; and finally, by developing ML-based memetic
operators that allowed our survivors to outperform all pervious-years human-written
survivors.

The significance of this research extends to the realm of cyber-security, where the
evolved Assembly programs were adept at detecting vulnerabilities in the opponent
survivors, showcasing the potential for utilizing evolutionary algorithms to identify
and rectify code weaknesses. Our domain-independence Assembly BNF opens up pos-
sibilities for adapting the approach to various contexts by adjusting the fitness function
to target specific code vulnerabilities.

Moreover, the CodeGuru competition serves as a valuable platform for studying
Genetic Programming and code evolution within adversarial environments. The thor-
ough qualitative analysis conducted on the evolved survivors and the vulnerabilities
uncovered contributes to the body of knowledge in this area. By shedding light on the
efficacy of evolutionary techniques in enhancing program robustness and resilience
against attacks, this research paves the way for further investigations into evolutionary
strategies for cybersecurity applications and code optimization in competitive settings.
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A Our Grammar

⟨reg⟩ ::= ‘ax’, ‘bx’, ‘cx’, ‘dx’, ‘si’, ‘di’, ‘bp’, ‘sp’

⟨half reg⟩ ::= ‘ah’, ‘al’, ‘bh’, ‘bl’, ‘ch’, ‘cl’, ‘dh’, ‘dl’

⟨addres⟩ ::= ‘[bx]’, ‘[si]’, ‘[di]’, ‘[bp]’

⟨pop reg⟩ ::= ‘ax’, ‘bx’, ‘cx’, ‘dx’, ‘si’, ‘di’, ‘bp’, ‘WORD [bx]’, ‘WORD [si]’,
‘WORD [di]’, ‘WORD [bp]’, ‘ds’, ‘es’

⟨push reg⟩ ::= ‘ax’, ‘bx’, ‘cx’, ‘dx’, ‘si’, ‘di’, ‘bp’, ‘WORD [bx]’, ‘WORD [si]’,
‘ WORD [di]’, ‘ WORD [bp]’, ‘ds’, ‘es’, ‘cs’, ‘ss’

⟨const⟩ ::= [(2*i) for i in range(-10, 133)]’, ‘@start’, ‘@end’, ‘65535’, ‘0xcccc’

⟨op⟩ ::= ‘nop’, ‘stosw’, ‘lodsw’, ‘movsw’, ‘cmpsw’, ‘scasw’, ‘pushf’, ‘popf’,
‘lahf’, ‘stosb’, ‘lodsb’, ‘movsb’, ‘cmpsb’, ‘scasb’, ‘xlat’, ‘xlatb’, ‘cwd’,
‘cbw’, ‘cmc’, ‘clc’, ‘stc’, ‘cli’, ‘sti’, ‘cld’, ‘std’

⟨op single⟩ ::= ‘div’, ‘mul’, ‘inc’, ‘dec’, ‘not’, ‘neg’

⟨op double⟩ ::= ‘cmp’, ‘mov’, ‘add’, ‘sub’, ‘and’, ‘or’, ‘xor’, ‘adc’, ‘sbb’, ‘test’

⟨op jmp⟩ ::= ‘jmp’, ‘jcxz’, ‘je’, ‘jne’, ‘jp’, ‘jnp’, ‘jo’, ‘jno’, ‘jc’, ‘jnc’, ‘ja’,
‘jna’, ‘js’, ‘jns’, ‘jl’, ‘jnl’, ‘jle’, ‘jnle’, ‘loopnz’, ‘loopne’, ‘loopz’,
‘loope’, ‘loop’

⟨op rep⟩ ::= ‘rep’, ‘repe’, ‘repz’, ‘repne’, ‘repnz’

⟨op function⟩ ::= ‘call’, ‘call near’, ‘call far’

⟨op special⟩ ::= ‘wait wait wait wait’, ‘wait wait’, ‘int 0x86’, ‘int 0x87’

