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ABSTRACT

Data synthesis is a promising solution to share data for various

downstream analytic tasks without exposing raw data. However,

without a theoretical privacy guarantee, a synthetic dataset would

still leak some sensitive information. Differential privacy is thus

widely adopted to safeguard data synthesis by strictly limiting the

released information. This technique is advantageous yet presents

significant challenges in the vertical federated setting, where data

attributes are distributed among different data parties. The main

challenge lies in maintaining privacy while efficiently and pre-

cisely reconstructing the correlation among cross-party attributes.

In this paper, we propose a novel algorithm called VertiMRF, de-
signed explicitly for generating synthetic data in the vertical setting

and providing differential privacy protection for all information

shared from data parties. We introduce techniques based on the

Flajolet-Martin sketch (or frequency oracle) for encoding local data

satisfying differential privacy and estimating cross-party marginals.

We provide theoretical privacy and utility proof for encoding in

this multi-attribute data. Collecting the locally generated private

Markov Random Field (MRF) and the sketches, a central server can

reconstruct a global MRF, maintaining the most useful information.

Additionally, we introduce two techniques tailored for datasets

with large attribute domain sizes, namely dimension reduction and

consistency enforcement. These two techniques allow flexible and

inconsistent binning strategies of local private MRF and the data

sketching module, which can preserve information to the great-

est extent. We conduct extensive experiments on four real-world

datasets to evaluate the effectiveness of VertiMRF. End-to-end com-

parisons demonstrate the superiority of VertiMRF, and ablation

studies validate the effectiveness of each component.

1 INTRODUCTION

With the increasing stringency of data privacy regulations such as

the European General Data Protection Regulation (GDPR) [58] and

the California Consumer Privacy Act [47], data privacy has become

a significant concern for various data analysis tasks. Following this

trend, data synthesis has emerged as a promising technique. For the

tabular data domain, the synthesis algorithms aim to generate and

release synthetic data that preserves the statistical characteristics

of the original data, allowing for diverse data analysis tasks to be

conducted without access to the original real data from individuals.

Coupled with differential privacy (DP) [13, 49, 68, 73] techniques,

the synthetic data can provide theoretical privacy guarantees for

arbitrary individual records in the original datasets. Compared with

other DP algorithms for specific analytic tasks, DP data synthesis

can support an unlimited number of unrestricted downstream tasks

without additional privacy loss other than the one occurring during

data synthesis [22]. The main challenge emerges when ensuring

DP while generating synthetic data of high quality. A growing body

of academic research [2, 6, 7, 14, 25, 40, 41, 48, 60, 67, 68, 71] has

focused on improving the trade-off between privacy and utility of

DP synthetic data and already obtained promising results. However,

these studies primarily focus on the centralized setting, assuming

that the raw data has already been collected by a trusted curator.

To realize the value of data at the furthest level, multiple data par-

ties may want to cooperate on some tasks for more comprehensive

and accurate information. If such cooperation is achieved with-

out sharing data directly, the setting is generally called federated

learning (FL) [26, 34, 66]. A relatively well-studied scenario in FL is

that data parties have data with the same set of attributes but from

different groups of individuals. This scenario is called horizontal

federated learning (HFL) because the local dataset can be obtained

by splitting a virtual global dataset by individuals [42, 43]. Under

such a setting, several studies have focused on DP data synthesis un-

der the horizontally-distributed [54] and local DP settings [50, 70].

Nevertheless, another attractive but challenging case is when data

parties have data from the same set of individuals but on different

attributes [21, 35, 36, 38]. Symmetrically, this setting is called ver-

tical federated learning (VFL) as local datasets can be derived by

dividing a global dataset by attributes. VFL techniques attract the

attention of many medical or fintech companies [61] because their

model accuracy can be boosted by more comprehensive informa-

tion brought by VFL. In this paper, we focus on data synthesis in

the VFL setting as it has great potential in various aspects.

1) It facilitates the cross-party data analysis. Simply combining the

synthetic data generated independently by the multiple parties

loses the statistical property of cross-party attributes. However,

when a VFL data synthesis algorithm that accurately captures the

cross-party correlation is available, any downstream correlation

analysis can be done efficiently once the synthetic data is ready. 2) It
enable validating or tuning general VFL algorithms under controllable
privacy risk. For example, VFL tasks often involve substantial costs

for hyperparameter tuning among multi-parties, due to the strict

limitations of cross-party data access. Releasing a synthetic dataset

that preserves the statistical characteristics of the original data can

help select optimal hyper-parameters before model training.

Despite the great potential, there are following challenges that
hinder the practical applications.

C1: Information loss when estimating cross-party attribute correla-
tions.Unlike algorithms in the central setting that can access all data

attributes, VFL synthesis algorithms that can faithfully generate
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data in global-view must have components to estimate the corre-

lation of the cross-party attributes, either explicitly or implicitly.

However, such estimation must suffer information loss because of

either the distillation of raw data or added randomness for privacy.

C2: Composing and trade-off the intra-party and cross-party informa-
tion. It is known that statistics estimated in the central DP setting

can have higher accuracy than the same ones obtained in the dis-

tributed DP settings. Although the intuitive idea following this is

to utilize as much information as possible that does not rely on

cross-party cooperation, how to effectively and efficiently combine

and balance this information with estimated cross-party correlation

information remains to be explored.

C3: Curse of dimensionality. In VFL settings, a record may contain

multiple attributes that distributed among multiple parties, each

attribute with large domain size. In this case, there are multiple

cross-party attribute combinations to estimate, which would intro-

duce overwhelming noises and huge communication costs.

Although there are a few works on DP data synthesis under the

vertical setting, they still have limitations related to the challenges

above. DistDiffGen [45] is a two-party DP data synthesis framework.

It falls short of handling C1 and C3 because it relies on a given

taxonomy tree requiring strong prior knowledge and is tailored

to classification tasks only. VertiGAN [24] adapts the DP-WGAN

approach to vertical setting [24]. However, the GAN-based models

are proven to be not suitable for synthesizing tabular data with DP,

which indicates that C1 and C2 still hinder its practical application.

DPLT [56] utilizes a latent tree model to capture the correlation

among cross-party attributions. However, its application is limited

by C3 because it is designed for datasets with binary attributes

and suffers from the huge communication and computation costs

incurred by the complicated cryptography protocol.

To handle the challenges, we propose VertiMRF for generating

high-quality synthetic data with differential privacy guarantees in

the VFL setting with multiple data parties and a semi-honest central

server. Our key observation is that the central DP data synthesis

can achieve great performance in terms of privacy-utility trade-off,

and the cross-party statistic estimation is necessary but may un-

avoidably be less accurate. Thus, VertiMRF adapts, combines, and

balances these two components. VertiMRF adapts PrivMRF [6] to

capture and share differentially private intra-party attribute statis-

tic information. We then design special protocols to let the data

parties encode and the server decode the cross-party attribute corre-

lation information. With both intra-party and cross-party attribute

correlation information, the server can reconstruct a global MRF

for full-view data synthesis. Our key contributions assembled in

VertiMRF are summarized as follows:

• We propose a communication efficient and differentially private

vertical data synthesis framework VertiMRF. VertiMRF merges

a sequence of strategies that allow an untrusted server to con-

struct a global Markov Random Field by merging and balancing

differential private encoded information.

• We incorporate a novel Flajolet-Martin (FM) sketch based ap-

proach to estimating cross-party multi-attribute marginals. This

approach is a key component of VertiMRF to estimate cross-party

correlations with relatively low error while protecting privacy.

Theoretical privacy guarantee and error analysis are provided.

• We design two critical techniques into VertiMRF to prevent the

noise of FM-sketch from obscuring the useful information of

attributes with large domain sizes when building the global MRF,

including a dimension reduction technique to tune the granulari-

ties of attributes while preserving the statistical information and

a consistency enforcement technique to maintain the consistency

among frequencies of different granularities.

• We conduct empirical validation on four real-world datasets.

The end-to-end comparison results demonstrate the superiority

of our approach to the baseline algorithms. Furthermore, the

impact and effectiveness of each component of our approach are

validated by ablation studies.

2 PRELIMINARIES

2.1 Differential Privacy

Differential privacy (DP) is a rigorous privacy notion that quantifies

the privacy loss of algorithms by analyzing the statistical difference

between the algorithm outputs on neighboring datasets differing

on only one record.

Definition 1 (Differential Privacy [13]). A randomized mecha-

nismM satisfies (𝜖, 𝛿)-differential privacy if for any neighboring

datasets 𝐷 , 𝐷′ ∈ D that differ on only one record, their outputs

fall in any 𝑅 ⊂ 𝑅𝑎𝑛𝑔𝑒 (M) with probability 𝑃𝑟 [M(𝐷) ⊆ 𝑅] ≤
exp (𝜖)𝑃𝑟 [M(𝐷′) ⊆ 𝑅] + 𝛿.

DP is a popular privacy notion because the privacy loss is com-

posable. Basically, with any two algorithms 𝑓 and 𝑔 which satisfy

(𝜖1, 𝛿1)-DP and (𝜖2, 𝛿2)-DP respectively, the sequential use of 𝑓 ⊙ 𝑔
on a dataset satisfies (𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-DP. However, such compo-

sition is not tight, which may incur huge algorithm utility loss

with the overwhelming noises when a DP mechanism is applied

repetitively. To mitigate this issue, R̀enyi Differential Privacy (RDP)

is proposed to account for more accurate sequential privacy losses.

Definition 2 (Rényi Differential Privacy [44]). A randomizedmech-

anismM : 𝐷 → 𝑅 is said to be (𝜆, 𝜖)-Rényi Differential Privacy, if
for any two neighboring datasets 𝐷 , 𝐷′, it holds that

𝐷𝜆

(
M(𝐷) |M(𝐷′)

)
≜

1

𝜆
logE𝑅

(
M(𝐷) ⊆ 𝑅

M(𝐷′) ⊆ 𝑅

)𝜆
≤ 𝜖 (1)

RDP can provide a tighter bound of DP when composing a large

number of DP mechanisms.

Lemma 1 (DP Composition based on RDP). Let 𝑓 be the compo-
sition of 𝑛 mechanisms that satisfies 𝜖-DP, then for each 0 < 𝛿 < 1

with log (1/𝛿) ≥ 𝑛𝜖2, 𝑓 satisfies (4𝜖
√︁

2𝑛 log 1/𝛿, 𝛿)-DP.

2.2 DP Flajolet-Martin Sketch

Flajolet-Martin (FM) Sketch is a probabilistic data structure for

multi-set cardinality estimation with DP guarantee. It is constructed

by hashing each element in a multi-set to an integer by a hash

functionH with a key 𝜉 . The hashed integers are then independent

geometric random variables with the parameter
𝛾

1+𝛾 if 𝜉 is sampled

from a large set uniformly. Note that, the duplicated elements in

the multi-set are mapped to the same integer. Thus, the cardinality

𝑘 can be estimated as 𝑘 = (1 + 𝛾)𝛼 where 𝛼 denotes the maximum

of the observed integer after hashing. It has been proved in [53]
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Algorithm 1 DPFM

Input: Multi-set X = {𝑥1, ..., 𝑥𝑛}, domain [𝑢], distribution param-

eter 𝛾 , privacy budget 𝜖′, hash key 𝜉 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑅).
Output: DP FM-sketch 𝛼 for X.
1: 𝑘𝑝 ← ⌈ 1

𝑒𝜖
′−1
⌉, 𝛼𝑚𝑖𝑛 ← ⌈log

1+𝛾
1

1−𝑒−𝜖′ ⌉
2: 𝛼𝑝 ← max{𝑌1, ..., 𝑌𝑘𝑝 } where 𝑌𝑖 ∼ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ( 𝛾

1+𝛾 ),∀𝑖 ≤ 𝑘𝑝

3: 𝛼X ← max{H𝜉 (𝑥 𝑗 )},∀𝑥 𝑗 ∈ X.
4: return max

{
𝛼X, 𝛼𝑝 , 𝛼𝑚𝑖𝑛

}
that (1 + 𝛾)𝛼 ∈

[
𝑘
(1+𝛾 ) , 𝑘 (1 + 𝛾)

]
with a reasonable probability.

