
Test Generation Strategies for Building Failure Models and
Explaining Spurious Failures

BAHARIN A. JODAT, University of Ottawa, Canada

ABHISHEK CHANDAR, University of Ottawa, Canada

SHIVA NEJATI, University of Ottawa, Canada

MEHRDAD SABETZADEH, University of Ottawa, Canada

Test inputs fail not only when the system under test is faulty but also when the inputs are invalid or unrealistic.

Failures resulting from invalid or unrealistic test inputs are spurious. Avoiding spurious failures improves the

effectiveness of testing in exercising the main functions of a system, particularly for compute-intensive (CI)

systems where a single test execution takes significant time. In this paper, we propose to build failure models for

inferring interpretable rules on test inputs that cause spurious failures. We examine two alternative strategies

for building failure models: (1) machine learning (ML)-guided test generation and (2) surrogate-assisted test

generation.ML-guided test generation infers boundary regions that separate passing and failing test inputs and

samples test inputs from those regions. Surrogate-assisted test generation relies on surrogate models to predict

labels for test inputs instead of exercising all the inputs. We propose a novel surrogate-assisted algorithm that

uses multiple surrogate models simultaneously, and dynamically selects the prediction from the most accurate

model. We empirically evaluate the accuracy of failure models inferred based on surrogate-assisted and ML-

guided test generation algorithms. Using case studies from the domains of cyber-physical systems and networks,

we show that our proposed surrogate-assisted approach generates failure models with an average accuracy of

83%, significantly outperforming ML-guided test generation and two baselines. Further, our approach learns

failure-inducing rules that identify genuine spurious failures as validated against domain knowledge.

CCS Concepts: • Software and its engineering → Search-based software engineering; Empirical
software validation; • Computing methodologies→Machine learning algorithms.

Additional Key Words and Phrases: Search-based testing, Machine learning, Surrogate models, Failure models,

Test-input validity, and Spurious failures.

ACM Reference Format:
Baharin A. Jodat, Abhishek Chandar, Shiva Nejati, and Mehrdad Sabetzadeh. 2023. Test Generation Strate-

gies for Building Failure Models and Explaining Spurious Failures. ACM Trans. Softw. Eng. Methodol. 1, 1
(December 2023), 32 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Traditionally, software testing has been concerned with finding inputs that reveal failures in the

system under test (SUT). However, failures do not always indicate faults in the SUT. Instead, failures

may arise because the test inputs are invalid or unrealistic. For example, in an airplane autopilot

system, a failure indicating that the ascent requirement fails for a test input that points the plane

Authors’ addresses: Baharin A. Jodat, balia034@uottawa.ca, University of Ottawa, Canada; Abhishek Chandar, achan260@

uottawa.ca, University of Ottawa, Canada; Shiva Nejati, snejati@uottawa.ca, University of Ottawa, Canada; Mehrdad

Sabetzadeh, m.sabetzadeh@uottawa.ca, University of Ottawa, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1049-331X/2023/12-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

ar
X

iv
:2

31
2.

05
63

1v
1

 [
cs

.S
E

]
 9

 D
ec

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

nose downward would be invalid. This is because the failure is caused by an unmet environment

assumption: the nose should be upward for ascent. For another example, consider a network-

management system. In such a system, quality-of-service requirements will inevitably fail for

unrealistic test inputs that overwhelm the network beyond its capacity. Environment assumptions

capture the expected conditions for a system’s operational environment [49]. Attempting to test

a system for a more general environment than its expected operational environment may lead

to overly pessimistic testing and verification results. We refer to failures arising from test inputs

violating the system’s environment assumptions as spurious failures. It is often the case that

environment assumptions are not fully known for software systems [83]; therefore, it is difficult to

determine whether a failure is indeed spurious.

Automated random testing (fuzzing) [75] becomes more effective in exercising the main functions

of a system if the fuzzer avoids spurious failures [51]. Spurious failures particularly pose a challenge

for compute-intensive (CI) systems, where a single test execution takes significant time to complete.

For CI systems, we want to use the limited testing time budget to generate valid inputs that exercise

the system’s main functions. A promising approach for identifying spurious failures is to build

failure models [65–67]. Failure models provide conditions that explain the circumstances of failures

and describe when a failure occurs and when it does not [65]. Failure models can infer rules leading

to and only to failures. These rules are candidates to be validated against domain knowledge to

determine whether the failures that the rules identify are spurious.

Recent research on synthesizing input grammars [32, 33, 67, 68, 89] and abstracting failure-

inducing inputs [51, 65, 66] aims to understand the circumstances of different failures. These

approaches start from an example failure and iteratively generate more tests to learn the input

conditions that lead to that failure. The tests are generated via fuzz testing with or without an

input grammar. These approaches are geared towards systems with string inputs, where oracles are

typically binary (pass/fail) verdicts. However, these approaches are not optimized for systems with

numeric inputs, where the inputs are not governed by grammars and where quantitative fitness

functions, developed based on system requirements, are used to determine the degree to which

test inputs pass or fail. These quantitative fitness functions enable exploration of input space using

multiple test-generation heuristics and learning algorithms, resulting in test sets with sufficient

information to infer candidate rules for identifying spurious failures.

This paper proposes a framework to infer failure models for compute-intensive (CI) systems

with numeric inputs. Examples of such systems include cyber-physical systems (CPS) and network

systems. We follow a data-driven approach and infer failure models by harvesting information

from a set of test inputs. To generate such sets, one can use either explorative or exploitative search
methods [70]. The former attempts to sample the entire search space, whereas the latter attempts

to sample the most informative regions of the search space. The challenge with the explorative

approach is that we need to collect and execute many test inputs from the search space to determine

if they pass or fail. For CI systems, this takes significant time and may become infeasible. The

challenge with the exploitative approach is that one needs effective guidance for sampling within

large and multi-dimensional search spaces.

Machine learning (ML) has been used for improving the effectiveness and efficiency of both

explorative and exploitative search [35, 47, 63, 69, 71, 73, 86]. For explorative search, surrogate-
assisted test generation relies on ML to predict verdicts for test inputs instead of executing them

all [35, 62, 71, 78]. Using a quantitative surrogate, one can forego system executions when the

predicted verdicts remain valid after offsetting prediction errors. Otherwise, we execute the SUT

and use the results from the executed test inputs to refine the surrogate. As for exploitative search,

ML-guided test generation aims to infer boundary regions that separate passing and failing test

inputs and to subsequently sample test inputs from those regions [47, 69]. The intuition is that

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 3

tests sampled in the boundary regions are more informative for identifying failures and can be

used to further refine the boundary regions. Both approaches provide a set of labelled test inputs

from which one can infer failure models using techniques such as decision-rule learning [91].

Human experts must nonetheless review and validate the resulting rules to determine whether

they represent genuine spuriousness. The use of interpretable ML techniques such as decision-rule

learning allows failure models to be expressed as easily understandable rules linked to system

inputs, making them ideal for human interpretation.

While surrogate-assisted and ML-guided test generation algorithms have been previously used

to generate individual test inputs [35, 78] , their efficacy in generating failure models remains

unexplored. Specifically, earlier work strands [35, 78] employ machine learning to more effectively

steer test generation towards areas within the search space that are likely to contain the most

severe failures. In this paper, we use machine learning to devise new test generation algorithms,

with the aim of inferring failure models for systems that have numeric inputs.We evaluate the

resulting failure models against those produced by baselines. Our evaluation answers two main

questions: (1) How accurate are the failure models generated by the surrogate-assisted and ML-

guided techniques in predicting failures? (2) How useful are failure models for identifying spurious

failures? We use two kinds of study subjects in our evaluation: (i) A benchmark of four CPS

Simulink subjects with 12 requirements that are non-compute intensive (non-CI). (ii) Two industrial

CI systems, one from the CPS and the other from the network domain. In summary, we make the

following contributions:

(1)We propose a data-driven framework for inferring failure models for systems with numeric

inputs including CPS and network systems (Section 3).

(2) We propose a dynamic surrogate-assisted algorithm that uses multiple surrogate models

simultaneously during search, and dynamically selects the prediction from the most accurate model

(Section 3.2). Our evaluation performed based on seven surrogate-model types in the literature [43,

44, 78, 86] shows that, compared to using surrogate models individually, our dynamic surrogate-

assisted algorithm provides the best trade-off between accuracy and efficiency by generating

datasets that are at least 33% larger while being at least 28% more accurate (RQ1 in Section 4.2).

(3)We compare the accuracy of failure models obtained using our dynamic surrogate-assisted

approach against two ML-guided techniques as well as two baselines. One baseline is random-

search, and the other is an adaptation of a state-of-the-art approach that generates failure models

for systems with structured inputs [65]. Our results show that our dynamic surrogate-assisted

algorithm yields failure models with an average accuracy, precision, and recall of 83%, 72%, and

88%, respectively, significantly outperforming the ML-guided algorithms and the baselines (RQ2 in

Section 4.3 and RQ3 in Section 4.4).

(4)We demonstrate that failure models built using our dynamic surrogate-assisted algorithm

generate useful rules for identifying spurious failures in our CI subjects, as validated by domain

knowledge (RQ4 in Section 4.5).

(5)We present lessons learned based on our findings: The first lesson summarizes the advantages

of using decision rules for building failure models. The second lesson highlights the limitations

of focusing testing on finding individual failures and why failure models provide better insights

about the effectiveness of testing algorithms.

It is essential for systems to handle all potential inputs including those that violate environment

assumptions, and hence, are invalid. Spurious failures caused by invalid test inputs indicate a need

for additional safeguards against invalid inputs that may be generated, among other sources, by

human operator errors or malfunctioning hardware components, such as inaccurate sensor data.

However, these invalid test inputs do not exercise the core functionality of a system. While ensuring

that a given system is safeguarded against invalid inputs is crucial, the inability to identify spurious

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

4 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

failures can distort our understanding of the system’s capabilities. This may also lead to misplaced

confidence in a testing strategy that reveals numerous failures, yet offers little insight into the

system’s primary functions.

Organization. Section 2 motivates the need for identifying spurious failures. Section 3 presents

our data-driven framework for inferring failure models and presents alternative surrogate-assisted

and ML-guide algorithms for building failure models. Section 4 presents an evaluation of these

algorithms. Section 5 outlines the main lessons learned from the research. Section 6 compares with

related work. Section 7 summarizes the paper and suggests directions for future work.

2 MOTIVATION
Using two real-world, compute-intensive (CI) systems, wemotivate the need for identifying spurious

failures. These systems, both of which are open-source, are a Network Traffic Shaping System

(NTSS) [57, 64] and an autopilot system [1].

NTSS is typically deployed on routers to ensure high network performance for real-time streaming

applications such as teleconferencing (e.g., Zoom). Without NTSS, voice and video packets may be

transmitted out of sequence or with delays. As a result, users may experience choppy or freezing

voice/video. Due to the increasing remote-working practices, multiple streaming applications may

be running at the same time in homes and small-office settings. This has made systematic testing

of NTSS essential as a way to ensure that networks meet their quality-of-experience requirements.

NTSS works by dividing the total network bandwidth into classes with different priorities. The

higher-priority classes are typically used for transmitting time-sensitive, streaming voice and

video. To test the performance of an NTSS, we assign data flows with different bandwidth values

to different NTSS classes. The purpose is to ensure that NTSS is configured optimally and can

maintain good performance even when a high volume of traffic flows through its different classes.

When we stress-test an NTSS, no matter how well-designed the NTSS is, we expect the quality of

experience to deteriorate and become unacceptable eventually. Test inputs that stress NTSS beyond

a certain limit deterministically fail and do not help reveal flaws or suboptimality in the NTSS

design. Our approach in this paper infers the limit on the traffic that can flow through different

NTSS classes without compromising the quality of experience. For an NTSS setup with eight classes

from class0 to class7, we learn the following rule specifying failing test inputs:

r1: IF (class5+ class6+ class7 > 0.75 · threshold) THEN FAIL

In the above rule, threshold is the sum of the maximum bandwidths of classes 5, 6, and 7. As we

discuss in Section 4.5, we validate Rule r1 with a domain expert and confirm that failures specified

by this rule are indeed spurious. Rule r1 indicates that attempting to simultaneously utilize classes

5, 6 and 7 more than 75% of their maximum ranges would compromise quality of experience for

the entire network. Rule r1 helps domain experts in at least two ways: (1) it informs them that test

inputs that satisfy the rule are spurious, since such test cases do not reveal design faults, and (2) it

provides experts with data-driven evidence that the cumulative utilization of classes 5, 6, and 7

should be kept below the identified limit.

Our second case study is an autopilot system from Lockheed Martin’s benchmark of challenge

Simulink models [38]. This autopilot system is expected to satisfy the following requirement:

𝜑= “When the autopilot is enabled, the aircraft should reach the desired altitude within 500 seconds
in calm air”. When we test the autopilot by fuzzing, we find several test inputs that violate this

requirement and several test inputs that satisfy it. It is however unclear whether the failures are due

to faults in the system or due to missing or unknown assumptions on the system inputs. Failures

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 5

caused by missing or unknown assumptions would be spurious. As we discuss in Section 4.5, we

identify the following rule as one that indicates spurious failures:

r2: IF (PitchWheel[0..300] ≤ -28 ∧ Throttle[0..300] ≤ 0.1) THEN FAIL

Here, Throttle[0..300] is the boost applied to the engine by the pilot during the first 300s, and

PitchWheel[0..300] is the upward or downward degree of the aircraft nose, again during the first

300s. Note that both Throttle and PitchWheel are signals over time. In order to validate r2, we
examined the handbook of the De Havilland Beaver aircraft [31]. According to the handbook, for this

aircraft type, to satisfy requirement 𝜑 , the pilot should manually adjust the throttle boost (Throttle)
to a sufficiently high value. The handbook further states that to be able to ascend, the plane’s nose

should not be pointing downward. That is, r2 describes a situation where the pre-conditions for 𝜑

are not met. Hence, the tests in these ranges are expected to fail and are uninteresting for revealing

system faults. Further, r2 can be used for implementing safeguards against misuse by the human

operator (pilot).