⟨op pointer⟩ ::= ‘lea’, ‘les’, ‘lds’

⟨op ret⟩ ::= ‘ret’, ‘retn’, ‘retf’, ‘iret’

⟨op push⟩ ::= ‘push’

⟨op pop⟩ ::= ‘pop’

⟨op double no const⟩ ::= ‘xchg’

⟨op shift⟩ ::= ‘sal’, ‘sar’, ‘shl’, ‘shr’, ‘rol’, ‘ror’, ‘rcl’, ‘rcr’

⟨section⟩ ::= ‘ ’

Listing 4: Terminals definitions

⟨section⟩ ::= ⟨label⟩ ⟨section⟩ ⟨backwards jump⟩ ⟨section⟩
| ⟨label⟩ ⟨section⟩ ⟨backwards jump⟩
| ⟨section⟩ ⟨forward jmp⟩⟨section⟩ ⟨label⟩ ⟨section⟩
| ⟨label⟩ ⟨section⟩ ⟨call func⟩ ⟨backwards jump⟩ ⟨label⟩ ⟨section⟩ ⟨return⟩
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| ⟨op double⟩ ⟨reg⟩ ⟨reg — const — address⟩ ⟨section⟩
| ⟨op double⟩ ⟨address⟩ ⟨reg — half reg⟩ ⟨section⟩
| ⟨op double⟩ ⟨half reg⟩ ⟨half reg — const — address⟩ ⟨section⟩
| ⟨op double⟩ ⟨WORD — BYTE⟩ ⟨address⟩ ⟨const⟩ ⟨section⟩
| ⟨op pointer⟩ ⟨reg⟩ ⟨address⟩ ⟨section⟩
| ⟨op double no const⟩ ⟨reg⟩ ⟨reg — address⟩ ⟨section⟩
| ⟨op double no const⟩ ⟨half reg⟩ ⟨half reg — address⟩ ⟨section⟩
| ⟨op single⟩ ⟨reg — half reg⟩ ⟨section⟩
| ⟨op single⟩ ⟨WORD — BYTE⟩ ⟨address⟩ ⟨section⟩
| ⟨op function⟩ ⟨address⟩ ⟨section⟩
| ⟨op — op special⟩ ⟨section⟩
| ⟨op rep⟩ ⟨op⟩ ⟨section⟩
| ⟨op push⟩ ⟨push reg⟩ ⟨section⟩
| ⟨op pop⟩ ⟨pop reg⟩ ⟨section⟩
| ‘jmp’ ⟨reg — address⟩ ⟨section⟩
| ‘dw 0x’⟨const⟩ ⟨section⟩
| ⟨op shift⟩ ⟨reg — half reg⟩ ⟨cl — 1⟩ ⟨section⟩

⟨call func⟩ ::= ‘call l’⟨const⟩ ⟨section⟩

⟨return⟩ ::= ⟨op ret⟩ ⟨section⟩

⟨label⟩ ::= ‘l’⟨const⟩ ⟨section⟩

⟨forward jump⟩ ::= ⟨op jmp⟩ ‘l’⟨const⟩ ⟨section⟩

⟨backwards jump⟩ ::= ⟨op jmp⟩ ‘l’⟨const⟩‘-1’ ⟨section⟩

⟨address⟩ ::= [⟨address⟩ + ⟨const⟩]

Listing 5: Functions definitions

⟨section⟩ ::= mov ax, timestamp
mov ⟨reg⟩, 1664525
mul ⟨reg⟩
add ax, 1013904223 ⟨section⟩

⟨section⟩ ::= mov ⟨reg⟩, randint(0, 65,535)
mov ⟨reg⟩, randint(0, 65,535)
xor ⟨reg⟩, ⟨reg⟩
shl ⟨reg⟩, 7
shr ⟨reg⟩, 5
xor ⟨reg⟩, ⟨reg⟩ ⟨section⟩

Listing 6: Functions definitions for the random patterns.
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