The estimation can be improved by repeating the procedure [53]

multiple times with different hash functions and taking the 1/𝑒-th
quantile of all the maxima as the final estimator.

The FM sketch-based cardinality estimation is widely used due to

its appealing property that the sketch structure is mergeable. That

is, given two different multi-set X1 and X2 and their corresponding

FM sketches 𝛼1 and 𝛼2, then the cardinality of their union X1 ∪ X2

can be simply estimated as (1 + 𝛾)max (𝛼1,𝛼2 )
.

Based on this and the inclusion-exclusion principle, i.e.,X1∩X2 =

X2 ∪ X2, the cardinality of the intersection of two multi-sets can

also be estimated.

Differentially private FM-sketch. As mentioned, estimating the

cardinality of a multi-set using FM-sketch involves mapping distinct

elements to geometric random variables and selecting themaximum

value. However, this process may violate the privacy constraint

as it requires the access to the raw data and the maximum value

may reveal statistical information about the set. Fortunately, recent

studies [11, 53] have demonstrated that FM-sketch can preserve

DP under certain conditions. Specifically, if the multi-set contains

at least
1

𝑒𝜖−1
distinct elements and the maximum of the geometric

random variables is lower bounded by ⌈log
1+𝛾

1

1−𝑒−𝜖 ⌉, where 𝛾
is parameter of the geometric distribution, then the process of

selecting the maximum of these random variables ensures 𝜖-DP.

The privacy guarantee is formalized in lemma 2, and the DP FM-

sketching algorithm is detailed in Algorithm 1.

Lemma 2. Let 𝑌1, . . . , 𝑌𝑘+1 be independent random variables
where each 𝑌𝑖 ∼ 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ( 𝛾

1+𝛾 ). Let 𝑊1 = max {𝑌1, . . . , 𝑌𝑘 , 𝑏}
and𝑊2 = max {𝑌1, . . . , 𝑌𝑘+1, 𝑏}. For any 𝜖 , if 𝑘 ≥ 1

𝑒𝜖−1
and 𝑏 ≥

⌈log
1+𝛾

1

1−𝑒−𝜖 ⌉, then it holds that | log
𝑃𝑟 [𝑊1=O]
𝑃𝑟 [𝑊2=O] | ≤ 𝜖,∀O ∈ N+.

2.3 DP Data Synthesis

Let 𝐷 be a set of data tuples {𝑥 (1) , . . . , 𝑥 (𝑛) }. Each tuple consists

of values of a set of attributes A = {𝐴1, . . . , 𝐴𝑑 }. Each attribute

𝐴 𝑗 ,∀𝑗 ∈ [𝑑] has domain size 𝑢 𝑗 . Without loss of generality, we

denote the domain of 𝐴 𝑗
as [𝑢 𝑗 ] ≜ {1, . . . , 𝑢 𝑗 }. With𝑀 ⊂ A, 𝑥

(𝑙 )
𝑀

denotes the values of tuple 𝑥 (𝑙 ) on an attribute set𝑀 . Let𝑇𝑀 be the

counts of occurrences of all possible value tuples of attributes𝑀 in

𝐷 . That is, 𝑇𝑀 is a vector of length

∏
𝐴 𝑗 ∈𝑀 𝑢 𝑗 and each element is

defined as

𝑇𝑀 [v] =
∑︁
𝑙∈[𝑛]

I(𝑥 (𝑙 )
𝑀

= v), ∀v ∈
∏

𝐴 𝑗 ∈𝑀
[𝑢 𝑗 ] . (2)

𝑇𝑀 is referred as the contingency histogram of𝑀 .

Data synthesis focuses on generating a dataset 𝐷̂ given 𝐷 such

that ideally ∀𝑀 ⊆ A,𝑇𝑀 ≈ 𝑇𝑀 . A key challenge of DP data synthe-

sis is to circumvent the curse of dimensionality incurred by a large

𝑑 . With the increase of𝑑 , the error of𝑇A grows exponentially, as DP

noise has to be added to each count of the contingency histogram.

To address this challenge, there have been works [6, 40, 41, 67, 71]

that propose to utilize low-way marginal distributions to approxi-

mate the high-way distribution without losing much correlations

among the attributes. Among these works, PrivMRF [6], utilizing

Markov Random Field (MRF) to model the attribute correlations,

shows the state-of-the-art performance.

The basic idea of PrivMRF is to select an appropriate set of

marginals to construct an MRF, which is then used to approximate

the joint distribution of all attributes. In particular, PrivMRF consists

of four phases:

• Phases 1: Generate attribute graph. PrivMRF starts by generat-

ing an attribute graph G through greedily linking up each attribute

pair (𝐴𝑖 , 𝐴 𝑗 ) in the descending order of noisy R-scores:

𝑅(𝐴𝑖 , 𝐴 𝑗 ) = 𝑛
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𝑃𝑟 [𝐴𝑖 , 𝐴 𝑗 ] − 𝑃𝑟 [𝐴𝑖 ] · 𝑃𝑟 [𝐴 𝑗 ]




1
+ N(0, 𝜎2

𝑅) (3)

After that, G is triangulated to ensure the domain size of the maxi-

mal clique not exceeding a threshold.

• Phases 2: Choose candidate marginal set. PrivMRF samples

a set of candidate marginalsU from the cliques of triangulated G
and ensure each marginal𝑀 ∈ U is 𝜃 -useful. That is 𝑛∏

𝐴𝑖 ∈𝑀 𝑢𝑖
≤

𝜃 · 𝑔, where 𝑔 denotes the expected absolute value of the noise to

be injected into each count of 𝑇𝑀 . 𝜃 -usefulness ensures that the

average count in 𝑇𝑀 is large enough to tolerate the noise.

• Phases 3: Initialize themarginal set. FromU, PrivMRF selects

the most highly correlated marginal for each attribute to consti-

tute an initialized marginal set S, which is used to estimate the

parameters Θ of the MRF. Θ is a real vector where each element

corresponds to an entry in a contingency histogram 𝑇𝑀 ,∀𝑀 ∈ S.
The MRF models the distribution of arbitrary tuple 𝑥 as:

𝑃𝑟 [𝑥] ∝
∏
𝑀∈S

exp (Θ𝑀 [𝑥𝑀 ]) (4)

where Θ𝑀 denotes the sub-vector of Θ corresponding to 𝑀 , and

Θ𝑀 [𝑥𝑀 ] is the element corresponding to 𝑥𝑀 . Based on the esti-

mated Θ, any marginal𝑀′ can be inferred by the MRF as

𝑃𝑟 [𝑦] =
∑︁

𝑥,𝑥𝑀′=𝑦

𝑃𝑟 [𝑥], ∀𝑦 ∈
∏

𝐴 𝑗 ∈𝑀 ′
𝑢 𝑗 . (5)

• Phases 4: Refine the marginal set. PrivMRF proceeds to refine

the marginal set S by inserting marginals that cannot be accurately

inferred by the MRF and iteratively refine the estimation of MRF.

3 DIFFERENTIALLY PRIVATE VERTICAL

DATA SYNTHESIS

We provide the problem definition of DP data synthesis in the

vertical setting and an overview of our solution in this section.

3.1 Problem Definition

We consider a system constituted by𝑚 data parties and an untrusted

central server orchestrating the overall process. Each data party

P𝑖 ,∀𝑖 ∈ [𝑚], possesses users’ data 𝐷𝑖 = {𝑥 (1)A𝑖
, . . . , 𝑥

(𝑛)
A𝑖
} with a

3
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subset of attributes A𝑖 ⊂ A. We assume that the user’s data has

been aligned across these𝑚 data parties by some record ID (e.g.,

social security number and phone number) with some private set

intersection method [8, 12, 28]. That is, 𝑥
(𝑙 )
A𝑖

and 𝑥
(𝑙 )
A 𝑗

are data tuples

of a same individual 𝑙 but on different attributes. The aligned data

is a common setting with the vertical tasks [10, 19, 37, 65, 69].

Virtually speaking, there is a global dataset 𝐷 = (𝐷1 | . . . |𝐷𝑚) with
attributes A = ∪𝑖∈[𝑚]A𝑖 if all data parties’ data can be merged.

Adversary model.We consider both the adversaries within and

outside the system. By the adversary within the system, we consider

the central server to be honest but curious, which would execute the

protocol honestly but try his best to infer the private information of

the input dataset. However, we assume that none of the data parties

is interested in colluding with the central server because privacy

regulations prevent data parties from doing so. We consider the

adversary outside the system as all the third-party data analysts

who aim to infer some private information of the input dataset

from the synthetic dataset and the intermediate results carried out

in the communication between data parties and the server.

Our goal. Our work aims to generate a collection of synthetic data 𝐷̂
with attributes A, which follows the data distribution as the virtual
global dataset 𝐷 as closely as possible while protecting the privacy
information. Specifically, we employDP to ensure a high probability,

controlled by the privacy budget parameter 𝜖 , that no adversary can

infer based on the synthesized dataset 𝐷̂ whether any individual’s

data is used as the input of the data synthesis algorithm.

3.2 Overview of Our Solution

To address the problem defined above, we propose VertiMRF, a
novel differentially private data synthesis approach. Figure 1 and

Algorithm 2 visualize the workflow of VertiMRF, which can be

divided into the following six phases:

• Phase 1: Each party P𝑖 constructs a local Markov Random Field

MRF𝑖 to capture the correlation among local attributes A𝑖 . Besides,

P𝑖 preserves the inner results, including the local attribute graph
G𝑖 and the marginal set S𝑖 (sub-procedure LocMRF).
• Phase 2: Each party P𝑖 encodes local dataset with attributes

A𝑖 via differentially private FM sketch. Both the codesM𝑖 and

{MRF𝑖 ,G𝑖 ,S𝑖 } are sent to the central server (sub-procedure LocEnc).
• Phase 3: The server generates a global attribute graph G by

combining received disjoint local attribute graphs {G𝑖 |𝑖 ∈ [𝑚]}.
In the combining, server links up cross-party attribute pairs with

higher R-scores estimated over the encoded attributes {𝑀𝑖 , 𝑖 ∈ [𝑚]}.
The generated G is then triangulated (sub-procedure GraphCom).
• Phase 4: The server initializes a marginal set S by taking the

union of the received local marginal set. Based on S, the parameter

Θ of the global MRF is initialized with each contingency histogram

𝑇𝑀 ,∀𝑀 ∈ S inferred from the received local MRFs (sub-procedure
InitMRF).
• Phase 5: The server selects a set of cross-party marginals S𝑐
from the cliques of G. Based on the S𝑐 , Θ is further optimized.

In the optimization, each contingency histogram 𝑇𝑀 ,∀𝑀 ∈ S𝑐 is
estimated over the encoded attributes (sub-procedure OptMRF).
• Phase 6: The server generates synthetic data by sampling from

the data distribution approximated by the global MRF.

Algorithm 2 VertiMRF

Input: The partitioned dataset 𝐷 = {𝐷𝑖 , 𝑖 ∈ [𝑚]}, domain ( [𝑢1] ×
... × [𝑢𝑑 ]), maximal clique size 𝜏 , total privacy budget (𝜖, 𝛿) is
divided as 𝜖0 = 𝜖

2𝑚 , 𝛿0 = 𝛿
2𝑚 , 𝜖1 = 𝜖

2
, 𝛿1 = 𝛿

2
.