3 GENERATING FAILURE MODELS
Figure 1 shows our framework for generating failure models. The inputs to our framework are: (1) an

executable system or simulator 𝑆 , (2) the input-space representation R for 𝑆 , and (3) a quantitative

fitness function 𝐹 for each requirement of 𝑆 ; an example requirement, 𝜑 , for autopilot was given

in Section 2. The full set of requirements for our case studies is available in our supplementary

material [6]. We make the following assumptions about the search input space (R) and the fitness

function (𝐹):

• A1 We assume that the system inputs are variables of type real or enumerate. For each real

variable, the range of the values that the variable can take is bounded by an upper bound

and a lower bound.

• A2 For each requirement of 𝑆 , we have a fitness function 𝐹 based on which a pass/fail verdict

can be derived for any test input. Further, the value of 𝐹 differentiates among the pass test

inputs, those that are more acceptable, and among the fail test inputs, those that trigger more

severe failures. Specifically, we assume that the range of 𝐹 is an interval [−𝑎, 𝑏] of R. For a
given test, 𝐹 (𝑡) ≥ 0 iff 𝑡 is passing, and otherwise, 𝑡 is failing. The closer 𝐹 (𝑡) is to 𝑏, the
higher the confidence that 𝑡 passes; and the closer 𝐹 (𝑡) is to −𝑎, the higher the confidence
that 𝑡 fails.

Assumptions A1 and A2 are common for CPS models expressed in Simulink [29, 38, 74, 87],

automated driving systems [78], and network-management systems [64], and are valid for all the

case studies we use in our evaluation.

As discussed in Section 1, we examine two alternative test-generation approaches for building

failure models: surrogate-assisted and ML-guided. Both approaches can be captured using the

framework shown in Figure 1: The preprocessing phase generates a set of test inputs labelled with

fitness values. The main loop takes the test-input set created by the preprocessing phase, and

trains a model. When the framework is instantiated for surrogate-assisted test generation, the

model predicts fitness values for the generated test inputs. When the framework is instantiated

for ML-guided test generation, the model guides test-input sampling. The main loop extends the

test-input set using the trained model while also refining the model based on newly generated tests.

After the main loop terminates, the framework uses the test-input set to train, using decision-rule

learners, a failure model. In the remainder of this section, we detail each step of the framework

shown in Figure 1.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

6 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

Build Failure
Model

Generate
Initial Test

Inputs

Handle
ImbalanceTest Oracle

(quantitative)

Input Search
Space

Fitness
Function (F)

Input Search
Space

Preprocessing Phase (Algorithm 1)

5

21

Decision Rule
Model (DRM)

Add Test
Inputs

(Re-)train
Model

43

Main Loop (Algorithms 2, 3, 4 and 5)System (S)

R

1

()

Fig. 1. Our framework for generating failure models. The main loop of the framework, i.e., steps 3 and 4,
can be realized using two alternative test-generation strategies: (1) Surrogate-assisted test generation, or
(2) ML-guided test generation. For surrogate-assisted test generation, one can use either Algorithm 2, which
is based on an individual surrogate model, or Algorithm 3, which is based on our proposed dynamic model.
For ML-guided test generation, one can use either Algorithm 4, which uses regression trees to identify the
boundary regions between passing and failing test cases, or Algorithm 5, which uses logistic regression for
the same purpose.

Algorithm 1 The preprocessing phase of Figure 1

Input 𝑆 : System
Input R = {𝑅1, . . . , 𝑅𝑛}: Ranges for input variables 𝑣1 to 𝑣𝑛
Input 𝐹 : Fitness Function
Input 𝑑 : The budgeted dataset size

Output DS: A set of test inputs and their fitness values

1: DS𝑖 ← GenerateTests(R, 𝑑/2); //(Adaptive) Random Testing

2: DS𝑙 ← Execute(𝑆 , DS𝑖 , 𝐹); //Compute fitness values

3: DS𝑏 ← HandleImbalance(DS𝑙); //Use SMOTE to generate synthetic test inputs

4: DS𝑏,𝑙 ← Execute(𝑆 , DS𝑏 , 𝐹); //Compute fitness values of the tests generated by SMOTE

5: 𝐷𝑆← DS𝑏,𝑙 ∪DS𝑙 ; //Combine the test inputs generated by adaptive random testing and SMOTE

along with their fitness values to form a dataset

6: return DS

3.1 Preprocessing Phase
Algorithm 1 describes the preprocessing phase that generates the initial dataset for training a

model to be used in the main loop of Figure 1. This algorithm first randomly generates half (𝑑/2)
of the budgeted test inputs and computes a fitness value for each test input by executing the test

input using 𝑆 (lines 1-2). Since ML models perform poorly when the training set is imbalanced, we

attempt to address any potential imbalance before using the data for ML training [91] (line 3). In our

work, the imbalance, if one exists, is between the pass and the fail classes. We use the well-known

synthetic minority over-sampling technique (SMOTE) for addressing imbalance [39]. Let minor
(resp. major) be the number of tests in the minority (resp. majority) class. SMOTE over-samples

the minority class by taking each minority-class sample and introducing synthetic examples along

the line segments joining any/all of the 𝑘 minority-class nearest neighbours [39]. The process is

repeated until we have𝑚 = major −minor new such tests.

We discard the labels from SMOTE and instead execute the tests to compute their actual fitness

values (line 4). We discard the labels provided by SMOTE, since SMOTE categorizes test inputs

as pass or fail. Instead, we require test inputs to be labelled with their quantitative fitness values;

this enables us to train regression ML models in Step 3 of our approach in Figure 1. The final

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 7

dataset (DS) is returned at the end (line 6). Although not shown in Algorithm 1, to have exactly

𝑑 tests in DS, we generate the remaining (𝑑/2 −𝑚) tests randomly. Generating these remaining

tests randomly does not introduce a new imbalance problem because if random test generation

leads to major imbalance, then𝑚 is already close to 𝑑/2 and only a few additional tests need to

be generated. Otherwise, a small𝑚 indicates that random testing is relatively balanced; in that

case, no special provision is necessary for imbalance mitigation in the randomly generated datatset.

Since we discard the labels generated by SMOTE and compute the actual labels, the imbalance

problem may in principle persist even after applying SMOTE. For our experiments (Section 4), most

synthetic samples generated by SMOTE indeed belong to the minority class. Our preprocessing

therefore successfully addresses imbalance in our case studies.

3.2 Main Loop
Themain data-generation loop is realized via two alternative algorithms, described below: surrogate-

assisted and ML-guided.

The goal of this approach is to use surrogates to predict fitness values for some test inputs and

thus not execute the system for all test inputs. Hence, surrogates help explore a larger portion of

the input space and generate larger test sets.

3.2.1 Surrogate-Assisted Test Generation. Figure 2 illustrates the surrogate-assisted test generation

process, which takes the same inputs as the framework in Figure 1. The output is a labelled dataset,

DS, used in Step 5 of Figure 1 to build failure models. The procedure in Figure 2 is as follows:

(1) Start with preprocessing (Algorithm 1) to produce an initial dataset (Step 1 of Figure 2).

(2) Train a surrogate model with the initial dataset (Step 2 of Figure 2).

(3) Generate a new test input (Step 3 of Figure 2) and predict its fitness value using the surrogate

model (Step 4 of Figure 2).

(4) Calculate a confidence interval for the predicted fitness value (Step 5 of Figure 2).

(5) If the prediction is not accurate, run system 𝑆 to obtain the actual fitness value (Step 7 of

Figure 2), add the test input along with its actual fitness value to the dataset (Step 8 of

Figure 2), and return to Step 2 of Figure 2 to re-train the surrogate model.

(6) If the prediction is accurate; add the test input along with its predicted fitness value to the

dataset (Step 6 of Figure 2); and, return to Step 3 of Figure 2.

Note that if we execute system 𝑆 for a test input, as mentioned in item (5) above, the surrogate
model is retrained using the dataset updated with this new test execution. In contrast, if system

execution is not required, as in item (6) above, retraining the surrogate model is unnecessary.

To demonstrate the calculation of the confidence interval described in item (4) above, consider
the example provided in Figure 3. In this figure, two sample test inputs, denoted as 𝑡 and 𝑡 ′, are
shown. Suppose the predicted fitness values are 𝐹 (𝑡) = 8 and 𝐹 (𝑡 ′) = −1, indicating a pass label for

𝑡 and a fail label for 𝑡 ′, respectively. Assume that the prediction error, 𝑒 , of the surrogate model is 2.

The confidence interval is calculated as 𝐹 ± 𝑒 . That is, the confidence interval for 𝐹 (𝑡) is [6, 10],
while the confidence interval for 𝐹 (𝑡 ′) is [−3, 1]. Using the confidence intervals, we determine

whether to execute system 𝑆 for 𝑡 and 𝑡 ′. For input 𝑡 , the confidence interval of 𝐹 (𝑡) falls entirely
within the positive range. Hence, even after accounting for error, we still label the test input 𝑡 as a

pass. Therefore, there is no need for system 𝑆 to be executed for input 𝑡 , since 𝑡 can be confidently

labelled as pass (item (6) above). However, for input 𝑡 ′ the confidence interval of 𝐹 (𝑡 ′) spans both
positive and negative values. This indicates that a label cannot be confidently assigned to 𝑡 ′. As a
result, system 𝑆 needs to be executed for 𝑡 ′ to obtain its actual fitness value and an accurate verdict

(item (5)).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

8 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

Generate a New Test
Input

 Obtain the Predicted
Fitness Value from the

Surrogate Model

Is the Predicted
 Fitness Value Sufficiently

Accurate for Pass/Fail
Decisions?

Dataset (DS)
Fitness

Function (F)

Input Search
Space ()

System (S)

flag = ┴

(Re-)Train Surrogate
Model

Get Dataset from
Preprocessing Phase

(Algorithm 1)

1

 Execute the System
for the Test Input to

Obtain Its Actual
Fitness Value

Compute the
Confidence Interval for
the Predicted Fitness

Value

Add the Test Input
Along with Its Actual
Fitness Value to the

Dataset

 Add the Test Input
Along with Its Predicted

Fitness Value to the
Dataset

No

2

34

5

6

7 8

Yes

flag = T

R

1

Fig. 2. Illustration of the work flow of Algorithm 2

Pass

0
Fitness Range

86 10

Test Input

Search Space

-1-3 1

𝑡′ 𝑡

ത𝐹 𝑡 − 𝑒 ത𝐹 𝑡 ത𝐹 𝑡 + 𝑒

Fail

ത𝐹 𝑡′ − 𝑒 ത𝐹 𝑡′ ത𝐹 𝑡′ + 𝑒

Fig. 3. Illustration of how to calculate the confidence interval for predicted fitness values to determine
whether a predicted fitness value is accurate. Specifically, the figure shows confidence intervals, i.e., 𝐹 ± 𝑒 ,
of the predicted fitness values for two test inputs 𝑡 and 𝑡 ′. For the test input 𝑡 where the predicted fitness
confidence interval remains entirely in the positive range (i.e., the verdict of the test inputs in this range is
pass), we do not execute the system since we can say that the test input is passing even after accounting
for error 𝑒 . However, for the test input 𝑡 ′, the predicted fitness confidence interval spans both positive and
negative values (i.e., it includes test inputs with both pass and fail verdicts). Therefore, we need to execute
the system for 𝑡 ′ to obtain its actual fitness value.

The pseudo code of the surrogate-assisted test generation is provided in Algorithm 2. Below, we

discuss each line of this algorithm in detail.

Line 1 of Algorithm 2 uses Algorithm 1 to obtain an initial dataset, DS:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 9

Algorithm 2 Test generation using surrogates

Input 𝑆 : System
Input R = {𝑅1, . . . , 𝑅𝑛}: Ranges for input variables 𝑣1 to 𝑣𝑛
Input 𝐹 : Fitness Function
Input InitialDatasetSize: size of initial dataset
Output DS: A dataset to train failure models

1: DS ← Preprocessing(𝑆 , R, 𝐹 , InitialDatasetSize); //Run Algorithm 1 to generate an initial

dataset

2: DS𝑙 ← DS; flag ←⊤;
3: while (execution budget remains) do
4: if (flag)
5: (SM , 𝑒)← Train(DS𝑙); //Training SM; 𝑒 is the error

6: end
7: t ← GenerateTests(R, 1); //Generate one test input

8: 𝐹 (𝑡) ← SM (t); // Use SM to predict a fitness value for 𝑡

9: if (∃ ∼∈ {≥, <} · (𝐹 (𝑡) ∼ 0) ∧ (𝐹 (𝑡) ± 𝑒 ∼ 0) //Calculate the confidence interval of the

predicted fitness value to decide whether system 𝑆 needs to be executed for 𝑡 or not

10: DS ← DS ∪ {⟨t, 𝐹 (𝑡)⟩}; //Add the test input along with its predicted fitness value to the

dataset

11: flag ← ⊥; //No SM re-training is needed

12: else
13: {⟨𝑡, 𝐹 (𝑡)⟩} ← Execute(𝑆 ,{𝑡}, 𝐹); //Obtain the actual fitness value of 𝑡 by executing system 𝑆

14: DS𝑙 ← DS𝑙 ∪{⟨t, 𝐹 (𝑡)⟩}; //Add the test input along with its actual fitness value to the dataset

15: DS ← DS ∪ {⟨t, 𝐹 (𝑡)⟩}; flag ← ⊤; //SM re-training is needed

16: end
17: end
18: return DS

1: DS ← Preprocessing(𝑆 , R, 𝐹 , InitialDatasetSize);

On line 2, DS𝑙 is created to maintain a record of the test inputs for which 𝑆 is executed. We use this

dataset to train a surrogate model SM and compute its error 𝑒 (line 5):

2: DS𝑙 ← DS; flag ←⊤;
5: (SM , 𝑒)← Train(DS𝑙);

Specifically, we train SM using 80% of DS𝑙 and compute the mean absolute error of SM on the

remaining 20% of DS𝑙 . The split ratio is based on the well-known 80/20 rule [80]. We employ a

boolean variable, flag, to decide whether training a surrogate model is necessary. Initially, on line

2, we initialize flag to ⊤ to ensure that a surrogate model is trained during the first iteration. Then,

on line 7, we randomly generate a new test input and denote it by 𝑡 :

7: t ← GenerateTests(R, 1);

Then, on line 8, the surrogate model SM predicts a fitness value for 𝑡 . The predicted fitness value is

denoted by 𝐹 (𝑡):

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

10 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

8: 𝐹 (𝑡) ← SM (t);

On line 9, we calculate a confidence interval for 𝐹 (𝑡) based on the prediction error 𝑒 . Specifically,

we compute the interval [𝐹 (𝑡) − 𝑒, 𝐹 (𝑡) + 𝑒] as the confidence interval for 𝐹 (𝑡). If the confidence
interval remains entirely within the positive or negative range, indicating a definite pass or fail

verdict for the test input 𝑡 , we skip executing system 𝑆 for the test input 𝑡 . This is because we

can confidently label it as either pass or fail. Subsequently, we add the test input 𝑡 along with its

predicted fitness value (i.e., 𝐹 (𝑡)) to DS (line 10). In addition, we set flag to ⊥ in order to prevent

retraining the surrogate model SM in the next iteration (lines 11):

9: if ∃ ∼∈ {≥, <} · (𝐹 (𝑡) ∼ 0) ∧ (𝐹 (𝑡) ± 𝑒 ∼ 0)
10: DS ← DS ∪ {⟨t, 𝐹 (𝑡)⟩};
11: flag ← ⊥;

Otherwise, on line 12, if the confidence interval spans both positive and negative numbers, indicating

that it covers test inputs with both pass and fail verdicts, we proceed to execute system 𝑆 to calculate

the actual fitness value for 𝑡 . Then, we add 𝑡 along with its actual fitness value to DS and DS𝑙

(lines 14-15). In this case, we set flag to ⊤ to indicate that a system execution has taken place

(line 15):

12: else
13: {⟨𝑡, 𝐹 (𝑡)⟩} ← Execute(𝑆 ,{𝑡}, 𝐹);
14: DS𝑙 ← DS𝑙 ∪ {⟨t, 𝐹 (𝑡)⟩};
15: DS ← DS ∪ {⟨t, 𝐹 (𝑡)⟩}; flag ← ⊤;

In the latter case (i.e., lines 12-15), we re-train the surrogate model SM using the dataset DS𝑙 which
includes the new test input and its actual fitness value (lines 4-5). The algorithm returns the final

dataset DS when the execution budget runs out (line 18):

18: return DS;

The execution budget expires when either the system has been executed to the point where the size

of DS𝑙 reaches its desired limit, or our time budget is exhausted, depending on which occurs first.

In our experimentation (Section 4), we consider the surrogate-model types shown in Table 1.

These surrogate-model types are the most widely used ones in the evolutionary search and software

testing literature [43, 44, 78, 86]. As suggested by the literature and also as we show in our evaluation

(Section 4.2), no surrogate-model type consistently outperforms the others [46, 92]. Therefore, it

is recommended to use a combination of surrogate models [58]. In this paper, we propose, to our

knowledge, a novel variation of Algorithm 2 where we train multiple surrogate models and use for

predicting fitness values the model that has the lowest error. This variation is shown in Algorithm 3

where we change line 5 of Algorithm 2 to train and tune a list of surrogate models instead of just

one model. We then select the surrogate model with the lowest error for making predictions until

the next time we re-train the models. Similarly, each time we execute line 5 of Algorithm 2, we

re-train a list of surrogate models and select the one that has the lowest error. We refer to our

proposed variation as dynamic surrogate-assisted test generation.

In both Algorithm 2 and the variation suggested in Algorithm 3, the first time we train a surrogate

model, we also tune its hyperparameters using Bayesian optimization [84]. We use the same tuned

hyperparameters in all future iterations. The cost of training and tuning surrogate models for the

first time is on the same scale as the cost of a single execution of our CI systems. The time for

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 11

Table 1. Surrogate models and their descriptions.

Name Description Name Description

GL

Gaussian Process Regression –

nonparametric Bayesian with linear kernel.

RT regression tree.

GNL

Gaussian Process Regression –

nonparametric Bayesian with nonlinear kernel.

RF random forest.

LSB Gradient Boosting – an ensemble of regression trees.

SVR Support Vector Regression.

NN a two-layer feedforward Neural Network.

Algorithm 3 Dynamically selecting surrogates

4: . . .

5: for i = 1 to sm do //Train surrogate models SM1, ..., SMsm
6: (SM𝑖 , 𝑒𝑖)← Train(DS𝑙);
7: end
8: (SM, 𝑒) ← Select SM ∈ {SM1, . . . , SMsm} with the lowest error 𝑒

9: . . .

subsequent re-training of surrogate models is nonetheless negligible since re-training does not

involve any tuning. As we discuss in Section 4, the overhead of re-training surrogate models does

not deteriorate performance compared to other alternatives.

3.2.2 ML-Guided Test Generation. ML-guided test generation uses ML models for identifying

the boundary regions that discriminate pass and fail test inputs and iteratively concentrating

test-input sampling to those regions. The idea is that, irrespective of the separability of the set

of test inputs, ML models can shift the focus of sampling from the homogeneous regions where

either fail or pass verdicts are scarce to regions where neither fail nor pass would be dominant.

We consider two alternative ML models that can help us sample from such boundary regions:

regression trees (Algorithm 4) and logistic regression (Algorithm 5). As we describe below, a

regression tree approximates pass-fail boundaries in terms of predicates over inputs variables,

while logistic regression infers a linear formula over input variables.

Regression-Tree Guided Test Generation. Algorithm 4 uses the DS dataset obtained from

Algorithm 1 (the preprocessing phase) to train a regression-tree model (lines 1-3). In our regression-

tree models, tree edges are labelled with predicates 𝑣𝑖 ∼ 𝑐 such that 𝑣𝑖 is an input variable, 𝑐 ∈ R
is a constant and ∼ ∈ {≤, >}. The tree leaves partition the given dataset into subsets such that

information gain is maximized [91]. Each leaf is labelled with the average of the fitness measures

of the test inputs in that leaf. Provided with a regression tree, Algorithm 4 identifies predicates

{𝑣𝑖1 ∼ 𝑐𝑖1 , . . . , 𝑣𝑖𝑚 ∼ 𝑐𝑖𝑚 } that appear on the two paths whose leaf-node values are closest to zero

(one above and one below zero). These predicates specify the boundary between pass and fail, and,

as such, we call them boundary predicates. By simplifying the boundary predicates, each variable

can have at most one upper-bound predicate (𝑣 ≤ 𝑐) and at most one lower-bound predicate (𝑣 > 𝑐).

For each predicate 𝑣𝑖 𝑗 ∼ 𝑐 where ∼∈ {≤, >}, the algorithm replaces the existing range 𝑅𝑖 𝑗 of 𝑣𝑖 𝑗
with 𝑅′𝑖 𝑗 = [𝑐−5% · 𝑐, 𝑐+5% · 𝑐] (lines 5-7). This will ensure that we sample 𝑣𝑖 𝑗 within the 5% margin

around the constant 𝑐 . The variables that do not appear in the boundary predicates retain their

range from the previous iteration. We note that if 𝑅′𝑖 𝑗 does not reduce the range for 𝑣𝑖 𝑗 , i.e., the size
of 𝑅′𝑖 𝑗 is greater than 𝑅𝑖 𝑗 , we do not replace 𝑅𝑖 𝑗 with 𝑅′𝑖 𝑗 . This is to ensure that larger ranges are not

carried over to the next iteration if the range has already been narrowed at some previous iteration.

Next, the algorithm generates a test input within the constrained search space (line 8), executes the

test input, and adds it along with its fitness measure to DS (line 9). The algorithm returns the final

dataset after the execution budget runs out (line 11). The execution budget expires when either the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

12 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

𝑣1 ≤ 10 𝑣1 > 10

𝑣2 ≤ 20 𝑣2 > 20 𝑣3 ≤ 5 𝑣3 > 5

-0.9-3 0.5 4

Fig. 4. A regression tree trained in an iteration of Algorithm 4. The figure illustrates two regression tree paths
chosen for test generation on line 4 of Algorithm 4.

Algorithm 4ML-guided test generation with regression trees

Input 𝑆 : System
Input R = {𝑅1, . . . , 𝑅𝑛}: Ranges for input variables 𝑣1 to 𝑣𝑛
Input 𝐹 : Fitness Function
Input InitialDatasetSize: size of initial dataset
Output DS: A dataset to train failure models

1: DS ← Preprocessing(𝑆 , R, 𝐹 , InitialDatasetSize);//Run Algorithm 1 to generate an initial

dataset

2: while (execution budget remains) do
3: RegTree← Train(DS);
4: Let 𝑅′𝑖1 ,..., 𝑅

′
𝑖𝑚

be reduced ranges obtained from RegTree;
5: for each variable 𝑣𝑖 𝑗 s.t. 𝑗 ∈ {1, . . . ,𝑚} do
6: R ← (R \ {𝑅𝑖 𝑗 }) ∪ {𝑅′𝑖 𝑗 }; // Replace the range 𝑅𝑖 𝑗 of 𝑣𝑖 𝑗 in R with the new reduced range

𝑅′𝑖 𝑗 from line 4

7: end
8: {𝑡} ← GenerateTests(R, 1); //Generate one test input
9: DS← DS ∪ Execute(𝑆 , {𝑡}, 𝐹); // Compute fitness for 𝑡 and add to DS
10: end
11: return DS

system has been executed to the point where the size of 𝐷𝑆 reaches its desired limit, or our time

budget is exhausted, depending on which occurs first.

To illustrate range reduction for variables using regression trees, consider the example in Figure 4.

We choose the two thicker paths highlighted in blue since their leaf-node values are closest to zero.

Variables 𝑣1, 𝑣2 and 𝑣3 appear on these paths. Suppose the initial ranges for 𝑣1, 𝑣2 and 𝑣3 to be [0, 20],
[10, 30], and [1, 7], respectively. Using the regression tree and the process described above, the new

reduced ranges for 𝑣1, 𝑣2 and 𝑣3 are [9.5, 10.5], [19, 21] and [4.75, 5.25] respectively. By sampling

within these ranges, we get to focus test-input generation on the pass-fail border identified by the

regression tree.

Logistic Regression Guided Test Generation. Similar to Algorithm 4, Algorithm 5 uses the

datasetDS from the preprocessing phase to train a logistic regression model (lines 1-3). Since logistic

regression is a classification technique, the quantitative labels in DS are replaced with pass/fail

labels before training. A linear logistic regression model is represented as log(𝑝

1−𝑝) = 𝑐 +∑𝑛
𝑖=1

𝑐𝑖𝑣𝑖

where 𝑣1, . . . , 𝑣𝑛 are the input variables, 𝑐𝑖 ’s and 𝑐 are co-efficients, and 𝑝 is the probability of the

pass class [11, 91]. The algorithm then randomly samples a few test inputs in the search space and

picks the one closest to the logistic regression formula obtained by setting 𝑝 to the percentage of

the pass labels in DS (line 4-5).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 13

𝑣1
𝑚𝑎𝑥

𝑣2
𝑚𝑎𝑥

𝑣1
𝑚𝑖𝑛

𝑣2
𝑚𝑖𝑛

Pass

Fail

Fig. 5. Illustrating logistic regression lines for different values of 𝑝 assuming that we have two variables 𝑣1

and 𝑣2. The value of 𝑝 is used on line 5 of Algorithm 5 to generate a test close to the regression border.

Algorithm 5ML-guided test generation with logistic regression

Input 𝑆 : System
Input R = {𝑅1, . . . , 𝑅𝑛}: Ranges for input variables 𝑣1 to 𝑣𝑛
Input 𝐹 : Fitness Function
Input InitialDatasetSize: size of initial dataset
Output DS: A dataset to train failure models

1: DS ← Preprocessing(𝑆 , R, 𝐹 , InitialDatasetSize);//Run Algorithm 1 to generate an initial

dataset

2: while (execution budget remains) do
3: LogReg← Train(DS);
4: 𝑝 ← Probability(DS); // probability of pass in DS
5: 𝑡 ← GenerateCloseToRegBorder(R, LogReg, 𝑝); // Select a test close to the regression border

for 𝑝

6: DS← DS ∪ Execute(𝑆 , {𝑡}, 𝐹);// Compute fitness for 𝑡 and add to DS
7: end
8: return DS

By assigning a value to 𝑝 in the logistic formula above, the formula turns into a linear equation.