Output: Synthesized data 𝐷̂ .

1: Each local party P𝑖 :
(a). constructs local MRF: {MRF𝑖 , G𝑖 , S𝑖 } ← LocMRF(𝐷𝑖 , 𝜏, 𝜖0, 𝛿0 ) .

2: Each local party P𝑖 :
(a). encodes local attributes:M𝑖 ← LocEnc(𝐷𝑖 ,A𝑖 , 𝜖1, 𝛿1).
(b). sendsM𝑖 and {MRF𝑖 ,G𝑖 ,S𝑖 } to server.

3: Central server:

(a). generates global graph: G ←GraphCom({G𝑖 ,M𝑖 |𝑖 ∈ [𝑚] }).
4: Central server:

(a). initializes marginal set: S ← ⋃𝑚
𝑖=1
{S𝑖 }.

(b). initializes parameter Θ of the global MRF based on S.
5: Central server:

(a). selects cross-party marginals S𝑐 from triangulated G.
(b). optimizes Θ based on S𝑐 .

6: Central server:

(a). samples 𝐷̂ based on the optimized global MRF.

In what follows, we show the solution for Phase 1-2 in Section 4

which describes the DP information sharing approaches of each

local party. Then we describe Phase 3-6 in Section 5, presenting

how to use the shared DP information to construct a global MRF.

4 DIFFERENTIALLY PRIVATE INFORMATION

SHARING

Based on our security setting andDP’s resistance to post-processing,

the key to satisfying privacy protection is to ensure differential

privacy guarantee for all the information shared from local parties,

which are the outputs of LocMRF in Phase 1 and LocEnc Phase 2
(in brackets Figure 1). Thus, we introduce the algorithms for LocMRF
and LocEnc (together with its closely paired CarEst), providing
bases of the following synthesis steps.

4.1 Local PrivMRF in Phase 1

Each local party P𝑖 directly applies the PrivMRF approach to con-

struct MRF𝑖 . As shown in Section 2.3, there would be inner results

generated when constructing MRF𝑖 , including the attribute graph
G𝑖 and the refined marginal set S𝑖 . Apart from MRF𝑖 , both G𝑖 and
S𝑖 should also be preserved and sent to the central server. Notably,

because the maximal clique size for the global MRF is always lim-

ited to control the complexity of the attribute graph, the maximal

clique size of each local MRF should also be limited. The maximal

local clique size for each MRF𝑖 is set as 𝜏
′ ≤ 𝜏

𝑚 ·𝑢2
, with 𝑢 =

∑
𝑗 𝑢 𝑗

𝑑
and 𝜏 is threshold of the clique size for global MRF. The constructed

MRF𝑖 captures the correlations among the local attributes.

4.2 Frequency Oracle as a Baseline

Frequency oracle (FO) protocols provide DP protection by random-

izing each user’s data and allowing the frequency estimation of

values in the original domain. In this case, we use the widely known

4
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mem.

𝐴!

𝐈"!"

𝐈"#"

𝐈"$"

mem.

𝐴#
𝐈"!%

𝐈"#%

DPFM
𝑴𝒊

𝜶"!"

𝜶"#"

𝜶"$"

𝑴𝒋

𝜶𝑣1𝑗

𝜶𝑣2𝑗

𝑛	 −	 |𝐈"!" ∩ 𝐈"!%
|

|𝐈"#" ∪ 𝐈"$" ∪ 𝐈"#%
|

max

𝑇'[𝑣(! , 𝑣(
#]	

=

estimate

=

inclusion-exclusion

DPFM

DPFM

DPFM

DPFM

LocEnc CarEst
Central server

Figure 2: LocEnc and CarEst.

FO protocol, called the Generalized Random Response technique

(GRR) [59], to implement a baseline for LocEnc.
FO-based LocEnc. Each party P𝑖 employs GRR to encode the local

dataset. Specifically, for each local attribute 𝐴 𝑗 ∈ A𝑖 , a value 𝑣 ( 𝑗 )
is perturbed to an arbitrary 𝑣 ′( 𝑗 ) ∈ [𝑢 𝑗 ] with probabilities:

𝑃𝑟

[
𝑣 ′( 𝑗 ) = 𝑣

]
=


𝑒𝜖
′

𝑒𝜖
′+𝑢 𝑗−1

, 𝑣 = 𝑣 ( 𝑗 )
1

𝑒𝜖
′+𝑢 𝑗−1

, 𝑣 ≠ 𝑣 ( 𝑗 )
(6)

Here, 𝜖′ denotes LDP level preserved by the GRR technique for each

attribute. After applying GRR to each user’s data value in the local

dataset 𝐷𝑖 , we obtain a perturbed version 𝐷𝑖 . The partition of 𝐷𝑖

restricted to𝐴 𝑗
, denoted asM 𝑗

, is taken as the encoded attribute of

𝐴 𝑗
. Subsequently, the encoded local attributesM𝑖 = {M 𝑗 ,∀𝐴 𝑗 ∈

A𝑖 } are reported to the central server.

FO-based CarEst. After receiving the reported encoded attributes

M = {M 𝑗 | 𝑗 ∈ [𝑑]}, the central server can estimate the contin-

gency histogram of any arbitrary marginal. For an 𝑙-way marginal

𝑀 = (𝐴1, . . . , 𝐴𝑙 ), we obtain a noisy contingency histogram 𝑇𝑀 by

counting the occurrences of each value tuple v = (𝑣 (1) , . . . , 𝑣 (𝑙 ) ) ∈∏𝑙
𝑖=1
[𝑢𝑖 ] fromM. However, relying solely on this estimation can

introduce considerable bias. To mitigate this issue, a commonly

employed technique is to utilize a transition probability matrix 𝑃 to

overcome the bias, which would then produce an unbiased estimate.

As shown in Equation (6), different attributes are encoded

independently in LocEnc procedure. So each value tuple v =

(𝑣 (1) , . . . , 𝑣 (𝑙 ) ) can be encoded as any arbitrary v′ = (𝑣 ′(1) , . . . , 𝑣
′
(𝑙 ) )

with probability 𝑃𝑟 [v→ v′] =
∏

𝐴𝑖 ∈𝑀 𝑃𝑟

[
𝑣 (𝑖 ) → 𝑣 ′(𝑖 )

]
. Since

there are

∏
𝐴𝑖 ∈𝑀 𝑢𝑖 possible values for v in total, we can construct

a

(∏
𝐴𝑖 ∈𝑀 𝑢𝑖

)
×

(∏
𝐴𝑖 ∈𝑀 𝑢𝑖

)
-dimensional probability matrix 𝑃 to

establish the transition relationship between 𝑇𝑀 and the noisy 𝑇𝑀 .

That is 𝑃 · 𝑇𝑀 = E[𝑇𝑀 ], where the expectation accounts for the

randomness of GRR. Therefore, 𝑇𝑀 can be estimated as 𝑃−1 ·𝑇𝑀 ,

where the existence of 𝑃−1
is guaranteed by the positive definite

property of the matrix. Furthermore, it can be shown that

E[𝑃−1 ·𝑇𝑀 ] = 𝑃−1 · E[𝑇𝑀 ] = 𝑃−1 · 𝑃 ·𝑇𝑀 = 𝑇𝑀 .

This implies that 𝑃−1 ·𝑇𝑀 is an unbiased estimator of 𝑇𝑀 .

Theorem 3 (Privacy & Error Analysis). Given a marginal
𝑀 = (𝐴1, . . . , 𝐴𝑙 ), if each attribute𝐴𝑖 ∈ 𝑀 is encoded with 𝜖′-LDP fol-
lowing the rule shown in Equation (6), then the FO-based LocEnc pre-

serves
(
min

{
𝑑𝜖′/2, 2𝜖′

√︁
2𝑑 log(1/𝛿)

}
, 𝛿

)
-DP, ∀𝛿 < 1, where 𝛿 = 0

when the minimum taking 𝑑𝜖′/2. The FO-based CarEst gives unbi-
ased estimation for each count in 𝑇𝑀 with variance 𝑂 (𝑛/𝜖′2𝑙 ).

Proof. The details are shown in Appendix A.2. □

4.3 Sketch-based LocEnc and CarEst
As explained in Section 2.2, FM sketch can be used to estimate the

cardinality of a multi-set. And the estimation process can easily

satisfy DP by incorporating phantom elements and bounding the

maximum value of the hashed geometric variables. Building on

this idea, we design our sketch-based LocEnc and CarEst. Figure 2
visualizes the rationale of both sketch-based LocEnc and CarEst.

Note that our sketch-based estimation is inspired by [36] that

utilizes DP FM sketch to encode membership information of local

clusters and estimate the cardinality of cross-party clusters’ inter-

section. However, only one attribute is shared by a data party in

the clustering task (i.e., which cluster an individual is clustered to),

while each data party possesses data with multiple attributes in

data synthesis. If we want the server to estimate any cross-party at-

tribute combination with one communication round, using different

hash keys for each combination is infeasible as each hash key intro-

duces additional privacy loss. We solve the challenge by answering

the following questions: whether encoding multi-dimensional mem-

berships with-in the same party with the same key still provides

privacy protection and whether this approach can provide satisfy-

ing privacy-utility trade-offs.

Sketch-based LocEnc. Each data party P𝑖 encodes the member-

ship information of local attribute 𝐴 𝑗
using an FM sketch. This

information, denoted as

{
I
𝑣
𝑗

1

, . . . , I
𝑣
𝑗
𝑢𝑗

}
, consists of 𝑢 𝑗 ID sets. Each

set I
𝑣
𝑗

𝑖

contains the IDs of records 𝑥 with 𝑥 (𝐴 𝑗 ) = 𝑣
𝑗
𝑖
. An example

illustrating the membership information of attributes is provided in

Example 1. The sketch-based LocEnc involves two main procedures:

the generation of hash keys and the generation of sketches.

Example 1: let 𝐷 be a dataset containing records with attributes
Gender, Age and Hobby as in the following table. Then, for at-
tribute Gender, the membership information is {I𝑚𝑎𝑙𝑒 , I𝑓 𝑒𝑚𝑎𝑙𝑒 },
where I𝑚𝑎𝑙𝑒 = {1} and I𝑓 𝑒𝑚𝑎𝑙𝑒 = {2, 3}.

Index Gender Age Hobby

1 male 20-30 cook

2 female 20-30 basketball

3 female 10-20 cook
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Algorithm 3 Sketch-based LocEnc

Input: P𝑖 ’s local dataset 𝐷𝑖 , attribute 𝐴
𝑗 ∈ A𝑖 , distribution pa-

rameter 𝛾 , privacy budget (𝜖, 𝛿), domain ( [𝑢1] × . . . × [𝑢𝑙 ]).
Output: P𝑖 ’s sketch setM𝑖 .

1: Data parties generate 𝑡 hash keys {𝜉1, . . . , 𝜉𝑡 } collaboratively.
2: 𝜖′ = 𝜖

4

√
𝑡𝑑 log(1/𝛿 )

3: for ℎ ∈ [𝑡] do
4: for each attribute 𝐴 𝑗 ∈ A𝑖 do

5: for 𝑙 ∈ [𝑢 𝑗 ] do
6: 𝛼

(ℎ)
𝑣
𝑗

𝑙

= DPFM(𝐷𝑖 , 𝑢 𝑗 , 𝛾, 𝜖
′, 𝜉ℎ)

7: end for

8: end for

9: M (ℎ)
𝑖
←

{(
𝛼
(ℎ)
𝑣
𝑗

1

, . . . , 𝛼
(ℎ)
𝑣
𝑗
𝑢𝑗

)
|𝐴 𝑗 ∈ A𝑖

}
10: end for

11: return {M (ℎ)
𝑖
|ℎ ∈ [𝑡]}

Due to the privacy concern, the hash keys should be collabora-

tively generated by the data parties and kept unknown to the central

server. There are multiple secure multi-party computation (SMC)

protocols can be applied to achieve this, such as the Diffie-Hellman

protocol [29], which allows multi parties to negotiate a random

number securely even if the central server is semi-honest [29].