Figure 5 shows examples of such linear equations for different values of 𝑝 assuming that we have

two variables 𝑣1 and 𝑣2. The line with 𝑝 = 0.9 identifies a region where the majority of test inputs

pass. On the other end of the spectrum, the line with 𝑝 = 0.3 identifies a region where the majority

of test inputs fail. Setting 𝑝 to the percentage of pass in DS is a heuristic to identify a region that

includes a mix of pass and fail test inputs. Our sampling should, therefore, exploit this region. The

test input selected on line 5 along with its fitness measure computed using 𝑆 is added to DS (line 6).
The algorithm re-trains the logistic regression model whenever a test input has been added to DS
(line 3). The algorithm returns the final dataset when the execution budget runs out (line 8). The

execution budget expires when either the system has been executed to the point where the size of

𝐷𝑆 reaches its desired limit, or our time budget is exhausted, depending on which occurs first.

Similar to Algorithm 2, the hyperparameters of the regression-tree and logistic-regression models

are tuned using Bayesian optimization the first time the models are built, and the same tuned

hyperparameters are used in all future iterations.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

14 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

3.3 Building Failure Models
The output of the main loop in Figure 1 is a set DS of tuples ⟨𝑡, 𝐹 (𝑡)⟩ where 𝑡 is a test input and
𝐹 (𝑡) is its fitness value. We first convert DS into a dataset where test inputs are labelled by pass and
fail labels. Provided with a labelled dataset, we use decision-rule models built using RIPPER [40] to

train failure models. Decision-rule models generate a set of IF-condition-THEN-prediction rules

where the condition is a conjunction of predicates over the input features and the prediction is

either pass or fail. In Section 2, we already showed two examples of such rules for spurious failures.

When no domain knowledge is available, one can directly use the input variables of the system

(𝑆) as features for learning. When domain knowledge is available, feature design for decision-rule

models can be improved in two ways: (1) Excluding input variables that are orthogonal to the

requirement under analysis. For example, the prerequisite for the requirement 𝜑 in Section 2 is that

the autopilot should be enabled, i.e., APEng = on. As far as test generation for 𝜑 is concerned, we

need to set APEng = on, since otherwise, 𝜑 holds vacuously. We thus do not use APEng as an input

feature. For another example, in 𝜑 , we do not use the desired altitude as an input feature either,

since the system is expected to satisfy 𝜑 for any desired altitude in the default range. (2) Using

domain knowledge to formulate features over multiple input variables. For NTSS, as discussed in

Section 2, the goal is to identify limits on the traffic that can flow through NTSS classes without

compromising network quality. Based on domain knowledge, we know that flows have a cumulative

nature. Hence, for NTSS, we use as features sums of subsets of flow variables. Naturally, like in any

feature engineering problem, one can hypothesize alternative ways of formulating the features and

empirically determine the formulation leading to highest accuracy [79].

4 EVALUATION
In this section, we evaluate our approach by answering the following research questions (RQs):

RQ1 (Configuration). Which surrogate-assisted technique offers the best trade-off between accu-
racy and efficiency? We compare eight surrogate-assisted algorithms. These eight algorithms are:

(a) Algorithm 2 used with the seven surrogate models in Table 1 individually, and (b) the dynamic

surrogate algorithm (Algorithm 3) that uses the seven surrogate models simultaneously and selects

the best model dynamically. To measure accuracy, we check the correctness of the labels of the

tests in the generated datasets; and, to measure efficiency, we evaluate the size of the generated

datasets. We use the optimal algorithm for answering RQ2 to RQ4.

RQ2 (Effectiveness). How accurate are the failure models generated by the surrogate-assisted
and ML-guided techniques? We evaluate and compare the accuracy of the failure models obtained

by surrogate-assisted and ML-guided algorithms as well as those obtained based on randomly

generated test inputs (random baseline).

RQ3 (SoTAComparison).How accurate are the failure models generated in RQ2 compared to those
generated by the state of the art (SoTA)? We use the top-performing technique from RQ2 to compare

against SoTA. Among the existing approaches that build failure-inducing models [51, 65, 66], we

select the Alhazen framework [65], since it uses interpretable machine learning. While Alhazen is

geared towards systems with structured inputs (as opposed to systems with numeric inputs, i.e.,

the focus of our work), in the absence of baselines for systems with numeric inputs, Alhazen is our

best baseline for comparison. To be able to compare with Alhazen, we adapt it to numeric-input

systems, as we describe in Section 4.4.

RQ4 (Usefulness). How useful are failure models for identifying spurious failures? We answer

this question for the most accurate failure models from RQ2 and for the two CI systems, namely

NTSS and autopilot, discussed in Section 2. NTSS and autopilot are representative examples of

industrial systems in the network and CPS domains, respectively. For both systems, we validate the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 15

Table 2. Names, descriptions, the number of requirements and the identifiers of our study subjects. For
each subject, we indicate if it is computer-intensive (CI). All artifacts including requirements statements are
available in our supplementary material [6].

Name Description #Reqs ID CI
Tustin A common flight control utility for computing the

Tustin Integration – A Simulink model with 57

blocks.

9 TU1. . .TU9 ✗

Regulator A regulators inner loop architecture used in many

feedback control applications – A Simulink model

with 308 blocks.

1 REG ✗

Nonlinear Guidance A nonlinear algorithm for generating a guidance

command for an air vehicle – A Simulink model

with 373 blocks.

1 NLG ✗

Finite State Machine A finite state machine to enable autopilot mode if

a hazardous situation is identified – A Simulink

model with 303 blocks.

1 FSM ✗

Autopilot A single-engine, high-wing, propeller-driven air-

craft simulation with all six degrees of freedom –

A Simulink model with 1549 blocks.

3 AP1, AP2, AP3 ✓

Network Traffic Shaping System An NTSS testbed [64] developed using three vir-

tual machines and based on OpenWRT [12].

1 NTSS ✓

failure-inducing rules against domain knowledge to determine whether the resulting failures are

genuinely spurious.

4.1 Study Subjects
Our study subjects, which are listed in Table 2, originate from the network and CPS domains. Below,

we introduce our study subjects and discuss how these subjects satisfy assumptions A1 and A2
provided at beginning of Section 3.

Network-system subject. Our network-system subject is the Network Traffic Shaping System

(NTSS) discussed in Section 2. To test NTSS, we transmit flows with different bandwidth values

into different NTSS classes. A test input for NTSS is defined as a tuple 𝑡 = (𝑣1, . . . , 𝑣𝑛) where 𝑛 is

the number of NTSS classes, and each variable 𝑣𝑖 represents the bandwidth of the data flow going

through class 𝑖 . The fitness function for NTSS measures the network quality based on the well-

known mean opinion score (MOS) metric [85]. This fitness function ensures assumption A2 [64].

For our experiments, we use an NTSS setup based on an industrial small-office and home-office use

case from our earlier work [64]. This setup runs Common Applications Kept Enhanced (CAKE) [57],

which is an advanced and widely used traffic-shaping algorithm. The setup uses the 8-tier mode of

CAKE known as diffserv8 [27, 57], i.e., the number of NTSS classes is 8.

Simulink subjects. Simulink [38] is a widely used language for specification and simulation of CPS.

The inputs and outputs of a Simulink model are represented using signals. A typical input-signal

generator for Simulink characterizes each input signal using a triple (int, 𝑅, 𝑛) such that int is an
interpolation function, 𝑅 is a value range, and 𝑛 is a number of control points [29, 87]. Let (𝑥,𝑦) be
a control point. The value of 𝑥 is from the signal’s time domain, and the value of 𝑦 is from range

𝑅. Provided with 𝑛 control points, the interpolation function 𝑅 (e.g., piecewise constant, linear or

piecewise cubic) constructs a signal by connecting the control points [87]. It is usually assumed

that the input signals for a Simulink model have the same time domain. Further, for the purpose

of testing, we make the common assumption that the control points are equally spaced over the

time domain, i.e., the control points are positioned at a fixed time distance [29, 47, 87]. Hence, to

generate test inputs, we only need to vary the 𝑦 variable of control points in the range 𝑅. Note that

the type of the interpolation function is fixed for each Simulink-model input as the interpolation

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

16 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

function type is determined by the meaning of the input signal. For example, a reference signal is

often a constant or step function. As a result, we can exclude the interpolation function from the

test-input signals, and define each test-input signal as a vector of 𝑛 control variables taking their

values from 𝑅. Simulink models often have clearly stated requirements. To define a fitness function

for each requirement, we encode the requirement in RFOL – a variant of the signal temporal logic

which is expressive enough for capturing many CPS requirements [74]. For our fitness function,

we utilize the RFOL semantic function – a quantitative measure that conforms to assumption A2
as shown by Menghi et al. [74].

In our evaluation, we use a public-domain benchmark of Simulink specifications from Lockheed

Martin [10]. This benchmark provides a set of representative CPS systems that are shared by

Lockheed as verification-and-validation challenge subjects for researchers and quality-assurance

tool vendors. The benchmark is comprised of eleven specifications, of which six were not useful

for our evaluation. These six specifications had requirements that either did not fail, or failed for

all test inputs and thus, their failure models could be trivially defined as the entire input space. In

our experiments, we focus on five of the Simulink specifications from Lockheed’s benchmark. The

first five rows of Table 2 list these specifications that have a total of 15 requirements combined.

In total, we have 16 requirements: one for NTSS, and 15 for the five Simulink specifications listed

in Table 2. As discussed in Section 3, we define one fitness function per requirement. Hence, in

total, we have 16 different subjects for our evaluation. Among these, four are compute-intensive

(CI) and twelve are non-CI. Both NTSS and autopilot are CI: On average, each execution of NTSS

takes ≈ 4.5min, and each execution of autopilot takes ≈ 0.5min. The execution times for non-CI

subjects are negligible (< 1𝑠). All experiments were conducted on a machine with a 2.5 GHz Intel

Core i9 CPU and 64 GB of DDR4 memory.

4.2 RQ1-Configuration
We compare eight versions of the surrogate-assisted algorithm. Seven are Algorithm 2 used with

an individual surrogate model from those in Table 1. We refer to each of these algorithms as

SA-XX where XX is the name of the surrogate model from Table 1. For example, SA-NN refers to

Algorithm 2 used with NN. The final (i.e., eighth) algorithm is the dynamic surrogate-assisted one

(Algorithm 3). We refer to Algorithm 3 as SA-DYN.
For RQ1, we use the 12 non-CI subjects in Table 2. Performing RQ1 experiments on CI subjects

would be prohibitively expensive. For example, an approximate estimate for the execution time of

the experiments required to answer RQ1 is over a year, if the experiments are performed on NTSS

using the same experimentation platform. Thus, we opt for the non-CI subjects for RQ1.

Setting. For each subject, we run the eight SA-XX algorithms for an equal time budget. The time

budget given for each subject depends on the subject execution time. The detailed time budgets are

available in our supplementary material [22]. To account for randomness, we repeat each algorithm

for each subject ten times.

Metrics. Recall that the output of the main loop in Figure 1 for surrogate-assisted algorithms is a

set DS where the test inputs are labelled with either predicted or actual fitness values. To measure

efficiency, we take the cardinality of the generated dataset, DS. Since the algorithms have the same

time budget, an algorithm is more efficient than another if it generates a larger dataset. To construct

failure models, we classify test inputs as pass or fail based on their fitness values. A dataset is

accurate if it contains few test inputs with incorrect labels, i.e., test inputs with inconsistent pass/fail

labels based on their predicted versus actual fitness values. To obtain the actual fitness values for all

test inputs, we run the system using those test inputs for which only surrogate-assisted algorithms

provided predicted fitness values. Note that this step is intended exclusively for our experiments

and is not a component of our main approach. Next, we count the number of tests in which the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 17

50
0

10
00

15
00

35
00

25
00

30
00

35
00

Dataset Size

0

20

40

60

80

o

f
in

co
rr

ec
tl

y
la

b
el

le
d

 t
es

ts
 (

o

f
er

ro
rs

)

 TU1 - SA - DYN

TU1 - SA - RF

TU1 - SA - SVR

TU2 - SA - DYN

TU2 - SA - NN

TU3 - SA - DYN

TU4 - SA - DYN

TU4 - SA - RF

TU4 - SA - NN

TU5 - SA - DYN

TU6 - SA - DYN

TU7 - SA - DYN

TU8 - SA - DYN

TU8 - SA -GL

TU9 - SA - DYN

TU9 - SA - GL

TU9 - SA - GNL

REG - SA - DYN

REG - SA - GL

NLG - SA - DYN

NLG - SA - SVR

FSM - SA - DYN

FSM - SA - RF

FSM - SA - NN

FSM - SA - GNL

Fig. 6. Comparing datasets generated by eight different surrogate-assisted algorithms with respect to the
number of errors in the datasets and the dataset size.

SA
 - D

YN

SA
 - L

SB
SA

 - G
L

SA
 - N

N

SA
 - G

NL

SA
 - R

T
SA

 - R
F

SA
 - S

VR

Surrogate Algorithms

0

2

4

6

8

10

12

%
 o

f i
nc

or
re

ct
ly

 la
be

lle
d

te
st

 in
pu

ts

 o
ve

r
da

ta
se

t
si

ze

1.43

2.61
3.3

2.19

3.99 3.76

2.65
1.99

Fig. 7. Percentages of the incorrectly labelled tests over the dataset size for different surrogate-assisted
algorithms.

predicted label differs from the actual one. The number of incorrectly labelled tests serves as a

measure of error or inaccuracy for the surrogate-assisted algorithms.

Results. The scatter plot in Figure 6 shows the results of the experiments for RQ1. The x-axis

indicates |DS | and the y-axis indicates the number of incorrectly labelled tests in DS. Each point

shows the result of applying one SA-XX algorithm to one subject. The 12 subjects are indicated

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

18 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

by TU1 to TU9, REG, NLG, and FSM (see Table 2). For each subject, an algorithm is considered

better when it generates larger datasets with fewer errors. Since we compare eight algorithms for

12 subjects, we would need 96 points to show all the results. To reduce clutter, for each subject,

we only show the Pareto Front (PF) points. That is, for each subject, we only show the algorithms

that are not dominated by other algorithms either in terms of the number of errors or in terms of

the dataset size. For example, for subject TU1, algorithms SA-DYN, SA-RF and SA-SVR dominate

other algorithms and offer the best trade-off between the number of errors and the dataset size. As

Figure 6 shows, for four subjects, SA-DYN is the only best trade-off (i.e., PF point), and for eight

subjects, it is one of the best PF points. For the latter eight cases, SA-DYN offers an alternative that,

compared to the other PF points, either has considerably fewer errors while its dataset is not much

smaller, or its dataset is considerably larger while the number of errors is not much higher. For

example, for TU1, SA-DYN, compared to SA-RF, provides 60 less incorrectly labelled tests, while

the dataset sizes are almost the same (3433 for SA-DYN vs. 3500 for SA-RF). Also, compared to

SA-SVR, SA-DYN provides a larger dataset (3433 vs. 1045) while the number of incorrectly labelled

tests is almost the same (10 vs. 6).

Figure 7 shows the ratios of the number of errors (i.e., the number of incorrectly labelled tests) over

|DS | for different SA algorithms and for all the 12 subjects. The SA-DYN algorithm has the lowest

average error which is 28% lower than that of the second best algorithm, SA-SVR, i.e., 1.99−1.43

1.99
= 28%.

We compare the results in Figure 7 using the non-parametric pairwise Wilcoxon rank-sum test [72]

and the Vargha-Delaney’s 𝐴12 effect size [88]. The SA-DYN algorithm is statistically significantly

better than other algorithms with a high effect size for GL, GNL and LSB, a medium effect size

for RT, a small effect size for NN and RF, and a negligible effect size for SVR. The comparison of

the dataset sizes shows that SA-DYN generates datasets that are significantly larger than those

generated by SVR with a large effect size. Further, SA-DYN generates significantly larger datasets

that are at least 33% larger than those obtained from other algorithms. Figures comparing dataset

sizes and statistical tests for RQ1 are available in our supplementary material [9, 23].

Our evaluation for RQ1 performed using seven surrogate-model types in the literature (see

Table 1) shows that, compared to using surrogate models individually, our dynamic surrogate-

assisted approach provides the best trade-off between accuracy and efficiency.

4.3 RQ2-Effectiveness
We compare SA-DYN, i.e., the best approach identified in RQ1, with the two ML-guided algorithms

described in Section 3.2.2 as well as a standard adaptive random-search algorithm. In the remainder

of this section, we refer to SA-DYN as SA. We use RT and LR to refer to the ML-guided algorithms

that employ regression tree (Algorithm 4) and logistic regression (Algorithm 5), respectively. We

use RS for adaptive random search.

Setting. We apply the four algorithms (i.e., SA, RT, LR, and RS) to the 16 subjects in Table 2. For

each CI subject, we execute the four algorithms for an equal time budget and then compare the

results. For the non-CI subjects, however, fixing the time budget may favour RS, as the other three
algorithms have an additional overhead for training ML models. This overhead time is negligible

when compared to the execution time for CI subjects. But, for non-CI subjects, we can execute

many tests within the overhead time, which can skew the results in favour of RS. Therefore, to
ensure that the results are valid for CI subjects, we follow the approach proposed by Menghi et

al. [73]. Specifically, we use the execution time of CI subjects to limit the number of test inputs

that each algorithm executes for non-CI objects. Briefly, to compare two algorithms with different

overhead times, we allow the algorithm with the lower overhead time to execute 𝑥 additional test

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 19

inputs such that 𝑥 multiplied by the execution time of a typical CI subject (instead of a non-CI

subject) is equal to the difference in the two algorithms’ overhead time. For the non-CI Simulink

subjects in Table 2, we use the average execution time of the Simulink CI subject, i.e., autopilot.

Given a time budget, we compute the maximum number of test executions that each of the SA,
LR, RT, and RS algorithms can perform within this time budget for autopilot. We then use these

numbers to cap the number of test executions for each algorithm when we compare them for the

non-CI models in Table 2. The time budget we consider for comparing these algorithms for CI

subjects and the maximum number of test executions we use to compare them for non-CI subjects

are available in our supplementary material [24, 25]. We repeat each algorithm twenty times for

each subject except NTSS. For NTSS, due to its large execution time, we repeat each algorithm only

ten times.

Metrics. We use the datasets created by SA, LR, RT, and RS to build decision rule models (DRM).

For hyperparameter tuning, we use Bayesian optimization [84]. To avoid bias towards any particular

algorithm, we use for tuning the union of the datasets obtained from our four algorithms. Having

fixed the hyperparameters, we train a DRM separately for each dataset obtained from each repetition

of our four algorithms. We evaluate the DRMs using three metrics: accuracy, precision and recall.
Accuracy is the number of correctly predicted tests over the total number of tests. Since DRMs

are mainly used to predict the failure class, we compute precision and recall for the failure class

as follows: Precision is the number of fail-class predictions that actually belong to the fail class,

and recall is the number of fail-class predictions out of all the actual failed tests in the dataset. We

use randomly generated test inputs within the variables’ default ranges to measure the accuracy,

precision and recall of each DRM.

Features for learning. For the Simulink subjects, we use as features the individual input variables of

each subject model but exclude the following two kinds of variables: (1) Variables that are explicitly

fixed to a value in a requirement (e.g., variable APEng discussed in Section 3.3). (2) Reference

variables that indicate the desired value of a controlled process, noting that the system is expected

to satisfy its requirements for any value in a reference variable’s valid range. As such, reference

variables cannot contribute to creating failure conditions. The desired altitude variable discussed in

Section 3.3 is an example of a reference variable.

For NTSS, as discussed in Section 3.3, we consider alternative features as follows: the set of all

individual variables (i.e., individual NTSS classes), sums of two variables, sums of three variables,

. . . , and the sum of all eight variables. We then create, for each input feature, one DRM based on a

dataset obtained by each of the four algorithms. In total, for each algorithm, we create 248 DRMs

for NTSS. That is, the sets of all subsets larger than two (247) and the set of all individual variables.

Given the large number of hypothesized input features, we evaluate the accuracy of the resulting

DRMs and keep the input features that yield reasonably high accuracy over multiple runs of SA,
LR, RT, RS. This results in the retention of two input features for NTSS with an accuracy higher

than 80%.

Results. Figures 8(a)-(c) compare across all the 16 subjects the average accuracy of DRMs obtained

by SA, LR and RT (on y-axis) against the average accuracy of DRMs obtained by RS (on x-axis).

Each point in each of Figures 8(a)-(c) corresponds to one study subject. A blue point indicates that

the difference in accuracy is statistically significant as per the Wilcoxon rank-sum test. The DRMs

obtained using SA are significantly more accurate than those obtained using RS for 14 out of 16

subjects, including all the CI subjects. The accuracy of the DRMs obtained using LR is significantly

better than that obtained using RS for seven subjects. The accuracy of the DRMs obtained using RT
is significantly better than that obtained using RS for nine subjects. Overall for all the subjects, SA
has the highest average accuracy (83%), followed by RT and LR with average accuracies of 78% and

76%, respectively. RS has the lowest average accuracy (72%). Finally, the accuracy of SA, RT and LR

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

20 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

0 0.2 0.4 0.6 0.8 1
RS

0.5

0.6

0.7

0.8

0.9

1
SA

Significant: SA > RS
Difference not significant

0 0.2 0.4 0.6 0.8 1
RS

0.5

0.6

0.7

0.8

0.9

1

LR

Significant: LR > RS
Difference not significant

0 0.2 0.4 0.6 0.8 1
RS

0.5

0.6

0.7

0.8

0.9

1

R
T

Significant: RT > RS
Difference not significant

(a) SA vs. RS (b) LR vs. RS (c) RT vs. RS

Fig. 8. Comparing the accuracy of decision-rule models obtained based on the datasets generated by SA, LR,
and RT against those obtained by RS for all the 16 subjects in Table 2.

50% 60% 70% 80% 90% 100%
Execution Time Budget

68
70
72
75
78
80
82

Av
er

ag
e

Ac
cu

ra
cy

 (
in

 %
)

SA
RS
LR
RT

Fig. 9. Average accuracy of the DRMs obtained using SA, RL, RT and RS for the 16 subjects as the time
budget is varied.

is significantly better than that of RS. The effect size for SA versus RS is medium, and the effect

size for RT and LR versus RS is small.

Figure 9 compares the average accuracy of the DRMs obtained using SA, LR, RT and RS for our 16

subjects as the execution-time budget is varied from 50% to 100%. Note that in our experiments, we

dedicate 50% of the time budget to the prepossessing step. Therefore, Figure 9 compares the impact

of the four algorithms over the remaining 50% of the execution-time budget. As the figure shows, SA
consistently has the highest average accuracy. Further, the average accuracy of RS reaches a plateau,
whereas the other three algorithms keep improving as the budget increases. The main reason for

this difference is that RS, unlike the other algorithms, does not use machine learning models to

guide its test input sampling. Specifically, RS generates test inputs randomly across the entire input

space. In contrast, RT and LR exploit boundary regions that separate passing and failing test inputs,

resulting in a steady increase in accuracy as the search budget grows. Further, SA utilizes surrogate

models, generating significantly more test inputs compared to the other algorithms within the

same allotted time budget. As a result, SA achieves the highest average accuracy among all the

algorithms.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 21

SA RS LR RT
Algorithms

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0.88
0.83

0.87 0.85

SA RS LR RT
Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

0.72

0.57
0.62 0.64

Fig. 10. Recall and Precision for the DRMs obtained based on SA, RL, RT and RS for all the 16 subjects in
Table 2.

Figure 10 compares the recall and precision for all the DRMs obtained using SA, LR, RT and RS
for our 16 subjects. Recall measures the ability of DRMs to precisely identify the failure conditions,

whereas precision assesses the ability of DRMs to generate failure instances correctly. The SA
algorithm has the highest average recall (88%), followed by LR (87%) and RT (85%). RS has the

lowest average recall (83%). Moreover, SA has the highest average precision (72%), followed by RT
(64%) and LR (62%) and RS has the lowest average precision (57%). The recall of SA, RT and LR is

significantly better than that of RS with a medium effect size for SA, a small effect size for LR, and
negligible effect size for RT. Likewise, the precision of SA, RT and LR is significantly better than

that of RS with a medium effect size for SA, small effect size for RT and negligible effect size for LR.
Finally, the accuracy, recall and precision values for SA are significantly higher than those for RT
and LR. Precision and recall for SA exhibit similar trends to that for accuracy (Figure 9). Detailed

charts comparing precision and recall for the four algorithms as the execution-time budget varies

are available online [8, 19, 26].

Our evaluation for RQ2 performed over all our study subjects shows that our dynamic surrogate-

assisted approach yields failure models with significantly higher accuracy, precision and recall

compared to those obtained using ML-guided algorithms and a random baseline.

4.4 RQ3-SOTA Comparison
We compare SA – the top-performing algorithm from RQ2 – with an adaptation of Alhazen to

numeric-input systems. We hereafter use SoTA to refer to this adaptation, discussed next. Similar

to SA, in SoTA, we generate test inputs according to the description in Section 4.1. The workflow

of SoTA then matches the steps in Figure 1 with the difference that the model trained and refined

in the main loop (i.e. step 3) is always a decision tree model; this decision tree is returned as the

failure model at the end. Recall that our approach has a separate step, i.e., step 5, after the main loop

to build failure models from the data generated by different algorithms. This step is not required

in SoTA, noting that the model that SoTA refines during its main loop is used as the failure model.