Next, each party encodes the membership information of

local attributes using DPFM (Algorithm 1) algorithm with the

generated hash key 𝜉 . Specifically, for the membership infor-

mation {I
𝑣
𝑗

1

, . . . , I
𝑣
𝑗
𝑢𝑗

} of attribute 𝐴 𝑗 ∈ A𝑖 , party P𝑖 applies

the DPFM algorithm to each I
𝑣
𝑗

𝑖

with a given privacy budget

𝜖′. This generates a DP FM sketch tuple (𝛼
𝑣
𝑗

1

, . . . , 𝛼
𝑣
𝑗
𝑢𝑗

) for

𝐴 𝑗 ∈ A𝑖 . Considering all local attributes, party P𝑖 composes

a tuple set {(𝛼
𝑣
𝑗

1

, . . . , 𝛼
𝑣
𝑗
𝑢𝑗

) |𝐴 𝑗 ∈ A𝑖 }. To enhance utility, this

process is repeated 𝑡 times, and party P𝑖 sends 𝑡 tuple sets{
M (ℎ)

𝑖
≜

{(
𝛼
(ℎ)
𝑣
𝑗

1

, . . . , 𝛼
(ℎ)
𝑣
𝑗
𝑢𝑗

)����� 𝐴 𝑗 ∈ A𝑖

}����� ℎ ∈ [𝑡]
}

to the central

server. The details of the sketch-based LocEnc method are pre-

sented in Algorithm 3.

Sketch-based CarEst. As mentioned in Section 2.2, the FM sketch

enables us to estimate the cardinality of the intersection of multi-

ple sets using the inclusion-exclusion principle. This property can

be extended to the DP FM sketch, allowing the central server to

estimate the contingency histogram of a marginal. The details of

this estimation process are presented in Algorithm 4.

After receiving all the sketches from data parties, the

central server aggregates them into 𝑡 sets of sketch tuples{
M (ℎ) ≜

{(
𝛼
(ℎ)
𝑣
𝑗

1

, . . . , 𝛼
(ℎ)
𝑣
𝑗
𝑢𝑗

)
| 𝑗 ∈ [𝑑]

}
|ℎ ∈ [𝑡]

}
. For each 𝑙-way

marginal𝑀 = (𝐴1, . . . , 𝐴𝑙 ), the estimation of the contingency his-

togram 𝑇𝑀 involves estimating the cardinality of the intersection

set

⋂𝑙
𝑖=1
I𝑣(𝑖 ) for each (𝑣 (1) , . . . , 𝑣 (𝑙 ) ) ∈

∏𝑙
𝑖=1
[𝑢𝑖 ]. Here, I𝑣(𝑖 ) repre-

sents the membership information of attribute 𝐴𝑖
with value 𝑣 (𝑖 ) .

Using the inclusion-exclusion principle (i.e.,

⋂𝑙
𝑖=1
I𝑣(𝑖 ) =

⋃𝑙
𝑖=1
I𝑣(𝑖 ) ),

Algorithm 4 Sketch-based CarEst

Input: Marginal 𝑀 = (𝐴1, . . . , 𝐴𝑙 ), domain ( [𝑢1] × . . . × [𝑢𝑙 ]),

sketch sets

{
M (ℎ) ≜

{(
𝛼
(ℎ)
𝑣
𝑗

1

, . . . , 𝛼
(ℎ)
𝑣
𝑗
𝑢𝑗

)
| 𝑗 ∈ [𝑑]

}
|ℎ ∈ [𝑡]

}
,

privacy budget (𝜖, 𝛿), distribution parameter 𝛾 , noisy data num-

ber 𝑛̂.

Output: Estimated contingency histogram 𝑇𝑀 .

1: T ← 0𝑡×(𝑢1×...×𝑢𝑙 ) ,𝑇𝑀 ← 0(𝑢1×...×𝑢𝑙 )

2: 𝜖′ = 𝜖

4

√
𝑡𝑑 log(1/𝛿 )

, 𝑘𝑝 = ⌈ 1

𝑒𝜖
′−1
⌉

3: for all ℎ ∈ [𝑡],
(
𝑣 (1) , . . . , 𝑣 (𝑙 )

)
∈ ([𝑢1] × . . . × [𝑢𝑙 ]) do

4: T[ℎ, (𝑣(1) , . . . , 𝑣(𝑙 ) ) ] = max

{
max

{
𝛼
(ℎ)
𝑣𝑖
𝑙

|𝑙 ∈ [𝑢𝑖 ], 𝑣𝑖𝑙 ≠ 𝑣(𝑖 )

}
|𝐴𝑖 ∈ 𝑀

}
5: end for

6: for all (𝑣 (1) , . . . , 𝑣 (𝑙 ) ) ∈ (𝑢1 × . . . × 𝑢𝑙 ) do
7: 𝛼 = HarmonicMean

(
T [:, (𝑣 (1) , . . . , 𝑣 (𝑙 ) )]

)
8: 𝑇𝑀 [(𝑣 (1) , . . . , 𝑣 (𝑙 ) )] = (1 + 𝛾)𝛼 −

∑𝑙
𝑖=1
(𝑢𝑖 − 1) · 𝑘𝑝

9: 𝑇𝑀 [(𝑣 (1) , . . . , 𝑣 (𝑙 ) )] = max

{
𝑛̂ −𝑇𝑀 [(𝑣 (1) , . . . , 𝑣 (𝑙 ) )], 0

}
10: end for

11: return 𝑇𝑀

the cardinality of

⋂𝑙
𝑖=1
I𝑣(𝑖 ) can be determined by calculating the

cardinality of

⋃𝑙
𝑖=1
I𝑣(𝑖 ) , where X denotes the complementary set

of X. Thus, estimating the cardinality of an intersection is trans-

formed into estimating the cardinality of the complementary set

of a union. The basic approach to estimate

���⋃𝑙
𝑖=1
I𝑣(𝑖 )

��� is as follows:
first, estimate

���⋃𝑙
𝑖=1
I𝑣(𝑖 )

��� using the mergeable property of sketches,

and then subtract this estimate from a DP sanitized data number 𝑛̂.

For each M (ℎ) among all 𝑡 sketch sets, the sketch of I𝑣(𝑖 )

can be estimated by max

{
𝛼
(ℎ)
𝑣𝑖
𝑗

| 𝑗 ∈ [𝑢𝑖 ], 𝑣𝑖𝑙 ≠ 𝑣 (𝑖 )

}
. Here, 𝛼

(ℎ)
𝑣𝑖
𝑗

represents the sketch corresponding to attribute 𝐴𝑖
with value

𝑣𝑖
𝑗
. Furthermore, the sketch of

⋃𝑗

𝑖=1
I𝑣(𝑖 ) can be estimated by

max

{
max

{
𝛼
(ℎ)
𝑣𝑖
𝑗

| 𝑗 ∈ [𝑢𝑖 ], 𝑣𝑖𝑗 ≠ 𝑣 (𝑖 )

}
|𝐴𝑖 ∈ 𝑀

}
. After obtaining 𝑡

estimates of the sketch of

⋃𝑗

𝑖=1
I𝑣(𝑖 ) , a more stable and accurate

estimate 𝛼 can be obtained by taking the harmonic mean. Fur-

thermore, since the above sketch estimation process involves max

operations on

∑𝑙
𝑖=1
(𝑢𝑖 − 1) sketches, each of which introduces

𝑘𝑝 phantom elements as shown in Algorithm 1, there should be(∑𝑙
𝑖=1
(𝑢𝑖 − 1)

)
· 𝑘𝑝 phantom elements taken into account in total.

By subtracting those phantom elements,

���⋃𝑙
𝑖=1
I𝑣(𝑖 )

��� can be esti-

mated by (1 + 𝛾)𝛼 −
(∑𝑙

𝑖=1
(𝑢𝑖 − 1)

)
· 𝑘𝑝 . Finally, the cardinality of⋂𝑙

𝑖=1
I𝑣(𝑖 ) can be obtained by subtracting the estimated

���⋃𝑙
𝑖=1
I𝑣(𝑖 )

���
from a DP sanitized data number 𝑛̂ and ensuring the non-negativity.

Notice that CarEst operates on sketches that are generated with

privacy guarantees. Therefore, CarEst does not consume additional

privacy budget due to the post-process property of DP.

6
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Theorem 4 (Privacy Analysis). Suppose the FM sketch 𝛼 (ℎ)
𝑣𝑖
𝑗

for value 𝑣𝑖
𝑗
of attribute 𝐴𝑖 is generated with 𝜖′-DP in the ℎ-th run.

Then, the sketch-based LocEnc method in Algorithm 3 guarantees
(4𝜖′

√︁
𝑡𝑑 log(1/𝛿), 𝛿)-DP for all 𝛿 < 1.

Theorem 5 (Error Analysis). Let 𝑀 = {𝐴1, . . . , 𝐴𝑙 } be an
𝑙-way marginal. Suppose 𝑇𝑀 is the contingency histogram of 𝑀 es-
timated using Algorithm 4 with privacy parameter (𝜖, 𝛿) and distri-
bution parameter 𝛾 . For each v ∈ ∏𝑙

𝑖=1
[𝑢𝑖 ], the following inequality

holds:

|𝑇𝑀 [v] −𝑇𝑀 [v] |
𝑇𝑀 [v]

≤ 𝛾 · ( 𝑛

𝑇𝑀 [v]
− 1) + 𝑁̂ +𝐶

𝑇𝑀 [v]
, (7)

with a probability of at least 1 − 𝛽 . Here, 𝑁̂ represents the Laplacian

noise added to the data number 𝑛, and 𝐶 = 𝑂 ( log
1/2 (1/𝛿 ) log

1/4 (1/𝛽 )
𝜖 ′ ).

Due to the space limitation, the proofs are shown in theAppendix.

As shown in Theorem 5, the relative error tends to be larger when

the proportion of 𝑇𝑀 [v] in 𝑛 decreases and when the count 𝑇𝑀 [v]
decreases. Meanwhile, a stronger privacy level, represented by a

smaller value of 𝜖 , can indeed lead to a larger relative error, as

indicated by the term 𝐶 in the theorem.

4.4 Privacy and Communication Cost

Overall Privacy Analysis. As shown in the workflow of Ver-
tiMRF in Algorithm 2, LocMRF on all 𝑚 local parties consumes

(𝑚 · 𝜖
2𝑚 ,𝑚 · 𝛿

2𝑚 )-DP. As stated in Theorem 4, the remaining ( 𝜖
2
, 𝛿

2
)-

DP is allocated for encoding the 𝑑 attributes for 𝑡 iterations in

LocEnc. According to the sequential composition property of DP,

we can conclude that VertiMRF implemented as in Algorithm 2

satisfies (𝜖, 𝛿)-DP.
Communication cost. There is one communication round be-

tween each party P𝑖 and the central server in VertiMRF. The com-

munication includes encoded attributes M𝑖 and the local MRF

information {MRF𝑖 ,S𝑖 ,G𝑖 }. For sketch-based LocEnc,M𝑖 contains

𝑡
∑
𝐴 𝑗 ∈A𝑖

𝑢 𝑗 sketches. For FO-based LocEnc,M𝑖 contains a noisy

version of local dataset. MRF𝑖 is parameterized by a vector Θ with

length

∑
𝑀∈𝑆𝑖

∏
𝐴 𝑗 ∈𝑀 𝑢 𝑗 , controlled by the maximal clique size 𝜏 ′

for each local MRF. G𝑖 is represented by a ( |A𝑖 |× |A𝑖 |)-dimensional

adjacent matrix, with |A𝑖 | < 𝑑 . The information in S𝑖 , which con-

tains serveral attribute tuples, can be ignored in terms of communi-

cation costs. Considering a total of𝑚 parties, the communication

cost of VertiMRF is 𝑂 (𝑡𝑑𝑢) +𝑂 (𝑑2) +𝑂 (𝑚𝜏
′ ) when using sketch-

based LocEnc and 𝑂 (𝑛𝑑) +𝑂 (𝑑2) +𝑂 (𝑚𝜏
′ ) when using FO-based.

Here 𝑢 represents the average domain size of attributes.

5 MRF GENERATION IN CENTRAL SERVER

After receiving local MRFs and encoded attributesM from all parties,

the process of the central server can be divided into the following

phases: generating the global attribute graph (Phase 3), initializing

the marginal set thereby estimating the MRF parameter (Phase 4),

refining the marginal set thereby optimizing the MRF parameter

(Phase 5) and finally sampling the synthetic data (Phase 6).

5.1 GraphCom in Phase 3

Since the local attribute graphs are disjoint and each one accurately

represents the correlation among a subset of attributes, a basic

approach to creating a global attribute graph is to combine the

disjoint graphs by linking up certain cross-party attribute pairs.

However, there are two constraints (CSTR) that must be satisfied

when selecting such cross-party attribute pairs, denoted as (𝐴𝑖 , 𝐴 𝑗 ):
•CSTR1: (𝐴𝑖 , 𝐴 𝑗 ) should exhibit strong correlation.

•CSTR2: The domain size of maximal cliques in the resulting at-

tribute graph should not exceed a predefined threshold value 𝜏 .

To satisfy CSTR1, the central server estimates the R-score [6]

𝑅(𝐴𝑖 , 𝐴 𝑗 ) for each cross-party attribute pair (𝐴𝑖 , 𝐴 𝑗 ) with CarEst
approach introduced in Section 4 over the received encoded at-

tributes M: 𝑅(𝐴𝑖 , 𝐴 𝑗 ) ≈ 𝑛̂
2





𝑇(𝐴𝑖 ,𝐴𝑗 )
𝑛̂
− 𝑇

𝐴𝑖

𝑛̂
· 𝑇𝐴𝑖

𝑛̂






1

, where 𝑇 de-

notes the estimated contingency histogram. As explained in Sec-

tion 2.3, attribute pairs with higher R-scores indicate stronger cor-

relation. After the estimation, the server sorts all attribute pairs in

descending order based on their estimated R-scores and greedily

connects them in the global attribute graph.

For CSTR2, whenever a link between cross-party attributes is

added to G, the server checks the domain size of the maximal clique

in the triangulated G to ensure it does not exceed 𝜏 .

𝜏 is always set empirically to strike the tradeoff between the

model utility and computation complexity. A larger 𝜏 enables more

flexible marginal selection but incur high computational efficiency.

According to our observation, [10
5, 5× 10

6] is an suitable range for

𝜏 . If CSTR2 is satisfied, the process of adding links continues. This

process continues until it is no longer possible to satisfy CSTR2.

5.2 InitMRF in Phase 4

After generating the global attribute graph, the next step is to

construct the global MRF. As shown in Section 2.3, the MRF con-

struction process essentially is to learn a parameter vector Θ on a

marginal set S. In PrivMRF, S is first initialized by selecting the

most highly correlated marginal for each attribute and then refined

through adding marginals which cannot be accurately inferred by

the global MRF. Meanwhile, Θ is initialized and optimized by reduc-

ing the error of inferring the marginals in S using a mirror descent

algorithm [6]. The initialization of S serves to initialize the global

MRF and select an reliable direction for the subsequent refinement

of S and learning of Θ. we follow this process and initialize an S
to initialize the global MRF.

However, unlike PrivMRF, the central server in our setting lacks

access to the raw data, it is not practical to compute sufficiently

accurate correlations among each attribute with multiple marginals

to select the highly correlated ones. More severely, the true value

of the contingency histograms are unavailable to compute the in-

ferring error of Θ. Therefore, it is essential to select marginals that

can be accurately estimated based on the DP shared information of

local parties. With the observation that local MRFs can estimate their

marginals with relative low error, we take the union of the local

marginal sets as the initializedS, that isS = ∪𝑚
𝑖=1
S𝑖 and take the lo-

cal MRF inferred contingency histograms ∪𝑚
𝑖=1
{MRF𝑖 (𝑀) |∀𝑀 ∈ S𝑖 }

as the ground truth of contingency histograms, where MRF𝑖 (𝑀)
7
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refers to the inferred result of MRF𝑖 on 𝑀 . Based on this ground

truth and the initialized S, the server initializes the global MRF.

By observing Equation (4), we notice that an MRF encodes the

correlation amongmultiple attributes by representing themarginals

in the marginal set. Based on this observation, We can say that the

inferred results of each MRF𝑖 on the marginals in the marginal set

S𝑖 encapsulate all the "knowledge" encoded by the MRF. Therefore,

such initialization can also be viewed as transferring the knowledge

from the local MRFs to the global MRF.

5.3 OptMRF in Phase 5

After initialization, the encoded correlation in the local MRFs has
already been transferred to the global MRF. However, the correla-

tion among cross-party attributes has not been characterized by

the global MRF. To address this, the central server further refines S
by inserting cross-party marginals whose contingency histograms

can be estimated using the CarEst approach over the encoded

local attributesM. To minimize noise, we mainly select the low-

way cross-party marginals denoted as S𝑐 . Specifically, the average
count in each cell of 𝑇𝑀 of each marginal𝑀 ∈ S𝑐 is controlled to

be larger than a threshold 𝑑𝑐 , as given by
𝑛̂∏

𝐴𝑖 ∈𝑀 |𝑢𝑖 |
≥ 𝑑𝑐 , where

𝑑𝑐 controls the error of the estimation of CarEst, which is also set

empirically. As shown in Theorem 5, accurate estimation of CarEst

becomes challenging with small average counts in the contingency

histogram. It is worth noting that the optimization of Θ involves

multiple rounds. In each round, the server randomly samples sev-

eral cross-party marginals from S𝑐 and optimize Θ mainly on the

ones with significant inferring error, as measured by the L1 distance

between the inferred histograms of the global MRF and the true

values estimated using CarEst over the encoded attributesM.

Once the global MRF is constructed, approximating the data

distribution and sampling synthetic data becomes a straightforward

task. For detailed information, please refer to [6].

6 DIMENSION REDUCTION AND

CONSISTENCY

While Phase 1 - 5 with details introduced in Section 4 and Sec-

tion 5 can compose a complete algorithm for differentially private

vertical data synthesis, we encounter a dilemma when optimizing

the algorithm by tuning the granularities of the attributes. With

a coarser granularity, the LocEnc-CarEst can have smaller rela-

tive errors, but the LocMRF and global MRF becomes inferior to its

best performance with more fine-grained granularity. Thus, config-

uring different granularities for those parts can be an alternative

improvement. However, there are two issues for this inconsistent

granularity solution: 1) how to reduce dimension while keeping

as much information as possible; 2) how to enforce consistency

between the frequencies of different granularities.

6.1 Dimension reduction

As stated in Theorem 5, when the domain sizes of attributes in-

crease, the estimated cross-party marginals by CarEst can deviate

significantly. This deviation occurs because the expected number of

data points in each cell of the contingency histogram decreases. To

address this issue, we propose binning the attributes to reduce the

domain sizes. The binned attributes are encoded using LocEnc and

sent to the server (Phase 2). The encoded attributes are then used

to calculate R-scores in the GraphCom procedure (Phase 3) and esti-
mate the cross-party marginals to optimize the global MRF (Phase

5). However, since the global MRF is constructed based on the raw

attributes without binning, the estimated contingency histogram

cannot be used directly. To overcome this, we employ a histogram

recovery technique to transform the estimated low-dimensional

histograms of the binned attributes into the high-dimensional ones.

The basic idea is to approximate the high-dimensional dis-
tributions using low-dimensional ones. According to the joint

distribution formula, when considering (𝐴, 𝐵) as a marginal for es-

timation, where 𝑋 and 𝑌 are the binned versions of 𝐴 and 𝐵 respec-

tively, the high-dimensional marginal distribution can be estimated

as 𝑃𝑟 [𝐴, 𝐵] ≈ ∑
(𝑋,𝑌 ) 𝑃𝑟 [𝑋,𝑌 ] · 𝑃𝑟 [𝐴|𝑋 ] · 𝑃𝑟 [𝐵 |𝑌 ] . Here, 𝑃𝑟 [𝑋,𝑌 ]

represents the low-dimensional distribution over the binned at-

tributes, while 𝑃𝑟 [𝐴|𝑋 ] and 𝑃𝑟 [𝐵 |𝑌 ] are referred to as value distri-

butions and are also low-dimensional. Figure 3 provides a visual-

ization of our dimension reduction technique.
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Figure 3: Instantiation of Dimension Reduction.

Attribute binning. Each party P𝑖 applies equal-width binning to

each local attribute 𝐴 𝑗 ∈ A𝑖 before LocEnc. The number of bins 𝑏

is specified by the server or negotiated by data parties. Equal-width

binning is based solely on the domain size of each attribute and does

not expose any statistical information from the raw data. However,

to facilitate the subsequent histogram recovery, it is necessary to

preserve the value distribution within each bin for each attribute

during the binning process and send it to the server.

For an attribute 𝐴 𝑗
with a domain size of 𝑢 𝑗 , the values are

allocated to 𝑏 bins with equal width. Suppose the values 𝑣1

𝑖
, ..., 𝑣𝑘

𝑖
are allocated to the 𝑙-th bin, and their corresponding frequencies

are 𝑛1

𝑖
, ..., 𝑛𝑘

𝑖
. The distribution of the 𝑙-th bin of 𝐴 𝑗

is defined as:

𝑈 ( 𝑗,𝑙 ) =
[
𝑈 1

( 𝑗,𝑙 ) , . . . ,𝑈
𝑘
( 𝑗,𝑙 )

]
≜

[
𝑛1

𝑖∑𝑘
ℎ=1

𝑛ℎ
𝑖

, . . . ,
𝑛𝑘
𝑖∑𝑘

ℎ=1
𝑛ℎ
𝑖

]
.

Since the frequencies are obtained from the raw data, the resulting

value distributions may expose sensitive statistical information.