Algorithm 6 shows our implementation of SoTA. SoTA starts from an initial dataset (line 1). In each

iteration, it builds a decision tree on the dataset (line 3). It then generates test inputs using all the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

22 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

Algorithm 6 Our implementation of SoTA

Input 𝑆 : System
Input R = {𝑅1, . . . , 𝑅𝑛}: Ranges for Input variables 𝑣1 to 𝑣𝑛
Input 𝐹 : Fitness Function
Input InitialDatasetSize: size of initial dataset
Output DecisionTree: A decision tree model (failure model)

1: DS ← Preprocessing(𝑆 , R, 𝐹 , InitialDatasetSize); //Run Algorithm 1 to generate an initial

dataset

2: while (execution budget remains) do
3: DecisionTree← Train(DS);
4: Let 𝑃1,..., 𝑃𝑞 be all the paths obtained from DecisionTree; // Extract all the paths from the

decision tree

5: for each path 𝑃𝑘 s.t. 𝑘 ∈ {1, . . . , 𝑞} do // Generate a test in each path based on the ranges

obtained from that path

6: Let 𝑅′𝑖1 ,..., 𝑅
′
𝑖𝑚

be reduced ranges obtained from 𝑃𝑘 ;

7: for each variable 𝑣𝑖 𝑗 s.t. 𝑗 ∈ {1, . . . ,𝑚} do
8: R ← (R \ {𝑅𝑖 𝑗 }) ∪ {𝑅′𝑖 𝑗 }; // Replace the range 𝑅𝑖 𝑗 of 𝑣𝑖 𝑗 in R with the new reduced range

𝑅′𝑖 𝑗 from line 6

9: end
10: {𝑡} ← GenerateTests(R, 1); // Generate a test in path 𝑃𝑘
11: DS← DS ∪ Execute(𝑆 , {𝑡}, 𝐹); // Compute fitness for 𝑡 and add to DS
12: end
13: end
14: return DecisionTree

paths in the decision tree (lines 4-10). These test inputs are executed and added to the dataset along

with their labels (line 11). The final decision tree is returned on line 14.

Setting. For this comparison, we apply SoTA to our CI-subjects in Table 2, i.e., NTSS, AP1, AP2

and AP3. For the decision tree parameters, e.g. maximum depth of tree and class weight, we use

the same parameters as in the original study [21, 65]. We execute SoTA for the same time budget as

SA. For SA, we use the dataset generated in RQ2. We repeat SoTA for twenty times for each subject

except for NTSS. For NTSS, we repeat it only ten times due to the expensive execution time.

Metrics. In order to compare SoTA and SA, we build decision trees based on the datasets generated

by SA in RQ2. To do so, we use the same decision tree parameters as those used by SoTA. We

compare the decision trees using the three metrics explained in RQ2, i.e. accuracy, precision for fail

class and recall for fail class. We also use the same test set utilized in RQ2.

Results. Figure 11 compares the average accuracy of the decision trees obtained by SA (on y-axis)

against those obtained by SoTA (on x-axis) across the four CI subjects in Table 2. Similar to Figure 8,

each point on Figure 11 corresponds to one study subject and a blue point denotes a statistically

significant difference in accuracy, determined using the Wilcoxon rank-sum test. As figure 11

shows, the decision trees obtained using SA are significantly more accurate than those obtained by

SoTA, for three out of the four subjects with a medium effect size. For the fourth subject there is no

statistically significant difference.

Figure 12 compares the average accuracy of the decision trees obtained using SA and those

obtained by SoTA for the four CI subjects as the execution-time budget is varied from 50% to 100%.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 23

0 0.5 1
SoTA

0.5

0.6

0.7

0.8

0.9

1

SA

Significant: SA > SoTA
Difference not significant

0.2 0.4 0.6 0.8 1
RS

0.6

0.7

0.8

0.9

1

SA

DR - Difference not significant
DR - Significant: SA > RS

0.2 0.4 0.6 0.8 1
RS

0.6

0.7

0.8

0.9

1

LR

DR - Difference not significant
DR - Significant: LR > RS

0.2 0.4 0.6 0.8 1
RS

0.5

0.6

0.7

0.8

0.9

1

R
T

DR - Difference not significant
DR - Significant: RT > RS

0.2 0.4 0.6 0.8 1
RS

0.6

0.7

0.8

0.9

1

SA

DR - Difference not significant
DR - Significant: SA > RS

0.2 0.4 0.6 0.8 1
RS

0.6

0.7

0.8

0.9

1

LR

DR - Difference not significant
DR - Significant: LR > RS

0.2 0.4 0.6 0.8 1
RS

0.5

0.6

0.7

0.8

0.9

1

R
T

DR - Difference not significant
DR - Significant: RT > RS

SA vs. SoTA

Fig. 11. Comparing the accuracies of the decision trees obtained on the datasets generated by SA and the
decision trees returned by SoTA for all the four CI subjects in Table 2.

As the figure shows, the average accuracy of SA is consistently higher than SoTA as the time budget

increases.

Finally, Figure 13 compares the recall and precision for all the decision trees obtained using SA
and those obtained by SoTA for the four subjects. As shown by the figure, the average recall of

SA (85%) is higher than SoTA (83%). Further, the recall of SA is significantly better than SoTA with

small effect size. Moreover, the average precision of SA (76%) is higher than SoTA (73%). Similar to

recall, the precision of SA is significantly better than SoTA with small effect size.

Our evaluation for RQ3 performed using dynamic surrogate-assisted and the state-of-the-

art approach over CI subjects indicates that our dynamic surrogate-assisted approach yields

failure models with higher accuracy, precision and recall compared to those obtained from the

state-of-the-art approach.

4.5 RQ4-Usefulness
In view of the results of RQ2, we use the DRMs generated by the SA algorithm to evaluate their

usefulness in identifying spurious failures. We focus on the DRMs for the CI subjects in Table 2,

i.e., NTSS, AP1, AP2 and AP3. For these subjects, we can validate whether the inferred rules lead to

genuinely spurious failures. For NTSS, we had access to an expert from industry, and for autopilot,

we had detailed requirements and design documents. Recall from Section 3.3 that the rules we

obtain from DRMs are in the form of IF-condition-THEN-prediction. Each rule has a confidence

that shows what percentage of the tests satisfying the condition of the rule conform to the rule’s

prediction label. From the DRMs for each of the four CI subjects, we extract the rules that predict

the fail class with a confidence of 100%. These rules are candidates for specifying spurious failures,

since they identify conditions that lead to and only to failures. We then select the rules that are

not subsumed by others through logical implication. We use the Z3 SMT solver [41] to find logical

implications. In the end, we obtain seven rules for NTSS, 17 rules for AP1, 24 rules for AP2 and 15

rules for AP3. On average, the rules for NTSS include two variables and three predicates, and the

rules for autopilot include three variables and four predicates.

To validate the rules for NTSS, we presented the rules to a domain expert. Our domain expert

for NTSS is a seasoned network technologist and software engineer with more than 25 years of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

24 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

50% 60% 70% 80% 90% 100%
Execution Time Budget

81

82

83

84

85

86

Av
er

ag
e

Ac
cu

ra
cy

 (
in

 %
) SoTA

SA

Fig. 12. Average accuracy of the decision trees obtained using SA and SoTA for the four CI subjects as the
time budget is varied.

SoTA SA
Algorithm

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

 0.83
 0.85

SoTA SA
Algorithm

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

 0.73
 0.76

Fig. 13. Recall and Precision for the decision trees obtained based on SA and SoTA for four subjects in Table 2.

experience. The expert has been using the core enabling technology of NTSS (CAKE [57], discussed

earlier in this section) in commercial networking solutions since 2018. Among the seven rules for

NTSS, one rule constrains an input feature formulating a sum of the NTSS input variables. The

rest of the rules involve predicates over individual input variables. The domain expert approved

all the rules as they all correspond to situations where NTSS is overloaded with large traffic

volumes, and hence, poor network quality is expected. We note that, for each input variable

of NTSS, there is a threshold that is determined by the NTSS setup configuration. Among the

seven rules, six constrain input variables near these known threshold values. An example of such

rules is: class6 ≥ 91%· thresh6 ∧ class7 ≥ 87%· thresh7 THEN FAIL where thresh6 and thresh7 are
thresholds of class6 and class7, respectively. These rules matched the expert’s intuition; nonetheless,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 25

the expert still found the rules helpful as they provide data-driven evidence for what the expert could

only estimate based on experience and ad-hoc observations rather than systematically collected

data. More importantly, the rule constraining a sum of input variables (as discussed in Section 2)

was of particular interest. For this rule, neither could the domain expert estimate the combination

of the variables in the rule nor was the limit in the rule close to known thresholds. This rule

prompted an investigation into the source code of CAKE. This investigation confirmed that classes

7, 6 and 5 have higher priority than other classes. As such, the combined cumulative usage of these

three classes needs to be capped to maintain high quality of experience. The expert indicated that,

without our approach, he would not have been able to formulate such a rule merely based on his

existing test scenarios and expert knowledge.

For the autopilot’s three requirements (AP1, AP2 and AP3) , we could conclusively confirm that

47 out of the 56 inferred rules represent spurious failures as per the handbook of the De Havilland

Beaver aircraft [31]. For the remaining nine rules, we could not ascertain whether they represent

spurious failures. These rules either fail due to real faults in the system or they are spurious, but

further expertise is required to confirm their spuriousness. The full set of rules and our analysis are

in our supplementary material [20].

Our results indicate that none of the 47 rules confirmed as inducing spurious failures for autopilot

could be obtained solely from the datasets generated by the preprocessing phase of SA (see Figure 1).

Similarly, only two of the seven rules for NTSS could be obtained using the datasets from the

preprocessing phase. Furthermore, from the preprocessing phase datasets alone, no additional

candidate rules could be inferred for spurious failures in either NTSS or autopilot. These findings

highlight the importance of utilizing surrogate-assisted test generation in order to obtain useful

and more comprehensive rules for spurious failures.

Our validation of failure-inducing rules against domain knowledge indicates that our dynamic

surrogate-assisted approach is effective for identifying spurious failures. Indeed, our results show

that expert judgement alone or tests generated without the assistance of surrogates would miss

many rules that one would be able to identify using our proposed approach.

4.6 Threats to Validity
The most important threats concerning the validity of our experiments are related to the internal

and external validity.

4.6.1 Internal Validity. The internal validity risks are related to confounding factors. The effec-

tiveness of failure-inducing rules inferred by our approach depends on the accuracy of fitness

functions and the quality of the input datasets. For Simulink models, we use an automated and

provably sound technique to obtain fitness functions from logical specifications [74]. However,

the translation of natural-language requirements into logical specifications remains a manual task

and necessitates domain-expert validation. In our experiments, we mitigated the risks associated

with the accuracy of fitness functions as follows: For Simulink models, the fitness functions are

automatically obtained from logical specifications approved by the engineers who developed the

benchmark Simulink models [77]. For the NTSS case study, we validated the fitness function with

our domain expert [64]. As for the risks related to the quality of datasets, we note that the labels for

the data points are computed based on the actual system outputs, and hence, are always accurate.

Further, we used adaptive random testing in the preprocessing step (see Figure 1) to diversify the

generation of the datasets in the search input space.

To address any concerns regarding our comparison with SoTA in RQ3, we conducted a comprehen-

sive review of the SoTA code [14] to ensure that the workflow of Algorithm 6, our adaptation of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

26 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

SoTA, conforms to the original SoTA code. In addition, we employed the same hyper-parameters

for decision trees in Algorithm 6 as those used by SoTA. Finally, we have disclosed the code of

Algorithm 6 in our GitHub repository [4, 5] to facilitate further replication and comparison efforts.

4.6.2 External Validity. The subjects we used for our evaluation and the characteristics of these

subjects may influence the generalizability of our results. Related to this threat, we note that:

First, the Simuilnk models in Lockheed’s benchmark represent realistic and representative CPS

components from different domains. This benchmark has been previously used in the literature on

testing CPS models [50, 77]. Second, our case studies are drawn from two different domains: CPS

and networks. Third, our network case study (NTSS) represents an industrial system for which we

could interact with a domain expert. The above being said, our work would benefit from further

experiments with a broader class of systems.

5 LESSONS LEARNED
Lesson 1. Decision rules are a better choice than decision trees for building failure models. In this paper,

we focused on interpretable ML techniques for building failure models. Using these techniques, we

were able to generate constraints on system inputs that are easily understandable to humans [76].

Among interpretable ML techniques, decision rules and decision trees have been previously used in

the literature for inferring rules pertaining to a specific behaviour of a system [37, 47, 48, 53, 65]. We

chose to use decision-rule models in our work for the following reasons: Decision rules are known

to produce fewer and more concise rules compared to decision trees, which often generate many

rules involving several variables and predicates. Further, decision trees are prone to the replicated

subtree problem [91]. This problem arises when the same subtree, with identical predicates and

splits, appears multiple times in the tree. Replicated subtrees can increase model complexity, lead

to overfitting, and hinder interpretability. Decision rules do not typically suffer from this problem,

thus generally yielding more interpretable and less redundant rules. As mentioned in Section 4.5,

the rules we obtain for NTSS and autopilot, on average, have three and four predicates over two

and three variables, respectively. While one could argue that limiting the depth of a decision tree,

as done by the SoTA baseline, would result in a reasonably small tree, our findings indicate that,

decision trees built using the parameters of the SoTA baseline lead to a 40% higher number of rules

and 10% more predicates compared to decision rules.

Lesson 2. To evaluate a test generation algorithm for systems with numeric inputs, the accuracy
and usefulness of the failure models produced by the algorithm offer more realistic insights about the
algorithm than the number of individual failures found by the algorithm. For systems with numeric

inputs, slight modifications to the inputs of a failure-revealing test may lead to redundant failures,

i.e., failures caused by the same fault. Even when one considers input diversity, e.g., measured

by the Euclidean distance between test-input vectors, one cannot determine whether failures are

non-redundant or valid by merely analyzing individual test inputs. Consequently, evaluating testing

algorithms solely based on their ability to generate failures may result in misleading conclusions.