To ensure privacy, we utilize the Laplacian mechanism to perturb

the frequencies with a sensitivity of 1 and a privacy budget of

𝜖′. The value distributions are then computed based on the noisy

frequencies. Considering the sequential composition of DP, the

total privacy cost of the overall binning procedure should be 𝑑𝜖′.
Histogram recovery (HisRec). Let’s assume the contingency

histogram of the marginal (𝐴𝑖 , 𝐴 𝑗 ) estimated by CarEst

over the binned attributes is denoted as 𝑇 (𝑙𝑜𝑤 ) . In 𝑇 (𝑙𝑜𝑤 ) ,
𝑇 (𝑙𝑜𝑤 ) [(𝑣 ′(𝑖 ) , 𝑣

′
( 𝑗 ) )] represents the number of data points falling in

the 𝑣 ′(𝑖 ) -th bin of 𝐴𝑖
and the 𝑣 ′( 𝑗 ) -th bin of 𝐴 𝑗

. We can recover the

high-dimensional histogram 𝑇 (ℎ𝑖𝑔ℎ) by estimating the number of

data points falling in each cell where 𝐴𝑖 = 𝑣 (𝑖 ) and 𝐴
𝑗 = 𝑣 ( 𝑗 ) as:

𝑇 (ℎ𝑖𝑔ℎ)
[
(𝑣 (𝑖 ) , 𝑣 ( 𝑗 ) )

]
= 𝑇 (𝑙𝑜𝑤 )

[
(𝑣 ′(𝑖 ) , 𝑣

′
( 𝑗 ) )

]
·𝑈

ℎ′(𝑖 )
(𝑖,𝑣′(𝑖 ) )

·𝑈
ℎ′( 𝑗 )
( 𝑗,𝑣′( 𝑗 ) )

.
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where ℎ′ (𝑖) and ℎ′ ( 𝑗) represent the value index of 𝑣 (𝑖 ) allocated
to the 𝑣 ′(𝑖 ) -th bin of 𝐴𝑖

and 𝑣 ( 𝑗 ) allocated to the 𝑣 ′( 𝑗 ) -th bin of

𝐴 𝑗
. Although demonstrated with the two-way marginal case, this

technique can be easily extended to higher-way marginal cases.

6.2 Consistency enforcement

As discussed in Section 5.3, estimating contingency histograms for

intra-party and cross-party marginals in the marginal set S is vital

for constructing the globalMRF. Intra-partymarginals are estimated

using local MRFs, while cross-party marginals are estimated using

CarEst. Nevertheless, variations in the sources of randomness can

cause inconsistencies between the estimated histograms from local

MRFs and CarEst for specific attribute sets.

Let’s consider a two-way cross-party marginal, denoted as

(𝐴𝑖 , 𝐴 𝑗 ). The contingency histogram estimated by CarEst is de-

noted as 𝑇(𝐴𝑖 ,𝐴𝑗 ) , or simply 𝑇 . If we marginalize 𝑇 to obtain 𝑇(𝐴𝑖 )
and 𝑇(𝐴 𝑗 ) , these results may exhibit inconsistencies with the his-

tograms 𝑇(𝐴𝑖 ) and 𝑇(𝐴 𝑗 ) inferred from local MRFs.
To address this inconsistency, we employ a two-step technique

to ensure consistency among 𝑇,𝑇(𝐴𝑖 ) ,𝑇(𝐴 𝑗 ) . Firstly, we transform
all three contingency histograms into marginal distributions by

normalizing them. For simplicity, we continue to use the notation

𝑇 to represent the marginal distribution. The two-step technique

operates on each attribute individually, taking 𝐴𝑖
as an example.

Step 1: consistency.We begin by establishing agreement between

𝑇(𝐴𝑖 ) and 𝑇(𝐴𝑖 ) by taking their arithmetic mean: 𝑇 =
𝑇(𝐴𝑖 )+𝑇(𝐴𝑖 )

2
.

We then update both 𝑇 and 𝑇(𝐴𝑖 ) to be consistent with 𝑇 . Specif-

ically, 𝑇(𝐴𝑖 ) is directly set to 𝑇 . As for 𝑇 , changing a cell in 𝑇(𝐴𝑖 )
would affect 𝑢 𝑗 cells in 𝑇 (where 𝑢 𝑗 is a constant). To maintain the

unchanged marginal distribution 𝑇(𝐴 𝑗 ) , we calculate the difference

between 𝑇 (𝐴𝑖 ) and 𝑇 for each cell when 𝐴𝑖
takes a specific value

𝑣 (𝑖 ) , and then distribute the difference equally among all𝑢 𝑗 affected

cells: 𝑇 [(𝑣 (𝑖 ) , 𝑣 ( 𝑗 ) )] = 𝑇 [(𝑣 (𝑖 ) , 𝑣 ( 𝑗 ) )] +
𝑇 [𝑣(𝑖 ) ]−𝑇(𝐴𝑖 ) [𝑣(𝑖 ) ]

𝑢 𝑗
.

Step 2: normalization. After the consistency step, negative num-

bers may appear in the marginal distribution. To ensure non-

negativity, we set all negative numbers to 0. However, this adjust-

mentmay cause the sum of the distribution𝑇 to exceed 1. To address

this, we re-normalize 𝑇 . Nevertheless, this re-normalization may

introduce inconsistency between𝑇(𝐴𝑖 ,𝐴 𝑗 ) and𝑇 (𝐴𝑖 ) again. To miti-

gate this issue, we repeat the consistency and normalization process

for each attribute multiple times until the resulting inconsistency

becomes negligible. Finally, the consistent marginal distribution is

transformed into a contingency histogram by multiplying it with a

DP-sanitized data number 𝑛̂.

This consistency enforcement technique is employed in Phase

5 and can be directly extended to higher-way marginal cases.

7 EXPERIMENTS

In this section, we first conduct
1
the end-to-end comparisons of

VertiMRF to baseline methods. Then, we validate each component

by conducting the ablation experiments (shown in Appendix A.1).

1
The code is available at https://github.com/private-mechanism/Verti_MRF

Table 1: Characteristics of Datasets

Dataset Records Attrs Dom. Dom. Size Attr. Split

NLTCS 21574 16 2 ≈ 6 × 10
4

8&8

Adult 45222 15 2-42 ≈ 4 × 10
14

8&7

BR2000 38000 13 2-21 ≈ 3 × 10
9

7&6

Fire 305119 15 2-46 ≈ 1 × 10
15

8&7

The final experimental results demonstrate the superiority of Ver-
tiMRF.

7.1 Experiment settings

Datasets. We evaluate our algorithms on four datasets in Table 1.

• Adult [3]. The data is sourced from the United States Census

Bureau. It consists of 45,222 instances, each containing 15 attributes

capturing demographic and socio-economic information, such as

age, race, education, and income level.

• NLTCS [39]. The data is collected from a study on health status

of older adults. It includes 21,574 records and 16 attributes that

describe demographic information and health conditions.

• BR2000 [52]. The data originates from a population Census in

Brazil and contains 38,000 records. It includes 13 attributes that

provide information about demographic, and economic aspects.

• Fire [51]. The data includes records of fire unit responses to calls

in San Francisco. It consists of 305,119 records, with each record

containing 15 attributes.

Metrics. We evaluate the performance based on two metrics.

• 𝑙-way TVD.We randomly sample 300 marginals with 𝑙 attributes

each from the synthetic data. For each marginal, we compute the to-

tal variation distance (TVD) between the raw and synthetic data.We

calculate the average TVD for 𝑙 values of 3, 4, 5 across all marginals

and report the average measurement based on 10 iterations.

• Misclassification rate. We employ synthetic data to train SVM

classifiers for predicting specific attributes based on all other at-

tributes. The predicted attribute for each dataset is shown in the

"label" row of Table 1. For NLTCS, each attribute serves as the label

to predict, and the average result is reported. We use 80% of the raw

data to generate synthetic data and train the classifier, while the

remaining data is used as the test set to report the misclassification

rate. We utilize 5-fold cross-validation and report the average.

Compared methods.We compare the following methods.

• VertiGAN [24] employs a partitioned GAN with a multi-output

global generator and multiple local discriminators. To ensure pri-

vacy, local discriminators are trained with DP-SGD [1] using raw

data. The global generator is updated by aggregating the local gra-

dients. The privacy budget is fully utilized during the DP-SGD

procedure of local discriminator.

• Centralized refers to PrivMRF [6] in the centralized setting.

• VertiMRF-FO & VertiMRF-FM. Both methods are based on our

proposed VertiMRF framework, with one equipped with FO-based

and the other with sketch-based LocEnc approach.

In addition, we encountered the DPLT approach [56], which uti-

lizes a latent tree structure to capture attribute correlations. Despite

our diligent efforts to replicate DPLT, we encountered significant

9
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Figure 4: 𝑙-way TVD vs. privacy budget 𝜖.

computation overhead when calculating the marginal distribution

of high-level latent attributes. We also faced ambiguity regarding

data synthesis from the constructed tree. As a result, we have cho-

sen not to include DPLT in our comparison.

Parameter setting. In our experiments, we use default values for

VertiMRF-FM, setting the repetition number of the DP FM sketch

to 𝑡 = 2000 and 𝛿 = 1/𝑛. The network structure of VertiGAN
follows the configuration described in the original paper [24] and

the privacy is tracked with RDP [44]. For all datasets except NLTCS,

we set the binning number to 𝑏 = 4. As for the privacy budget

allocation, we allocate 40% to LocMRF, 40% to LocEnc (with 10% of

the 40% used to generate a noisy data count 𝑛̂), and the rest 20% for

sanitizing value distributions in the binning procedure. By default,

our algorithms are validated in a two-party setting, the attribute

distribution on the two parties is shown in the "Attr. Split" row of

Table 1, e.g., "8&7" means that 8 attributes are assigned to one party

and other 7 attributes are assigned to the other one.

7.2 End to End Comparisons

Comparison on 𝑙-way TVD. Figure 4 compares the methods

based on the average TVD of the 𝑙-way marginals. As shown,

VertiMRF-FM and VertiMRF-FO consistently produce smaller TVD

than Verti-GAN regardless of privacy cost or dataset. This demon-

strates the superiority of VertiMRF. Additionally,VertiMRF-FM out-

performs VertiMRF-FO across all cases, indicating that the sketch-

based LocEnc and CarEst can provide more accurate estimation of

the cross-party marginals compared to the FO-based approaches.

It is worth noting that VertiGAN consistently yields significantly

larger TVD results. This can be attributed to the fact that GAN-

based data synthesis methods are not well-suited for synthesiz-

ing tabular data, as discussed in previous studies [6, 41]. Further-

more, the advantages of Centralized over VertiMRF-FM become

more prominent in datasets with larger domain sizes, such as adult,

BR2000, and Fire. Although VertiMRF-FM performs closely to Cen-
tralized on NLTCS when 𝜖 is larger, the difference becomes more

pronounced in the other three datasets due to their larger domain

sizes. This aligns with our analysis in Theorem 5. A larger domain

size leads to smaller average count in a contingency histogram,

thereby deriving a larger estimation error of CarEst.
Comparison on SVM classification. Figure 5 presents the aver-

age misclassification rates of the SVM classifiers trained on the

synthetic data. VertiMRF-FM consistently outperforms other ver-

tical methods. Misclassification rates of VertiGAN are as high as

40% even when 𝜖 = 3.2, which is significantly larger than both

VertiMRF-FM and VertiMRF-FO methods. Additionally, the advan-

tages of centralized over VertiMRF-FM are magnified as the domain

size of the dataset increases. These findings alignwith results shown

in Figure 4, illustrating the effectiveness of VertiMRF-FM and the

negative impact of large domain sizes. Similar Results on Br2000

and Fire datasets are shown in Figure 8 in Appendix A.1.

Impact of the number of parties.We examine the impact of the

party number𝑚 on the utility of synthetic data. Figure 6 compares

the TVD results obtained under different𝑚 settings on the NLTCS

and Adult datasets with a privacy budget 𝜖 = 0.8. In the experi-

ments,𝑚 = 𝐴𝐿𝐿 indicates that the attributes are distributed to d
parties, with each party having one distinct attribute. The results

demonstrate that as𝑚 increases, the TVD results also increase. This

is primarily because when attributes are partitioned to more parties,

LocMRF with high precision contributes less to the global MRF. In

such cases, the LocEnc and CarEst procedures dominate the errors.

Impact of privacy budget allocation.We examine the impact of

privacy budget allocation on the utility of synthetic data. In this

study, we fix the total privacy budget as 𝜖 = 0.8 and compare the
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Figure 5: SVM misclassification rate vs. privacy budget 𝜖.
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Figure 7: Impact of privacy budget allocation (𝜖 = 0.8).