Indeed, had we premised our evaluation on the number of detected failures, we would have inferred

that our dynamic surrogate-assisted algorithm produces 2.3 times more failures compared to

the ML-guided and the baseline algorithms. While this conclusion would strongly favour our

approach, we do not believe that this large margin is an accurate representation of the degree

of improvement that our algorithm delivers. Based on the results of RQ2 and RQ3, the dynamic

surrogate-assisted algorithm, when compared to alternatives, leads to an accuracy improvement

ranging from 2% to 14%.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 27

6 RELATEDWORK
Below, we discuss the related work on (a) the applications of ML in automated testing, (b) generating

failure-inducing rules and (c) test input validation.

Applications of Machine learning (ML) in automated testing.ML has been widely used

to enhance the effectiveness of fuzz testing [75] and search-based testing (SBT) [55]. In fuzz

testing, ML has been employed to improve, among other things, seed generation, test sampling,

and mutation-operator selection [54, 90]. In SBT, surrogate models developed based on ML have

been used to effectively and efficiently test CI systems such as cyber-physical-system controllers

and simulators [30, 60, 71, 73], and autonomous-driving systems [34, 35, 61]. These approaches

demonstrate that using ML can improve the ability and the efficiency of testing in revealing faults.

The ultimate goal of these approaches is to generate specific test cases. As such, these approaches

are evaluated based on the number of failure-revealing tests and the severity of the failures, as

determined by the fitness-function values.

Recent studies suggest that the focus of SBT should shift from generating a limited number

of specific test cases to learning models that can explain system failures [45]. These models can

then be employed for generating multiple test cases with specific properties. Motivated by these

observations, our goal is to learn failure models and focus on improving the accuracy of these

models for identifying spurious failures, rather than maximizing the number and severity of failure-

revealing tests, which may not accurately reflect the context where many tests fail due to spurious

reasons.

Generating failure-inducing rules. Grammar-based test generation [52] has been shown to be

effective for avoiding spurious failures in fuzz testing. More recently, grammars and probabilistic

variations of grammars have been used to infer abstract failure-inducing rules [66]. These rules can

assist with the diagnosis of system failures, serve as accurate and high-level test oracles, and enable

programmers to validate their fixes and prevent overfitting [51, 65, 66]. Our work takes inspiration

from the research on inferring failure-inducing rules, but differs from the existing work on this

topic in important ways. First, we focus on systems with numeric inputs, whereas existing research

primarily deals with string-based inputs governed by a grammar. Second, instead of relying on an

input grammar to generate tests, we investigate various test-generation heuristics that are guided

by quantitative fitness functions drawn from system requirements. An exception is the work of

Böhme et al. [36], which infers program patches for numeric systems without the need for input

grammars. However, this approach relies on the availability of a human oracle to validate the

verdicts of individual test inputs. In our context, this would be expensive and likely infeasible. Our

work further differs from the above in that our goal is to identify rules for spurious failures rather

than generating program patches.

The closest work to ours is the Alhazen framework [65], which we compared with in RQ3. In

addition to the discussion and empirical comparison in RQ3, we note that our approach differs

from Alhazen in its input-feature engineering for failure models. We derive the input features

for decision-rule models from domain-knowledge heuristics, whereas Alhazen derives the input

features dynamically from its input grammar. While Alhazen automates input-feature engineering,

by incorporating domain knowledge into the design of input features, our approach provides the

flexibility to derive rules that more closely match expert intuition.

Test Input Validation. Test input validation determines whether the test inputs given to a

system adhere to the format, range or constraints anticipated by the system requirements. Test

input validation improves the reliability of test results and is crucial for software testing [81].

Traditional software testing and verification approaches for CPS and network systems assume

that pre-conditions describing valid inputs are already specified [28, 73, 74] or, alternatively, rely

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

28 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

on formal assume-guarantee and design-by-contract techniques [42, 56, 82]. Techniques based on

assume-guarantee and design by contract require high-level formal system specifications. Such

specifications do not exist for many real-world systems including our study subjects. Recent studies

explore test input validity for deep learning (DL) models [59, 81], demonstrating that existing

DL testing techniques generate several invalid test inputs. To mitigate this problem, the studies

preform human subject experiments and establish metrics that determine test input validity for DL

models. Although our work is not concerned with DL models, our definition of spurious test inputs

is similar to that of invalid inputs for DL models [59, 81]. Similar to DL testing, failing to account

for input validity leads to the generation of many invalid test inputs, thus reducing the reliability

of test generation. In addition, similar to the research for DL models, we identify the rules leading

to spurious failures for our study subjects based on domain expertise and human knowledge.

7 CONCLUSION
In this paper, we presented a data-driven framework for inferring failure models for systems

with numeric inputs including cyber-physical and network systems. The framework employs

existing surrogate-assisted and machine learning-guided (ML-guided) test generation techniques.

We proposed a new dynamic surrogate-assisted algorithm that uses multiple surrogate models

simultaneously during search, and dynamically selects the predictions from the most accurate

model. We compared the accuracy of failure models obtained using our dynamic surrogate-assisted

approach against two ML-guided techniques as well as two baselines using 16 study subjects from

the cyber-physical and network domains. Our results, confirmed by statistical tests, show that the

average accuracy, precision and recall of the dynamic surrogate-assisted approach are higher than

those of the ML-guided test generation algorithms, and of the state-of-the-art and random-search

baselines. Moreover, the rules inferred from the failure models built for our compute-intensive

subjects identify genuine spurious failures as validated against domain knowledge. For future

work, we plan to apply our approach to computer-vision and autonomous-driving systems and

subsequently use the rules inferred by failure models as guidance for generating test inputs.

8 DATA AVAILABILITY
Implementations of all algorithms are available at [18]. The Simulink benchmark is available

at [2], and NTSS at [7]. The requirements specifications for all study subjects are provided at [6].

Our evaluation data includes: (1) raw datasets for the experiments [13]; (2) rules generated for

CI subjects [17, 20]; (3) evaluation scripts [3] and the analyzed data [15]; (4) statistical analysis

results [16, 23, 26]; and (5) scripts for the plots in the paper [3].

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support received from NSERC of Canada through their

Alliance, Discovery, and Discovery Accelerator programs.

REFERENCES
[1] (Accessed: June 2023). Autopilot online benchmark. https://www.mathworks.com/matlabcentral/fileexchange/41490-

autopilot-demo-for-arp4754a-do-178c-and-do-331?focused=6796756&tab=model

[2] (Accessed: June 2023). Benchmark for Simulink models. https://github.com/anonpaper23/testGenStrat/tree/main/

Benchmark/Simulink%20Models

[3] (Accessed: June 2023). Code to generate results of each research questions. https://github.com/anonpaper23/testGenStrat/

tree/main/Evaluation

[4] (Accessed: June 2023). Code to SoTA implementation for NTSS case study. https://github.com/anonpaper23/testGenStrat/

blob/main/Code/NTSS/SoTA.py

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

https://www.mathworks.com/matlabcentral/fileexchange/41490-autopilot-demo-for-arp4754a-do-178c-and-do-331?focused=6796756&tab=model
https://www.mathworks.com/matlabcentral/fileexchange/41490-autopilot-demo-for-arp4754a-do-178c-and-do-331?focused=6796756&tab=model
https://github.com/anonpaper23/testGenStrat/tree/main/Benchmark/Simulink%20Models
https://github.com/anonpaper23/testGenStrat/tree/main/Benchmark/Simulink%20Models
https://github.com/anonpaper23/testGenStrat/tree/main/Evaluation
https://github.com/anonpaper23/testGenStrat/tree/main/Evaluation
https://github.com/anonpaper23/testGenStrat/blob/main/Code/NTSS/SoTA.py
https://github.com/anonpaper23/testGenStrat/blob/main/Code/NTSS/SoTA.py

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 29

[5] (Accessed: June 2023). Code to SoTA implementation for Simulink model case study. https://github.com/anonpaper23/

testGenStrat/blob/main/Code/Simulink/Algorithms/decisiontreeSoTA.m

[6] (Accessed: June 2023). CPS and NTSS requirements. https://github.com/anonpaper23/testGenStrat/blob/main/

Benchmark/Formalization/CPS_and_NTSS_Formalization.pdf

[7] (Accessed: June 2023). ENRICH – non-robustnEss aNalysis for tRaffIC sHaping. https://github.com/baharin/ENRICH

[8] (Accessed: June 2023). Figure 16 to Figure 21 – precision and recall results obtained by varying time budget in RQ2.
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf

[9] (Accessed: June 2023). Figure 9 – Comparing Dataset sizes for dynamic SA algorithm and seven individual SA algorithms
in RQ1. https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf

[10] (Accessed: June 2023). Lockheed Martin. https://www.lockheedmartin.com

[11] (Accessed: June 2023). Logistic Regression. http://faculty.cas.usf.edu/mbrannick/regression/Logistic.html

[12] (Accessed: June 2023). OpenWrt. www.openwrt.org

[13] (Accessed: June 2023). Raw datasets obtained from each algorithm for CPS and NTSS. https://github.com/anonpaper23/

testGenStrat/tree/main/Data/Dataset

[14] (Accessed: June 2023). Replication package of Alhazen framework. https://zenodo.org/records/3902142

[15] (Accessed: June 2023). Results of each research question. https://github.com/anonpaper23/testGenStrat/tree/main/

Evaluation%20Results

[16] (Accessed: June 2023). Results of statistical analysis. https://github.com/anonpaper23/testGenStrat/blob/main/

Evaluation%20Results/RQ2/RQ2StatisticalResults.xlsx

[17] (Accessed: June 2023). Rules obtained for each CI subject. https://github.com/anonpaper23/testGenStrat/blob/main/

Evaluation%20Results/RQ4/APandNTSS_Rules.xlsx

[18] (Accessed: June 2023). Source codes of algorithms for CPS and NTSS. https://github.com/anonpaper23/testGenStrat/

tree/main/Code

[19] (Accessed: June 2023). Table 15 to Table 20 – average accuracy, recall and precision over all runs of algorithms by varying
execution time budget in RQ2. https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf

[20] (Accessed: June 2023). Table 21 to Table 24 – full set of rules obtained for NTSS, AP1, AP2 and AP3 in RQ4. https:

//github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf

[21] (Accessed: June 2023). Table 3 – Parameter names, descriptions and values used by SoTA. https://github.com/anonpaper23/

testGenStrat/blob/main/Supplementary_Material.pdf

[22] (Accessed: June 2023). Table 5 – Time budgets given to non-CI subjects in RQ1. https://github.com/anonpaper23/

testGenStrat/blob/main/Supplementary_Material.pdf

[23] (Accessed: June 2023). Table 6 – Statistical tests for dataset size and percentage of incorrect labels over dataset size in RQ1.
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf

[24] (Accessed: June 2023). Table 7 – Time budget considered for CI subjects in RQ2. https://github.com/anonpaper23/

testGenStrat/blob/main/Supplementary_Material.pdf

[25] (Accessed: June 2023). Table 8 – maximum number of test executions for non-CI subjects in RQ2. https://github.com/

anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf

[26] (Accessed: June 2023). Table 9 to Table 14 – statistical tests for accuracy, recall and precision by varying execution time
budget in RQ2. https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf

[27] (Accessed: June 2023). tc-cake. https://man7.org/linux/man-pages/man8/tc-cake.8.html

[28] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. 2011. S-TaLiRo: A Tool for

Temporal Logic Falsification for Hybrid Systems. In Tools and Algorithms for the Construction and Analysis of Systems,
Parosh Aziz Abdulla and K. Rustan M. Leino (Eds.). Springer, 254–257.

[29] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Ainhoa Arruabarrena, Leire Etxeberria, and Goiuria Sagardui. 2019. Pareto

efficient multi-objective black-box test case selection for simulation-based testing. Information and Software Technology
(2019).

[30] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. 2017. Search-based test case

generation for cyber-physical systems. In 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 688–697.
[31] Federal Aviation Administration (FAA)/Aviation Supplies & Academics (ASA). 2009. Advanced Avionics Handbook.

Aviation Supplies & Academics, Incorporated. https://books.google.lu/books?id=2xGuPwAACAAJ

[32] Cornelius Aschermann, Tommaso Frassetto, ThorstenHolz, Patrick Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert.

2019. NAUTILUS: Fishing for Deep Bugs with Grammars.. In NDSS.
[33] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing program input grammars. ACM

SIGPLAN Notices 52, 6 (2017), 95–110.
[34] Halil Beglerovic, Michael Stolz, and Martin Horn. 2017. Testing of autonomous vehicles using surrogate models and

stochastic optimization. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE,
1–6.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

https://github.com/anonpaper23/testGenStrat/blob/main/Code/Simulink/Algorithms/decisiontreeSoTA.m
https://github.com/anonpaper23/testGenStrat/blob/main/Code/Simulink/Algorithms/decisiontreeSoTA.m
https://github.com/anonpaper23/testGenStrat/blob/main/Benchmark/Formalization/CPS_and_NTSS_Formalization.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Benchmark/Formalization/CPS_and_NTSS_Formalization.pdf
https://github.com/baharin/ENRICH
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://www.lockheedmartin.com
http://faculty.cas.usf.edu/mbrannick/regression/Logistic.html
www.openwrt.org
https://github.com/anonpaper23/testGenStrat/tree/main/Data/Dataset
https://github.com/anonpaper23/testGenStrat/tree/main/Data/Dataset
https://zenodo.org/records/3902142
https://github.com/anonpaper23/testGenStrat/tree/main/Evaluation%20Results
https://github.com/anonpaper23/testGenStrat/tree/main/Evaluation%20Results
https://github.com/anonpaper23/testGenStrat/blob/main/Evaluation%20Results/RQ2/RQ2StatisticalResults.xlsx
https://github.com/anonpaper23/testGenStrat/blob/main/Evaluation%20Results/RQ2/RQ2StatisticalResults.xlsx
https://github.com/anonpaper23/testGenStrat/blob/main/Evaluation%20Results/RQ4/APandNTSS_Rules.xlsx
https://github.com/anonpaper23/testGenStrat/blob/main/Evaluation%20Results/RQ4/APandNTSS_Rules.xlsx
https://github.com/anonpaper23/testGenStrat/tree/main/Code
https://github.com/anonpaper23/testGenStrat/tree/main/Code
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://github.com/anonpaper23/testGenStrat/blob/main/Supplementary_Material.pdf
https://man7.org/linux/man-pages/man8/tc-cake.8.html
https://books.google.lu/books?id=2xGuPwAACAAJ

30 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

[35] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2016. Testing advanced driver assistance

systems using multi-objective search and neural networks. In Proceedings of the 31st IEEE/ACM international conference
on automated software engineering. 63–74.

[36] Marcel Böhme, Charaka Geethal, and Van-Thuan Pham. 2020. Human-in-the-loop automatic program repair. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). IEEE, 274–285.

[37] Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma. 2020. Planning for untangling: Predicting the

difficulty of merge conflicts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
801–811.

[38] Devendra K Chaturvedi. 2017. Modeling and simulation of systems using MATLAB® and Simulink®. CRC press.

[39] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002. SMOTE: synthetic minority

over-sampling technique. Journal of artificial intelligence research 16 (2002), 321–357.

[40] William W Cohen. 1995. Fast effective rule induction. In Machine learning proceedings 1995. Elsevier, 115–123.
[41] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340.
[42] Patricia Derler, Edward A Lee, Stavros Tripakis, and Martin Törngren. 2013. Cyber-physical system design contracts.

In Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems. 109–118.
[43] Alan Díaz-Manríquez, Gregorio Toscano, Jose Hugo Barron-Zambrano, and Edgar Tello-Leal. 2016. A review of

surrogate assisted multiobjective evolutionary algorithms. Computational intelligence and neuroscience 2016 (2016).
[44] Arkadiy Dushatskiy, Tanja Alderliesten, and Peter AN Bosman. 2021. A novel surrogate-assisted evolutionary algorithm

applied to partition-based ensemble learning. In Proceedings of the Genetic and Evolutionary Computation Conference.
583–591.

[45] Robert Feldt and Shin Yoo. 2020. Flexible Probabilistic Modeling for Search Based Test Data Generation. In Proceedings
of the 13th International Workshop on Search-Based Software Testing (SBST). 537–540.

[46] Martina Friese, Thomas Bartz-Beielstein, and Michael Emmerich. 2016. Building ensembles of surrogates by optimal

convex combination. Bioinspired optimization methods and their applications (2016), 131–143.
[47] Khouloud Gaaloul, Claudio Menghi, Shiva Nejati, Lionel C Briand, and David Wolfe. 2020. Mining assumptions for

software components using machine learning. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 159–171.

[48] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. 2015. Revisiting the impact of classification techniques

on the performance of defect prediction models. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 789–800.

[49] Dimitra Giannakopoulou, Corina S Pasareanu, and Howard Barringer. 2002. Assumption generation for software

component verification. In International Conference on Automated Software Engineering. IEEE, 3–12.
[50] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. 2021. Automated for-

malization of structured natural language requirements. Information and Software Technology 137 (2021), 106590.

https://doi.org/10.1016/j.infsof.2021.106590

[51] Rahul Gopinath, Alexander Kampmann, Nikolas Havrikov, Ezekiel O Soremekun, and Andreas Zeller. 2020. Abstracting

failure-inducing inputs. In Proceedings of the 29th ACM SIGSOFT international symposium on software testing and
analysis. 237–248.

[52] Kenneth V. Hanford. 1970. Automatic generation of test cases. IBM Systems Journal 9, 4 (1970), 242–257.
[53] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel Briand. 2021. Can Offline Testing of Deep Neural Networks

Replace Their Online Testing? A Case Study of Automated Driving Systems. Empirical Software Engineering 26, 5

(2021), 90.

[54] Mark Harman, Sung Gon Kim, Kiran Lakhotia, Phil McMinn, and Shin Yoo. 2010. Optimizing for the number of

tests generated in search based test data generation with an application to the oracle cost problem. In 2010 Third
International Conference on Software Testing, Verification, and Validation Workshops. IEEE, 182–191.

[55] Mark Harman and Phil McMinn. 2009. A theoretical and empirical study of search-based testing: Local, global, and

hybrid search. IEEE Transactions on Software Engineering 36, 2 (2009), 226–247.

[56] Thomas A Henzinger, Shaz Qadeer, and Sriram K Rajamani. 1998. You assume, we guarantee: Methodology and case

studies. In Computer Aided Verification: 10th International Conference, CAV’98 Vancouver, BC, Canada, June 28–July 2,
1998 Proceedings 10. Springer, 440–451.

[57] Toke Høiland-Jørgensen, Dave Täht, and Jonathan Morton. 2018. Piece of CAKE: a comprehensive queue management

solution for home gateways. In 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 37–42.

[58] Linxiong Hong, Huacong Li, and Jiangfeng Fu. 2022. A novel surrogate-model based active learning method for

structural reliability analysis. Computer Methods in Applied Mechanics and Engineering 394 (2022), 114835. https:

//doi.org/10.1016/j.cma.2022.114835

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

https://doi.org/10.1016/j.infsof.2021.106590
https://doi.org/10.1016/j.cma.2022.114835
https://doi.org/10.1016/j.cma.2022.114835

Test Generation Strategies for Building Failure Models and Explaining Spurious Failures 31

[59] Boyue Caroline Hu, Lina Marsso, Krzysztof Czarnecki, Rick Salay, Huakun Shen, and Marsha Chechik. 2022. If a

Human Can See It, so Should Your System: Reliability Requirements for Machine Vision Components. In Proceedings
of the 44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for

Computing Machinery, New York, NY, USA, 1145–1156. https://doi.org/10.1145/3510003.3510109

[60] Dmytro Humeniuk, Giuliano Antoniol, and Foutse Khomh. 2021. Data driven testing of cyber physical systems. In

2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST). IEEE, 16–19.
[61] Dmytro Humeniuk, Foutse Khomh, and Giuliano Antoniol. 2022. A search-based framework for automatic generation

of testing environments for cyber-physical systems. Information and Software Technology (2022), 106936.

[62] Yaochu Jin. 2005. A comprehensive survey of fitness approximation in evolutionary computation. Soft computing 9, 1

(2005), 3–12.

[63] Yaochu Jin and Bernhard Sendhoff. 2002. Fitness Approximation In Evolutionary Computation-a Survey.. In GECCO,
Vol. 2. 1105–12.

[64] Baharin A. Jodat, Shiva Nejati, Mehrdad Sabetzadeh, and Patricio Saavedra. 2023. Learning Non-robustness using

Simulation-based Testing: a Network Traffic-shaping Case Study. In 2023 IEEE Conference on Software Testing, Verification
and Validation (ICST). IEEE, 386–397.

[65] Alexander Kampmann, Nikolas Havrikov, Ezekiel O Soremekun, and Andreas Zeller. 2020. When does my program do

this? learning circumstances of software behavior. In Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering. 1228–1239.

[66] Charaka Geethal Kapugama, Van-Thuan Pham, Aldeida Aleti, and Marcel Böhme. 2022. Human-in-the-loop oracle

learning for semantic bugs in string processing programs. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 215–226.

[67] Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella. 2017. Generating valid grammar-based test inputs by

means of genetic programming and annotated grammars. Empirical Software Engineering 22, 2 (2017), 928–961.

[68] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning Highly Recursive Input Grammars. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 456–467.

[69] Jaekwon Lee, Seung Yeob Shin, Shiva Nejati, Lionel C Briand, and Yago Isasi Parache. 2022. Estimating Probabilistic

Safe WCET Ranges of Real-Time Systems at Design Stages. ACM Transactions on Software Engineering and Methodology
(2022).

[70] Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu. http://cs.gmu.edu/∼sean/book/metaheuristics/.

[71] Reza Matinnejad, Shiva Nejati, and Lionel C. Briand. 2017. Automated testing of hybrid Simulink/Stateflow controllers:

industrial case studies. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017. ACM, 938–943.

[72] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini encyclopedia of psychology (2010), 1–1.

[73] Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. 2020. Approximation-refinement testing of

compute-intensive cyber-physical models: An approach based on system identification. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 372–384.

[74] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C Briand. 2019. Generating automated and online test

oracles for simulink models with continuous and uncertain behaviors. In Proceedings of the 2019 27th acm joint meeting
on european software engineering conference and symposium on the foundations of software engineering. 27–38.

[75] Barton P Miller, Lars Fredriksen, and Bryan So. 1990. An empirical study of the reliability of UNIX utilities. Commun.
ACM 33, 12 (1990), 32–44.

[76] Christoph Molnar. 2020. Interpretable machine learning. Lulu. com.

[77] Shiva Nejati, Khouloud Gaaloul, Claudio Menghi, Lionel C Briand, Stephen Foster, and David Wolfe. 2019. Evaluating

model testing and model checking for finding requirements violations in Simulink models. In Proceedings of the 2019
27th acm joint meeting on european software engineering conference and symposium on the foundations of software
engineering. 1015–1025.

[78] Shiva Nejati, Lev Sorokin, Damir Safin, Federico Formica, Mohammad Mahdi Mahboob, and Claudio Menghi. 2023.

Reflections on Surrogate-Assisted Search-Based Testing: A Taxonomy and Two Replication Studies based on Industrial

ADAS and Simulink Models. Inf. Softw. Technol. 163 (2023), 107286.
[79] Andrew Ng. 2018. Machine learning yearning. Available: http://www.mlyearning.org/ (2018).
[80] Ripon Patgiri, Hemanth Katari, Ronit Kumar, and Dheeraj Sharma. 2019. Empirical study on malicious URL detection

using machine learning. In International Conference on Distributed Computing and Internet Technology. Springer,
380–388.

[81] Vincenzo Riccio and Paolo Tonella. 2022. When and Why Test Generators for Deep Learning Produce Invalid Inputs:

an Empirical Study. arXiv:2212.11368 [cs.SE]

[82] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. 2012. Taming Dr. Frankenstein: Contract-

based design for cyber-physical systems. European journal of control 18, 3 (2012), 217–238.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

https://doi.org/10.1145/3510003.3510109
https://arxiv.org/abs/2212.11368

32 B. A. Jodat, A. Chandar, S. Nejati, M. Sabetzadeh

[83] Alexander Schaap, Gordon Marks, Vera Pantelic, Mark Lawford, Gehan Selim, Alan Wassyng, and Lucian Patcas.

2018. Documenting Simulink Designs of Embedded Systems. In International Conference on Model Driven Engineering
Languages and Systems (MODELS): Companion Proceedings. ACM, 47–51.

[84] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian optimization of machine learning

algorithms. Advances in neural information processing systems 25 (2012).
[85] Robert C Streijl, Stefan Winkler, and David S Hands. 2016. Mean opinion score (MOS) revisited: methods and

applications, limitations and alternatives. Multimedia Systems 22, 2 (2016), 213–227.
[86] Hao Tong, Changwu Huang, Leandro L Minku, and Xin Yao. 2021. Surrogate models in evolutionary single-objective

optimization: A new taxonomy and experimental study. Information Sciences 562 (2021), 414–437.
[87] Cumhur Erkan Tuncali, Georgios Fainekos, Danil Prokhorov, Hisahiro Ito, and James Kapinski. 2019. Requirements-

driven test generation for autonomous vehicles with machine learning components. IEEE Transactions on Intelligent
Vehicles 5, 2 (2019), 265–280.

[88] András Vargha and Harold D Delaney. 2000. A critique and improvement of the CL common language effect size

statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132.
[89] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-aware greybox fuzzing. In 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE). IEEE, 724–735.
[90] Yan Wang, Peng Jia, Luping Liu, Cheng Huang, and Zhonglin Liu. 2020. A systematic review of fuzzing based on

machine learning techniques. PloS one 15, 8 (2020), e0237749.
[91] Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011. Data Mining: Practical Machine Learning Tools and Techniques (3

ed.). Morgan Kaufmann, Amsterdam. http://www.sciencedirect.com/science/book/9780123748560

[92] Huanwei Xu, Xin Zhang, Hao Li, and Ge Xiang. 2021. An ensemble of adaptive surrogate models based on local error

expectations. Mathematical Problems in Engineering 2021 (2021).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: December 2023.

http://www.sciencedirect.com/science/book/9780123748560

	Abstract
	1 Introduction
	2 Motivation
	3 Generating Failure Models
	3.1 Preprocessing Phase
	3.2 Main Loop
	3.3 Building Failure Models

	4 Evaluation
	4.1 Study Subjects
	4.2 RQ1-Configuration
	4.3 RQ2-Effectiveness
	4.4 RQ3-SOTA Comparison
	4.5 RQ4-Usefulness
	4.6 Threats to Validity

	5 Lessons Learned
	6 Related Work
	7 Conclusion
	8 Data availability
	References