TVD results on the NLTCS dataset under different privacy budget

ratio 𝜃 assigned to LocMRF. The remaining (1−𝜃 ) proportion of the

privacy budget is then fully allocated to LocEnc. Figure 7 illustrates
that as 𝜃 increases, the TVD results initially decrease when 𝜃 ≤ 0.2,

but then increase when 𝜃 > 0.2. These results highlight the tradeoff

between the impacts of LocEnc and LocMRF. LocMRF aids in esti-

mating the intra-party marginals, while LocEnc aids in estimating

the cross-party marginals. When 𝜃 is small, the error is dominated

by inaccurate estimation of the intra-party marginals. Conversely,

when 𝜃 is larger, the error is mainly caused by inaccurate estimation

of the cross-party marginals.

Communication and computation cost. In Table 2, we compare

the communication costs and computation time of the four methods

on Adult dataset. As analyzed in Section 4.4, the communication

overhead of VertiMRF-FM is expected to be smaller than that of

Table 2: Communication cost and computation time

Dataset methods commu. cost

compu. time

per party server

Adult

VertiMRF-FM (𝑡 = 2000) 15 Mb 23.1 min 67 min

VertiMRF-FM
(𝑡 = 2000, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 40)

4.9 Mb 4.1 min 67 min

VertiMRF-FM (𝑡 = 8000) 22 Mb 93 min 67 min

VertiMRF-FO 18 Mb 2.5 min 67 min

VertiGAN 112 Mb 8.3 min 10 s

Centralized - - 16 min

VertiMRF-FO when 𝑡𝑢 < 𝑛. Consistent with our analysis, we ob-

serve that the overhead of VertiMRF-FM is smaller than that of

VertiMRF-FO when 𝑡𝑢 < 𝑛 with 𝑡 = 2000 but larger when 𝑡𝑢 > 𝑛

with 𝑡 = 8000. The communication in VertiGAN involves send-

ing gradients of local generators to the server and broadcasting

the updated model to the local parties. Therefore, the overall com-

munication cost depends on the model size and the number of

communication rounds.

In terms of computation time, when using the sketch-based

LocEnc, each local party needs to perform 𝑡𝑛 hash mappings,

whereas the FO-based LocEnc only requires 𝑛 |𝐴𝑖 | perturbations.
Since 𝑡 >> |𝐴𝑖 |, the FO-based LocEnc requires less computation

time. The hash mappings can be accelerated by parallel compu-

tation since they run independently. By introducing 40 parallel

threads, the computation time can be significantly reduced. On

the server side, the computation time is nearly identical for both

VertiMRF-FM and VertiMRF-FO. That’s because apart from CarEst,
both methods execute identical computations on the server side.

Whether it is FO-based CarEst or sketch-based CarEst, the com-

putation process solely involves simple calculations and does not

significantly affect the computation time. In VertiGAN, each party

generates fake data and computes model gradients, while the server

aggregates and broadcasts the updated model. Therefore, the most

time consumption occurs at the local party.

Impact of different attribute distributions. We calibrate the

importance and correlation of attributes from different data parties

11
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Table 3: 3-way TVD under different attribute distributions

Splitters Params. VertiMRF-FM VertiMRF-FO VertiGAN

Importance

0.1 0.0583 (±0.005) 0.234(±0.023) 0.426 (±0.027)
1 0.0667 (±0.021) 0.249 (±0.017) 0.430 (±0.056)
10 0.0589 (±0.006) 0.257 (±0.019) 0.458 (±0.081)
100 0.0648 (±0.007) 0.266 (±0.022) 0.465 (±0.068)

Correlation

0 0.0735 (±0.007) 0.261(±0.027) 0.436 (±0.034)
0.3 0.0524 (±0.006) 0.296 (±0.024) 0.416 (±0.031)
0.6 0.0684 (±0.006) 0.272 (±0.023) 0.438 (±0.038)
1.0 0.0678 (±0.009) 0.281 (±0.034) 0.401 (±0.042)

based on the attribute splitters proposed for VFL tasks in Vert-

ibench [64], thereby evaluating the impact of varying attribute

distributions on algorithm performance. Table 3 summarizes the

resulting 3-way TVD results, i.e., mean and standard deviation

across 5 independent runs, under different parameter settings for

each algorithm on NLTCS dataset. As shown, the superiority of

VertiMRF-FM on other baseline algorithms is significant and sta-

ble with respect to different splitting strategies. Furthermore, the

TVD results for all algorithms fluctuate within a narrow range as

parameters 𝛼 and 𝛽 vary, indicating that the performance of these

algorithms is robust against variations in feature splits.

8 RELATEDWORK

We review related work from the following three perspectives. More

detailed related work can be referred to [72].

DP data synthesis. There have been plenty of approaches [4, 16,

30, 31, 33, 41, 50] to generate synthetic data with DP guarantee,

which can be categorized into GAN-based [2, 5, 7, 14, 25, 68], game-

based [15, 18, 57], and marginal-based approaches [6, 40, 41, 67, 71].

Among them, the marginal-based ones tend to perform best, aim-

ing to approximate the joint distribution of high-dimensional data

with multiple low-way marginals. Such an approximation can

help to circumvent the curse of dimensionality, i.e., the exponen-

tially exploded sizes of the contingency histogram with the in-

creased attribute number. For example, PrivBayes [67] utilizes the

Bayesian network to select low-way marginals to approximate a

high-dimensional distribution. PrivMRF [6] applies a Markov Ran-

dom Field to model the data distribution, which enables flexible

selection of low-way marginals. Without learning a graph struc-

ture, PrivSyn [71] greedily searches numerous low-way marginals

to represent and synthesize the original dataset directly. Despite

high utility with DP guarantee, these approaches cannot be directly

extended to the vertical federated setting.

Private vertical data synthesis. There are several works [23,

24, 45, 46, 56] on the private data synthesis under vertical setting.

Among those works, some are based on the privacy model of k-

anonymity [55], which has been proven to be vulnerable to various

privacy attacks [27, 62]. A few works [24, 45, 56] explore DP data

synthesis under a vertical setting. For instance, [45] proposes a two-

party DP data synthesis framework relying on a given taxonomy

tree, which is designed for classification tasks. [56] utilizes a latent

tree model to capture the correlations among cross-party attribu-

tions. Besides, DP-WGAN is also adapted to the vertical setting [24]

to generate synthetic data. To the best of our knowledge, we are

the first work adapt the marginal-based approach to the vertical

setting. The empirical results have demonstrated the superiority.

Vertical data analysis with DP. Apart from data synthesis, there

are also several works on the DP computing [17, 20] and DP ma-

chine learning [9, 36, 63, 65] under vertical setting. In particular, the

work [17] applies DP to protect the loads of hash table for achiev-

ing malicious-secure two-party private set intersection. Another

work [65] enables each data party to build a local feature extrac-

tor to output DP-sanitized feature embedding for realizing vertical

deep learning with DP. A recent paper [36] achieves DP vertical

k-means by leveraging the inherent randomness of FM-sketch to

protect the membership information of data points.

9 CONCLUSION

We have presented VertiMRF, a novel differentially private algo-

rithm to generate synthetic data in the vertical federated setting.

In particular, we applied DP FM-sketch to encode the local data

of each party and estimate cross-party marginals. Based on the

shared sketches and local MRFs constructed by local parties, the

central server can build an MRF to represent global correlations

without access to the raw data and violation of DP. Additionally,

we also provided two techniques tailored for datasets with large

attribute domain sizes. Finally, we empirically validated VertiMRF
by conducting end-to-end comparisons and ablation studies.
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A APPENDIX

A.1 Additional experimental results

Effect of LocMRF. Data parties generate local MRFs to help infer the
intra-party marginals. However, simply using LocEnc and CarEst
can also achieve the marginal estimation. In Figure 9, we com-

pare TVD on NLTCS when synthesizing data with and without

using LocMRF respectively. Specifically, different LocEnc methods

are considered in LocMRF, which are labeled as "FM+LocMRF" and
"FO+LocMRF", respectively. As shown, for both "FM+LocMRF" and
"FO+LocMRF", the TVD results are smaller than those when simply

using the sketch or FO-based LocEnc. This demonstrates the effec-

tiveness of LocMRF. Furthermore, we also find that using LocMRF
can dramatically reduce the variances of the generated TVD results.

This is reasonable since LocMRF can capture the correlations among

local attributes, thereby reducing the uncertainty when estimating

the intra-party marginals.

Effect of histogram recovery. We demonstrate the effectiveness

of our proposed histogram recovery (HisRec) by comparing it to the

baseline that generates high-dimensional histogram via uniformly

allocating the count in each cell of estimated low-dimensional his-

togram (denoted as UniSam) to the corresponding multiple cells of

the high-dimensional histogram. For a fair comparison, the privacy

budget for sanitizing the value distributions in HisRec is allocated

to LocEnc in UniSam. As shown in Figure 10, FM+HisRec yields su-

perior TVD results compared to FM+UniSam, which demonstrates

the effectiveness of HisRec when being used in conjunction with

FM sketch-based LocEnc and CarEst approaches. However, we

also find that FO+HisRec performs closely to FO+UniSam when the

privacy budget 𝜖 < 3.2 and even worse when 𝜖 = 3.2, that’s mainly

because the low-dimensional histogram estimated by FO-based

CarEst is too noisy and the noise has dominated the estimation

error. Then without prior knowledge of true distribution, uniform

allocating shows an advantage as an impartial method.

Effect of consistency enforcement. As discussed in Section 6.2,

we propose to improve marginal estimation by ensuring consis-

tency among the histograms estimated by CarEst and local MRFs. In
Figure 11, we compare TVD on the synthetic Adult dataset obtained

with (denoted as +Consis) and without enforcing consistency. As

shown, the TVD values under +Consis settings are consistently

smaller than those without ensuring consistency, demonstrating the

effectiveness of consistency enforcement. Furthermore, the TVD

results become closer within a lower privacy regime (larger bud-

get). This is due to the improved accuracy of both CarEst and local
MRFs with the increased privacy budget, reducing the advantage

of the consistency enforcement procedure. Therefore, enforcing

consistency becomes more necessary in a higher privacy regime.

A.2 proof of Theorem 3

Proof. First of all, we should notice that GRR achieves un-

bounded DP [32] which considers the neighboring dataset by re-

placing one record. It has been shown that any algorithm satisfying

𝜖 unbounded DP also satisfies 2𝜖 bounded DP, where bounded DP

considers neighboring datasets obtained by adding or removing a

single record. In this paper, we consider bounded DP for consistency.

Thus, given 𝜖′, each perturbation in Equation (6) should satisfy
𝜖 ′
2
-

DP. The privacy guarantee of the FO-based LocEnc procedure can

be obtained by applying the sequential composition of DP, resulting

in an overall privacy guarantee of 𝑑𝜖′/2, where 𝑑 represents the

number of attributes in each record. However, Lemma 1 demon-

strates that RDP provides an alternative bound for the composition

of multiple DP algorithms, that is (4𝜖 ′
2

√︁
2𝑑 log(1/𝛿), 𝛿)-DP, where

0 < 𝛿 < 1 and log(1/𝛿) ≥ 𝑛( 𝜖 ′
2
)2. To obtain the tighter bound, we

take the minimum between the two bounds, as stated in the theo-

rem. The variance bound can be directly obtained from proposition

10 of [59]. □

A.3 Proof of Theorem 4

Proof. Let𝐷 and𝐷′ be neighboring datasets satisfying𝐷∇𝐷′ =
𝑋𝑖𝑑 =

{
𝑣1

𝑖𝑑
, ..., 𝑣𝑑

𝑖𝑑

}
, where 𝑖𝑑 denotes the record- index of𝑋𝑖𝑑 , 𝑣

𝑗

𝑖𝑑
is

the corresponding attribute value of 𝐴 𝑗
. Let 𝑓 be the sketch-based

LocEnc algorithm which maps 𝑡 hash keys and input dataset to 𝑡

set of sketch tuples{
M (ℎ) ≜

{
M (ℎ)

𝑗
≜

(
𝛼
(ℎ)
𝑣
𝑗

1

, ..., 𝛼
(ℎ)
𝑣
𝑗
𝑢𝑗

)
| 𝑗 ∈ [𝑑]

}
|ℎ ∈ [𝑡]

}
.

where 𝛼
(ℎ)
𝑣
𝑗

𝑖

denotes the sketch for 𝐴 𝑗
taking value 𝑣

𝑗
𝑖
generated by

the hash key 𝜉ℎ .

We first calculate the privacy cost when applying a hash key

𝜉ℎ to the overall input dataset and returning sketch tuplesM (ℎ) .
M (ℎ) has 𝑑 sketch tuples and

∑𝑑
𝑖=1

𝑢𝑖 sketches in total. Since 𝑋𝑖𝑑

can only take one value 𝑣
𝑗

𝑖𝑑
of each attribute 𝐴 𝑗

, then there should

also be one sketch 𝛼
(ℎ)
𝑣
𝑗

𝑖𝑑

inM (ℎ)
𝑗

may be different for 𝐷 and 𝐷′.

Therefore, according to the definition of RDP, it holds that

exp

[
(𝜆 − 1)𝐷𝜆

(
𝑓 (𝐷, 𝜉ℎ) |𝑓 (𝐷′, 𝜉ℎ)

) ]
(8)

=
∑︁
M (ℎ)

𝑃𝑟 [M (ℎ) ]𝜆𝑃𝑟
′
[M (ℎ) ]1−𝜆 (9)

=

∞∑︁
𝛼
(ℎ)
𝑣1

𝑖𝑑

=0

...

∞∑︁
𝛼
(ℎ)
𝑣𝑑
𝑖𝑑

=0

{[𝑃𝑟 [𝛼 (ℎ)
𝑣1

𝑖𝑑

]
∏

1<𝑖≤𝑑
𝑃𝑟 [𝛼 (ℎ)

𝑣𝑖
𝑖𝑑

|{𝛼 (ℎ)
𝑣𝑡
𝑖𝑑

, 𝑡 < 𝑖}]]
𝜆
·

(10)

[𝑃𝑟 ′ [𝛼 (ℎ)
𝑣1

𝑖𝑑

]
∏

1<𝑖≤𝑑
𝑃𝑟 ′ [𝛼 (ℎ)

𝑣𝑖
𝑖𝑑

|{𝛼 (ℎ)
𝑣𝑡
𝑖𝑑

, 𝑡 < 𝑖}]]1−𝜆}· (11)∑︁
M (ℎ)¬

[𝑃𝑟 [M (ℎ)¬ | ®𝛼]]𝜆 [𝑃𝑟 ′ [M (ℎ)¬ | ®𝛼]]1−𝜆︸                                               ︷︷                                               ︸
=1

(12)
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Figure 8: SVM misclassification rate vs. privacy budget 𝜖 on BR2000 and Fire datasets. .
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Figure 9: Effect of LocMRF on NLTCS.
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Figure 10: Effect of histogram recovery (HisRec) on Adult.
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Figure 11: Effect of enforcing consistency on Adult.

where the second equality follows the joint distribution formula,

®𝛼 ≜ {𝛼 (ℎ)
𝑣𝑖
𝑖𝑑

, 1 ≤ 𝑖 ≤ 𝑑} andM (ℎ)¬ denotes other sketches inM (ℎ)

besides ®𝛼 .
Now consider term 𝑃𝑟

[
𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

|
{
𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

, 𝑡 < 𝑖

}]
, there are two cases:

• ∀𝑡, 𝛼 (ℎ)
𝑣𝑖
𝑖𝑑

≠ 𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

. In such case, sinceH𝜉 map distinct elements to

independent variables and the 𝑘𝑝 phantom elements are inde-

pendently sampled, then 𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

is independent of 𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

,∀𝑡 . That
indicates

𝑃𝑟

[
𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

|
{
𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

, 𝑡 < 𝑖

}]
= 𝑃𝑟

[
𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

]
.

• ∃𝑡, 𝑠 .𝑡 ., 𝛼 (ℎ)
𝑣𝑖
𝑖𝑑

= 𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

. In such case, it should hold that 𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

≥
H𝜉ℎ (𝑖𝑑). That indicates

𝑃𝑟

[
𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

|
{
𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

, 𝑡 < 𝑖

}]
= 𝑃𝑟 ′

[
𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

|
{
𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

, 𝑡 < 𝑖

}]
.

The left side of above Equation is the probability that 𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

is

the maximal among all elements in the set of hashed record ids

and sampled geometric random variables on 𝐷 . Since we have

known thatH𝜉ℎ (𝑖𝑑) is not or not the only one maximal element

in the set, then we can just consider other hashed ids and sampled

variables. The ids are same for𝐷 and𝐷′ and each of the variables
are i.i.d sampled from the same distribution, which can easily

derive the equality of above equation.

W.l.o.g., we assume there are 𝑠 terms

{𝑃𝑟
[
𝛼
(ℎ)
𝑣
𝑗

𝑖𝑑

|
{
𝛼
(ℎ)
𝑣𝑡
𝑖𝑑

, 𝑡 < 𝑗

}]
, (𝑑 − 𝑠 + 1) ≤ 𝑗 ≤ 𝑑} satisfying

the second case. Then, Equation (8) can be bounded by:

exp

[
(𝜆 − 1)𝐷𝜆

(
𝑓 (𝐷, 𝜉ℎ) |𝑓 (𝐷′, 𝜉ℎ)

) ]
(13)

=

∞∑︁
𝛼
(ℎ)
𝑣1

𝑖𝑑

=0

...

∞∑︁
𝛼
(ℎ)
𝑣𝑑−𝑠
𝑖𝑑

=0

[
𝑑−𝑠∏
𝑖=1

𝑃𝑟 [𝛼 (ℎ)
𝑣𝑖
𝑖𝑑

]
]𝜆
·
[
𝑑−𝑠∏
𝑖=1

𝑃𝑟 ′ [𝛼 (ℎ)
𝑣𝑖
𝑖𝑑

]
]1−𝜆

(14)

=

𝑑−𝑠∏
𝑖=1


∞∑︁

𝛼
(ℎ)
𝑣𝑖
𝑖𝑑

=0

[
𝑃𝑟 [𝛼 (ℎ)

𝑣𝑖
𝑖𝑑

]
]𝜆 [

𝑃𝑟 ′ [𝛼 (ℎ)
𝑣𝑖
𝑖𝑑

]
]

1−𝜆
︸                                             ︷︷                                             ︸

𝑡𝑒𝑟𝑚 (𝑖 )

(15)

Lemma 2 demonstrates a statistical bound of 𝜖
′
under DP frame-

work. According to the definition of RDP and the translation with

DP, it holds that 𝑡𝑒𝑟𝑚(𝑖) ≤ exp [(𝜆 − 1) (2𝜆(𝜖′)2)]. Then we can
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derive that

exp

[
(𝜆 − 1)𝐷𝜆

(
𝑓 (𝐷, 𝜉ℎ) |𝑓 (𝐷′, 𝜉ℎ)

) ]
(16)

≤ exp [(𝜆 − 1) (2(𝑑 − 𝑠)𝜆(𝜖′)2)] (17)

≤ exp [(𝜆 − 1) (2𝑑𝜆(𝜖′)2)] (18)

So far, we have proved that applying one hash key to map the

overall input data satisfies (𝜆, 2𝑑𝜆(𝜖′)2)-RDP in a single run. Next,

according to the sequential composition theorem of RDP [44],

LocEnc algorithm involving 𝑡 runs of the FM sketch generation

process should satisfy (𝜆, 2𝑡𝑑𝜆(𝜖′)2)-RDP, which can be further

translated to (4𝜖
√︁
𝑡𝑑 log(1/𝛿), 𝛿)-DP, ∀𝛿 < 1 if setting 𝛼 ≥ 2. □

A.4 Proof of Theorem 5

Our proof is based on a lemma that bounds the error of the cardinal-

ity of a multi-set estimated by DP FM sketching algorithm shown

in Algorithm 1.

Lemma 3. Let 𝑘𝐹𝑀 be the estimated cardinality by Algorithm 1

with inputs 𝛾, 𝜖, 𝛿, 𝛽 ∈ (0, 1), using 𝑡 =
100

√
log (1/𝛽 )
𝛾2

repeats, then
for each multi-set X ⊂ 𝑢, it holds that

|X|
1 + 𝛾 −𝑂 ≤ 𝑘𝐹𝑀 ≤ (1 + 𝛾) · |X| +𝐶 (19)

with probability at least 1 − 𝛽 , where 𝐶 = 𝑂 ( log
1/2 (1/𝛿 ) log

1/4 (1/𝛽 )
𝜖 ).

Proof. We first bound each cardinality 𝑇𝑀 [v] estimated by FM

sketch. As shown in the Algorithm 4, we compute each 𝑇𝑀 [v]

using the inclusion-exclusion principle and the megeable property

of sketch, that is |𝐴 ∩ 𝐵 | = 𝑛̂ − |𝐴 ∪ 𝐵 |, where 𝑛̂ denotes the noisy

data number sanitized by adding a Laplacian noise 𝑁̂ . Combining

with lemma 3, we can derive that

𝑛̂ − (𝑛 −𝑇𝑀 [v]) · (1 + 𝛾) −𝐶 ≤ 𝑇𝑀 [v] ≤ 𝑛̂ − 𝑛 −𝑇𝑀 [v]
1 + 𝛾 +𝐶

(20)

− 𝛾𝑛 + (1 + 𝛾)𝑇𝑀 [v] + 𝑁̂ −𝐶 ≤ 𝑇𝑀 [v] ≤
𝛾

1 + 𝛾 𝑛 +
𝑇𝑀 [v]
1 + 𝛾 + 𝑁̂ +𝐶

(21)

By subtracting𝑇𝑀 [v] for both sides of Equation 21, we can obtain
that:

−𝛾𝑛 + 𝛾𝑇𝑀 [v] + 𝑁̂ − 𝐶 ≤ 𝑇𝑀 [v] − 𝑇𝑀 [v] ≤
𝛾

1 + 𝛾 𝑛 −
𝛾𝑇𝑀 [v]

1 + 𝛾 + 𝑁̂ +𝐶 (22)

By taking the absolute value for both sides and dividing them by

𝑇𝑀 [v], we can derive that:

|𝑇𝑀 [v] −𝑇𝑀 [v] |
𝑇𝑀 [v]

≤ max{ 𝛾

1 + 𝛾 (
𝑛

𝑇𝑀 [v]
− 1) + 𝑁̂ +𝐶

𝑇𝑀 [v]
, (23)

𝛾 ( 𝑛

𝑇𝑀 [v]
− 1) − 𝑁̂ −𝐶

𝑇𝑀 [v]
} (24)

≤ 𝛾 ( 𝑛

𝑇𝑀 [v]
− 1) + 𝑁̂ +𝐶

𝑇𝑀 [v]
(25)

According to Lemma 3, the above bound holds with probability

1 − 𝛽 , and 𝐶 = 𝑂 ( log
1/2 (1/𝛿 ) log

1/4 (1/𝛽 )
𝜖 ). □
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